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RESUMO

Jogos-baseados em Localização (JBLs) são aqueles que dependem da localização do jogador

como principal traço de jogabilidade para alterar seu estado de jogo. Por isso, desenvolver JBLs

que estejam disponíveis em todo o mundo é uma tarefa desafiadora que requer o desenvolvimento

de instâncias dos jogos em vários locais, mantendo o mesmo balanceamento, recursos e até

mesmo correlações entre os locais do jogo e o mundo real. Logo, é praticamente impossível

projetar manualmente interações, desafios e cenários para cada local em que um jogador está.

Portanto, geralmente o mesmo jogo apresenta instâncias distintas com níveis de dificuldade

variados devido a diferenças de terreno, distância, disponibilidade de transporte etc. Consequen-

temente, até mesmo empresas estabelecidas no mercado possuem dificuldade para implantar

JBLs que estejam disponíveis em todo o mundo. Logo, os atuais JBLs não estão disponíveis em

muitas regiões, especialmente cidades pequenas e bairros pobres das grandes cidades. Além

disso, estes jogos ainda apresentam enormes diferenças de balanceamento entre localidades e

evitam explorar a competição entre jogadores, como em outros gêneros de jogos. Nesta tese,

propomos um método de transposição de mapas de JBLs, com foco na manutenção do seu balan-

ceamento. Esta abordagem depende de informações sobre Pontos de Interesse (POIs) em torno

da localização dos jogadores e estimativas sobre o custo de movimentação entre estes pontos.

Introduzimos duas medidas para estimar o balanceamento em JBLs modernos e implementamos

três algoritmos diferentes que visam a transposição de seus mapas com variações mínimas

no seu balanceamento. A primeira medida avalia o balanceamento de jogos internamente e a

segunda compara o balanceamento entre duas instâncias de um jogo. Neste caso, propomos

converter os jogos em grafos ponderados direcionados e utilizar um dos algoritmos para gerar

uma instância equivalente, de acordo com a localização do jogador. Para validar a abordagem

proposta, projetamos quatro JBLs distintos em termos de recurso, jogabilidade e mecânica, e

conduzimos um experimento com usuários para comparar mapas gerados por esses algoritmos

em diferentes locais. Os resultados indicam que os jogos com balanceamento semelhante apre-

sentaram pontuação mais alta, e que os algoritmos apresentam diferente desempenho conforme

o número de POIs. Finalmente, podemos concluir que este trabalho contribui para melhorar o

desenvolvimento de JBLs, ajudando a mitigar o desafio da transposição balanceada.

Palavras-chave: Jogos Baseados em Localização. Geração Procedural de Conteúdo. Isomor-

fismo de grafos.



ABSTRACT

Location-Based Games (LBGs) rely on the player’s location to change its game state, usually

as the main trait of playability. Thus, developing worldwide LBGs is a challenging task due

to the need to deploy game instances in multiple locations, while maintaining the same game

balancing, features, and even correlations between locations of the game and the real world.

Since LBGs rely on players’ location, it is virtually impossible to manually design interactions,

challenges, and game scenarios for every place a player is at. Therefore, the same LBG is

likely to have distinct instances with varying difficulty levels because of differences in terrain,

distance, transport availability, etc. As a result, even established game companies struggle to

deploy LBGs around the globe, so the current generation of LBGs is not available in many

areas, especially small cities and poor neighborhoods of big cities. Additionally, modern LBGs

still present huge balancing differences between regions and avoid exploring the competition

between players like other game genres. In this thesis, we propose a method for transposing

LBGs maps while focusing on maintaining their game balancing. This approach depends on

information about Points-of-Interest (POIs) around the players’ location and estimations about

the cost to move between POIs. We introduced two measurements to estimate game balancing in

modern LBGs and implemented three different algorithms that aim at transposing LBGs’ maps

with minimal variations in game balancing. The first measurement, called Internal Balancing

Difference, assesses game balancing internally and the second, called Minimum Balancing

Difference, compares game balancing between two instances of a game. The transposition

algorithms are based on the Monte Carlo tree search, the Ullmann’s algorithm, and Genetic

Algorithms. In this case, we convert LBGs into directed weighted graphs and use one of the

algorithms to generate an LBG instance according to the player’s location. To validate the

proposed approach, we designed four LBGs with distinct features, gameplay, and mechanics, and

conducted an experiment that required samples to compare maps generated by these algorithms

in different locations. Results indicate that games with similar game balancing score higher and

that the algorithms differ in performance depending on the number of POIs. Finally, we can

conclude that this work contributes to improve the development of LBGs by helping to mitigate

the challenge of transposing LBGs while maintaining game balancing.

Keywords: Location-based Games. Procedural Content Generation. Graph Isomorphism.
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1 INTRODUCTION

This thesis presents a study and methods to tackle the challenge of transposing

maps of LBGs while focusing on maintaining game balancing. Hence, this work proposes

measurements to gauge the difficulty level and balancing of LBGs, and a method that takes a

game and a location as input to create a transposed instance of the game’s map that minimizes

the differences in game balancing. Furthermore, three algorithms that tackle this challenge as a

Weighted Graph Matching Problem (WGMP) were developed.

This chapter introduces this thesis and is organized as follows. Section 1.1 describes

the context in which this research is applied, while Section 1.2 presents the motivation for the

development of this work and the challenges addressed by the proposed method. Section 1.3

presents the hypothesis that was tested and research questions that guided the experiments.

Next, Section 1.4 details the goals and contributions of this work, and Section 1.5 presents the

methodology used in this research. Lastly, Section 1.6 describes the structure of this thesis.

1.1 Context

Mobile devices are best known for their mobility and for providing quick access

to the Internet. The release of the first iPhone in 2007 marked a new era in the mobile device

market. Since then, the smartphone has become a technological hub that includes several sensors,

considerable processing power, and is capable of countless applications.

In the last decade, the expansion of this new market by traditional manufacturers has

lead to the dissemination of smartphones in practically every country of the globe. As a result,

the popularization of smartphones and tablets has caused, along with the Internet, a technological

revolution responsible for changing the behavior, culture and social habits around the world.

In a short time, many companies realized that smartphones and tablets could become

a platform for playing games. Previously, games were played in specific places using devices

such as keyboard, mouse, joystick, PCs, and consoles (NICKLAS et al., 2001). Nowadays,

smartphones have enabled games to be played at any time and everywhere. Consequently,

many games have been ported or developed specifically to the mobile market. To illustrate the

importance of mobile devices to the game industry, Newzoo -a global game and mobile market

research company- released a report in April 2018 stating that “mobile games will continue to

be the largest segment following 10 years of double-digit growth” (NEWZOO, 2018). It also
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claims that, for the first time, more than half of all game revenues will come from the mobile

segment, as shown in Figure 1.

Figure 1 – Chart depicting the global game market divided by platform.

Source: (NEWZOO, 2018).

In fact, smartphones have impacted the way people play games and have boosted the

game industry due to its immense potential as a gaming platform. Additionally, the increase in

processing power and the popularization of sensors in modern smartphones (e.g., accelerometer,

compass, camera, Global Positioning System (GPS), gyroscope, among others) has allowed the

implementation of new game genres, such as Pervasive Games. Even though the concept of

Pervasive Games is not unanimous among researchers, this work uses the definition of McGonigal

(2003), that describe these games as “mixed reality” games that use mobile, ubiquitous and

embedded digital technologies to create virtual playing fields in everyday spaces (MCGONIGAL,

2003). In summary, these games can have their virtual environment affected by actions and

context from the real world.

Given that Pervasive Games include distinct types of games with a plethora of at-

tributes, many researches were conducted in this field exploring game patterns (AKSELSEN;

KRISTIANSEN, 2010), features (VALENTE et al., 2018), quality requirements (VALENTE et

al., 2017), technologies (NEVELSTEEN, 2015), modelling techniques (GUO, 2015), develop-

ment methodologies (VIANA et al., 2014), among others.

However, this thesis focuses on a popular subtype of Pervasive Games called

Location-based Games (LBGs), which are defined in this work as games that use players’

location to modify the game state during runtime. As a result, players have to physically move to

progress in the game, thus establishing a link between virtual and real worlds. Depending on the
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game space, interface and duration (SILVA; SUTKO, 2009), LBGs are also known as Urban

Games or Street Games.

Lately, both industry and academia have focused efforts on the development of LBGs.

Games like Parallel Kingdom1 (released in 2008), Zombies, Run!2 (released in 2012) and Ingress

(released in 2012), have reached millions of users3. Moreover, the release of Pokémon GO in

2016 has confirmed this potential as the game has more than 140 million active users, and has

generated more than $2 billion dollars in revenue since its launch (SUPERDATA, 2018).

The success of those early LBGs has fostered the development of new titles, such as

Ghostbusters World, Jurassic World Alive, and The Walking Dead: Our World, while Ingress has

received a complete redesign and Harry Potter: Wizards Unite was launched in 2019.

1.2 Motivation

Despite the release of more LBGs in the last two years, they still represent just a

fraction of the mobile gaming industry. In fact, only a few game studios are currently venturing

into this area. Niantic, one of the pioneers in the development of LBGs, has developed more

games than any other gaming company. However, it is responsible for only three titles, namely

Ingress, Pokémon GO, and Harry Potter: Wizards Unite. Other studios such as FourThirtyThree

(Ghostbusters World), Ludia (Jurassic World Alive), and Next Games (The Walking Dead: Our

World) have designed one title each, so far. Considering the great success and profit generated

by some of these games (e.g. Niantic is reportedly worth more than Square Enix, Capcom, and

Sega in the end of 2018, according to The Wall Street Journal4), it was expected that more game

developers would commit efforts to making new LBGs.

Nevertheless, cost and time are key problems to produce digital games, with many

AAA5 titles taking more than 3 years of development, with costs that exceed tens of millions

of dollars. For instance, sources pointed out estimations around $44 million dollars to produce

God of War 3 almost a decade ago (SCHILLE, 2010) and astounding $250 million dollars to

the development and marketing of GTA V in 2013 (MCLAUGHL, 2013). This scenario is
1 http://www.parallelkingdom.com/community/update-hut.aspx#177
2 https://medium.com/@adrianhon/five-years-of-zombies-run-6e090ef3fe4
3 http://www.technewsworld.com/story/81106.html
4 https://www.wsj.com/articles/niantic-maker-of-hit-pokemon-go-app-refuels-with-3-9-billion-valuation-

11544748877
5 An informal classification term used by the gaming industry to refer titles with the highest development budgets

and levels of promotion. Similarly, to blockbuster movies, a AAA game is therefore expected to be a high quality
title or to be among the best sellers.
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not different for LBGs, with Niantic and Google spending roughly $30 million dollars in the

development of Pokémon GO (LITTLE, 2016). As a result, game studios are continuously trying

to reduce expenses to both minimize risks and increase profits. In some cases, game studios have

to lay-off to balance their budgets, as it has been recently reported by Next Games, the company

behind the development of games for the The Walking Dead franchise (BATCHELOR, 2019).

In addition, producing an LBG is even more challenging because it requires the

inclusion of features and dealing with issues that are not present in most mobile games. For

instance, developers have to create games to be available in a vast number of places, cope with

tracking issues, and adjust game balancing in different regions. Usually, LBGs convert places

from the real world to virtual elements of the game, and players have to move to specific locations

in order to achieve goals, collect items, encounter opponents, etc. Therefore, an LBG can be

played virtually everywhere, if their game elements are correctly mapped to the proper locations

in the real world. To address this challenge, a strategy employed by some games is to use a

database containing Points of Interest (POIs) scattered around the globe. The main drawbacks

of this approach are the complexity, time, and cost to build and maintain such a large database

of POIs. However, a low-cost and more feasible solution could involve Procedural Content

Generation (PCG), a field of Computer Science that proposes methods and algorithms used in

the creation of content automatically, thus reducing costs and time of production.

In addition, maps of LBGs must fulfill requirements that suite aspects of both real

and virtual environments, such as avoiding private properties and unreachable areas, and adapting

to varying interactions implemented by the games. Furthermore, developers must consider the

time and effort to physically move between sites as a crucial factor to game balancing. The

definition of game balancing relates to the difficulty level faced by players and is considered by

Malone (1981) as one of the three quality factors responsible for the engagement in games, and

thus it is crucial to the success of any game (FALSTEIN, 2004). According to Schell (2008),

“...if play is too challenging, the player becomes frustrated. But if the player succeeds too easily,

they can become bored.”, hence developers must balance games in such a way that they keep the

experiences of challenge and success in proper balance. To illustrate this duality, Schell (2008)

proposed the chart depicted in Figure 2, which indicates that the game difficulty level should

fluctuate, but within certain boundaries.

Consequently, two main challenges that hinder the mass production of new LBGs.

First, the need to map the game to countless places in such a way the generated instances
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Figure 2 – Graphic showing the relation between game ba-
lancing and players’ attitude towards a good game
balancing.

Source: (SCHELL, 2008).

can preserve their game balancing; and second, the high costs and time required to develop

worldwide LBGs (TREGEL et al., 2017). It is believed that these challenges have impaired many

game studios and independent developers from creating more games. This scenario is the key

motivation for this research, and an alternative to alleviate this problem called Transposition of

maps for LBGs is explored. It consists in using PCG to create maps of LBGs according to the

location of each player. Another crucial feature addressed in this thesis concerns the balancing

of transposed maps, as a good map transposition has to simultaneously allow the game to be

played in multiple places and provide equivalent balancing in every instance of the game.

1.3 Hypothesis and Research Questions

Considering the previously described scenario, this thesis investigates the following

hypothesis: “It is possible to create a PCG method that transposes maps of LBGs while preserving

their game balancing?”

From this hypothesis, the following Research Questions (RQ) are proposed:

• RQ1 How to gauge or estimate game balancing in LBGs? Rationale: Before attempting to

design a method for transposing maps of LBGs, it is necessary to gauge its game balancing.

Such measurement is key to assess the effectiveness of the transposition in generating

balanced game instances.

• RQ2 How to automatically transpose maps of LBGs to multiple places while enforcing the

same balancing level among all instances? Rationale: To conduct a successful transposition

it is important not only to generate an instance of the game where the player is, but to

deliver similar balancing for each step of the game. Consequently, this question requires
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the development of approaches that address both transposition and balancing challenges

simultaneously.

• RQ3 How to validate the transposition of maps of LBGs in terms of correctness and

efficiency in maintaining game balancing? Rationale: It is necessary to ensure the

transposition method is working properly both in terms of creating a valid instance of the

game map, but also ensuring the game balancing defined in the original game is preserved.

1.4 Goals and Contribution

There are many researches developed in the field of LBGs, including game design

(MAIA et al., 2016; O’HARA, 2008; NEVELSTEEN, 2015; HOLM; LAURILA, 2014; CAR-

MOSINO et al., 2017; ROUNGAS; DALPIAZ, 2015), authoring tools (SILVA et al., 2017, 2017;

MALEGIANNAKI; DARADOUMIS, 2017; WETZEL et al., 2012), map balancing and game

transposition (MAIA et al., 2017; MACVEAN et al., 2011; FERREIRA et al., 2019), modeling

(FERREIRA et al., 2017), usability and experience evaluation (PAAVILAINEN et al., 2017;

SÖBKE et al., 2017), frameworks and development techniques (VALENTE; FEIJÓ, 2014; GUO

et al., 2015; LOCHRIE et al., 2013; REID, 2008) or introducing games for specific purposes,

such as tourism (GUARDIA et al., 2012; ARKENSON et al., 2014), health (WITKOWSKI,

2013; STANLEY et al., 2010), education (LUND et al., 2011; FLINTHAM et al., 2011), culture

(RUBINO et al., 2015; CHANG et al., 2014), etc. Nevertheless, there could not be found works

that focus on a broad and general approach for transposing maps of LBGs yet.

In this case, this thesis aims at devising PCG approaches that can assist in the

development of LBGs by automatizing the transposition of their maps to multiple locations.

Moreover, the transposition has to prioritize the game balancing, so the transposed instances

will deliver a similar difficulty level. While the transposition is key to ensure game availability,

the latter is equally important since game balancing is fundamental to keep players engaged in

the game.

As a result, this work is expected to achieve the following contributions:

• Design of a general model that can represent several types of LBGs into a simplified data

structure containing the essential information for performing a balanced map transposition.

• Devise measurements that can estimate the balancing level of an LBG map.

• Develop PCG methods for the transposition of maps of LBGs to multiple locations while

preserving game balancing.
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• Validate the proposed approach with several subjects and in multiple locations.

It is important to highlight that the model designed to represent LBGs may not suit

all types of mechanics and games, hence, although the map transposition method is generic, it

can only be applied to games that can be converted to the proposed game model.

1.5 Methodology

This work consists of an Applied research with Explanatory purpose. Its hypothesis

was tested using Quantitative approaches and Experimental methods following a 7-step metho-

dology depicted in Figure 3. Next, the activities and outcomes of each step in the methodology

will be detailed.

Figure 3 – Overview of the research methodology used in this work.

Source: Elaborated by the author using Business Process Model Notation (BPMN).

First, a literature review was conducted on topics such as Location-based Games,

Transposition of LBGs, Game Balancing, and PCG. The review consisted in the analysis of

approximately 70 papers and resulted in the study of 38 LBGs. This phase was fundamental to

identify the challenges addressed in this work, to formulate the hypothesis and research questions,

and to define a game model capable of representing most LBGs.

In the second step the hypothesis was produced and laid the foundation for the

development of three research questions. Consequently, the goals and contributions of this work

were also conceived in this step.

The third step consisted of defining the game model that is responsible for making

the proposed approach general enough to be applied to most LBGs. The game model is a key

component of this research since the proposed method relies on it to estimate the game balancing

and to perform the map transposition. In summary, an LBG can have its map transposed using

this approach if and only if it can be represented by the game model.

The next three steps are executed in parallel since they rely on the concepts and game
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model defined previously. Step 4 relates to the first research question (RQ1) and was responsible

for devising measurements to estimate game balancing in LBGs. These measurements are key to

evaluate the quality of the algorithms developed in this work.

Step 5 consists of updating the literature. Notice that this is a task performed in a

loop since it was executed repeatedly during the conception of each game balancing measurement

and transposition algorithm. In this case, roughly 40 papers were analyzed, including topics such

as Graph Matching Problem, MCTS, Parallel Processing, and Optimization.

In the sixth step, three algorithms to perform the balanced transposition of maps

of LBGs were developed. These algorithms were conceived to receive as input a game model

representing a given LBG and the location the user wants the game map to be transposed to.

During processing, the algorithms analyze a set of places in the desired location and select a

subset of POIs that present balancing similar to the original game. As a result, the algorithms

output a version of the game model with the map transposed, as mentioned in the second research

question (RQ2).

Finally, the last step consisted of evaluating this approach in terms of performance

and quality. Two evaluations were conducted, the first devoted to compare the algorithms using

the measurements proposed in Step 4, and the second aiming at validating the proposed approach.

This second evaluation validated the proposed approach with several subjects by transposing

maps of games to locations previously known, so subjects could assess whether the method and

its algorithms work properly (RQ3).

1.6 Structure of the Thesis

This chapter presented the context and motivation for the development of this thesis.

Additionally, it introduced the hypothesis and research questions that guide the research. Finally,

a discussion about the goals and expected contributions of this work was provided.

The remaining of this thesis is organized as follows. Chapter 2 (Background)

presents the concepts and definitions that are the basis for the development of this research,

including an analysis about modern LBGs, Chapter 3 (Related Work) discusses works that are

related to the proposed method, Chapter 4 (Balancing and Transposition of Maps for LBGs)

presents the proposed method for representing and transposing maps of LBGs and introduces the

measurements developed to gauge game balancing in these games.

Chapter 5 (Algorithms) shows that the transposition challenge can be formulated as a
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Graph Matching Problem, and details the algorithms proposed in this work. Chapter 6 (Empirical

Evaluation) presents an evaluation conducted to assess the algorithms with varying input sizes,

and Chapter 7 (User Evaluation) details an evaluation conducted with users to validate the

effectiveness of the proposed method to generate games in multiple places. Lastly, Chapter 8

(Conclusions) concludes the thesis, presents limitations, and points to future works.
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2 BACKGROUND

This chapter introduces the theoretical foundation upon which this thesis stands,

including definitions about Pervasive Games, LBGs, PCG, Graph Matching Problem (GMP),

Transposition and Game Balancing. Additionally, it discusses peculiar aspects present in modern

LBGs (e.g. game patterns, forms of interaction, mechanics, etc.), and introduces the algorithms

used as the foundation to the methods proposed.

The chapter is organized as follows. Section 2.1 presents the concepts and definitions

about the games examined in this work. Section 2.2 introduces the main types of mechanics and

game patterns present in LBGs. Section 2.3 discusses the challenges and attributes related to the

transposition of maps of LBGs, and Section 2.4 examines game balancing in LBGs. A discussion

about the balanced transposition of maps of LBGs in distinct game patterns is presented in

Section 2.5, Section 2.6 introduces the field of PCG, and Section 2.7 relates this work to the

WGMP. Moreover, Section 2.8 introduces the foundation to the algorithms implemented in this

research. Lastly, Section 2.9 finishes this chapter.

2.1 Concepts

To better understand the concept of LBGs, it is necessary to revisit its origin, which

derives from the studies carried out in the field of Ubiquitous Computing and Pervasive Compu-

ting. In the early 1990s, before the development and popularization of smartphones, the concept

of Ubiquitous Computing was introduced by Mark Weiser. According to Weiser, the main feature

behind ubiquitous computing is the fact that technology becomes intrinsic in everyday activities,

allowing the devices and environment around us to interact naturally and transparently, in such

a way that technology would “disappear” from people’s perceptions (WEISER, 1991). These

studies have contributed to the enhancement of mobile devices, the development of wearable

computing equipment, and the spread of wireless communication technologies, which are key

features in modern digital games.

2.1.1 Pervasive Games

The definition of Ubiquitous Computing and Pervasive Computing diverges in the

literature, though most researchers in the area understand the terms as parallel. Likewise,

the concepts of Ubiquitous Games and Pervasive Games are also defined differently across
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research papers. Some authors consider that Ubiquitous Games are a subset of Pervasive Games

and the other way round, whereas other researchers understand these concepts as synonyms

(NIEUWDORP, 2007). This thesis does not aim at discussing the understanding of the terms,

which will be treated here as interchangeable. Then, as mentioned in the Section 1.1, this

work adopts the concept proposed by McGonigal (2003). Therefore, Pervasive Games can be

understood as games whose limits are not restricted to a virtual scenario, being the result of a

mix between real and virtual environments, so that the boundaries between these environments

no longer exist.

According to Kasapakis and Gavalas (2015), current Pervasive Games can be classi-

fied into two generations, according to criteria that include communication, evaluation, player

equipment, context-awareness support, information model, and orchestration. This last term can

be understood as the need to use people in the game environment in order to help players in

specific situations and ensure activities are executed properly.

In general, first generation games use technologies such as GPS, Bluetooth, Personal

Digital Assistants (PDAs) and notebooks, but also rely on orchestration and context awareness

through external sensors. The second generation encompasses games that use smartphones,

3G, triangulation over mobile networks and GPS. In addition, these games have little or no

orchestration and capture context using internal sensors of devices, as shown in Table 1.

Table 1 – Common features found in pervasive games generations according to Kasapakis and
Gavalas (2015).

Gen Time
frame Localization Communication Context Orchestration Player Equipment

1st
2002-
2009

GPS/self reporting/
no localization

WiFi/Bluetooth/
Zigbee

Captured by
external sensors

Heavy/Light
orchestration
actions

Custom equipments,
wearable computers,
PDAs, feature phones

2nd
2009-
2014 GPS/Cell-ID WiFi/3G/Zigbee

Captured by
built-in sensors

Light/No
orchestration
actions

Smartphones

3rd
2014-
onwards

GPS/proximity-based
localization/crowdsourcing
localization platforms

WiFi/WiFi
Direct/4G

Captured by
built-in sensors/3rd
party we-services

No orchestration
actions

Wearables (glasses,
smart watches, health
bands), smartphones

Source: Kasapakis and Gavalas (2015).

Kasapakis and Gavalas (2015) also mention that there is currently a transition

of technologies with the emergence of wearable devices, Internet of Things (IoT), and the

popularization of faster mobile networks. They claim that, in the near future, the use of these

technologies will lead to a third generation of Pervasive Games. As a result, for the development

of this study, only second generation games were considered as they are the latest games

developed.
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2.1.2 Location-based Games

Currently, several types of games are classified as pervasive, such as smart toys,

affective games, augmented tabletop games, mobile games, LBGs, alternate reality games and

games with augmented or mixed reality. Considering that LBGs are the focus of this work,

the scope of the analyzed games was narrowed to include only those that fit in the following

definition:

Definition 2.1.1 Games that, in some way, use the players’ location to modify the state of the

game throughout their execution, thus creating a connection between the virtual scenario of the

game and the real world through the physical space.

Consequently, LBGs usually require players to move between locations to allow

them to collect items, explore places, accomplish missions, or provide encounters between

players in both virtual and real worlds.

2.2 Game Patterns in LBGs

Although there are different types of LBGs, most games share similar features. In

general, LBGs monitor either the absolute location of the player or their motion. The former

procedure has to establish a connection between locations of the real world and the virtual world,

whereas the latter neglects the locations and directions the player chooses to move to, focusing

solely on the player’s displacement. However, despite the similarity in operation, the form,

purpose and sequence with which players move to achieve their goals evidence different patterns

of play and types of interaction. In this way, an LBG can make use of one or more game patterns

that can even be combined in order to generate more complex interactions. The game patterns

present in LBGs were classified by Lehmann (2012) into four distinct types:

• Search-and-Find;

• Follow-the-Path;

• Chase-and-Catch;

• Change-of-Distance.

Figure 4 illustrates the main features of these game patterns. It is important to

highlight that despite some apparent similarities, these patterns can deliver entirely distinct

experiences to players. Conversely, LBGs that implement the same game pattern are, from a
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structural point of view, very similar or identical, since they present common implementations,

interactions, challenges and traits, even if they are set in contrasting virtual scenarios. Therefore,

the analysis of each game pattern is fundamental to solve the problem of transposition in several

classes of LBGs. In the following sections, they will be presented in further detail.

Figure 4 – Graphical representation of game patterns for
LBGs as classified by Lehmann (2012).

Source: (LEHMANN, 2012)

2.2.1 Search-and-Find

The Search-and-Find pattern is quite popular, and has been implemented in several

games. In this pattern, a player needs to find a particular site by moving to it, which can be done

with or without the help of a navigation system in the game. In general, LBGs can provide clues

that players must follow to find the correct location, or present a set of possible known places so

that players can opt for a sequence of explorations.

It is worth mentioning that when using the Search-and-Find game pattern the player

is unaware of the exact geographic location of the site being sought, hence players should explore

the real world to find the precise place. Another point to be highlighted is that this place will

always be a fixed point in the context of the game, so its geographical location is not changed,

allowing the player to establish a mapping between real and virtual worlds.

In general, this game pattern is associated with collecting items, and was popularized

by the game Geocaching (O’HARA, 2008). In this game, the players’ main goal is to find

objects hidden in certain geographic coordinates, as shown in Figure 5. For the most part, these

objects are low value items stored in a box, and once the box is found the player is responsible

by replacing one of its items with a new one, so the next player can continue this interaction.

Recently, the Search-and-Find pattern has been used as one of the key activities in

the game Pokémon GO. In this case, players receive tips through the game application informing

which pokémons are nearby. Therefore, each player has to explore the real world in search for
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Figure 5 – The game indicates the approximate location of objects (left),
and an example of a hidden object in the real world (right).

Source: https://www.geocaching.com

the correct geographic locations that hide pokémons (Figure 6).

Figure 6 – App showing pokémons nearby (left) and
a map displaying their appearance (right).

Source: Niantic Labs

2.2.2 Follow-the-Path

This game pattern demands players to move to certain locations. However, unlike the

Search-and-Find pattern whose challenge is the discovery of sites, the Follow-the-Path pattern

dares the player to visit a set of known places. Depending on the goals of the game, it is possible

for players to follow multiple paths or incur penalties if they do not follow the predefined routes.

For example, in a racing game, players taking shortcuts can be penalized. In tourist applications,

it is common for players to follow a specific trail in order to provide information related to the

places visited.
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The Follow-the-Path pattern can also be used to acquire data from the environment,

such as to discover the best route between two points. In this case, the locations are presented,

but there are no determined paths, therefore players must plan the most efficient path connecting

places. Ultimately, the application monitors the players to infer the best route.

Players can also use the Follow-the-Path pattern to define target locations in the

virtual world as they move around the real world, thus creating new paths for other players to

follow. This approach is used in the game Tourality, in which a player must complete fixed

circuits within a given time, and can also compete with other players (WORKLINE, 2016).

Games such as Ingress and Pokémon GO also make use of this game pattern, however

both games do not impose specific routes to be followed by the players (Figure 7). In both

cases, the game plot consists of groups battling each other for the control of certain portals or

gymnasiums (POIs), hence it requires players to move to these points in order to conquer them

for their group or defend them from the enemy. Consequently, each player chooses the sequence

of places to visit, as well as the route to follow.

Figure 7 – Locations are presented to players in Ingress(left)
and Pokémon GO(right).

Source: Niantic Labs

2.2.3 Chase-and-Catch

In the Chase-and-Catch pattern, players have to chase a moving element in the game,

consequently they must move in the real world to achieve this goal. The chased element may

be another player or a virtual character that exists only in the game. In the first case, the LBG

works as an adaptation of the traditional game called “Tag”.

The main characteristic of the Chase-and-Catch pattern is that the destination players

must follow changes recurrently. As a result, the rate at which the destination changes and the

capture strategies imposed by the game directly affect the level of difficulty, and thus changes
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the game balancing.

This pattern was used in the game FoxHunt (MISUND et al., 2009) in both single-

player and multiplayer modes. The game places players as fox hunters, so they have to move

in the real world chasing foxes displayed on the mobile screen. Eventually, a fox is captured

when a hunter manages to approach it in the virtual world. In the game Shadow Cities, this game

pattern was implemented in a more complex multiplayer environment, as two groups of players

battle to capture participants of the opposing group, with each player being simultaneously able

to capture and be captured (AREA, 2016).

2.2.4 Change-of-Distance

Unlike the game patterns presented earlier, the Change-of-Distance pattern is charac-

terized by disregarding particular destinations. While the other game patterns require players

to move in specific directions, in the Change-of-Distance pattern the player’s destination is

irrelevant. In this case, the important interaction is the player’s displacement, regardless of

destination.

A very popular LBG that uses this pattern is called Zombies, Run!, which was

developed to stimulate players to perform physical activities. In this game, players are positioned

in a virtual scenario full of zombies, which are avoided whenever the player moves in the real

world. The game also has a step counter to monitor the player’s physical exercises.

The Change-of-Distance pattern was also implemented in the game Pokémon GO

via an activity called egg hatching. In this case, players must walk a certain distance regardless

of origin, destination and route, to accomplish the activity.

2.2.5 Mapping Game Patterns to LBGs

In order to investigate the game patterns that are more popular in modern LBGs,

an analysis of games regarded as state of the art in the area according to the criteria used by

Kasapakis and Gavalas (2015) (Section 2.1.1) was conducted. In general, LBGs developed since

2009 are considered second generation, as they make use of smartphones, 3G, and GPS. As a

result, a total of 38 games met the above mentioned criteria from both industry and academia.

Table 2 presents a mapping created by identifying the game patterns present in each

LBG. The games were analyzed individually according to their features and interactions. This

analysis allowed the recognition of more than one game pattern in some cases.
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Table 2 – Table presenting the mapping between the game patterns defined by Lehmann (2012)
and 38 second generation LBGs as classified by Kasapakis and Gavalas (2015).

LBGs Search-and-Find Follow-the-Path Chase-and-Catch Change-of-Distance
Geocaching (O’HARA, 2008) X
Parallel Kingdom (PATRO et al., 2012) X
FoxHunt (MISUND et al., 2009) X
Viking Ghost Hunt (CARRIGY et al., 2010) X
Hot Potato (CHATZIGIANNAKIS et al., 2010) X
Big Game Huntr (LUND et al., 2010) X
PiNiZoRo (STANLEY et al., 2010) X
Tourality (WORKLINE, 2016) X X
Shadow Cities (AREA, 2016) X
The Journey (JAKL, 2004) X X
Exploding Places (FLINTHAM et al., 2011) X
Free All Monsters (LUND et al., 2011) X
WeQuest (MACVEAN et al., 2011) X
O’Munaciedd (GUARDIA et al., 2012) X
Treasure (GUO et al., 2012) X
Blowtooth (KIRMAN et al., 2012) X
See it (NEUSTAEDTER; JUDGE, 2012) X
Ingress (LABS, 2019) X
Zombies, Run! (WITKOWSKI, 2013) X
The Walk (START; ALDERMAN, 2016) X
BattleSuit Runner (SERAPH, 2016) X
SpecTrek (GAMES4ALL, 2016) X
Tidy City Scout (WETZEL et al., 2012) X
Floracaching (BOWSER et al., 2013) X
Easter Egg Hunt (JORDAN et al., 2013) X
Barbarossa (KASAPAKIS et al., 2013) X X
TARX (LOCHRIE et al., 2013) X
GEMS (PROCYK; NEUSTAEDTER, 2014) X
Tag and Seek (ARKENSON et al., 2014) X
Hidden Lion (CHANG et al., 2014) X
FreshUP (ZENDER et al., 2014) X
Street Art Gangs (ALAVESA; OJALA, 2015) X
Gossip at Palace (RUBINO et al., 2015) X
Woody (SPIESBERGER et al., 2015) X
Pokémon GO (NIANTIC, 2016) X X X
Jurassic World Alive (LUDIA, 2018) X X
Ghostbusters World (FOURTHIRTYTHREE, 2018) X X X
The Walking Dead: Our World (NEXT, 2018) X X

Source: Author

The mapping showed that the majority of LBGs use the Search-and-Find and Follow-

the-Path patterns, which together are present in 76.3% of the analyzed games. Chase-and-Catch

and Change-of-Distance standards are present in 23.7% and 13.1% of LBGs, respectively.

A closer inspection in the Search-and-Find and Follow-the-Path patterns shows

that they share many similarities, especially regarding their implementation and the type of

interaction, since both patterns define static locations for players to move to. Conversely, the

Chase-and-Catch and Change-of-Distance patterns rely on dynamic interactions, as the former

constantly alters the location being chased and the latter regards only the players’ displacement.

This unique distinction raises significant impact in the balancing and transposition of these

games, and will be further discussed in sections 2.4 and 2.3, respectively.
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2.3 Transposition of LBGs

In Chapter 1, transposition is mentioned as one of the key challenges for modern

LBGs to become ubiquitous. The concept of transposition was addressed superficially by

Macvean et al. (2011), that introduced a transposition method called Location Translation as

part of an authoring tool for the construction of LBGs. This method will be presented in further

details in Chapter 3.

The transposition of an LBG can include multiple features, such as having similar

types of POIs in distinct locations, changing the soundtrack according to a particular area,

adapting messages displayed to the users, switching non-player character, among others. For

instance, a racing game played in Asia could have different music and theme than a transposed

counterpart played in Europe. This work focuses on the transposition of maps of LBGs, hence

the following definition for transposition is used:

Definition 2.3.1 The process by which an LBG is replicated and adapted to generate one or

more instances of its original version whose differences are limited to the adaptation of the

original map to one or more distinct geographic regions.

The concept exclusively addresses the feasibility of generating new LBG instances

that can be executed elsewhere, disregarding any balancing issues. In fact, a plethora of instances

may be created, therefore the transposition relates only to the adaptation of games worldwide.

Moreover, the transposition of an LBG can restructure multiple aspects and features of the

game. For instance, some LBGs can request players to move to specific thematic places, such

as touristic places, churches, parks, and others, therefore the transposed version is expected to

include similar locations. However, if the game does not establish a direct connection between

POIs and virtual places, any site can be used arbitrarily and the transposition affects solely the

map of the game.

Transposing an LBG can be difficult due to the differences and the singularity of

each place a game can be executed at. For instance, the transposition method has to adapt the

game content to multiple contexts, avoid private properties and unreachable areas, and adapt

varying interactions implemented by LBGs. A naive transposition of LBGs considering only

geographic coordinates is likely to generate bad results (LAATO. et al., 2019). For instance,

Figure 8 shows that one of the points (C) has been placed in an unreachable area.
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Figure 8 – An example of naive transposition. In this case, the point “C”
is positioned in an unreachable area.

Source: Author

Moreover, game developers cannot ensure that the transposed instances of an LBG

will always deliver similar gameplay, maintain the game balancing or have minor reconfiguration

costs. To better comprehend the many techniques applied, a literature research with LBGs and

tools designed to aid in the development and customization of these games was conducted. As a

result, in addition to investigating 38 LBGs, nine authoring tools found in the literature were

analyzed. From this research, these games and tools were classified into five categories according

to the strategy related to the transposition of games. These categories are introduced below and

will be detailed in the following sections:

• Reprogramming;

• Displacement-based games;

• Customizable by Authoring Tool;

• Worldwide database of POIs; and

• Methods for automatic transposition.

2.3.1 Reprogramming

Hypothetically, any LBG can be transposed and deployed to different locations.

However, for each transposed instance, it is necessary to explicitly reprogram elements such as

levels, maps, environment, etc. This task is usually performed without the aid of any software

or platform. Hence, LBGs that do not provide these tools are classified as games that demand

reprogramming.

Roughly a quarter of the games analyzed in this thesis were developed to be played

in a single location and thus required reprogramming to be transposed. It is important to highlight

that most of these games have specific goals, such as fostering tourism in a particular region

or providing knowledge about a historic site (e.g., Tag and Seek (ARKENSON et al., 2014),
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Hidden Lion (CHANG et al., 2014), FreshUP (ZENDER et al., 2014), and Gossip at Palace

(RUBINO et al., 2015)).

2.3.2 Displacement-based games

This classification relates only to games that use the Change-of-Distance pattern.

In this case, the gameplay relies on the displacement of players, regardless of the direction,

therefore dismissing transposition. Generally, the Change-of-Distance pattern is used in games

that stimulate players to engage in healthy applications, such as walking or jogging.

This type of games can make use of different features to gauge the displacement

of players. For instance, some games use the GPS of devices to monitor the distance traveled

(e.g. Zombies, Run! and BattleSuit Runner), while others use their accelerometer to estimate

displacement based on the number of steps taken (e.g. The Walk).

Although games like Zombies, Run! (WITKOWSKI, 2013), The Walk (START;

ALDERMAN, 2016) and BattleSuit Runner (SERAPH, 2016) rely solely on the Change-of-

Distance pattern, other games, such as Pokémon GO, Jurassic World Alive and Ghostbusters

World implement this game pattern in some activities or challenges, serving as complement to

the overall gameplay.

It is easy to notice that, unlike LBGs with other game patterns, displacement-based

games do not require much effort to be executed in multiple locations. In fact, by letting players

decide where to move, they do not depend on a specific configuration of locations to run, so

games can be played virtually everywhere. Nevertheless, as explained in Section 2.4, these games

do not ensure equivalent game balancing between locations. Moreover, by relying exclusively on

the Change-of-Distance pattern, the gameplay lacks important features available in other games,

such as immersion and destinations, since it does not link virtual to real locations.

2.3.3 Customizable by Authoring Tool

A common approach to assist in the transposition of LBGs is the use of authoring

tools. These tools are often used in the area of End User Development (EUD) to enable users who

are not necessarily developers to modify or extend a software artifact (LIEBERMAN et al., 2006).

Therefore, authoring tools for LBGs intend to facilitate the development or reconfiguration of

these games by users without programming knowledge.

Among many modifications, an authoring tool can assist in the transposition of
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LBGs. In this case, the tool can allow users to reconfigure the games so that they can be

played in other locations. Approximately half of the LBGs found in the literature make use

of this approach, mostly through a web platform (e.g., Big Game Huntr (LUND et al., 2010),

See It (NEUSTAEDTER; JUDGE, 2012), Tourality (WORKLINE, 2016), Exploding Places

(FLINTHAM et al., 2011), Free All Monsters (LUND et al., 2011), Geocaching (O’HARA,

2008), etc.). Furthermore, games like PiNiZoRo (STANLEY et al., 2010) and GEMS (PROCYK;

NEUSTAEDTER, 2014) allow users to edit their content directly via mobile applications.

The main advantage of using authoring tools to perform the transposition of an

LBG is the possibility of customization that it provides to users. In fact, games can be entirely

reprogrammed using some of these platforms, therefore making it possible to transpose LBGs to

any desired region. However, this approach also presents significant limitations, in particular the

need to perform transposition manually. Consequently, it requires the individual reconfiguration

of each game instance in multiple places, thus rendering it impractical for worldwide games. As

a result, these challenges hinder LBGs that rely on authoring tools from spreading globally.

In this context, it is important to highlight the game WeQuest (MACVEAN et

al., 2011), which provides an authoring tool that can be combined with a “semi-automatic”

method for transposing games. This authoring tool allows users to edit games manually, make

adjustments, and correct possible transposition failures, as depicted in Figure 9.

Figure 9 – WeQuest allows users to correct transposition failures.

Source: Macvean et al. (2011)

In addition, there are several authoring tools for the development of LBGs from

scratch (e.g. LAGARTO (NOLETO et al., 2015; SILVA et al., 2017), Aris Games (ARISGAMES,

2014), fAR-Play (GUTIERREZ et al., 2011), ALRA (SANTOS et al., 2013), SILO (WAKE,
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2013) and TOTTEM Scout (JURGELIONIS et al., 2013)). The differences between these tools

range from the types of game patterns supported, media formats available, platform of execution,

and to the support for multiple users.

It is worth mentioning LAGARTO, an authoring tool developed with the support of

this thesis’ author. The tool supports the editing of game patterns such as Follow-the-Path, Search-

and-Find and Chase-and-Catch, and allows game flows to be modelled through dependency

lists, as shown in Figure 10. Besides, LAGARTO presents features for the development of

singleplayer and multiplayer games, as well as for the creation of groups of players. The game

model used by LAGARTO to represent LBGs inspired the design of the model presented in this

work (Section 4.1).

Figure 10 – LAGARTO’s main screen depicting a game flow editing.

Source: Noleto et al. (2015)

2.3.4 Worldwide database of POIs

A common strategy to allow LBGs to be executed in multiple places is the usage

of databases containing POIs. In this case, it is necessary to compile a database containing

information about POIs spread throughout the globe. Therefore, players are able to interact with

the POIs placed nearby. The main drawback of this approach is the cost and effort to build a

database of POIs capable of allowing the game to be played everywhere. As a result, games

that use this approach generally suffer from a lack of points available in many parts of the globe.

Furthermore, they are likely to provide unbalanced gameplay, as players can be too close or too

far away from the POIs, thus leading to unfair competition between players in different areas.

Currently, POIs are present in several location-based services, being common in

social networks, geographic databases, navigation systems, etc. In fact, the amount of information

about POIs stored in location-based social networks are so massive that recommendation systems
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have been developed to better provide this data (YE et al., 2011).

Given the vast number of POIs stored in location-based databases, they are suitable

for being used in LBGs. Among the main advantages for using POIs in LBGs are the possibility

to select sites with specific features, to access additional information about real places, and to

query hotspots from neighborhoods. However, these attributes can vary considerably depending

on the database used.

A database of POIs can classify its information into categories, allowing searches

for specific locations, like historical sites, libraries, schools, parks, etc., and providing further

information that can be used according to the context of each game. This data can be exploited for

games with specific purpose, such as tourism and education, or to allow for the correspondence

between the visited places in both real and virtual worlds.

The main disadvantages of using databases of POIs for creating LBGs are the risk

of accessing outdated information, inconsistency, and restriction of data in some areas. For

instance, if a well known POI, such as a library or a mall moves to another location, it may take

some time for the database to be updated, meanwhile players may be directed to the old address

inadvertently. It is common to encounter obsolete information even in collaborative services

due to the dynamics that some points are modified. In addition, there are databases with content

exclusive to some countries or regions, which restrict their use.

During research, seven LBGs that are played worldwide using databases of POIs

were identified. The games Ingress and Pokémon GO share the same database, which has been

built collaboratively for several years. The games Parallel Kingdom (PATRO et al., 2012),

Jurassic World Alive, The Walking Dead: Our World, and Ghostbusters World make use of POIs

and maps from Google Maps. Finally, the game Woody uses the database Treepedia, that is an

online catalog containing information about trees in some countries.

Nevertheless, despite having information about places in many countries, the data-

base of POIs used by Ingress and Pokémon GO, does not contain the necessary amount of data

for the games to run everywhere. In fact, there are several countries and cities where you cannot

play these games 1. Recently, a survey conducted with 2612 Pokémon GO players revealed that

27.3% of participants claimed to have stopped playing due to issues such as technical problems

and the lack of content in the area. In this case, the respondents criticized the unequal gaming

possibilities due to the POIs being concentrated in city centers (ALHA et al., 2019).
1 http://www.gamespot.com/articles/pokemon-go-players-in-rural-areas-upset-over-lack-/1100-6441696/
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In addition, this database also does not provide equity between the geographical

distribution of POIs, hence culminating in considerable difference in gameplay between neigh-

borhoods, cities, and regions. This issue has caused many impacts on game balancing, thus

rendering the games unfair to many players2.

As discussed, the number and distribution of POIs in a database are key for enabling

games to be played in multiple locations, therefore a large worldwide database of POIs is required.

Recently, Google has released an API for developers of LBGs to build their games on top of the

Google Maps database3. In fact, some games released in 2018, like Jurassic World Alive, The

Walking Dead: Our World and Ghostbusters World, were developed to take advantage of this

database, hence they can be run in many places.

The approach used by these games does not feature a transposition in practice. In this

case, instead of transposing the game according to the players’ location, they used the database

of POIs to create a game map that comprised the globe. Consequently, the game is a unique

instance in which players navigate according to their location in the world.

2.3.5 Methods for automatic transposition

This classification relates to works that use automatized methods to conduct the

transposition of any LBGs’ features. The purpose is to avoid or alleviate the need to perform

manual configuration of game instances. In some cases, the methods partially require human

intervention, thus being considered semi-automatic.

There are a few researches devoted to the use of automatic transposition. Among

the games and authoring tools analyzed, only WeQuest (MACVEAN et al., 2011) and Easter

Egg Hunt (JORDAN et al., 2013) benefited from methods of automatic or semi-automatic

transposition. However, in both games there are particularities and drawbacks to be considered.

These works share similarities to the this research, and are detailed in the next chapter.

2.4 Game Balancing

Game balancing can also be understood as the difficulty level of a game, and is one

of the fundamental aspects for the development of commercial games (OLESEN et al., 2008).

Theoretical psychology studies conducted with players suggest that the appropriate level of
2 http://www.miamiherald.com/news/nation-world/national/article89562297.html
3 https://cloud.google.com/maps-platform/gaming/
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challenge is a key factor for a satisfactory gaming experience (OLESEN et al., 2008; KOSTER,

2005).

According to Csikszentmihalyi (1990), the contribution of balancing to a pleasant

gaming experience is also derived from the so-called Flow Theory, since the difficulty level of

a game when compatible with the skills of the player composes one of the nine factors of that

theory (CSIKSZENTMIHALYI, 2000). In general, very difficult games are frustrating, whereas

very easy games lead to boredom. This relationship can be seen in Figure 2, whose central

area of the graph represents the desired balancing, which is an essential condition for players to

remain interested in the games from beginning to end (ANDRADE et al., 2006).

For being recognized by the game developer community as one of the main factors in

the commercial success of a game, several efforts have been devoted to the study and development

of techniques for balancing digital games. Currently, game balancing is generally achieved in two

distinct ways. Either by using predefined settings (e.g. beginner, intermediate and advanced) that

allow users to choose the difficulty level they wish to play, or by artificial intelligence techniques

that may even use dynamic balancing (ANDRADE et al., 2006; OLESEN et al., 2008).

Usually, adjusting game balancing is one of the most difficult and time-consuming

tasks in game development due to the repeated cycles of tweaking and testing, which aims to

improve features such as depth, pitch, fairness, randomness, and variety (JAFFE et al., 2012).

Besides, Jaffe et al. (2012) argue that more complex games are also more difficult to balance,

since small adjustments can have unexpected consequences in other areas of the game.

A key point related to balancing is the concept of fairness between players. For

example, even in traditional games like Chess, it is argued that the beginning of the matches is

unfair because the white pieces have the advantage of executing the first move. In this case, one

can evaluate the fairness of the game based on the winning rate between players with white and

black pieces (JAFFE et al., 2012). Obviously, fairness in digital games may involve multiple

elements, ranging from the initial position of a character in the virtual world, the availability of

items players can collect, and even the random generation of elements and challenges of a game.

Therefore, it is important to consider these factors so that the digital games remain balanced and

consequently fair.

In the case of LBGs, on top of the factors mentioned above, the location of POIs

and the difficulty to move between places add extra complexity to the game balancing. Actually,

since the gameplay relies on the movement of players in the real world, it is presumable that
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the game balancing in LBGs is mostly determined by the selection of suitable destinations for

players to move to. Therefore, it is especially complex to balance them due to the inherent link

between virtual and real worlds. This task may depend on a multitude of factors and settings

that can be combined to form countless options. For instance, distance, time, topology, transport

availability, weather, and public safety are just a few examples of real world features that can

influence the gameplay, and hence game balancing in LBGs.

Besides, players can start game sessions virtually everywhere, thus each execution

can contain a different game configuration that needs to be balanced. The myriad of possibilities

and configurations makes manual game balancing an impractical job. Thus, an automatic

approach to improve game balancing in LBGs is needed.

Many works have been developed to foster the use of automatic game balancing

method in multiple game genre, such as puzzles (ASHLOCK, 2010), real-time strategy games

(OLESEN et al., 2008), serious games (WESTRA et al., 2008), fighting games (ANDRADE

et al., 2005), among others. However, LBGs have not seen many studies in this field, and

the few works that mention it do not specifically address the issue (JACOB; COELHO, 2011;

MACVEAN et al., 2011). Therefore, most LBGs deliver unbalanced and unfair experiences

depending on the area they are being played.

2.5 Balanced Transposition of LBGs

Sections 2.3 and 2.4 presented the concepts and challenges behind the transposition

and game balancing in LBGs. This section discusses how these definitions can be combined to

create what is called Balanced Transposition, a new concept that can be explained as:

Definition 2.5.1 A variation of the transposition process that focuses on preserving the game

balancing of the original game when generating transposed game instances.

An essential aspect of the Balanced Transposition of LBGs is the examination of

locations to which games will be migrated. Such analysis must consider geographical differences

between regions due to their influence to game balancing. This analysis is fundamental to enable

the transposition of LBGs in such a way that it preserves their balancing in multiple locations.

Conducting the transposition of an LBG is not a simple task because distinct game

patterns may be used, inhospitable or forbidden areas should be avoided, and there can be a vast

number of attributes to be analyzed depending on the game and the place of execution. Besides,
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to preserve the game balancing across instances in distinct regions, topographical peculiarities,

relief and means of transportation must be taken into account.

In general, the Follow-the-Path and Search-and-Find game patterns present similar

challenges related to transposition, since both depend on the relocation of specific geographic

coordinates. However, a direct transposition of the geographical coordinates from one place to

another tends to produce poor results, as showcased by Figure 8.

Another issue that must be highlighted relates to security, since LBGs are expected

to be executed everywhere. It is important that the locations selected to compose the game are

not placed in regions deemed dangerous. This and other characteristics mentioned previously

illustrate the challenges addressed by this work.

With respect to balancing, using the absolute distance between the points is oblivious,

because the actual displacement to be performed by the players can be significantly different,

according to the destination or means of transportation. For instance, Figure 11 presents a

comparison of the possible routes between two points considering the absolute distance (also

known as geographic distance), on foot and by car. Therefore, one can conclude that a transposed

instance of an LBG can present locations with equal absolute distance in comparison to the

original game, however, only these factors do not ensure that their game balancing is equivalent.

Figure 11 – Comparison between paths connecting two points conside-
ring geographic, walking and car distances.

Source: Google Maps

In the case of Chase-and-Catch and Change-of-Distance patterns, a superficial

analysis tends to indicate that the balanced transposition of LBGs that use these patterns is

easier to perform, as they do not make use of specific destinations. In fact, games that use

these game patterns tend to be played in different locations with little or no changes. However,

it is not possible to ensure that game balancing is equivalent between instances of the same

game when they are executed at different locations due to differences in the topography of these

regions. For instance, consider the game “Tag” being played by individuals in distinct regions, a
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player moving through a flat area would have advantages in terms of speed and distance traveled

compared to an opponent playing in a mountainous location. Other traits to be considered are

seasons and climate, as distinct locations may also have disparate weather conditions that can

potentially affect gameplay. In this case, it is clear that considering only the displacements to

define game balancing regardless of the peculiarities of each region leads to unbalanced games.

Figure 12 shows that paths with the same distance can present significant difference in time

depending on the location.

Figure 12 – Comparison involving the time to walk between two sites
in regions with different topography.

Source: Google Maps

2.6 Procedural Content Generation

Complex games require teams composed of hundreds of skilled personnel just to

create game content (HENDRIKX et al., 2013). Hence, relying solely on humans to produce the

vast amount of virtual content present in modern digital games makes production a slow, costly

and risky process. Moreover, the growth in the player population and the lack of scalability in

the human production pipeline indicates manual content production is not sustainable (IOSUP,

2011). Furthermore, the previously mentioned scenario combined with the ever decreasing price

of computers has led to the development of automated techniques to improve the creation of

game content, thus fostering studies about PCG.

PCG is an emerging field in the game industry that has recently received more

attention from academy and industry due to the increasing demand for high-quality games and

the growing costs incurred from producing better titles. It is defined by Togelius et al. (2011) as
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the algorithmic creation of game content with limited or indirect user input.

Nowadays, PCG is used to produce multiple types of content, such as textures, sound,

maps, buildings, vegetation, levels, meshes, terrain, puzzles, etc. Since there are varying content

to be produced, the methods employed in PCG are also diverse, including Pseudo-Random

Number Generation, Generative Grammars, Image Filtering, Spatial Algorithms, Modeling and

Simulation of Complex Systems, and Artificial Intelligence (HENDRIKX et al., 2013).

This work proposes the use of PCG as the foundation for the transposition of LBGs

maps. The proposed method consists in devising a generic model containing key aspects of an

LBG and using algorithms to automatically generate new maps of the game based on the game

model and according to specific locations. In turn, this approach operates as a transposition

method since it allows for an LBG designed in a particular location to be mapped and played

elsewhere. Moreover, the method is responsible for generating a map that resembles the original

game as much as possible, therefore PCG must consider features such as gameplay, balancing,

correctness, etc. Chapter 4 details the proposed game model, resources and algorithms used to

conceive a robust PCG approach for transposing LBGs.

The first works to use PCG to generate game maps date back to the early 2000s. For

instance, Parish and Müller (2001) developed CityEngine, a software based on L-systems to

model cities. The solution generates maps of highways and streets from multiple image maps

such as land-water boundaries and population density. Using L-systems to create these maps

provides good support for branching and has the advantage of database amplification (SMITH,

1984).

Moreover, Sun et al. (2002) used 2D images as input maps and a rule-based system

to generate maps of roads. The proposed method created a virtual traffic network based on

image-derived templates and a rule-based generating system. A key feature of this approach is

the ability to generate roads while avoiding illegal areas, and connect dead-end roads to form a

network. Although the method does not consider traffic flow and topography, it is suitable for

generating roads for games and virtual cities.

2.7 Graph Matching Problem

Section 2.6 mentions that the proposed approach relies on a game model that repre-

sents LBGs. This model works as a generic representation for distinct LBGs that includes only

the data required for the transposition, thus allowing the approach to work with several types of
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games. In this case, the game model can be defined as a weighted graph G = (V,E,W ), where V

is a set of nodes representing the places to visit, E is a set of edges (E ⊂V ×V ) symbolizing an

existing path between places, and W is the set of edge weights (W : ei, j→ N+), representing the

cost to move between places (Chapter 4 presents the game model in further details). Consequen-

tly, transposing the map of an LBG to a new region consists in finding suitable locations that

will constitute a similar graph representation, meaning node, edges and weights are as similar as

possible in both original and transposed versions.

The challenge of finding graphs that are similar is known as Graph Matching Problem

or Graph Isomorphism Problem, and is in NP, neither known to be in P nor NP-complete

(LIVI; RIZZI, 2013). This is a classic challenge in Computer Science that has numerous

variations, encompassing weighted/unweighted, directed/undirected, and cyclic/acyclic graphs

(BENGOETXEA, 2002). The GMP has applications in fields such as Molecular Biology (AMIN

et al., 2010), Chemistry (AKUTSU; NAGAMOCHI, 2013), Computer Vision (LI; WACHS,

2012), Bioinformatics (LAJEVARDI et al., 2013), Robotics (CORTES et al., 2006), etc.

Figure 13 – Graph matching main classification: Exact
Graph Matching and Inexact Graph Matching.

Source: Bengoetxea (2002)

The GMP can be classified into two main types, known as Exact Graph Matching and

Inexact Graph Matching, with additional subcategories associated to each type (BENGOETXEA,

2002), as shown in Figure 13. The Exact Graph Matching consists in, given two graphs T =

(Vt ,Et) and S = (Vs,Es), finding a bijective mapping f : Vt →Vs such that for each (Vti,Vt j) ∈ Et

there is a ( f (Vti), f (Vt j)) ∈ Es. If |Vt |= |Vs| the challenge is called Graph Isomorphism Problem,

otherwise if |Vt | < |Vs| it is called Subgraph Isomorphism Problem, as the resulting graph

R = (Vr,Er) consists in a subgraph of S, where Vr ⊂Vs and Er ⊂ Es.

Conversely, Inexact Graph Matching (also known as Homomorphic Graph Matching)
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indicates that an isomorphism between two graphs can not be extracted. Therefore, the number

of matching vertices V and edges E can differ, meaning that the challenge is to find the best

matching between them. As a result, these methods search for a non-bijective mapping f : Vt→Vs

between two graphs T = (Vt ,Et) and S = (Vs,Es).

This work focuses on a particular case of Subgraph Isomorphism that includes

weighted graphs (WGMP), a problem that is known to be NP-complete (COOK; HOLDER,

2006). In summary, the challenge consists in, given a target graph T = (Vt ,Et ,Wt) and graph to

be searched S = (Vs,Es,Ws), finding a subgraph R = (Vr,Er,Wr), where Vr ⊂ Vs, Er ⊂ Es, and

Wr ⊂Ws, that better resembles T . In this case, it is required to find a resulting subgraph R that is

isomorphic to T , as there must exist a bijective mapping f : Vt →Vr. In this case, the challenge

is to explore a larger graph (search space) looking for subgraph that best resembles a particular

graph (game model). Obviously, since LBGs are represented as weighted graphs, the approach

must consider both connectivity and weights as similarity features. Furthermore, in this work,

the best possible R must satisfy a fitness function that measures the similarity between R and T

by comparing the difference in weights between edges. Chapter 4 details the process that allows

for LBGs to be represented by weighted graphs, as well as presents the function used to optimize

the similarity between graphs T and R.

2.8 Algorithms

This work presents three distinct algorithms to tackle the transposition of maps of

LBGs as a WGMP. Hence, this section presents the algorithms that were used as the basis in the

development of this research.

Section 2.8.1 details the Ullmann’s Algorithm, that was adapted to include the ability

to process weighted graphs, Section 2.8.2 presents the concepts and steps that make up the

MCTS, and Section 2.8.3 presents a discussion about the use of Genetic Algorithms to tackle the

WGMP.

2.8.1 Ullmann’s Algorithm

One of the most successful methods for graph and subgraph isomorphism is the

seminal algorithm proposed by Ullmann in 1976 (ULLMANN, 1976). The approach relies on a

depth first tree search enhanced with a refinement procedure that classifies vertices according
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to their connectivity to narrow down the search space. This work presents an adaptation of the

Ullmann’s algorithm that can cope with weighted graphs.

Furthermore, the Ullmann’s algorithm consists in a series of independent explorations

that are suitable to parallelism. Hence, the proposed method makes use of this trait to improve

runtime performance.

Figure 14 – The root matrix M generates matrices
(M′) that encode candidate graphs.

Source: Author

Ullmann’s algorithm takes as input a graph T (target) and a graph S (search space),

and seeks a graph R (R⊂ S) that is isomorphic to T . The method represents graph isomorphism

using a matrix M′ with dimensions |vT |× |vS|, where each line contains exactly one “1” and each

column contains at most one “1”. M′ is generated from a root matrix M whose elements mi j are

defined as follows (Figure 14):

mi j =

{
1, if the degree of v j ∈ S is greater than or equal to the degree of vi ∈ T

0, otherwise
(2.1)

Moreover, the algorithm prunes the search space by examining the connectivity

between vertices and their neighbors. By definition, two graphs G1 = (V1,E1) and G2 = (V2,E2)

are isomorphic if each of their vertices has a one-to-one mapping that preserves adjacency

( f : V1→V2 such that u,v⊂ E1 if and only if f (u), f (v)⊂ E2). Consequently, if a vertex vi ⊂V1

or any of its neighbors does not match a vertex v j ⊂V2 and its neighbors, all solutions containing

this mapping can be eliminated. Hence, it is possible to safely set mi j = 0 in matrix M. Figure 15

exemplifies how this process prunes the search space.

In summary, depending on the connectivity of the graphs, Ullmann’s algorithm can

perform big prunes to the search tree. Conversely, if the search space is a complete graph no

pruning occurs and the algorithm processes all possible cases, hence operating as a brute-force

approach.
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Figure 15 – An example of refinement perfor-
med by Ullmann’s algorithm.

Source: Author

2.8.2 MCTS

MCTS is best known for its ability to compete at an expert level in the game Go

(COULOM, 2007). However, MCTS has successfully been applied to multiple areas, such as

optimization, real-time strategy games, general game playing, and complex real-world planning

(BROWNE et al., 2012).

Additionally, MCTS has also been used to find near optimal solutions to large state-

space Markovian Decision Problems (KOCSIS; SZEPESVáRI, 2006). Since WGMP can have

graphs with varying sizes depending on the games, the search space can grow exponentially, the-

refore making deterministic approaches unfit to the challenge. Consequently, non-deterministic

methods can be used in these cases for their capacity to deliver good results under a predefined

computational budget.

MCTS is used in this research due to its ability to optimize the exploration of the

search space using information collected on previous searches. During execution, MCTS probes

the search space and builds a partial tree that is used to assess each solution. Therefore, the

algorithm can focus on branches of the search space that deliver more promising results, while

avoiding branches that produce bad outcomes.

The algorithm is divided into four main tasks, as shown in Figure 16. In the first

step (selection), the method uses a tree policy to select a branch of the tree based on the values

of tree nodes. Second (expansion), one or more child node is added to expand the tree and

build a solution that will be evaluated. In the third step (simulation), a simulation with this

solution is executed according to a default policy and results are evaluated. Finally, in the last
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Figure 16 – General steps that compose an MCTS algo-
rithm.

Source: (BROWNE et al., 2012)

step (backpropagation), the results from the simulation are used to update the values of nodes,

thus guiding further selections.

2.8.3 Genetic Algorithms

Evolutionary algorithms, such as GAs, Particle Swarm Optimization and Simulated

Annealing, have been widely applied to numerous NP-hard problems, such as the Traveling

Salesman Problem (TSP) (POTVIN, 1996) and the GMP (KRCMAR; DHAWAN, 1994; XIU-

TANG; KAI, 2008). These algorithms are known for finding sub-optimal solutions in polynomial

time, thus being suitable for problems that have large search spaces. This work uses a GA to

address the WGMP.

The decision to use a GA instead of any other evolutionary method is based on the

work developed by Li et al. (2016), that has analyzed the implementation of three heuristic

optimization algorithms: Simulated Annealing, (1+1) evolutionary algorithm, and GA to the

subgraph isomorphism problem. They concluded that GA presented better results than the other

algorithms in most cases.

GAs focus on evolving the most promising solutions using nature-based operations,

such as Crossover, Natural Selection and Mutation. Consequently, the algorithm does not have

to explore the entire search space, and keeps a balance between execution time and the quality of

the solutions.

2.9 Conclusion

In this chapter, the concepts and challenges for the understanding of transposition

and game balancing of LBGs were discussed. In the context of the present work, the definitions
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of Ubiquitous Computing, Pervasive Computing, Ubiquitous Games, Pervasive Games and,

mainly, Location Based Games were clarified. In addition, the game patterns found in LBGs

according to Lehmann (2012) were presented, and a mapping of these patterns in modern LBGs

was performed.

The challenges to transpose these games considering distinct game patterns were

also discussed, and the main issues to generate balanced instances of LBGs were presented.

Moreover, it was shown how the proposed solution relates PCG methods and discussed how the

transposition of LBGs can be addressed as a Subgraph Matching Problem. Lastly, the methods

used as the foundation to the transposition algorithms were introduced.
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3 RELATED WORK

This chapter presents related methods and techniques adopted by both the Industry

and the Academy involving PCG, Subgraph Matching algorithms, transposition and balancing

of LBGs. The chapter is divided into five sections detailed as follows. Section 3.1 presents the

works developed to automatize the transposition of LBGs to multiple locations. Section 3.2

discusses methods and approaches related to game balancing. Section 3.3 shows how PCG is

applied to the generation of maps and game levels, and Section 3.4 details graph and subgraph

isomorphism algorithms that are related to this research. Finally, Section 3.5 concludes this

chapter.

3.1 Methods for automatic transposition

Transposition is a key feature for the success and popularization of an LBG. As

discussed in the previous chapter, using the player’s location as a critical element of gameplay

implies great consequences and challenges for the development of these games.

This research focuses on the automatic transposition of LBGs’ maps, however, there

are a few works that have proposed similar methods. Among the 38 games and authoring tools

analyzed in Chapter 2, only WeQuest (MACVEAN et al., 2011) and Easter Egg Hunt (JORDAN

et al., 2013) used transposition methods that can be classified as automatic or semi-automatic.

WeQuest is a game created in conjunction with a web authoring tool that allows for

the creation and editing of geo-referenced alternate reality games. LBGs developed with this

tool can be downloaded from the Internet and executed in a mobile application. This platform

allows users to model games that implement exclusively the Follow-the-Path pattern using a

directed acyclic graph. In this case, nodes of the graph are associated with specific locations via

geographic coordinates, and the graph’s edges designate the path that players must follow when

playing the game.

To complete the transposition of a game using the WeQuest’s authoring tool, it is

necessary to appropriately reposition each node of the graph to a corresponding new location.

This task is lengthy and time-consuming depending on the number of sites to be visited. So, the

authors proposed an algorithm called Location Translation to facilitate this operation. Given that

the nodes of the graph represent locations in an LBG, the algorithm is responsible for mapping

each node to a site in regions where players wish to execute the game (Figure 17).
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Figure 17 – Depiction of the Location Translation algorithm. The blue
lines represent the edges of the graph and the red lines depict
the correspondences between transposed points.

Source: Macvean et al. (2011)

Since the WeQuest platform was created to design alternate reality games, whose

points of interaction in the virtual world must relate to the ones in the real world. The Location

Translation algorithm was developed with the purpose of selecting virtual places with the greatest

possible similarity to the real locations. In this way, if a school was selected as a site in the

original game, its corresponding node in the transposed game tends to also be a school. After

classifying eligible points by similarity, the algorithm aims at minimizing the difference in

distance between original and transposed areas, thus trying to maintain a minimum balance

between original and transposed games. However, the algorithm does not assure or evaluate the

balancing of the transposed games.

Location Translation is a dynamic programming algorithm that aims to minimize a

cost function related to the difference of similarity and distance between points. The method

works by querying a set of candidate locations from the Google Maps API, but users can make

revisions and edit selected points since the method is deemed semi-automatic.

In general, the algorithm satisfies the needs of the platform and the types of games

developed in it. However, several disadvantages prevent the use of Location Translation for other

LBGs. First, the proposed algorithm only works with games that implement the Follow-the-Path

patterns. Moreover, the method treats game balancing between instances as a secondary property.

Lastly, Location Translation presents a high complexity and high memory consumption for being

a dynamic programming algorithm (O(nmax ∗ |L|), where n is the number of candidate locations

in the new region and L is the number of nodes in the original graph). In summary, the algorithm

is unsuitable depending on the game (number of nodes) and the location (amount of candidate
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sites) the transposition is taking place.

On top of that, the game Easter Egg Hunt was developed to identify POIs based on

users’ displacement. To achieve this goal, the game implements the Search-and-Find pattern

through a semi-automatic distribution of virtual items (easter eggs) in a specific area (Figure 18).

This approach is not completely automatic because it requires manual configuration about the

region the game is taking place, including exclusion areas such as lakes, private properties, etc.

Figure 18 – In the game Easter Egg Hunt, points (in red
and blue) are automatically distributed.

Source: Jordan et al. (2013)

The main disadvantages of the method used in Easter Egg Hunt are the need for

manual adjustments of the area to which the game will be transposed, the exclusive support for

the Search-and-Find pattern, and the disregard for the game balancing. In fact, games generated

using this approach are played only in the area of the transposition, regardless of routes, viability

of access, relief, among others.

In addition, this work proposes a fully featured game model that allows for the

design of LBGs (FERREIRA et al., 2017). This game model focuses on the development of

mission-based games using spatial and temporal relationships between game elements. To

showcase the potential of their game model, the balancing algorithm presented in (MAIA et al.,

2017) was adapted to transpose a game called AudioRio from Fortaleza to Curitiba, in Brazil.

Figure 19 shows how the game model can make use of a transposition algorithm seamlessly.

Later, I have developed a method capable of transposing maps of LBGs while
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Figure 19 – Transposition of maps using the game model
presented by (FERREIRA et al., 2017).

Source: Ferreira et al. (2017)

preserving game balancing (FERREIRA et al., 2019). The approach builds on previous researches

developed by the author of this work in (MAIA et al., 2017) and (FERREIRA et al., 2017)

to transpose maps of LBGs while focusing on maintaining game balancing and gameplay.

The transposition algorithm uses MCTS, an approach widely known for its potential as an AI

technique capable of mastering the game Go (COULOM, 2007). In this case, the method takes

POIs from a previously defined LBG as input and uses MCTS to search for a set of POIs in a

new location that best matches the original game.

In (FERREIRA et al., 2019), tests were conducted to transpose a game called Quest

for the Cathedral. The game was originally designed to be played in Fortaleza, and a transposed

version was generated in Amsterdam, Netherlands. The steps taken by the approach are as

follows. First, the algorithm gathered information from the Google Maps API to compile a set of

candidate POIs C (in Amsterdam) to compose the transposed version. Next, it uses MCTS to

explore the search-space looking for a subset of POIs R (R ∈C) that minimize map balancing

differences, thus making the transposed version similar to the original game. This approach was

evaluated and the results indicate the algorithm can help deploying LBGs to multiple places

(FERREIRA et al., 2019).

3.2 Game Balancing

As previously mentioned, balancing games is a difficult and time-consuming task

that requires extensive testing and calibration. Besides, game balancing presumably gets harder

with more complex games, since slight modification can potentially impact other game features
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(JAFFE et al., 2012). As a result, researchers have focused on the design of automatic and

dynamic game balancing techniques, ranging from the use of artificial neural networks (OLESEN

et al., 2008) to reinforcement learning techniques (ANDRADE et al., 2005).

Recently, I have defined two metrics to gauge aspects of game balancing in LBGs

(MAIA et al., 2017). The first, called Internal Difficulty Level (I), focuses on examining the

internal balancing, i.e., it evaluates whether POIs are distributed evenly and measures the effort

for players to move to the closest POIs. The second, called Minimum Balancing Difference (M),

compares two instances of the same game and assesses dissimilarities in their game balancing. It

establishes a direct comparison between distinct LBGs or distinct regions of the same game. M

uses the concept of graph similarity and graph matching distance, which has been investigated

in many works (XU et al., 2013; SANFELIU; FU, 1983; RAVEAUX et al., 2010). These

measurements will be detailed in Chapter 4 as they are key elements in this thesis.

Furthermore, an automatic method that uses MCTS and Google Maps to improve

game balancing in LBGs was presented by the author of this work (MAIA et al., 2017). The

approach builds on MCTS to adjust the game balancing on demand -according to the player’s

location- and to cope with games that have varying amounts of POIs. In this case, MCTS was

used to optimize exploration using information collected on previous searches, hence focusing

on promising solutions while devoting minor efforts to portions of the search space that generate

bad outcomes. The authors have showed the efficiency of the approach when applied to the game

Pokémon GO.

3.3 Procedural Content Generation

PCG has been used in games to generate a wide variety of content, ranging from

textures to game rules. This work uses PCG to transpose maps of LBGs to multiple locations. As

mentioned in Section 3.2, maps are a key component in LBGs as they establish a link between real

and virtual worlds, thus acting as game levels and being vital to provide a satisfying gameplay.

Similarly, many games have their gameplay based on the player controlling an agent in a virtual

space, therefore these spaces can also constitute game levels. Consequently, works that use PCG

to address the challenge of creating game maps and levels were investigated.
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3.3.1 Game Maps

This section presents approaches that use automatic or semi-automatic methods to

create maps for games. Nevertheless, the works investigated here include features related to the

transposition of maps of LBGs, such as paths, roads, traffic, etc. As a result, researches related

to terrain generation that focus on height maps, vegetation, relief, and aesthetic purposes are not

discussed.

Glass et al. (2006) analyzed road maps of informal settlements in South Africa

using aerial photography to determine procedural techniques capable of replicating them. As a

result, the work unveiled that a combination of Voronoi diagrams and subdivision provides the

closest match to informal settlements, while a combination of L-systems, Voronoi diagrams and

subdivision creates the closest pattern to a structured informal settlement. Therefore, new maps

can be recreated from this combination of techniques and parameters.

Patel (2016) released a method for generating polygonal maps that uses a graph

structure to model features linked to gameplay constrains, such as elevation, roads, river flow,

quest locations, among others. The approach uses Voronoi polygons generated from a set of

random points to create an initial mesh and its corresponding graph, then it benefits from the

existing duality between Voronoi Diagrams and Delaunay Triangulations to extract a second

graph depicting adjacency relations. Next, properties such as border, terrain, and lakes are linked

to the graph representing Voronoi corners and features such as elevation, paths and quests are

associated with the graph storing Delaunay edges. Finally, the mesh is subdivided and noise is

applied to create a more detailed and smooth map.

Abuzuraiq (2017) builds on (PATEL, 2016) to create an algorithm to generate maps

that can be used in the distribution of terrain and converting or linking Mission Graphs to game

spaces. The method takes a planar graph G as input and solves the problem of partitioning a

planar graph using the A* search algorithm coupled with a heuristic that creates quotient graphs

isomorphic to a constraint graph C. To address the challenge of coping with increased search

spaces (G is large), the algorithm uses a coarsening step that partitions G into a new graph G′

that is smaller in size but does not over-limits the search space.

A work for generating maps to Real-Time Strategy (RTS) games using a search-

based method was presented by Togelius et al. (2010). In RTS games, maps are crucial to

gameplay as they also constitute the game levels, likewise many LBGs. The proposed approach

generates maps for the RTS game Star-Craft using a multiobjective evolutionary algorithm. The
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method relies on a set of fitness functions related to attributes like playability, fairness, skill

differentiation and interestingness. To validate the work, a simulation of a character moving

between two points along the fastest possible path was implemented using the classical A*

algorithm. In this case, distinct fitness measures (mainly related to distance) were proposed to

reflect game characteristics.

Dormans (2010) tackles the challenge of generating game maps associated with

missions in action-adventure games, such as The Legend of Zelda: The Twilight Princess. These

games have their gameplay founded on enjoyable exploration, flow and narrative structure,

attributes that rely on game maps containing a set of missions, similarly to most LBGs. The

method considers missions and spaces as two separate structures generated independently. It uses

generative grammars to first create a graph representing missions and then generate spaces to

accommodate these missions. This approach requires a collection of rules to output entertaining

and diverse game maps.

3.3.2 Game Levels

There are many works devoted to the generation of game levels, mostly related to

2d platform games. For instance, Sorenson and Pasquier (2010) present a generative system for

the automatic creation of video game levels using the FI-2Pop genetic algorithm, Snodgrass and

Ontañón (2014) and Snodgrass and Ontañón (2017) use Markov chains calibrated using to a

series of 2d maps of game levels designed by humans.

Compton and Mateas (2006) build game levels by repeating and reshuffling a few

game components according to rhythmic actions thus making players experience better game

“flow”, Smith et al. (2009) and Moghadam and Rafsanjani (2017) use a grammar-based method

to also generate 2d platform levels based on rhythms, and Pedersen et al. (2010) generates Mario

Bros levels randomly by traversing a fixed width and placing gaps, blocks and enemies following

some heuristics.

A procedural level generator based on a GA that works for any game or content type

was present in Adrian and Cosío (2013). Their approach uses a fitness function that calculates

the difference between a desired difficulty curve and the difficulty curve calculated from the

candidate content, thus levels are created to best fit the desired curve.

Lelis et al. (2018) and Reis et al. (2015) used semi-automatic level generators that

combines a number of annotated segments into a full-sized level of the game. These segments
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were evaluated by humans with respect to their perceived enjoyment, aesthetics, and difficulty,

therefore the resulting levels were deemed more enjoyable and visually pleasing.

Smith et al. (2018) present an approach that models acyclic dungeon levels as graphs

to satisfy gameplay and design constraints. The work models constraints and graphs as an

Answer Set Programming (ASP) problem to produce dungeon levels that are validated using a

domain-independent solver.

3.4 Weighted Graph Matching Problem

Section 2.7 mentions that an LBG can be modeled using a weighted graph, and that

the transposition can be depicted as a particular case of Graph Matching called WGMP. In this

case, the challenge is to explore a larger graph (search space) looking for subgraph that best

resembles a particular graph (game model). Obviously, since LBGs are represented as weighted

graphs, the approach must consider both connectivity and weights as similarity features.

Tran et al. (2016) proposed GpSense, a method that is able to handle massive

graphs using data compression and parallelism in GPUs. The approach focuses on optimizing

memory issues inherent to previous backtracking methods that allow for a straightforward GPU

implementation. It uses weights to encode the maximum degree among nodes and compress

large graphs into multiple-level graphs with reduced size.

An analytic approach was developed by Umeyama (1988) to optimize the matching

of directed and undirected weighted graphs. The work uses eigendecompositions of adjacency

matrices to efficiently find near optimal matches when the graphs are sufficiently close to each

other. Regarding time of execution, the method is more tolerant to the combinatorial explosion

when compared to exploratory algorithms, however it works only for weighted graphs with the

same number of nodes, thus having restrict applications.

Almohamad and Duffuaa (1993) presented a linear programming approach for the

WGMP that is solved using a simplex-based algorithm. Although the linear programming

formulation presents good performance in matching weighted graphs, its computation time is

significantly higher than other approaches.

Bhattacharjee and Jamil (2012) proposed an algorithm called Weighted Subgraph

Matching (WSM) to solve the WGMP in large graphs present on biological networks. WSM

processes nodes to create a canonical representation that is used in mapping possible matches.

These matches are then ranked by cost and only the first k-mappings are evaluated. Consequently,
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the remaining matches are discarded to reduce the search space. The algorithm was designed to

deliver approximate solutions when handling graphs with up to a thousand nodes, therefore it

delivers poor results with smaller graphs.

There are many approaches devoted to tackling GMPs and its variations (CICI-

RELLO, 1999). However, there are no general algorithms to address all these challenges in

polynomial time. Consequently, researchers focus on efficient solutions to particular applications

related to these problems. This work addresses the WGMP applied to the balanced transposition

of maps of LBGs, and presents three distinct approaches to tackle this issue, an adaptation of

the Ullmann’s algorithm to work with weighted graphs, a method that uses MCTS to explore

the search tree more efficiently, and a GA. Next, works that are related to these approaches are

presented.

3.4.1 Ullmann’s Algorithm

For being a popular and efficient method to tackle the GMP, the Ullmann’s algorithm

has been studied and improved over the years. More recently, Blankstein and Goldstein (2010)

presented a parallel version of Ullmann’s algorithm (implemented in the VFLib library) for

execution on multicore machines. The work investigates the advantages and drawbacks of

distinct data structures and several heuristics for spawning threads, thus indicating situations

where parallelism is clearly superior to single threaded execution.

Lin et al. (2012) built on Ullmann’s algorithm to improve the refinement by compiling

indexes that indicate a more efficient visiting order. In addition, the method includes weights to

represent the length of the matching path, therefore extending pruning features.

3.4.2 MCTS

Although MCTS is often used in Artificial Intelligence applications, Maia et al.

(2017) applied the method to the WGMP. The work is derived from this research and aims at

improving game balancing in LBGs. In this thesis, the MCTS algorithm was improved to deliver

better results and adapted to perform the transposition of game maps.

In this case, the search space is mapped to a search tree, thus each graph queried

from the search space is mapped to a branch of the tree. To optimize the process, the algorithm

was adapted to store and rank the best solutions found, so the selection step can use this ranking

to guide the exploration of new branches. Chapter 5 details how this process works.
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3.4.3 Genetic Algorithms

Many works have used GAs to tackle variants of the GMP. For instance, Auwata-

namongkol (2007) used a GA to address inexact graph matching applied to image recognition

based on angle matching between two given graphs.

Furthermore, Choi et al. (2012) applied a multi-objective genetic algorithm for the

subgraph isomorphism problem. The approach included an additional fitness function that

considers potentially optimal solutions, thus making the algorithm to operate more efficiently.

Xiang et al. (2017) also tackled the subgraph isomorphism problem using a dedicated crossover

algorithm and a new fitness function that improves the heuristic search.

Some works focus on performance improvement by altering GA attributes and

operators. For instance, Khoo and Suganthan (2002) evaluated the results of the GA with distinct

crossover operators and different types of individual representation. Singh et al. (1997) proposed

a new variation of the crossover operator, called the color crossover, and a specific mutation

operation to address the problem of structural shape matching.

Finally, Liu et al. (1995) addressed the WGMP using a fitness function similar to

this work. However, they used a hybrid microgenetic algorithm with a local search algorithm, a

modified selection scheme, and a refining procedure to improve the performance of the algorithm

in the field of pattern recognition.

3.5 Conclusion

This chapter presented works related to key areas of this thesis. In Section 3.1, the

many approaches used to conduct the transposition of LBGs were introduced. However, this

work focuses on methods for automatic transposition of maps of LBGs, meaning that minimum

or no human intervention is needed.

In Section 3.2, works about game balancing in digital games were shown. Although

much effort is devoted to this area, only a few researches focus on LBGs, mainly due to the

recent surge of this game genre.

Next, PCG approaches for automatic creation of game levels and game maps were

investigated. In the case of LBGs, there is no way to detach game maps from game levels as both

constitute the same physical entity. Consequently, challenges and features linked to the usage of

PCG with game levels and game maps are related to this work.
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4 BALANCING AND TRANSPOSITION OF MAPS FOR LBGS

This chapter provides an overview of the developed approach to balance and trans-

pose LBGs maps. The goal is to provide a general method capable of handling multiple types of

LBGs, estimating game balancing, and automatically generating transposed instances of their

maps with similar balancing to the initial game.

In order to achieve this goal, a generic game model was conceived based on a

weighted directed graph to represent most LBGs available in the market (Section 4.1). It is also

shown how to gather information about the location the LBG will be transposed to, and build

the search space according to the proposed game model (Section 4.2). Section 4.3 introduces

measurements that focus on estimating game balancing according to particular features of LBGs.

These measurements served as the basis upon which the balanced transposition is formulated

as an optimization problem applied to the subgraph matching. The problem formulation and

the algorithms developed to solve the problem are detailed in Chapter 5. Finally, Section 4.4

concludes the chapter.

In summary, the proposed approach performs according to the following steps:

(i) build a generic model of the original LBG, (ii) gather information about locations in the

area where the transposition must take place, (iii) apply an algorithm that will minimize game

balancing differences in the transposition to the new location, and (iv) rebuild the game map

from the resulting game model to obtain the transposed instance of the LBG map. Figure 20

presents the previously mentioned pipeline of execution.

Figure 20 – Execution pipeline for the proposed approach.

Source: Author



66

4.1 Game Model

As mentioned in Chapter 1, this work presents a game model that is capable of

representing several types of LBGs using a compact data structure that contains key information

for performing a balanced map transposition. The proposed game model aims at generalizing

the structure of LBGs regardless of their attributes and game patterns. The main objective of

using this game model is to eliminate irrelevant features to the process of maps balancing and

transposition, such as graphics, sounds, characters, texts, among others, while maintaining and

standardizing all the relevant data required to execute the transposition of maps.

As a result, this model must be flexible, due to the need to represent numerous types

of LBGs, but also must convey only the essential data required by the balancing and transposition

algorithm. According to these attributes, the proposed game model is based on weighted directed

graphs, and can directly encode games that implement the Search-and-Find and Follow-the-Path

patterns. Since these game patterns are present in more than three-quarters of the LBGs, most

LBGs on the market can potentially benefit from this work.

Similar representations have been used in (NOLETO et al., 2015) and (MACVEAN

et al., 2011) in the development of LBGs. However, both works disregarded the cost to move

between places and opted to use unweighted graphs. The balancing and transposition algorithms

rely on weights to estimate game balancing and perform transposition, thus being a key feature in

this research. This model has successfully been used in (FERREIRA et al., 2019) to demonstrate

the transposition of an LBG called “Quest for the Cathedral”.

LBGs are converted into weighted directed graphs using a straight mapping between

its components. In this case, the game model can be defined as a graph G = (V,E,W ), where V

is a set of nodes representing specific locations (places to visit), E is a set of edges (E ⊂V ×V )

symbolizing an existing path between places, and W is the set of edge weights (W : ei, j→ N+)

typifying the cost to move along the path.

Consequently, the adjacency matrix AG of the weighted graph G = (V,E,W ) is a

|V |× |V | matrix defined as:

AG = [ai j],where

{
ai j =W (vi,v j), i 6= j.

ai j = 0, i == j.
(4.1)

Additionally, adjacency matrices can be extended to include negative weights (W :

ei, j→ N), thus it is possible to set ai j ≤ 0 if there is no valid path between two distinct locations
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i and j. This allows the method to prevent unreachable locations from being selected, as all

the weights linked to their edges will be negative. This information is provided by the Abstract

Programming Interfaces (APIs) used to build the search space, and will be shown in Section 4.2.

Since G is a weighted directed graph, AG is a non-symmetric matrix, where rows

and columns depict distinct information. For example, Figure 21 illustrates a weighted directed

graph and its corresponding matrix. Notice that each row in the matrix contains the weights of

edges that are incident out of the corresponding node. Analogously, each column contains the

weights of edges that are incident into their corresponding node.

Figure 21 – A weighted directed graph
and its adjacency matrix.

Source: Author

Furthermore, nodes can be used to replace geographic coordinates, specific locations,

or interaction points in a game, whereas edges are relevant for determining existing paths between

nodes, meaning that the absence of an edge ei, j between vertices vi and v j indicates there is no

virtual path connecting these locations in the game (W (vi,v j)≤ 0). This is key to encode the

flow of the game and its gameplay into the game model. Finally, the weights are fundamental to

estimate the game balancing, as well as comparing different maps of the same LBG.

Weights can be associated with distinct characteristics depending on the game. For

instance, in competitive games, the relevant aspect to the cost may be the travel time or the

distance between two locations; in games that stimulate physical exercise, the cost can be

expressed as the calories burned during an activity. Consequently, this information must be

provided when creating the game model, as it is crucial to generate a coherent game representation.

In Section 4.2, alternatives to estimate the cost accurately are discussed.

In summary, this game model is flexible as edges can be added or excluded to

represent custom game flows, and weights can be linked to real world features deemed influential

to the game balancing. For example, if an LBG requests players to visit an ordered sequence

of locations, the game model will encode a graph with a single chain of edges reaching the



68

vertices. Furthermore, a fitness game may decide to use footsteps or heartbeats as weights,

whereas competitive games can use time, speed, distance, etc. The next section presents the

algorithms used to build the corresponding game model for a given LBG and to rebuild the game

from a game model.

4.1.1 Building the Game Model

Creating a game model (graph G = (V,E,W )) for an LBG can be performed by a

direct mapping between each visiting location (l ∈ L) in the game (J = (L,P)) to a node v (v∈V ).

Then, depending on the game, it is necessary to apply a policy before mapping all the edges. If

the game demands players to visit locations according to a fixed order, it is necessary to remove

the edges corresponding to the undesired visiting sequences. For example, if the path (p ∈ P)

between the nodes vi and v j is not valid in the game context, the weight of the respective edge

is set to zero (W (vi,v j) = 0). Usually, LBGs that implement the Follow-the-Path game pattern

(e.g. WeQuest, FreshUP, Tourality, etc.) present this trait. Conversely, there are some LBGs that

do not require players to follow a specific sequence of places to visit (e.g. Ingress, Pokémon

GO, Parallel Kingdom, Floracaching, etc.), therefore they have their edges and weights mapped

directly.

Algorithm 1 builds the game model from an LBG. It has complexity O(L+P) since

in the first loop only the locations are processed (L), whereas the second loop creates edges in

the graph by traversing all possible paths between locations of the game (P).

Figure 22 showcases a game that does not indicate a specific sequence of locations

to visit, therefore players are free to choose any destination, thus the resulting game model will

be a complete graph.

Figure 22 – Figure illustrating a case where the game model is a com-
plete directed graph.

Source: Author

Differently, Figure 23 illustrates a simple case where it is necessary to change the
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Algorithm 1: Algorithm to build game model from an LBG.
Input: Original LBG J = (L,P)

Output: Graph G = (V,E,W )

begin

Create a empty weighted directed graph G;

for each location l ∈ L do

Create a corresponding node v in V ;

end

for each path p between two locations li ∈ L and l j ∈ L do

Create a corresponding edge ei j ∈ E;

if p /∈ P then

Change its corresponding weight to wi j = 0, where wi j ∈W ;

end

end

end

game model to correctly represent the flow of the game. In this case, the game stipulates a

succession of locations that a player must visit, meaning that some routes were discarded from

the gameplay. For instance, players can not go from A to C directly, they must pass before

through B. Accordingly, the resulting game model will have the weights of the red edges changed

to zero.

Figure 23 – A case where edges have to be removed from the game
model to math the game flow.

Source: Author

In summary, the generated game model will always represent the various types of

LBGs that use the Search-and-Find and the Follow-the-Path game patterns using a weighted

directed graph. This feature is key to the transposition method, since it ensures that any game

model built using this process will have the same format.
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4.1.2 Adapting the LBG

As shown in Figure 20, the last step of the transposition process consists in generating

an instance of the LBG with the transposed map. This process begins with the transposed game

model generated by the transposition algorithm and finishes with the deployment of the game

in the new location. Although this process is almost identical to building the game model, it is

simpler, as checking for restrictions on paths is no longer necessary.

As a result, creating an instance of the game basically relies on adapting its locations

to the corresponding nodes of the game model, maintaining all the previously existing structure.

This process can be performed with linear complexity O(n) according to Algorithm 2, which

traverses the list of nodes in the resulting game model.

Algorithm 2: Algorithm to adapt the LBG’s map according to the transposed game model.
Input: Transposed Graph G = (V,E,W ), Original LBG J = (LJ,P)

Output: Resulting LBG R = (LR,P) with the transposed map

begin

Create a LBG R as a copy of J;

for each node v ∈V do

Replace lR ∈ LR by the location of the corresponding node v;

end

end

The simplicity of these conversions and the low complexity of their algorithms are

fundamental to deliver fast transpositions. Chapter 5 will detail some algorithms for the balanced

transposition of maps of LBGs, and the next section will address the challenge of estimating

game balancing in these games.

4.2 Search Space

As shown in Figure 20, the proposed approach takes a specific region as input to

build a search space that will be processed by a transposition algorithm. This search space has to

match the game model presented in Section 4.1, as it will provide the new locations to the map

of the transposed LBG. Accordingly, the same game model was used to convey this information,

thus both game and search space are weighted directed graphs in the form G = (V,E,W ).
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Building a weighted directed graph for a specific region requires collecting data

about places, paths and the cost to move between places. These data are key to define vertices,

edges and weights that will constitute a model corresponding to the search space. Therefore, it

is necessary to query locations in the area that are of public access and that can be reached by

players (e.g. some public places may be closed on weekends, hence they should not be included

in the search space when closed).

Nowadays, there are many public APIs that provide a plethora of information about

places, also known as POIs (e.g. Google Places1, Foursquare Venues Service2, Factual Global

Places3 and Nominatim4). These APIs offer filtering tools that enable the selection of POIs

according to type (e.g. shops, religious places, parks, hospitals, etc.), opening hours, rating

(in some cases user ratings are provided), among others. As a result, it can be established a

correlation between original and transposed maps of the game. For instance, if the original game

requires that players move to a snack bar, in the transposed versions, players can also be required

to move to a snack bar in each region where the same game is placed. This correspondence has

been successfully implemented in the work developed by Macvean et al. (2011), and in the game

“Quest for the Cathedral”, presented in (FERREIRA et al., 2019).

Once POIs are selected, their geographic coordinates are linked to the vertices of a

graph. Another vital and required information is to check for the existence and cost of a path

between these locations. As mentioned in Section 4.1, depending on the game, the cost must be

linked to distinct features, such as footsteps, heartbeats, time, speed, distance, etc. Consequently,

this information is necessary to estimate the costs of the weighted directed graph and build

both the game model and the search space. In case the APIs cannot provide information about

a specific path or location, their associated weight is defined as negative, so the transposition

algorithm can ignore its selection.

Furthermore, the costs experienced by the players during gameplay can be measured

using mobile sensors (e.g. footsteps, heartbeats, walking distance, calories, etc.), and the costs

used to build the search space can be queried via several APIs that supply estimated information

regarding the displacement between two different places (e.g. time, distance, fares, etc.). These

APIs usually provide data about existing routes and multiple means of transportation, including

walking, car, public transport, bicycle, among others. For instance, the most popular services
1 https://developers.google.com/places/
2 https://developer.foursquare.com/overview/venues.html
3 http://www.factual.com/products/global
4 http://wiki.openstreetmap.org/wiki/Nominatim
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are Google Distance Matrix5, Mapbox6, GraphHopper7, Microsoft Bing Route Data8 and

MapQuest9.

The main advantage of using APIs to estimate the costs is the availability of real-time

data. Since most services update their database constantly, these APIs provide reliable and

precise estimations that also avoid issues such as traffic jams, path routing, road blockages, etc.

As a result, using the appropriate features and selecting precise methods to estimate the cost are

fundamental to calculate the game balancing properly, since inaccurate costs will consequently

lead to incorrect game balancing. For instance, Figure 12 shows that depending on the topography

of the cities, using only the distance between POIs to estimate costs can give rise to unbalanced

gameplay. Consequently, the data provided by these APIs can be used to estimate key information

about the place where the game must be transposed to. Moreover, this dependency on these

APIs also poses limitations to the method, as these APIs may not have data about all means of

transportation, such as boats, scooters, and others. In this work, four LBGs were designed to

serve as a test bed for the proposed balancing and transposition approach, and data queried from

Google Places and Google Distance Matrix was used to estimate game balancing and build game

models (Chapter 7).

After querying data about places, paths and costs, it is possible to build the search

space as the graph S = (V,E,W ). In this case, the selected POIs have their geographic locations

linked to vertices V , then the existence of paths between POIs defines the edges E connecting the

corresponding vertices, and lastly, the estimated costs for moving along the paths are assigned to

the weights W . These steps are presented in Algorithm 3, that has complexity O(E ∗E).

Regarding the amount of vertices queried from the APIs (|VS|), the only restriction

is that the search space must have at least the same amount of vertices (|VT |) of the graph

being transposed (|VS| ≥ |VT |), so as to have a bijective mapping f : Vt →Vs that represents the

isomorphism. Building the search space using this approach usually gives rise to a complete

graph, meaning that the adjacency matrix AS of the search space often has the following form:

AS = [ai j],where

{
ai j > 0, i 6= j.

ai j ≤ 0, i = j.
(4.2)

5 https://developers.google.com/maps/documentation/distance-matrix/
6 https://www.mapbox.com
7 https://graphhopper.com
8 https://msdn.microsoft.com/en-us/library/ff701718.aspx
9 https://developer.mapquest.com
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Algorithm 3: Algorithm to build the model for the search space of a specified region.
Input: Geographic coordinate of the region

Output: Graph S = (V,E,W )

begin

Create an empty weighted directed graph S;

RV =Query and select POIs from a location API;

for each location L ∈ RV do

Create a corresponding node v ∈V ;

end

for each location Li ∈ RV do

for each location L j ∈ RV such that i 6= j do

wi j=Query cost between Li and L j;

if wi j > 0 then

Create a corresponding edge ei j ∈ E;

Change the value of its weight to wi j ∈W ;

end

end

end

end

4.3 Measuring Game Balancing in LBGs

This work focuses on developing PCG methods for the transposition of maps of LBGs

while preserving game balancing. Therefore, to assess the effectiveness of the transposition, it is

necessary to propose measurements to gauge the game balancing of maps of LBGs. As presented

in Section 4.1, LBGs can be converted to a game model based on a weighted directed graph

G = (V,E,W ), therefore the difficulty level of an LBG in a particular location can be generalized

as the total cost to move between the required nodes. Thus, two measurements have been defined

to gauge aspects of game balancing in LBGs.

4.3.1 Internal Difficulty Level

The first metric, called Internal Difficulty Level (I), focuses on assessing the internal

balancing of a game, i.e., it evaluates the equality of the costs to move between locations within

a game. In this case, unbalanced games have some locations accessible with low cost, whereas
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others have a very high cost to be visited. As a result, I is defined by the average of the estimated

cost linked to every edge in the game model, as shown in Equation 4.3.

I=
∑
|V |
x=1 ∑

|V |
y=1 W (Vx,Vy)

|V | , W (Vx,Vy) 6= 0. (4.3)

where W (Vx,Vy) is the cost to move from node Vx to Vy, and |V | is the number of nodes in the

graph. Additionally, the standard deviation (σI) of I is calculated to evaluate the uniformity of

node distribution.

From the players’ perspective, I indicates the average cost to move between locations

and σI evidences the gap in cost to move along paths. Therefore, higher σI means games with

greater imbalance between paths. Likewise, if σI = 0, all paths of a game have the same cost.

This measurement is particularly important to investigate whether an LBG oscillates between

too easy and too hard challenges, that are deemed undesired according to Schell (2008).

Figure 24 – Graphs showing games with distinct costs.

Source: Author

For instance, Figure 24 shows graphs that are slightly different in cost, but the graph

to the left has IL = 3.333 and σIL = 1.247, whereas the graph to the right has IR = 3.666 and

σIR = 2.494. This indicates the latter has a bigger disparity in its costs, as corroborated by the

weights W (vy,vx) = 7 and W (vy,vz) = 1.

4.3.2 Minimum Balancing Difference

The second metric is called Minimum Balancing Difference (M), and was developed

to highlight dissimilarities in game balancing between instances of the same game played in

different areas. This measurement calculates the minimum difference in the game balancing

considering each path that composes the games. In this case, since LBGs are mapped to weighted

graphs, the analysis is equivalent to the graph matching presented in (BHATTACHARJEE;

JAMIL, 2012). This process extracts the best similarity between the paths of both games

by minimizing their differences. M is given by the sum of the differences between all the
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corresponding paths in the best similarity case, as expressed by Equation 4.4. Next, the details

on how to calculate M are shown.

Consider an LBG that can be played in two distinct areas, thus giving rise to two

different game configurations (GA and GB). M is obtained by matching a set of nodes A of GA

to a set of nodes B of GB so that:

M= min
|VA|

∑
x=1

|VB|

∑
y=1
|WA(VAx,VAy)−WB(VBx,VBy)| (4.4)

where WA(VAx,VAy) and WB(VBx,VBy) represent the weights of paths connecting nodes VAx to VAy

and VBx to VBy, respectively.

For the sake of simplicity, the following example demonstrates how to calculate

M for two weighted graphs containing only three vertices. Consider that Figure 24 depicts

graphs representing the same LBG when played in two areas with distinct difficulty levels.

Despite having only three vertices, there are many possible matches between these graphs.

For instance, the mapping (A/X ,B/Y,C/Z) presents the following difference between paths

|3−7|+ |2−3|+ |5−1|= 9, however the best match is (A/Z,B/X ,C/Y ), thus the Minimum

Balancing Difference is 3 (M= |3−3|+ |2−1|+ |5−7|).

In resume, M indicates whether players in different locations can compete more

fairly since it shows how unbalanced the games are, considering each available path. Therefore,

if M = 0 for two distinct maps, players in both areas should experience an equivalent game

balancing because the estimated cost to move between each location is equal in both games.

Next chapter presents the formulation of the transposition challenge as an optimization problem

that aims at minimizing M.

4.4 Conclusion

This chapter detailed the phases that comprise the approach to balance and transpose

LBGs. First, a broad overview of the method illustrating its execution pipeline was provided,

then the game model used to represent multiple types of LBGs was presented (Section 4.1). Next,

Section 4.2 detailed the means to build the search space according to the proposed game model,

including the use of popular APIs available freely on the Internet. Lastly, Section 4.3 discussed

the measurements devised to assess game balancing internally (Section 4.3.1) and to compare

game balancing between two instances of a game (Section 4.3.2).
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A key part in this process is the transposition algorithm, since it is the step in

charge of selecting the locations that will constitute the transposed game map while focusing on

maintaining the game balancing. The next chapter details the formulation of this challenge and

three algorithms developed to accomplish this task.
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5 PROBLEM FORMULATION AND ALGORITHMS

In this chapter the challenge of transposing maps of LBGs as a WGMP is presented,

and Section 5.1 builds on M to elaborate algorithms to address this challenge as an optimization

problem. As mentioned in Chapter 2, the subgraph isomorphism problem is a complex challenge

that grows exponentially with the size of the graphs. Therefore three distinct algorithms were

extended to tackle this issue for LBG transposing. Each algorithm has particular attributes that

are suited to the many configurations a game may have. The following methods are presented: an

algorithm based on the MCTS (Section 5.2), a deterministic approach that extends the Ullmann’s

algorithm to work on weighted graphs (Section 5.3), and a Genetic Algorithm (Section 5.4).

Lastly, Section 5.5 summarizes and concludes this chapter.

5.1 Problem Formulation

As depicted in Figure 20, the transposition algorithm takes two game models as input,

one representing the original version of the game - here called the target model GT = (VT ,ET ,WT )

- and another characterizing the search space GS = (VS,ES,WS). The last is built using information

gathered from the area where the map is being transposed to (as shown in Section 4.2). The

purpose of the transposition algorithm is to create a bijective mapping between locations from

the original game and the search space (F : VT →VS), thus addressing the challenge as a WGMP.

Consequently, the resulting game model GR = (VR,ER,WR) is composed of transposed locations

selected from the search space (VR ⊂VS,ER ⊂ ES, and WR ⊂WS).

The authors build on the concept of root matrix M presented in Section 2.8.1 to

manage the distinct solutions. In this case, M is a |VT |×|VS| integer matrix that encodes mappings

VT →VS according to the following rule:

mi j =

{
1, if vi ∈ T is mapped to v j ∈ S

0, otherwise

Consequently, M must originate a set of integer matrices P = {P1,P2, ...,Pn} (each

with size |VT |× |VS|) containing the many selections of vertices and permutations that create

bijective mappings corresponding to a single solution. In this case, to secure an exact one-to-one

mapping between VR and VS, each matrix Pn ∈ P must have their elements (pi j) defined as:

Pn = [pi j],where

{
∑
|VS|
j=0 pi j = 1, ∑

|VT |
i=0 .

∑
|VR|
i=0 pi j ≤ 1, ∑

|VS|
j=0 .

(5.1)



78

In resume, the rules presented above make sure that each line contains exactly one

“1” and that each column contains at most one “1”, hence the transposition algorithm must narrow

the search space down by avoiding unsuitable solutions (as shown in Figure 15) while focusing

on more promising candidates from P.

Ideally, the transposition algorithm will produce a transposed map where the cost to

move between each location has the same cost of the corresponding path in the original map.

Thus the ideal transposed map would satisfy the following relation:

∑
vx∈VT

∑
vy∈VT

(WT (vx,vy)−WR(F (vx),F (vy)) = 0 (5.2)

However, the cost to move between locations in distinct regions is seldom equal,

therefore the transposition algorithm must operate to ensure the game balancing between GT

and GR to be as similar as possible. Section 4.3.2 presented how M calculates the minimum

difference in the game balancing between distinct game instances. M looks for the permutation

of locations that better matches the game balancing between two game models, hence it was used

as the chief attribute to compel the transposition algorithms to minimize differences in game

balancing between GT and GR. In this case, the mapping between locations from the original

game and the search space must consider the selection of vertices from GS that will constitute

GR, and the permutation of vertices that yield minimum differences in game balancing. As a

result, this challenge is formulated as an optimization problem by defining a cost function T that

must be minimized to make GR as similar as possible to GT .

To elaborate this problem, consider the weighted directed graphs GT and GS, and their

respective adjacency matrices AT (size |VT |× |VT |) and AS (size |VS|× |VS|), defined according

to the Equation 4.1 presented in Section 4.1. The transposition algorithm works as a bijective

mapping T : VT →VS such that the resulting graph GR is built from the minimization of T(AT ,AS).

Since Pn (Equation 5.1) maps a particular solution for the isomorphism problem, the adjacency

matrix AR of GR can be defined as:

AR = Pn ∗AS ∗PT
n . (5.3)

On top of that, to calculate the difference in game balancing AR must be conformed

to generate A′R, an adjacency matrix containing solely the weights of existing paths in AT . The

proper selection of paths in AR can be performed by generating a filtering matrix (F) using

Boolean operations on AT (Equation 5.4), and further applying F to AR with the Hadamard
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product (also known as the entrywise product or the Schur product).

F = J∧AT , where J is an all-ones matrix with the same size of AT . (5.4)

A′R = F ·AR, where · is the Hadamard product. (5.5)

Finally, the cost function T can be formulated as:

T(AT ,AS) =S(| AT −A′R |), where S calculates the grand sum of a matrix. (5.6)

5.1.1 Example

In this section, a simplified example of the game and the search space is presented to

illustrate how the transposition algorithm makes use of the formulation previously shown. Given

two game models, one portraying the original instance of the game GT (Figure 25) and another

representing the search space GS (Figure 26), along with their respective adjacency matrices AT

and AG.

Figure 25 – An example of target game model and its
adjacency matrix.

Source: Author

Figure 26 – A game model depicting an example of
search space and its adjacency matrix.

Source: Author

The transposition algorithm must build a game model GR from a set of possible

solutions to the isomorphism problem. Thus, the algorithm could inspect candidate solutions
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thoroughly. As an example, consider only two candidate matrices P1 (that maps T1/S1, T2/S2,

and T3/S3) and P2 (that maps T1/S3, T2/S2, and T3/S1), defined as follows:

P1 =

∣∣∣∣∣∣∣∣∣
1 0 0 0

0 1 0 0

0 0 1 0

∣∣∣∣∣∣∣∣∣ ,P2 =

∣∣∣∣∣∣∣∣∣
0 0 1 0

0 1 0 0

1 0 0 0

∣∣∣∣∣∣∣∣∣
In this case, the algorithm must select among P1 and P2 the solution that minimizes the

differences in game balancing. Hence, it is necessary to submit each solution to the Equation 5.6,

then the resulting game model GR is generated from a mapping that presents the lower game

balancing difference.

For the sake of simplicity, first it is shown the calculations of the adjacency matrices

AR1 and AR2 that represent P1 and P2, respectively.

AR1 = P1 ∗AS ∗PT
1

AR1 =

∣∣∣∣∣∣∣∣∣
1 0 0 0

0 1 0 0

0 0 1 0

∣∣∣∣∣∣∣∣∣∗
∣∣∣∣∣∣∣∣∣∣∣∣

0 5 0 7

5 0 3 0

0 2 0 2

6 0 2 0

∣∣∣∣∣∣∣∣∣∣∣∣
∗

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0

0 1 0

0 0 1

0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
AR1 =

∣∣∣∣∣∣∣∣∣
0 5 0

5 0 3

0 2 0

∣∣∣∣∣∣∣∣∣
AR2 = P2 ∗AS ∗PT

2

AR2 =

∣∣∣∣∣∣∣∣∣
0 0 1 0

0 1 0 0

1 0 0 0

∣∣∣∣∣∣∣∣∣∗
∣∣∣∣∣∣∣∣∣∣∣∣

0 5 0 7

5 0 3 0

0 2 0 2

6 0 2 0

∣∣∣∣∣∣∣∣∣∣∣∣
∗

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 1

0 1 0

1 0 0

0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
AR2 =

∣∣∣∣∣∣∣∣∣
0 2 0

3 0 5

0 5 0

∣∣∣∣∣∣∣∣∣
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Next, each step of the process that calculates T(AT ,AS) considering the mapping

defined in P1 is shown:

T(AT ,AS) =S(| AT −A′R1
|)

T(AT ,AS) =S(| AT −F ·AR1 |)

T(AT ,AS) =S(| AT −F ·

∣∣∣∣∣∣∣∣∣
0 5 0

5 0 3

0 2 0

∣∣∣∣∣∣∣∣∣ |)

T(AT ,AS) =S(| AT − (J∧AT ) ·

∣∣∣∣∣∣∣∣∣
0 5 0

5 0 3

0 2 0

∣∣∣∣∣∣∣∣∣ |)

T(AT ,AS) =S(| AT − (

∣∣∣∣∣∣∣∣∣
1 1 1

1 1 1

1 1 1

∣∣∣∣∣∣∣∣∣∧
∣∣∣∣∣∣∣∣∣
0 3 0

0 0 5

0 4 0

∣∣∣∣∣∣∣∣∣) ·
∣∣∣∣∣∣∣∣∣
0 5 0

5 0 3

0 2 0

∣∣∣∣∣∣∣∣∣ |)

T(AT ,AS) =S(| AT −

∣∣∣∣∣∣∣∣∣
0 1 0

0 0 1

0 1 0

∣∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣
0 5 0

5 0 3

0 2 0

∣∣∣∣∣∣∣∣∣ |)

T(AT ,AS) =S(|

∣∣∣∣∣∣∣∣∣
0 3 0

0 0 5

0 4 0

∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣
0 5 0

0 0 3

0 2 0

∣∣∣∣∣∣∣∣∣ |)

T(AT ,AS) =S(|

∣∣∣∣∣∣∣∣∣
0 −2 0

0 0 2

0 2 0

∣∣∣∣∣∣∣∣∣ |)

T(AT ,AS) =S(

∣∣∣∣∣∣∣∣∣
0 2 0

0 0 2

0 2 0

∣∣∣∣∣∣∣∣∣)
T(AT ,AS) = 6.
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Similarly, the same calculations must be performed to obtain the game balancing

difference for the mapping defined in P2:

T(AT ,AS) =S(| AT −A′R2
|)

T(AT ,AS) =S(| AT −F ·AR2 |)

T(AT ,AS) =S(| AT −F ·

∣∣∣∣∣∣∣∣∣
0 2 0

3 0 5

0 5 0

∣∣∣∣∣∣∣∣∣ |)

T(AT ,AS) =S(| AT − (J∧AT ) ·

∣∣∣∣∣∣∣∣∣
0 2 0

3 0 5

0 5 0

∣∣∣∣∣∣∣∣∣ |)

T(AT ,AS) =S(| AT − (

∣∣∣∣∣∣∣∣∣
1 1 1

1 1 1

1 1 1

∣∣∣∣∣∣∣∣∣∧
∣∣∣∣∣∣∣∣∣
0 3 0

0 0 5

0 4 0

∣∣∣∣∣∣∣∣∣) ·
∣∣∣∣∣∣∣∣∣
0 2 0

3 0 5

0 5 0

∣∣∣∣∣∣∣∣∣ |)

T(AT ,AS) =S(| AT −

∣∣∣∣∣∣∣∣∣
0 1 0

0 0 1

0 1 0

∣∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣
0 2 0

3 0 5

0 5 0

∣∣∣∣∣∣∣∣∣ |)

T(AT ,AS) =S(|

∣∣∣∣∣∣∣∣∣
0 3 0

0 0 5

0 4 0

∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣
0 2 0

0 0 5

0 5 0

∣∣∣∣∣∣∣∣∣ |)

T(AT ,AS) =S(|

∣∣∣∣∣∣∣∣∣
0 1 0

0 0 0

0 −1 0

∣∣∣∣∣∣∣∣∣ |)

T(AT ,AS) =S(

∣∣∣∣∣∣∣∣∣
0 1 0

0 0 0

0 1 0

∣∣∣∣∣∣∣∣∣)
T(AT ,AS) = 2.
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In this example, P2 originates the mapping (T1/S3, T2/S2, T3/S1) and presents lower

T than P1, meaning that a transposed map containing the mapping of P2 will yield minor

differences in game balancing. After defining the selection that originates the minimum T, the

last step in the transposition is to build the transposed game model by replacing the locations of

the original game by the ones of the resulting solution.

5.1.2 Discussion

The main adversity to the formulation previously shown is that both the original game

map and the search space can originate game models with varying size. Besides, the larger a

search space is, the more likely it will contain locations that resemble the game balancing present

in the original game. Thus, the transposition algorithm must cope with distinct configurations

that can require huge processing capabilities.

In theory, the transposition algorithm should select the best solution from the many

candidates, however, in practice, the time and effort to process all solutions increase exponentially

with the size of GT and GS according to the formula of k-permutations without repetitions (where

n = |VS| and k = |VT |):

Pn,k =
n!

(n− k)!
. (5.7)

As a result, the amount of possible solutions quickly reaches a point that makes

brute-force approaches inappropriate. Consequently, the next sections present three distinct

algorithms conceived to handle the broad range of game models according to their sizes.

5.2 Monte Carlo Tree Search

In this work, an algorithm based on the well known MCTS is presented. MCTS

is widely applied to explore large search trees due to its ability to use data from previously

processed solutions to guide the search for better ones. Besides, a key advantage of MCTS is

that the method operates under a predefined computational budget (usually, time, memory or

number of iterations), so the algorithm outputs the best solution found within certain constraints.

MCTS consists of four steps, namely Selection, Expansion, Simulation, and Backpropagation.

Consequently, this section details the adaptations made in each step of the approach. An early

implementation of this method was first introduced in (MAIA et al., 2017) and (FERREIRA et

al., 2019), however, adjustments have been made to improve the quality of its results.
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First, bear in mind that MCTS is regarded as an artificial intelligence algorithm since

it improves the knowledge about the problem with each interaction. Therefore, in the beginning

of execution, the method has no hint on how to explore the search tree, then it starts by choosing

branches randomly. As further interactions are processed, the algorithm “learns” that some

sections of the tree generate unfitting solutions, while others create better ones, thus the approach

focuses on exploring branches that are more promising (this is the Selection step).

The learning procedure relies on a partial tree to store the data about the branches

and solutions explored. Each node in the partial tree represents a mapping between vertices of

the original game and the search space. For instance, Figure 27 shows a search tree built to

illustrate the mapping between graphs GT (Figure 25) and GS (Figure 26), and the highlighted

branch encodes the mapping (T1/S2, T2/S1, T3/S4). These nodes are vital to the algorithm since

they hold a record encoding the amount of good and bad solutions found below them, in the

partial tree.

Figure 27 – Search tree illustrating the mapping between graphs GT (Figure 25) and GS
(Figure 26).

Source: Author

Consequently, a leaf on the partial tree depicts the last mapping between vertices

of the original game and search space, so the complete path from the root to a leaf spawns a

solution to the problem. The process of building solutions out of unexplored paths is called

Expansion. Since processing all leaves is equivalent to cracking the problem using brute-force,

the purpose of using MCTS is to use the information encoded in the nodes of the partial tree to

look for branches that generate the best solutions.

Once a complete solution is created, the algorithm must decide whether it is a good

or bad result. This process is called Simulation as it intends to reproduce the outcome of choosing

this solution as the best one. In this work, Simulation consists in calculating M and comparing it

to the best solutions found earlier. In this case, a list containing a percentage (κ) of all branches
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evaluated is constantly updated to store the best solutions found. Therefore, if a solution enters

the list it is deemed good, otherwise it is considered bad.

Finally, in order to update the records of nodes in the partial tree, the step called

Backpropagation is started. Consequently, for every solution explored, its nodes will be updated

to indicate the quality of the solutions found below them.

However, even though a specific section of the tree may constantly generate good

results, the best solution can be in an unexplored area of the tree, therefore the method may

eventually diversify explored branches to avoid local minimum. As a result, the algorithm must

decide whether to focus exclusively on promising branches (exploitation) or to investigate new

ones (exploration). The reasoning behind choosing which branch to investigate is referred as

tree policy. The exploitation-exploration dilemma is the decision between continuing to exploit

branches that are believed to be optimal, or starting to explore other branches that are currently

sub-optimal but may occasionally contain better results. This problem is also linked to Bandit

problems (JUN, 2004), and are addressed by decision policies that intend to minimize regret.

This work uses Upper Confidence Bounds for Trees (UCT) as the tree policy due to its simplicity

and efficiency to solve the exploration-exploitation dilemma (KOCSIS; SZEPESVáRI, 2006).

UCT selects nodes based on their probability to be part of an optimal solution. This

prospect for a node x is given by Equation 5.8, that uses the average of rewards Āx, the number of

visits in the parent node (np), the number of times the node x has been visited (nx), and a constant

C (where C > 0). In summary, Equation 5.8 shows that UCT equates exploitation and exploration,

since the denominator of the exploration term (nx) increases with each visiting, hence lowering

its contribution. Conversely, if a node is visited, the numerator of sibling nodes (np) rises,

which increases exploitation. Besides, this property ensures that, given enough iterations, even

sub-optimal nodes may be selected.

UCT (x) = Āx +2C

√
2ln(np)

nx
(5.8)

During Backpropagation, MCTS updates the values of UCT for each node previously

simulated. As a result, the algorithm must recalculate the new values of UCT when performing

Selection. This feature encodes the “learning” process by recalling the outcome of previous

solutions. To showcase this process, consider the partial tree depicted in Figure 28. Notice that

each node x holds the data necessary to calculate UCT. In this case, the amount of times it has
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been visited (nx), and the number of good solutions below them in the partial tree (gx) are used

to calculate Āx =
gx
nx

. For example, once the Simulation decides whether the highlighted mapping

(T1/S2, T2/S1, T3/S4) is a good or bad solution, the data stored in nodes S2 and S1 are updated

accordingly.

Figure 28 – Depiction of a partial tree and the data stored in each node.

Source: Author

This process is repeated until a certain budget is reached, and the best solution

processed during execution is selected. A final parallel step was added to check for better results

in the automorphism of this solution, as shown in Algorithm 4.

However, calculating the best solution in the automorphism for a graph is exponential

to its size, thus the algorithm is not suited for large graphs. As a result, the complexity of the

MCTS algorithm depends on the budget and the number of vertices in the graphs GT and

GS as processed by each step. Accordingly, the selection and backpropagation steps have

complexity O(B|VS|), where B is the branching factor of the tree, the simulation and expansion

have complexity O(|VT |), the management and sorting of the list L has complexity O(|L|log|L|),

and finally, the parallel method to check for the automorphism has complexity O(|VT |!). Thus,

the overall complexity of the algorithm is O(B(|VT |+ |VS|B+ |L|log|L|+ |VT |!)).

Besides, given that randomness is inherent to MCTS, it is classified as a non-

deterministic approach, so results can vary between executions even if the same input is used.

Next, an example to illustrate how each step works is presented.

5.2.1 Example

To showcase how MCTS was adapted to solve the graph isomorphism problem,

consider the game model shown in Figure 25 to be GT , and the game model depicted in Figure 26

to be GS. For the sake of simplicity, let’s assume that the list L can hold only one solution,
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Algorithm 4: Algorithm describing MCTS steps.
Input: Matrix AT , Matrix AS, Best percentage κ , Budget B

Output: A matrix PR that encodes the best solution found

begin

Create the root matrix M to encode the search tree;

Create matrices N and G with the dimensions of M;

Initialize the elements of N and G with value 0;

Create a list L with size corresponding to κ ∗B;

Initialize the elements of L with value ∞;

while Solutions processed < B do

Calculate UCT and select nodes with higher values;

Expand branches that have not been processed;

Simulate the selected solution p by calculating Mp;

if Mp > worst solution in L then

Classify solution as bad;

else

Classify solution as good;

Remove the last element of L;

Insert Mp in L;

end

Backpropagate the status of p in matrices N and G;

end

Select the best solution in L and check for its automorphism;

Build matrix PR from to the best solution found;

end

therefore the evaluated solutions are considered good only if they are better than the ones

investigated earlier.

In the beginning, the values of n and g for each node x are set to 0 (Figure 29), and

the algorithm has not performed any exploration to the search tree. Hence the selection of the

first solution is made randomly. Supposing this first solution resulted in the mapping (T1/S1,

T2/S2, T3/S3), the algorithm calculates M= 6 for this mapping, and since the initial value in L

is ∞, this result is regarded as a good solution. This step is equivalent to Simulation, hence its

outcome must be spread throughout the partial tree (Backpropagation) to guide further selections.

At the end of this first round, the values of n and g for each node are shown in Figure 30.



88

Figure 29 – Image depicting the initial values for nx and gx in each node.

Source: Author

Similarly, if the next solution to investigate is the mapping (T1/S1, T2/S2, T3/S4),

the algorithm fails to calculate M because there are no edges connecting S2 to S4 in the game

model (Figure 26). Evidently, the mapping is regarded as not good, so the values of n are updated

accordingly, as shown in Figure 31. Furthermore, if a mapping between two particular nodes of

GT and GS is invalid or always generates bad outcomes, all solutions below the node containing

this mapping will naturally be unsuitable, so given enough processing rounds, the algorithm will

recognize this feature and begin avoiding to explore this branch due to their low UCT.

Figure 30 – Values for n and g are updated at the end of each MCTS
cycle.

Source: Author

Now, consider that MCTS has processed many solutions, up to the point that the

algorithm starts to “learn” about the search tree. In this case, the Selection step applies the tree

policy to guide further explorations. For example, given that Figure 32 depicts the values stored

in the nodes of a partial tree, the algorithm must calculate UCT (x) for each node x. In this case,

Table 3 shows these operations, considering C = 1:

Notice that, albeit S1 has managed to find good solutions in most cases (gS1 = 4 out
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Figure 31 – Values for n are updated to indicate a sub-optimal solution
has been found.

Source: Author

of nS1 = 5), UCT (S4) has the highest value because it is currently the least explored branch. This

property allows the algorithm to avoid minimum locals by balancing the relation exploration-

exploitation, as the computation of UCT for a node is determined by a combination of past

results (average reward Ā) and the amount of solutions explored with respect to sibling nodes

(ln(np)). Besides, this balancing between exploration and exploitation can be adjusted by the

constant C. In general, if C is closer to 0, it reduces the contribution of exploration to the value

of UCT, whereas if C has higher values, the influence of exploration rises.

Figure 32 – Figure presenting an example of node values
for selection during execution of MCTS.

Source: Author

Table 3 – Table detailing the operations to calculate UCT (x) for each node shown in Figure 32
for C = 1.

UCT (S1) UCT (S2) UCT (S3) UCT (S4)

= ĀS1 +2C
√

2ln(np)
nS1

= ĀS2 +2C
√

2ln(np)
nS2

= ĀS3 +2C
√

2ln(np)
nS3

= ĀS4 +2C
√

2ln(np)
nS4

=
gS1
nS1

+2
√

2ln17
5 =

gS2
nS2

+2
√

2ln17
4 =

gS3
nS3

+2
√

2ln17
5 =

gS4
nS4

+2
√

2ln17
3

= 4
5 +2

√
5.66

5 = 2
4 +2

√
5.66

4 = 1
5 +2

√
5.66

5 = 1
3 +2

√
5.66

3

= 2.93 = 2.88 2.33 3.08
Source: Author
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After selecting a solution within the branch of S3, let’s assume that an invalid or bad

mapping was found. Accordingly, the values of n and g have to be updated and the new value of

UCT must be calculated (UCT (S3) = 2.63). Then, in the next cycle, the algorithm will choose a

solution containing S1, since UCT (S1) = 2.93 will be the highest value.

This process is repeated until the budget is reached. The last step of the method

consists in selecting the best result found among all the processed solutions, and checking for its

automorphism. For instance, lets suppose the best solution processed by MCTS is the mapping

(T1/S1, T2/S2, T3/S3) which has M = 6. The method then checks for all of its permutations,

including the mapping (T1/S3, T2/S2, T3/S1), that delivers the best automorphic solution (M= 2),

thus being returned as the ultimate solution.

5.3 Parallel Weighted Ullmann

Section 3.4.1 presented the algorithm proposed by Ullmann to tackle the GMP. The

approach combines a pruning analysis with a depth first tree search to eliminate inadequate

solutions from the search space. The key feature in the refinement proposed by Ullmann is the

connectivity information linked to each vertex of the graph, called degree. In summary, the

method compares the degree (number of edges eT ∈ ET ) of a vertex vT ∈ VT with the degree

(number of edges eS ∈ ES) of a vertex vS ∈VS to exclude all possible solutions that map vT → vS

if the degree of vT is bigger than the degree of vS. As a result, the effectiveness of the refinement

relies on the difference of connectivity between vertices, therefore no refinement occurs and the

algorithm explores all possible solutions when submitted to complete graphs.

Despite being widely referred and used in many applications, Ullmann’s algorithm

is not suited to tackle the challenge addressed in this work due to two key characteristics. First,

Ullmann’s algorithm was designed to work with undirected unweighted graphs, and second, the

search space built using the information gathered from Internet APIs is usually a complete graph,

as mentioned in Section 4.2. In this case, an adaptation of the original Ullmann’s algorithm called

Parallel Weighted Ullmann (PWU) was conceived. It processes weighted graphs to implement

the refinement process.

The proposed algorithm alters the refinement of the search space to make the degree

of each vertex include a restriction based on the difference between the weights of vT and vS.

Hence, to define the degree of a vertex vS it is necessary to sum the number of its edges eS

and deduct eventual edges that have weight wS too distinct from the weights wT of vT . This
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approach can be implemented by linking a threshold τ ∈R+ to each edge to define an acceptable

percentage of similarity defined by the relation:

| wT −wS |≤ τ ∗wT (5.9)

Accordingly, it is possible to adjust the value of τ to prune the search space. For

example, if τ > 0, the degree of a vertex vS with respect to a vertex vT is calculated by the

number of edges eS that have their weight satisfying Equation 5.9. Conversely, if τ = 0, the

vertex vS must have edges whose weights are equal to the weights of edges in vT , otherwise the

mapping wS→ wT will be pruned from the search tree.

To better illustrate this process, consider the degree calculation between vertices

T1 (Figure 25) and S1 (Figure 26). Notice that the mapping S1 → T1 is viable according to

Ullmann’s original algorithm if the direction and weights are ignored, as the degree of S1 (two

vertices linked to it) is greater than the grade of T1 (only one connection). However, to apply the

proposed refinement process with τ = 1.0, it is necessary to compare the weight of each edge in

T1 (there is only one edge going out with weight wT = 3) with the edges of S1 that have the same

orientation (there are two edges going out with weights w1
S = 5 and w2

S = 7). Next, the result of

Equation 5.9 when comparing wT to w1
S is shown:

| wT −wS |≤ τ ∗wT

=| 3−5 |≤ 1.0∗3

=| −2 |≤ 3

= 2≤ 3

= True.

However, the comparison between wT and w2
S leads to a distinct result:

| wT −wS |≤ τ ∗wT

=| 3−7 |≤ 1.0∗3

=| −4 |≤ 3

= 4≤ 3

= False.

In this case, the grade assigned to S1 would be “1” because only w1
S satisfied the threshold test.

Besides, rising the value of τ can increase the grade of S1, while any reduction may minimize its

grade.
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In practice, high values of τ lead to fewer optimizations in the search, while lower

values will increase the pruning of the search tree. Consequently, there are two contrasting ways

to use τ to filter the solutions, either by starting with a low τ (that can lead to an empty search

tree) and gradually increase its value in search for some good solution, or by having a high initial

value for τ (that generates a massive amount of data to process) and reduce its value continuously

until there is a feasible number of solutions to explore. The proposed algorithm uses the latter

approach, since the goal is to find the best solution possible by narrowing the search space only

when necessary. Thus, the pruning occurs based on the number of solutions to be processed, that

must be lower than a specified limiting factor M to allow for a parallel procedure to select the

best solution from the remaining data.

A recurring problem with this implementation is that reductions in the value of τ can

prune the search tree so as to have no valid solutions left. To solve this problem, the proposed

algorithm stores a matrix containing the last value of τ for each edge, and a matrix to carry

information about invalid solutions linked to each edge. Therefore, the method performs a

systematic procedure to decrease the value of τ by a factor δ at each step, while monitoring the

eradication of solutions. Thus, it is possible to undo any changes made and also flag the edges

that no longer can have their τ reduced.

In a nutshell, the PWU can be divided into three main steps. First, it is necessary

to create and initialize all the data structures that are needed during execution, including a root

matrix M (size |VT |× |VS|) that encodes the search tree (Figure 14), a matrix T τ (size |VT |× |VT |)

to store the threshold of each edge, and a matrix Fτ (size |VT |× |VT |) to flag the edges that can

have their corresponding τ reduced.

In the second step, the algorithm enters the pruning phase, where elements of the

matrix T τ have their value decreased gradually to discard unfitting solutions. This step begins by

reducing τ for all elements until there are valid solutions, next vertices are selected to be pruned,

which consists in reducing τ for specific lines of T τ , and finally a more accurate refinement is

applied to each element of T τ . By first pruning the entire matrix T τ and then some lines, the

algorithm trims large branches of the search tree before focusing on more careful cases that can

be addressed individually.

The third and final step is responsible for selecting the best among the remaining

solutions filtered earlier. It uses a parallel approach to compute the minimum difference in game

balancing as presented in Section 5.1. Given that in some cases the search tree can give rise to
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a massive number of solutions, the parallel algorithm relies on the previous step to receive a

maximum volume of solutions to process, that is defined by the constant M . As a result, the

second step prunes the search tree repeatedly until the number of mappings is less than M .

In terms of complexity, this algorithm depends mostly on the pruning phase, that

reduces the value of elements in matrix T τ and checks for valid solutions. This process has

complexity O(|VS|), as it is necessary to process each valid candidate. Furthermore, if the

threshold defined by M is satisfied, the algorithm must process each of these solutions, thus

presenting complexity O(M ). Consequently, the complexity of the PWU algorithm can be

defined as O(N|VS|+M ), where N is the number of iterations the algorithm performs when

pruning the search tree.

Algorithm 5 provides a high level description of this process in pseudocode, and the

next section exemplifies this approach using two simple graphs.

5.3.1 Example

Consider the game models shown GT and GS used in Section 5.2.1. Moreover, let’s

define τ = 2.0, δ = 0.5 and M = 5 as initial parameters to the algorithm. In this case, the

method defines M, T τ and Fτ as follows:

M =

∣∣∣∣∣∣∣∣∣
1 1 1 1

1 1 1 1

1 1 1 1

∣∣∣∣∣∣∣∣∣ ,T
τ =

∣∣∣∣∣∣∣∣∣
2.0 2.0 2.0

2.0 2.0 2.0

2.0 2.0 2.0

∣∣∣∣∣∣∣∣∣ ,F
τ =

∣∣∣∣∣∣∣∣∣
True True True

True True True

True True True

∣∣∣∣∣∣∣∣∣
The initial configuration of M includes all possible solutions, so each vertex vT ∈VT

can be mapped to any vertex vS ∈ VS, totaling |VS|P|VT | =
|VS|!

(|VS−VT |)! (24 solutions). Since the

number of solutions is bigger than M , the Equation 5.9 is used to validate the mappings. To

illustrate the process, one should focus on the steps that associate vertex T1 to vertex S1 as

detailed below (Table 4). In this case, T1’s only edge eT1→T2 must have its weight matching the

weight of at least one candidate edge in S1 (edges eS1→S2 and eS1→S4).

Since both edges eS1→S2 and eS1→S4 can be mapped to eT1→T2 when using τ = 2.0,

there is no change to the corresponding element of the root matrix M. Consequently, the number

of possible solutions remains the same, and the algorithm must decrease the corresponding

threshold in T τ (τT1→S1) to prune the search tree. Since δ = 0.5, thresholds are halved and the
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Algorithm 5: Algorithm describing the Parallel Weighted Ullmann.
Input: Matrix AT , Matrix AS, Initial τ , Factor δ , Max number of solutions to process M

Output: A matrix PR that encodes the best solution found

begin

Create the root matrix M to encode the search tree;

Create a matrix T τ with the dimensions of AT ;

Initialize the elements of T τ with the value τ;

Create a matrix Fτ with the dimensions of AT ;

Initialize the elements of Fτ with the value True;

while M < solutions in M do

for wi j ∈ AT do

if Fτ
i j is True then

Reduce the value of T τ
i j by the factor δ ;

if Has no valid solutions with T τ then

Restore the last value of T τ
i j ;

Fτ
i j = False;

else

Update solutions in M;

end

end

end

end

PR=Select the best solution in M;

end

Table 4 – Table presenting the checking of Equation 5.9 between T1 and S1 when τ = 2.0.
Edge eS1→S2 Edge eS1→S4

| wT1→T2 −wS1→S2 |≤ τ ∗wT1→T2 | wT1→T2 −wS1→S4 |≤ τ ∗wT1→T2
=| 3−5 |≤ 2.0∗3 =| 3−7 |≤ 2.0∗3

=| −2 |≤ 6 =| −4 |≤ 6
= 2≤ 6 = 4≤ 6
= True = True

Source: Author

algorithm applies reductions to the entire matrix T τ as follows:

T τ =

∣∣∣∣∣∣∣∣∣
1.0 1.0 1.0

1.0 1.0 1.0

1.0 1.0 1.0

∣∣∣∣∣∣∣∣∣
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Again, the math behind the mapping between T1 and S1 with τT1→S1 = 1.0 is presen-

ted, as shown in Table 5.

Table 5 – Table presenting the checking of Equation 5.9 between T1 and S1 when τT1→S1 = 1.0.
Edge eS1→S2 Edge eS1→S4

| wT1→T2 −wS1→S2 |≤ τT1→S1 ∗wT1→T2 | wT1→T2 −wS1→S4 |≤ τT1→S1 ∗wT1→T2
=| 3−5 |≤ 1.0∗3 =| 3−7 |≤ 1.0∗3

=| −2 |≤ 3 =| −4 |≤ 3
= 2≤ 3 = 4≤ 3
= True = False

Source: Author

Notice that the mapping between edges eT1→T2 and eS1→S4 is no longer valid for

τT1→S1 = 1.0, therefore consider that T1 could only be mapped to S1, then the vertex T2 could

never be mapped to S4. To represent this instance, the root matrix must be:

M =

∣∣∣∣∣∣∣∣∣
1 0 0 0

0 1 1 0

1 1 1 1

∣∣∣∣∣∣∣∣∣
This configuration of M indicates that T1 is mapped to S1 (a one in the first line and

column of M), meanwhile, the second line specifies that T2 can be mapped to S2 or S3. Naturally,

further reductions in τT1→S1 can lead to more prunes, and even invalid solutions.

For instance, if the method sets τT1→S1 = 0.5, the mapping between T1 and S1 is

validated according to the operations shown in Table 6. In this case, if S1 is the last remaining

vertex that T1 could be assigned to, the matrix M would have zeros in all elements of its first line,

thus violating the bijective mapping defined by Equation 5.1. Next, to avoid this situation, the

algorithm undoes the last reduction in τT1→S1 and alters Fτ to indicate that τT1→S1 has reached

its minimum value. This process is depicted by the matrices below:

Before reducing the value of τT1→S1:

M =

∣∣∣∣∣∣∣∣∣
1 0 0 0

0 1 1 0

1 1 1 1

∣∣∣∣∣∣∣∣∣ ,T
τ =

∣∣∣∣∣∣∣∣∣
1.0 1.0 1.0

1.0 1.0 1.0

1.0 1.0 1.0

∣∣∣∣∣∣∣∣∣ ,F
τ =

∣∣∣∣∣∣∣∣∣
True True True

True True True

True True True

∣∣∣∣∣∣∣∣∣
During reduction matrix M becomes invalid:

M =

∣∣∣∣∣∣∣∣∣
0 0 0 0

0 1 1 0

1 1 1 1

∣∣∣∣∣∣∣∣∣ ,T
τ =

∣∣∣∣∣∣∣∣∣
0.5 1.0 1.0

1.0 1.0 1.0

1.0 1.0 1.0

∣∣∣∣∣∣∣∣∣ ,F
τ =

∣∣∣∣∣∣∣∣∣
True True True

True True True

True True True

∣∣∣∣∣∣∣∣∣
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After undoing the reduction and signaling in Fτ that τT1→S1 must not be reduced:

M =

∣∣∣∣∣∣∣∣∣
1 0 0 0

0 1 1 0

1 1 1 1

∣∣∣∣∣∣∣∣∣ ,T
τ =

∣∣∣∣∣∣∣∣∣
1.0 1.0 1.0

1.0 1.0 1.0

1.0 1.0 1.0

∣∣∣∣∣∣∣∣∣ ,F
τ =

∣∣∣∣∣∣∣∣∣
False True True

True True True

True True True

∣∣∣∣∣∣∣∣∣
Table 6 – Table presenting the checking of Equation 5.9 between T1 and S1 when τ = 0.5.

Edge eS1→S2 Edge eS1→S4

| wT1→T2 −wS1→S2 |≤ τT1→S1 ∗wT1→T2 | wT1→T2 −wS1→S4 |≤ τT1→S1 ∗wT1→T2
=| 3−5 |≤ 0.5∗3 =| 3−7 |≤ 0.5∗3

=| −2 |≤ 1.5 =| −4 |≤ 1.5
= 2≤ 1.5 = 4≤ 1.5
= False = False

Source: Author

The reduction in the elements of T τ is repeated until the number of solutions is less

than M or all elements of Fτ are set to False. In the latter case, the PWU fails to execute,

because if all elements of Fτ are False it indicates additional reductions in T τ leads to invalid

configurations of M. Besides, the amount of data to process is still too great for a deterministic

approach to handle. This situation can occur depending on the size of the game model and the

search space. To address this situation, the next section details a non-deterministic approach that

is capable of managing massive search spaces.

5.4 Genetic Algorithm

This work proposes the use of PCG to transpose maps of LBGs, regardless of their

size and features. Since the subgraph isomorphism problem grows exponentially, in some cases

a non-deterministic method is required to address the challenge.

This section presents a non-deterministic algorithm implemented to tackle instances

of the graph isomorphism problem that are unfeasible to be processed by the previous algorithms.

The proposed approach is based on (LI et al., 2016), that explores the subgraph isomorphism

problem using three evolutionary methods: Simulated Annealing, (1+1) evolutionary algorithm,

and Genetic Algorithm (GA). Li et al. (2016) concluded that the GA delivered better results

than the other algorithms in most cases. Therefore, in this work, a GA was adapted to process

weighted graphs and use M as objective function.

There are numerous concepts and variations regarding the implementation of GAs,

and the key definitions necessary to understand the proposed method are provided here. First,
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GAs are based on processes observed in nature, such as natural selection, mutation, crossover,

etc. The goal is to use some criteria to select the best individual (also known as genotype)

within a population of chromosomes. In this case, given two graphs GT = (VT ,ET ,WT ) and

GS = (VS,ES,WS), the mapping between a pair of vertices (vT/vS) of the graphs is called gene,

and a complete bijective mapping (F : VT →VS) is referred to as chromosome. Accordingly, all

the possible combinations of solutions make up the entire chromosome population.

The algorithm starts by randomly selecting an initial population to be evolved during

execution (often a percentage ψ of the total population). Similar to MCTS, the GA has its

execution restricted by a certain budget, which in this work is the number of generations η

to evolve the initial population. In every generation, the population undergoes phases akin to

biological evolutionary processes. Usually, developing a GA consists in adapting the problem

one wants to solve to these concepts, and implementing a set of computational steps that were

proposed to mimic processes that occur spontaneously as part of natural selection.

The purpose is to create a better generation of chromosomes (solutions) that are

assessed according to a specific criterion called fitness function. As discussed in Section 5.1, the

balanced transposition of maps of LBGs was formulated as an optimization problem whose goal

is to minimize T, hence the developed GA uses the same optimization as fitness function.

In general, the sequence of steps implemented to spawn a new generation of chro-

mosomes is Selection, Crossover, and Mutation. Besides, the literature contains information

about variations and improvements regarding each of these steps, depending on the purpose of

the algorithm and the problem to be solved.

In this work, the GA included an additional feature called Elitism, that consists in

maintaining a percentage ε of the best fit chromosomes in the next generation, as illustrated in

Figure 33. This step ensures future generations will contain at least the best solutions from past

executions, because both Crossover and Mutation are not guaranteed to always produce better

results.

Figure 33 – Overview of the steps implemented by the Genetic Algorithm.

Source: Author
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Selection is a step responsible to appoint the chromosomes that will exchange genes

later in the Crossover phase. It can be performed in many ways, such as reward-based, truncation,

fitness proportionate, tournament, among others. This work uses a deterministic tournament

selection for being a fast method that avoids minimum locals, since it does not focus on keeping

particular traits (genes) nor it is rewarded by the quality of the offspring. Tournament selection

starts by randomly selecting chromosomes from the population, and then assessing their fitness to

decide the winner. In this case, chromosomes that win their respective tournaments are matched

to undergo crossover and generate a new solution (also known as offspring). Usually, the amount

of chromosomes selected to participate in tournaments is defined by a percentage ρ .

The process called Crossover works analogously to the homonym activity in the

nucleus of cells. Once two chromosomes are selected, they can exchange some of their genes.

There are many types of crossover techniques to be used in GAs, such as single-point, two-point,

k-point, uniform crossover, partial-mapped crossover, order one crossover, alternating-position

crossover, among others. However, the single-point, two-point and k-point crossover select one

or more regions of the chromosome and trade entire portions of their genes, thus they are prone

to generate invalid solutions. For instance, there cannot be the same vertex of one graph mapped

to two distinct vertices of the other, given that the subgraph isomorphism requires the creation

of a bijective mapping (F : VT →VS). Crossover operators such as partial-mapped, order one,

and alternating-position crossover always generate valid solutions for permutations, but they

require additional checking to avoid violating the bijective mapping of the graph isomorphism.

In practice, using the uniform crossover has shown a better compromise between the quality of

solutions and performance, since it has faster execution and operates by selecting unique genes

that can be quickly checked if are already present in the chromosome counterpart before being

exchanged. Figure 34 illustrates this process showing an invalid offspring that has two distinct

genes with the same content, while the other is correct. In this case, the permutation between the

last genes (“A” and “D”) is prevented to not generate unsuitable solutions.

The last step of a GA is Mutation, which can be understood as a random change in

the genes of a chromosome. Its main purpose is to introduce diversity in the population, thus

ensuring the algorithm will explore otherwise unexpected solutions. To implement this step, it is

necessary to define the probability µ of a chromosome to suffer a mutation. In general, the higher

µ is, the GA becomes more exploratory. So if µ = 1.0 every chromosome in the population will

experience mutation, thus making the GA to behave like a random search.
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Figure 34 – Example of uniform crossover where the output
is composed of a valid and an invalid offspring.

Source: Author

Furthermore, there are distinct types of mutation, such as Random Resetting, Scram-

ble, Swap, Inversion, etc. The GA implemented in this work makes use of the swap mutation,

as it selects genes from the chromosome itself to switch positions (Figure 35), thus always

generating valid solutions.

Figure 35 – Figure depicting the swap mutation implemen-
ted in this work.

Source: Author

All the aforementioned steps are executed repeatedly for a certain number of ge-

nerations O(η). Thus, the resulting complexity is O(η(ψ logψ +ρψ +µψ)), as the algorithm

repeats the sorting and selection of chromosomes O(ψ logψ), the amount of elements to undergo

tournament O(ρψ), and the mutation rate O(µψ). Consequently, unlike the PWU and the

MCTS, the performance of the GA is invariant to the size of graphs GT and GS.

Algorithm 6 describes key aspects of the GA implemented in this work. Next, an

example showcases how the algorithm operates.

5.4.1 Example

Similarly to sections 5.3.1 and 5.2.1, the game models GT (Figure 25) and GS

(Figure 26) are used to showcase how the GA works. For the sake of simplicity, let’s define the

following parameters to the algorithm: Population size(ψ = 8), Number of generations(η = 1),

Elitism factor(ε = 0.25), Tournament size(ρ = 0.5), and Mutation probability(µ = 0.5).

First, the algorithm must randomly create an initial population with size 8 (ψ).

Figure 36 presents some chromosomes depicting the mapping between vertices of GS and GT to
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Algorithm 6: Algorithm describing the Genetic Algorithm.
Input: Matrix AT , Matrix AS, Population size ψ , Number of Generations η , Elitism factor

ε , Tournament size ρ , Mutation probability µ

Output: A matrix PR that encodes the best solution found

begin

Randomly generate an initial population from AS with size ψ;

while Number of generations < η do

Select the best (ε ∗ψ) chromosomes from the population to form an elite;

Select (ρ ∗ψ) chromosomes to undergo tournament selection;

Perform crossover between winners of the tournament;

Apply mutation to the resulting population according to the probability µ;

Combine the elite and the offspring to form a new population;

Select the best ψ elements from this new population that optimizes M;

end

Build matrix PR from the best solution in the resulting population;

end

be used in this example. Notice that this initial population can also contain invalid solutions (e.g.,

chromosome “b” originates an unfeasible solution because GS does not have edges connecting

vertices S2 and S4).

Figure 36 – Chromosomes illustrating an initial population
with size ψ = 8.

Source: Author

Assuming the initial population is created, the next phase builds an elite. This step

requires sorting each chromosome in the population by their M and then selecting the first ones.

The current example results in the selection of two chromosomes (ε ∗ψ = 0.25∗8 = 2) to be

part of the elite. The table below shows the values of M for each chromosome in Figure 36.

c d e f h a b g

M= 4 M= 5 M= 5 M= 6 M= 6 M= 9 Invalid Invalid
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In this case, the chromosomes “c” and “d” enter the elite population, and the algo-

rithm moves to the selection phase. Now, the method randomly chooses four (ρ ∗ψ = 0.5∗8 = 4)

chromosomes to undergo tournament selection. Figure 37 depicts this process, assuming that the

pairs of chromosomes (a,e) and (f,g) were chosen. In this case, chromosomes “e” and “f” were

the winners because they minimize M.

Figure 37 – Depiction of a tournament selection.

Source: Author

Next, the chromosomes selected by tournament are matched to undergo crossover,

so the algorithm randomly chooses genes to be exchanged between them. The amount of genes

to be exchanged varies stochastically. Figure 38 shows a crossover that includes the second gene

of the chromosomes.

Figure 38 – Uniform crossover exchanges specific ge-
nes between chromosomes.

Source: Author

The last step applies mutation to the remaining population. Thus the method chooses

a chromosomes according to a specific probability. In this example, half of the population is

likely to be subjected to this process (µ = 0.5). Once a chromosome is chosen, the algorithm

randomly selects a pair of its genes to be swapped, as illustrated in Figure 39.

Figure 39 – Depiction of mutation being executed in
one of the chromosomes.

Source: Author
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Finally, the method combines all the populations, including the elite, and the fittest

ψ = 8 chromosomes are selected to compose the new generation. In this case, the table below

shows the resulting calculus of M for the resulting population, hence the method must select

chromosomes “i”, “c”, “d”, “e”, “f”, “h”, “a”, and “j” to repeat the process. However, the

example defines the number of generations as one (η = 1). As a result, the algorithm selects the

best solution (chromosome “i”) and returns it as the result.

i c d e f h a j b g k

M= 2 M= 4 M= 5 M= 5 M= 6 M= 6 M= 9 M= 9 Invalid Invalid Invalid

5.5 Conclusion

In a nutshell, this chapter showed how the challenge of transposing maps of LBGs

can be modeled and addressed as a WGMP. First, a formulation of the problem was presented in

Section 5.1. It provides details on how to handle the many possible mappings between graphs

and defines the challenge as an optimization problem that can be solved by minimizing M.

Next, three methods to tackle the WGMP were presented. An algorithm based

on the MCTS (Section 5.2) method that has been previously used in (MAIA et al., 2017)

and (FERREIRA et al., 2019), a novel deterministic approach that builds on the well known

Ullmann’s algorithm, called Parallel Weighted Ullmann (Section 5.3), and a Genetic Algorithm

(Section 5.4). The key concepts behind each algorithm were presented, and their implementation

was detailed along with simple examples showcasing the steps performed by each method during

execution.
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6 EVALUATION

This chapter describes an evaluation conducted to assess the algorithms detailed in

the previous chapter. The two main aspects to be measured are the quality of results, that can be

gauged using M, and the time each algorithm takes to compute the solutions.

It is important to highlight that, although these algorithms can potentially solve the

WGMP in other applications, they were conceived to address the map transposition challenge,

hence their main focus is to find good solutions for graphs with limited size as fast as possible.

As a result, they may not operate well with large and complex graphs that are common in other

fields, such as data mining, biological interaction, etc.

The evaluation is divided into two main groups (A and B). The first group (A)

comprises game models with smaller sizes, depicted by graphs containing 5 and 10 vertices.

Games with up to 10 POIs can be successfully processed by deterministic methods, so all

three algorithms (PWU, MCTS, and GA) and a Parallel Brute-Force (PBF) approach were

benchmarked with these graphs. The PBF method outputs the optimum solution, thus providing

a reference to the results generated by the other algorithms, and can also be used to showcase

the efficiency of the pruning proposed by the PWU method. However, likewise the dynamic

programming approach presented in (MACVEAN et al., 2011), the PBF approach is not eligible

to transpose game maps on demand due to their long processing time.

The second group (B) is composed of game models whose corresponding graphs

contains 20 and 30 vertices, so the amount of possible solutions to be searched increases

drastically. Consequently, they must be handled by non-deterministic methods (MCTS and GA).

The chapter is divided into six sections. Section 6.1 details the material and methods

used in this evaluation, then sections 6.2 and 6.3 presents the quality and time generated from

trials, respectively. Section 6.4 discusses the results, and Section 6.5 mentions threats to this

evaluation. Finally, Section 6.6 closes the chapter.

6.1 Materials and Methods

The algorithms were mostly implemented using the Python programming language,

except for parts of the PWU and the PBF that relied on parallelism and were coded using the

Open Computing Language (OpenCL)1. In this case, the main program is still executed in
1 https://www.khronos.org/opencl/
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python, and only some tasks run in parallel. The main advantage of this approach is that OpenCL

automatically manages threads in processors and Graphics Processing Units (GPUs), thus acting

as a layer between the main program and the hardware in charge of running the parallel code.

The kernels used in this implementation are available in the Appendix B.

The tests were conducted on a c4.2xlarge machine with an 8 core Intel Xeon E5-

2666 CPU and 15GB of memory, hosted on Amazon Cloud. This machine has great processing

resources to be explored by OpenCL to execute the PWU.

Given that the proposed approach relies on webservices to provide information about

the locations the maps will be transposed to, and that these APIs generally provide data in the

shape of an adjacency matrix of a complete graph, the evaluation generated complete graphs

randomly to emulate real inputs to the algorithms. The weights of graphs were set to be in the

range [0−100]. In addition, to symbolize the original game map (GT ), graphs with size 5, 10, 20,

and 30 (|VT |) were used, and graphs with sizes 20, 30, 40, and 50 (|VS|) represented the search

space (GS), according to the formulation presented in Section 5.1.

As mentioned earlier, tests were divided into two groups (A and B) due to the

great difference in complexity regarding the number of solutions to explore. Consequently, the

parameters used to configure the algorithms changed for each group. Table 7 shows the settings

used by the algorithms during trials with group A, and Table 8 presents the parameters defined

with the group B.

Table 7 – Parameters used to configure the algorithms for tests with the group A.
MCTS κ = 0.05,B = 5×103

PWU τ = 1.0, δ = 0.5, M = 2.5×106

GA η = 10, ε = 0.1, ρ = 10, µ = 0.5, ψ = 7.5×103

Source: Author

Table 8 – Parameters used to configure the algorithms for tests with the group B.
MCTS κ = 0.05,B = 1×104

GA η = 10, ε = 0.1, ρ = 10, µ = 0.5, ψ = 2.5×103

Source: Author

The evaluation consisted in applying the transposition algorithms to 30 randomly

generated pairs of graphs (GT ,GS). The final result was given by the average M and the

turnaround time gauged for each pair. Next, the results were grouped by the size of GT to analyze

the performance of each algorithm when the same game model is transposed to search spaces

with distinct sizes.
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6.2 Quality Results

As previously mentioned, the quality of the transposition can be measured by M.

First, group A was analyzed, detailing the experiments for graphs GT with size 5 and 10. In

the former case, the results showed that GA and PWU operate similarly, especially for smaller

graphs GS. Both methods generate outputs close to the optimum solution (PBF), while MCTS

produces results with higher M. Table 9 details the resulting values of M and Figure 40 depicts

the traits aforementioned.

Table 9 – Table showing the average of M for graphs GT with size 5.
|VT |= 5 PWU MCTS GA PBF
|VS|= 20 24.54 31.90 25.39 22.56
|VS|= 30 24,46 30.76 22.95 19.01
|VS|= 40 29.16 34.46 25.16 19,74
|VS|= 50 27.45 30.40 23,67 17,10

Source: Author

Figure 40 – Chart depicting the average M for diffe-
rent sizes of GS and |VT |= 5.

Source: Author

For graphs GT with size 10, the PBF was no longer used, because the time to process

is impracticable, as shown in the next section. Thus, Table 10 presents the average M for PWU,

MCTS, and GA. In this case, the algorithms delivered very similar results, as MCTS and PWU

present virtually equal results, and GA shows minor improvements over the others.

Furthermore, variations in the size of the search space (GS) have not produced great

impacts in reducing M. Figure 41 depicts this trait clearly, and highlights the slightly better

results achieved by the GA.

For group B, graphs depicting game models composed of 20 and 30 POIs were used.

In this case, PWU fails in the majority of cases, either by not pruning the search tree enough to
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Table 10 – Average M for |VT |= 10 and varying |VS|.
|VT |= 10 PWU MCTS GA
|VS|= 20 42.66 42.23 40.94
|VS|= 30 42.65 42.25 40.29
|VS|= 40 42.43 42.45 40.41
|VS|= 50 43.96 43.62 41.32

Source: Author

Figure 41 – Chart depicting the average M for diffe-
rent sizes of GS and |VT |= 10.

Source: Author

make it feasible to search, or by eliminating so many branches that no valid solutions are left. As

expected, this challenge must be tackled by non-deterministic methods. Consequently, MCTS

and GA are suited to this task. However, the last step in the MCTS approach looks for the best

automorphism of a solution (Algorithm 4). This feature was disabled in this trial due to the large

amount of solutions to process.

Table 11 shows the data generated using these methods. MCTS has shown poor

results while GA has managed to output satisfying solutions. It is clear that MCTS did not

converge to more promising solutions. Even after increasing its budget, as shown in Table 8, the

method selects random solutions, thus yielding unsatisfying solutions.

Table 11 – Average M for |VT |= 20 and varying |VS|.
|VT |= 20 MCTS GA
|VS|= 20 10809.4 55.60
|VS|= 30 10935.8 54.33
|VS|= 40 10948.3 54.57
|VS|= 50 10876.8 54.15

Source: Author

Lastly, considering that MCTS cannot output satisfying solutions when |VT | increases,

results were produced applying the GA when |VT | = 30. Table 12 shows both M and time

measured during the tests.
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Table 12 – Average M using GA for |VT |= 30.
|VT |= 30 M
|VS|= 30 58.31
|VS|= 40 58.93
|VS|= 50 57.87

Source: Author

In general, the bigger graphs GT and GS are, the higher is the M of solutions

generated by the methods. However, even though the number of solutions grows exponentially

with size, the GA has proven to be reliable in finding acceptable solutions in a relatively short

time. The next section presents the performance results for both groups A and B.

6.3 Performance Results

Regarding processing time, the group A obviously performs better than the group

B, as the search space is significantly smaller. For graphs GT with size 5, it is clear that PWU

and GA have similar performance, with PWU being faster on average, as shown in Table 13.

Moreover, the processing time of MCTS increases with the size of GS, as the partial tree built to

explore solutions also grows. This trend can be observed in the next trials as well. Meanwhile,

the time required by PBF to compute solutions grows drastically, thus becoming an unfeasible

algorithm to be used on demand, as shown in Figure 42.

Table 13 – Table showing the average turnaround time in seconds for graphs GT with size 5.
|VT |= 5 PWU MCTS GA PBF
|VS|= 20 1.00 0.77 0.88 0.73
|VS|= 30 0.78 1.06 1.07 7.17
|VS|= 40 0.89 1.79 1.07 36.77
|VS|= 50 1.33 2.73 1.10 131.09

Source: Author

For graphs GT with size 10, the time used by each algorithm is quite different. While

GA takes a steady amount of time to find solutions regardless of the search space, both MCTS

and PWU are sensitive to the variations in the size of GS. In general, the bigger the search space

is, the slower both methods are. However, PWU has yielded faster performance in all scenarios,

as shown in Table 14.

It is also clear that the time required by MCTS increases directly with higher |VS|,

thus corroborating to the trend mentioned in the beginning of this section. Figure 43 provides a

good illustration of this trait.

In the case of larger graphs, such as the ones from the group B, only MCTS and GA
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Figure 42 – Average time each algorithm used to pro-
cess GT with size 5, and varying |VS|.

Source: Author

Table 14 – Table showing the average turnaround time in seconds when |VT |= 10.
|VT |= 10 PWU MCTS GA
|VS|= 20 2.24 3.61 5.17
|VS|= 30 2.57 5.10 5.17
|VS|= 40 3.13 6.02 5.17
|VS|= 50 3.56 6.97 5.18

Source: Author

Figure 43 – Average time to process graphs with VT =
10, and varying |VS| (seconds).

Source: Author

are eligible to address the task. However, while the performance of the former increases with the

size of GS, the GA has delivered a steady and reliable performance, as shown in Table 15. As

expected, MCTS requires even more time to compute solutions, so as to become unsuitable to

handle bigger graphs, as depicted in Figure 44.

Finally, Table 16 shows that the performance of the GA is invariant to the size of GS,

thus making it a stable approach to be used in larger search spaces.

In summary, it is clear that all methods have their performance directly linked to the

size of GS. However, while for graphs from the group A, the PWU revealed to be the fastest, the
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Table 15 – Average time in seconds for |VT |= 20.
|VT |= 20 MCTS GA
|VS|= 20 9.91 5.71
|VS|= 30 13.87 5.72
|VS|= 40 17.69 5.70
|VS|= 50 21.55 5.69

Source: Author

Figure 44 – Average time in seconds algorithms used
to process graphs with VT = 20.

Source: Author

Table 16 – Average time in seconds using GA for |VT |= 30.
|VT |= 30 Time(s)
|VS|= 30 13.38
|VS|= 40 13.37
|VS|= 50 13.37

Source: Author

GA is the unique approach capable of handling graphs from the group B regardless of changes

in the size of GS. The next section discusses the results presented in both sections 6.2 and 6.3.

6.4 Discussion

Results shown in the previous sections indicate all methods deliver good performance

for games that have up to 10 POIs. In these cases, the algorithms are able to find solutions close

to the optimal, but spending only a fraction of the time a parallel brute-force method takes.

In general, PWU is faster, while GA produces slightly better solutions. Although

MCTS lags behind both methods, it still shows a good compromise between time and quality.

Thus, all algorithms can be used to transpose maps of LBGs on demand.

Nevertheless, for larger games the amount of solutions quickly explodes, hence only

non-deterministic approaches are suited to cope with such a massive search space. Thus, the GA

and MCTS were tested, but only the GA has proven to find viable solutions. In fact, the MCTS
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is more effective in the long run as the algorithm must recognize the search space in order to

focus on better solutions. Given that the number of branches in the search tree is huge, there

must have a proportionally big sum of visitations for the algorithm to build a partial tree capable

of indicating branches with the best solutions, thus rendering MCTS unsuitable for the task.

A common trend in all tests is that the size of GS does not impact performance as

heavily as variations in the size of GT . This is inherent to the formula that defines the size of the

search space (Equation 5.7). In the case of GA, it is clear that the size of GT has been the main

variable to impact performance since the time to compute solutions when GS increases hardly

changes. This situation happens because the method only holds data about a fixed amount of

solutions (population), while both MCTS and PWU have to handle dynamic search trees that

vary in size according to the graphs provided as input.

The results shown during tests are promising, especially for LBGs composed of up

to 10 POIs. These games can be designed by small or independent studios using authoring tools,

as shown in (SILVA et al., 2017) and (FERREIRA et al., 2019).

6.5 Threats to Validity

A key threat to this evaluation regards the graphs used in the tests. During tests

750 graphs were randomly created to mimic the data provided by external APIs, however, it

is common for graphs provided by these webservices to have some patterns. For instance, the

distance to walk between points A and B may be the same as walking between B and A, thus

incurring in two edges with the same length in strategic positions of the graph. These ordinary

traits are inherent to each region, thus being hard to predict or emulate. Besides, it is not clear

whether some areas of the world can give rise to maps containing unexpected patterns and how

the algorithm will behave in such cases. Consequently, an evaluation with users and real data

was needed, and is presented in Chapter 7.

Another important aspect to highlight regards the use of parallelism and OpenCL.

Since the hardware plays a key role in the execution of parallel methods, it is likely that the

resulting turnaround time of PWU and PBF will vary if a powerful GPU or a processor with less

cores are used to run the same tests.
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6.6 Conclusion

In this chapter tests regarding processing time and quality (M) were presented. The

data were divided into two groups according to the size of graphs used as input. The hardware and

parameters used to run the trials and to configure the algorithms were introduced in Section 6.1.

Section 6.3 details the data collected during the tests, according to the size of the

graphs used. Moreover, the algorithms were compared regarding the time to find solutions

and their quality. Next, Section 6.4 discussed the results and highlighted key aspects of each

algorithm. In the last section, threats to the evaluation were introduced, including the need to

conduct tests with real data, that will be presented in the next chapter.
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7 USER EVALUATION

This chapter presents an evaluation conducted with users to assess the balanced

transposition of maps for LBGs. The main purpose of this evaluation is to check whether the

proposed approach works appropriately in multiple places despite the style and size of the LBG.

To achieve this goal, four LBGs were developed, each containing distinct characteris-

tics regarding mechanics, the number of places to visit (size), strategy, and game flow. Therefore,

it is possible to assess the resiliency of the proposed method to changes in these attributes.

During the test users were asked to analyze the designed LBGs and compare their

original game map to a set of game maps generated by distinct transposition algorithms. Then,

a statistical investigation was conducted to determine whether M (and hence the outcome of

each algorithm) is linked to transpositions deemed successful. Furthermore, both I and σI of the

transposed maps were calculated and compared to the original game.

The chapter is organized as follows: Section 7.1 presents the instruments and

methods, including the games designed to be used in this evaluation, Section 7.2 introduces the

profile of participants, in Section 7.3 the evaluation procedure is detailed, Section 7.4 presents

the outcome of trials and a statistical analysis of the data collected, the results are discussed in

Section 7.5, Section 7.6 mentions threats to this evaluation, and lastly, Section 7.7 concludes the

chapter.

7.1 Materials and Methods

Before detailing the procedure elaborated to evaluate the approach, this section first

introduces the material and methods that were used during the trials. In the initial stage it was

necessary to design a set of LBGs with varying traits to be assessed. In this case, four games

were created, namely Faith Quest, Exploranium, Komandant, and Impetus. Later, sections 7.1.2,

7.1.1, 7.1.3, and 7.1.4 detail each game and their respective traits.

In addition, a website was built to present the research and its purpose1. It contained

the definition of LBGs, mentioned some examples, and discussed the challenges involving game

balancing and the transposition issues. Moreover, an animated video2 was added to illustrate how

the proposed approach addresses the problem. Appendix B contains screenshots of each web

page presented to users. These instructions were provided before collecting any information from
1 http://www.luisfmaia.com/
2 https://player.vimeo.com/video/272241245

http://www.luisfmaia.com/
https://player.vimeo.com/video/272241245
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subjects, so they could be aware of the most important traits investigated in this research. Besides,

the goal behind supplying all these meticulous data about the problem was to qualify every user

to evaluate the algorithms properly, even if they had never played an LBG or marginally knew

the area.

The page also contained a questionnaire dedicated to assess the knowledge of users

about LBGs, to investigate their perception about the transposition problem, and to verify whether

they have noticed the lack of game balancing between instances of LBGs. The questionnaire is

available in the Appendix A.

To conduct the evaluation, the website, along with the transposition algorithms, was

hosted on the Amazon Cloud, where a c4.2xlarge machine using an 8 core Intel Xeon E5-2666

CPU and 15GB of memory was allocated. This hardware was selected due to the need to execute

a parallel approach (Section 5.3) and to handle multiple user requests at once without loosing

performance. Table 7 shows the parameters used to set the algorithms during trials. Besides, the

statistical analysis was conducted using the software StatPlus version 6.7, running on a MacBook

Pro (MacOS 10.13.6).

Next, the games created to compose the user evaluation are presented. To make sure

the transposition works regardless of mechanics or game flow, each game was designed to be

unique in its size, purpose, style, and gameplay. Before the evaluation, subjects were informed

about the goals and mechanics of each game, therefore they could rightfully judge the quality of

the transposed maps.

7.1.1 Faith Quest

In the game Faith Quest, players must follow a specific path that passes across

religious places in the region the game is being played. To finish the game, it is necessary to

complete the pilgrimage, so the algorithm must pick locations that are classified as religious

POIs.

Figure 45 depicts an instance of the game showing a starting point and a red line

connecting the religious places to indicate the route to be followed. In the original instance the

following adjacency matrix was used to define the game:
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Figure 45 – The game Faith Quest shows a route to
follow when visiting religious sites.

Source: Author

AR =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 550 −1 −1 −1

−1 0 600 −1 −1

−1 −1 0 625 −1

−1 −1 −1 −1 550

−1 −1 −1 −1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The game contains 5 (five) places to be visited, and in this particular case, the

algorithm was configured to look for 25 POIs, primarily classified as religious locations, such as

churches, temples, sanctuaries, etc. In the event the area chosen by the user lacks the necessary

amount of religious sites, the algorithm fills the remaining spots with other places, such as

schools, squares, public buildings, among others. This strategy has been successfully used in

(FERREIRA et al., 2019).

7.1.2 Exploranium

This game is set during the second world war and begins by informing that the player

is a member of a secret government agency whose main focus is to hinder the development of

nuclear weapons. In this case, the player’s mission is to move to specific locations as fast as

possible, and sabotage the equipment used in the manufacturing of those weapons.

To accomplish this task, a map containing the location of each site to be visited

is handed to the player. There is no predefined sequence of places to follow, so players must



115

analyze their surroundings before deciding the route that allows them to visit every site in the

shortest time. This type of gameplay allows users to move freely and became popular for being

present in the games Ingress and Pokémon GO.

Figure 46 – Maps for the game Exploranium present
locations to be visited at users’ will.

Source: Author

A key characteristic of this game is the regular distribution between the 7 (seven)

locations that compose the map. These locations were selected from a set of 40 candidate POIs

queried in the area. In its original version, the locations are positioned evenly around a central

POI (as shown in Figure 46), and its adjacency matrix was defined as:

AR =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 500 500 500 500 500 500

500 0 500 850 1000 850 500

500 500 0 500 850 1000 850

500 850 500 0 500 850 1000

500 1000 850 500 0 500 850

500 850 1000 850 500 0 500

500 500 850 1000 850 500 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
7.1.3 Komandant

Komandant is a battle game where two players compete against each other. Each

player controls a realm and their ultimate goal is to defeat the opponent. However, to win the

war, it is necessary to conquer all enemy towers before attacking the castle.
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For being a strategy game that makes use of the physical distribution of POIs, it is

crucial for the game balancing to have the castle protected by their towers (Figure 47). Therefore,

this feature must be preserved by the transposition method.

Figure 47 – In the game Komandant, the castle must
be protected by their towers.

Source: Author

The game is composed of 8 (eight) POIs divided between two kingdoms, where the

castles must be positioned further from each other and their respective towers must be placed in

the front line of the battlefield. The transposition algorithms were configured to pick these POIs

among a list of 50 candidates. Below the adjacency matrix that originates the game is shown.

AR =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 300 300 300 1300 1000 1000 1000

300 0 300 300 1000 700 700 700

300 300 0 300 1000 700 700 700

300 300 300 0 1000 700 700 700

1300 1000 1000 1000 0 300 300 300

1000 700 700 700 300 0 300 300

1000 700 700 700 300 300 0 300

1000 700 700 700 300 300 300 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
7.1.4 Impetus

This game is an adaptation of the famous capture-the-flag genre, designed to be

played in groups that clash for territorial dominance. The main goal of each team is to gain
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territory by capturing the opponent’s flags, while striving to not have their own flags captured

(Figure 48).

Figure 48 – Figure showing the distribution of terri-
tory in the game Impetus

Source: Author

A key feature in this game is the distribution of flags to form the territory of a group,

thus 9 (nine) locations must be selected out of 50 candidate POIs and divided among three

opponents. Consequently, the flags belonging each team must be positioned so as to cover

equivalent territorial areas. Moreover, these territories must be placed apart from each other. As

a result, the following adjacency matrix was used to define the game:

AR =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 400 400 1000 1000 1000 1000 1000 1000

400 0 400 1000 1000 1000 1000 1000 1000

400 400 0 1000 1000 1000 1000 1000 1000

1000 1000 1000 0 400 400 1000 1000 1000

1000 1000 1000 400 0 400 1000 1000 1000

1000 1000 1000 400 400 0 1000 1000 1000

1000 1000 1000 1000 1000 1000 0 400 400

1000 1000 1000 1000 1000 1000 400 0 400

1000 1000 1000 1000 1000 1000 400 400 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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7.2 Sample

Participants were randomly recruited via e-mail from the Federal University of

Ceará and the Federal Institute of Education of Maranhão, and via social networks from LBGs’

communities. In total, 40 subjects participated in the trials. Their average age was 20, ranging

between 17−27, as shown in the histogram depicted in Figure 49.

Figure 49 – Histogram showing the distribution of
ages among participants.

Source: Author

Users also answered a question regarding their previous experience with LBGs

(Question 3 in Appendix A). In this case, 65% of participants claimed to have played LBGs,

either frequently (17.5%) or for a short period (47.5%). Furthermore, 25% stated to have not

played any LBG, but to know how they work, and only 10% of responses informed to be unaware

of LBGs. This information is key to this evaluation, because the more participants know about

these games and how they work, the easier is for them to understand the concepts and features

being evaluated. Figure 50 shows the question and the percentage of each answer.

Other aspects evaluated in the questionnaire relate to the deployment of games in

multiple places and the perception of fairness between games played in distinct regions. Subjects

were asked if, in their opinion, current LBGs can be played everywhere, based on the LBGs

they have played. The majority of users (58%) claimed to partially agree, while another 35%

answered they partially or totally disagree (Figure 51).

Lastly, users answered a question about the benefits players may experience in LBGs

depending on their location. In this case, an overwhelming 97% of answers agree that the

location has some influence to players in current LBGs. Figure 52, shows that only 3% of

participants stated to totally disagree, while no one partially disagreed with this question.
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Figure 50 – Chart presenting answers about previous
experience with LBGs.

Source: Author

Figure 51 – Users answered whether they think cur-
rent LBGs can be played everywhere.

Source: Author

Figure 52 – Most participants claim that location be-
nefits players in current LBGs.

Source: Author
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7.3 Procedure

After answering the questionnaire and receiving instructions about the purpose of the

research, participants assessed transposed maps by comparing them with the original instance.

This required users to evaluate maps of games that were generated by the approach presented in

Chapter 4. In this case, for each game introduced in Section 7.1, a set of transposed maps was

created using the algorithms detailed in Chapter 5, and a map generated from randomly selected

sites was also added for comparison purposes. As a result, each subject assessed 16 maps (4 per

game), that were displayed randomly, thus totaling 640 evaluations.

Subjects were asked to give 5 stars if they judge the transposed map has the same

difficulty level of the original game, 4 stars if they think the difficulty is similar, 3 stars if the

similarity is only satisfactory, 2 stars if it is bad, and 1 star if they consider the differences

between maps to be terrible. Consequently, lower grades mean poor outcomes and higher scores

indicate the transposition algorithm is working properly.

Besides, to provide a more reliable evaluation, the original game and the transposed

maps were placed in regions the subjects are familiar with. Thus, before presenting the games,

users were asked to select two well known locations apart from each other (Figure 53). The

first place was used to create the original game map, and the second location served as input for

the proposed method to generate the transposed game instances. In all cases, the transposition

methods made use of the Google Places API to select candidate POIs in the new region, and

queried Google Distance Matrix API for the distance to walk between these points.

During the evaluation, users could visualize the original map on the left and had the

option to navigate through the transposed maps, randomly displayed on the right (Figure 54).

For each game, a text providing context about the gameplay and a set of instructions about

the evaluation was displayed below the original map. Subjects could freely navigate back and

forward across the transposed maps to edit the grades they have assigned previously. In addition,

the game maps were fully interactable, thus participants could drag, zoom, click and explore

each map freely.

After evaluating all the games, a final page was shown thanking users for joining the

experiment and asking them to report any trouble or to leave suggestions.



121

Figure 53 – Image depicting a user selecting distinct
locations to be used in the evaluation.

Source: Author

Figure 54 – Users compared the original map (left) to the transposed maps (right).

Source: Author

7.4 Results

In this section, the results of the user evaluation are discussed. The data collec-

ted is detailed according to each game, since they vary in size, context, and gameplay. The

analysis includes the final average score assigned to maps transposed by each algorithm, their
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corresponding M with respect to the original game, and a comparison between I and σI of the

original instances and the average values of transposed maps. In the end, a statistical analysis to

determine the correlation between lower M and better game maps is presented.

The first game evaluated was Faith Quest, and subjects were asked to assess, based

on their knowledge about the terrain, whether the paths in both original and transposed maps had

similar length. As a result, the PWU was the best evaluated (average score 3.9±1.26), followed

closely by the GA (3.8±1.26). MCTS received a slightly worse grade (3.4±1.13), while the

random selection had a very poor evaluation (2.2±1.23). Figure 55 depicts these grades in a

chart, along with the error bars indicating the standard deviation.

Figure 55 – Average score for the transposed maps of
the game Faith Quest.

Source: Author

In addition, an analysis of the balancing difference was conducted, and results

showed that the PWU, indeed, delivers better results for this particular challenge. In this case,

lower values of M mean the transposed map delivers similar game balancing to the original

one. The GA and MCTS also delivered good results, though MCTS almost doubled M when

compared to PWU. Conversely, the random selection of locations generated games with poor

similarity, as shown in Figure 56.

An analysis of I and σI for this game also indicates the proposed approach creates

transposed maps with similar internal game balancing (Figure 57). This corroborates to the

goals of the transposition algorithms, that intend to generate maps as similar as possible to the

original game. In this case, the values of I for the transposition algorithms are almost equal

to the original instance, and the values of σI are a little higher in the transposed maps. Thus

indicating that the overall path to follow has the same length in most maps, but the edges that

make up the path have a bigger distance difference. This behavior is expected, mainly due to
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Figure 56 – Comparison between M for different map
transpositions of the game Faith Quest.

Source: Author

the need to select religious locations to form the new game map, hence the method favors the

selection of places by their type even when their location is not ideal.

Figure 57 – Chart depicting I and σI for the original
instance of the game Faith Quest and the
average value of the transposed maps.

Source: Author

Next, participants evaluated the transposed maps for the game Exploranium. Subjects

were asked to judge whether the marked sites were distributed evenly from one another. The maps

contained seven locations each, and the original game was used as reference during comparisons.

In this case, algorithms operated more closely, with the GA scoring slightly better (3.8±1.0)

than PWU (3.6± 1.28) and MCTS (3.4± 1.31). The random approach again achieved lower

grades (2.4±1.21) as depicted in Figure 58.

Similar to the results obtained by Faith Quest, Figure 59 reinforces the existing

correlation between smaller M and better evaluated maps. However, in the game Exploranium it

is clear that the proposed algorithms delivered more equivalent results.

In the case of I and σI, all the transposition algorithms delivered solutions with
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Figure 58 – Average score for the transposed maps of
the game Exploranium.

Source: Author

Figure 59 – Comparison between M for different map
transpositions of the game Exploranium.

Source: Author

internal game balancing very similar to the original game, as shown in Figure 60. Conversely,

the random approach produced game maps with a considerable difference as its σI is nearly the

double of the original game, thus contributing to its lower user rating.

Figure 60 – Chart depicting I and σI for the original
instance of the game Exploranium and the
average value of the transposed maps.

Source: Author
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The third game evaluated was Komandant, and due to its inherent dependency on the

positioning of resources, the transposition algorithms must preserve the disposition of castles

and towers as best as possible. Consequently, subjects were asked to assess if towers and castles

were positioned similarly to a reference game instance.

The data collected indicates the GA worked significantly better than other methods,

thus presenting minor M and higher score (3.8± 1.06). In this scenario, MCTS (3.1± 1.01)

surpassed PWU (2.81.24±), while the random selection continued to deliver the worst results

(1.9±0.92). Figure 61 illustrates this trend.

Figure 61 – Average score for the transposed maps of
the game Komandant.

Source: Author

Besides, the comparison between the M corroborates to the scores achieved by

each algorithm, as the GA presented the lower rate, followed by MCTS, PWU and the random

approach (Figure 62).

Figure 62 – Comparison between M for different map
transpositions of the game Komnadant.

Source: Author

Likewise the previous game, the transposition algorithms generated maps with I and

σI are very similar to the original game, while the random approach produced maps with big
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differences in internal game balancing. Figure 63 illustrates this trend.

Figure 63 – Chart depicting I and σI for the original
instance of the game Komandant and the
average value of the transposed maps.

Source: Author

The last game evaluated was Impetus, which is an LBG adaptation of capture-the-flag

games that supports multiple players competing in groups. Therefore, participants were asked

to evaluate if the flags were distributed properly, so as to create territories with similar size and

apart from each other.

Results showed that the three proposed algorithms delivered a similar, albeit ordinary

performance, where GA received better grades (3.3±1.16), followed by PWU (3.2±1.25) and

MCTS (3.1±1.33). Once more, the random selection had the lowest rates in the comparison

(2.1±1.06), as shown in Figure 64.

Figure 64 – Average score for the transposed maps of
the game Impetus.

Source: Author

Again, the graph depicting the comparison between M for the methods corresponds

to the rates provided by users, as depicted in Figure 65.
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Figure 65 – Comparison between M for different map
transpositions of the game Impetus.

Source: Author

Regarding internal game balancing, the transposition algorithms have produced

games with slightly smaller I but with very similar σI. This indicates that the distances to move

between POIs have similar variation, however, in this game, the overall distance to move between

all flags is shorter than in the original map.

Figure 66 – Chart depicting I and σI for the origi-
nal instance of the game Impetus and the
average value of the transposed maps.

Source: Author

As highlighted by the results previously shown, the transposition algorithms were

better evaluated than the random selection of points in all cases. However, to make sure there

is a statistically significant difference between the methods, lets consider the following null

hypothesis:

H0: The method has no significant effect on the score of transposed maps.

Accordingly, since the evaluation consisted in four distinct methods (MCTS,PWU,

GA, and random selection), a One-way ANOVA was run with the rates provided by users for
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each game. This analysis simultaneously compares the rating of all the methods to indicate

whether there is a significant difference between the transposition algorithms. Table 17 shows

that hypothesis H0 must be rejected in all cases, as F > Fcritical(2.66) and p− value < 0.05 for

each game tested.

Table 17 – Table presenting the results of One-way ANOVA comparing MCTS, PWU, GA, with
random selection.

Faith Quest Exploranium Komandant Impetus
p− value 4.82×10−9 3.07×10−6 2.16×10−12 9.89×10−6

F 15.8451 10.3258 23.01935 9.36828
Source: Author

The statistical analysis showed that only in the game Komandant there was a signifi-

cant difference (F < Fcritical(3.07)), as subjects preferred maps transposed by the GA (Table 18).

Table 18 – Table presenting the results of One-way ANOVA comparing MCTS, PWU, with GA.
Faith Quest Exploranium Komandant Impetus

p− value 0.15609 0.33481 0.00039 0.71444
F 1.8871 1.10448 8.38832 0.33722

Source: Author

7.5 Discussion

The previous section presented the results obtained from the user evaluation. The

results clearly indicate that users preferred maps transposed using the proposed algorithms.

Moreover, the statistic analysis showed that there was, indeed, a significant difference between

the evaluation of maps transposed using the proposed algorithms and the random selection of

sites. This information allows us to link higher scores to smaller values of M, thus indicating

that the metric is functional to assess the game balancing between LBGs.

Besides, in most cases, the transposed maps received scores higher than 3 (three),

except for the PWU algorithm in the Komandant trial. In this particular case, the PWU pruned

large branches of the search tree while searching for the best matches, thus it ended up with

sub-optimal solutions. By comparison, the average time PWU took to compute solutions was

0.59 seconds, whereas MCTS and GA used 4.93 and 5.33 seconds, respectively. A simple way

to improve the quality of results of PWU is to reduce the rate (δ ) to which the threshold (τ) is

reduced, thus the method becomes more accurate at the expense of increasing its processing

time, as shown in Section 5.3.
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The fact that the games designed for these trials had varying sizes and gameplay

indicate that the method is flexible, and can potentially be used in many types of LBGs. Further-

more, the average time spent for the methods to calculate the transposition did not exceed 5.5

seconds, hence allowing the algorithms to be used on demand.

During the tests, 46 distinct locations were selected by users, culminating in the

transposition of 800 game maps (including the reference maps) and more than 3.000 POIs being

analyzed by the algorithms. Among all these numbers, there has not been a single case where

the method failed to generate the transposed version of a map. These data reinforces that the

method elaborated in this work can potentially be used to automatically execute the balanced

transposition of maps of LBGs.

7.6 Threats to Validity

The main concern about this evaluation relates to the quality of the answers. It was

necessary to ensure participants assessed the maps correctly, according to the instructions. Thus,

many content was provided (texts, videos, and images) to explain the purpose of the evaluation

and to highlight the traits being analyzed. However, it is still possible that subjects may have

skipped the introductory parts or misunderstood some aspects of the evaluation. After concluding

the evaluation, in the last page, half of subjects left comments, however, only 03 (three) claimed

they were confused about how to assess each game map.

Another threat to the trials is the reliance on data gathered from external APIs (in

this case Google Places and Google Distance Matrix), since the locations selected to build the

game and the game balancing in both original and transposed instances is estimated using this

information. Consequently, if the data queried from external sites is not accurate, nor will be the

estimated game balancing and its evaluation.

The tests used games with different features, however, all games assessed contained

less than 10 POIs. Unquestionably, it would be ideal to evaluate games with more POIs, albeit

the complexity of these games would also make it harder for participants to evaluate bigger

maps.

Finally, the game balancing when playing the games can be distinct from the one

perceived by users when assessing the maps. Consequently, an ideal evaluation would request

users to play each map so they would render their opinion according to the real experience.
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7.7 Conclusion

This chapter detailed the evaluation used to validate the balanced transposition of

maps for LBGs. The trials were conducted with 40 subjects using an online website, and four

LBGs were designed specifically to be used in this evaluation.

The method and games were introduced, and the procedure adopted to apply the

tests was detailed. In resume, users compared the original game map to game maps generated by

distinct transposition algorithms. Next, the results for each game were presented and discussed

individually. Results, evidenced through a statistical analysis, the preference for maps transposed

using the proposed algorithms over maps generated randomly.

In addition, the data generated during tests indicate that M is directly linked to the

better evaluation of maps. Therefore, this evaluation endorses the fact that the proposed approach

can be used with different types of LBGs, regardless of their size and gameplay.
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8 CONCLUSIONS

This thesis addressed the challenge of transposing maps of LBGs while focusing on

maintaining the original game balancing. To achieve this goal, a game model was developed to

encode LBGs regardless of their style, gameplay and number of POIs, novel metrics to gauge

game balancing in these games were introduced, and algorithms to tackle the transposition as a

WGMP were implemented.

This chapter closes the thesis and is organized as follows. Section 8.1 provides an

overview of this research, and Section 8.2 presents the main contributions of this thesis. Next,

Section 8.3 revisits the research hypothesis, and Section 8.4 discusses the limitations of this

work. Finally, Section 8.5 points to works to be developed in the future.

8.1 Overview

There are many motivations behind this work, such as the rising popularity of LBGs

and the benefits they bring to health and entertainment, the challenge of designing better, cheaper

and fairer games, and the possibility to increase the reach of LBGs to as many places as possible.

Therefore, the challenge of creating a PCG method to conduct the balanced transposition of

maps of LBGs was tackled.

The first step in this work consisted in devising measurements to be used by game

designers and developers for assessing LBGs. Therefore, two metrics were proposed, the Internal

Difficulty Level (I) and the Minimum Balance Difference (M). The former is indicated when

creating new games as it gauges differences in game balancing within the game, and the latter is

used to compare the game balancing between two instances of the same game in distinct places,

i.e. their maps.

Next, the approach in charge of executing the transposition was modelled. It consists

in creating a generic game model from the map to be transposed and collecting data about

POIs in the area where the transposed map must be placed, then an algorithm selects the best

locations to form a new game model as similar to the original as possible, so that the new game

model encoding the transposed locations can be converted back to the game, thus generating the

transposed map of the LBG.

Three algorithms were implemented to select the POIs that will compose the games,

a MCTS method previously used in (MAIA et al., 2017) and (FERREIRA et al., 2017), a novel
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approach called Parallel Weighted Ullmann that is based on the Ullmann’ algorithm, and a

Genetic Algorithm.

These algorithms were evaluated and an analysis of their speed and quality when

submitted to varying types of inputs was presented. Hence, the evaluation discusses the strengths

and weaknesses of each algorithm and highlights the best applications for each approach.

An evaluation was also conducted with users to validate the quality of maps transpo-

sed using the proposed method. As a result, it was clear that users preferred maps generated by

this work, as opposed to a random selection of locations. Furthermore, the data generated from

the trials establishes a clear relation between the difference in the game balancing measured by

M and the rating provided by users.

In a nutshell, this work has the potential to enhance the development of LBGs by

reducing the cost and complexity associated with it. Moreover, the proposed approach opens the

possibility for these games to deliver new modes of competition. Since the possibility to create

maps with similar game balancing enables players to compete or interact within the same virtual

environment regardless of their location.

Finally, there are social aspects linked to the adoption of this method in the develop-

ment of LBGs as most of these games do not include POIs in impoverished neighborhoods and

rural areas. Hence, this work also tackles this issue by shifting the focus from playing where the

game is deployed to deploying where the players are.

8.2 Contributions

The main contributions of this work are summarized below:

• Internal Difficulty Level (I). A measurement to assess variations in game balancing

within a game;

• Minimum Balance Difference (M). A measurement to gauge the difference in balancing

between different instances of a game;

• The design of a PCG approach that can handle multiple types of LBGs and conduct a

transposition of their maps, while striving to keep the game balancing;

• Parallel Weighted Ullmann. A novel algorithm to tackle the GMP for weighted graphs

that is based on the Ullmann’s algorithm.

Besides, this research has been involved in the publication of 4 (four) papers in

conferences and journals. The game model used to represent the games was originated from the
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models presented in (SILVA et al., 2017) and (FERREIRA et al., 2017). The game balancing

measurements (I and M) were first introduced in (MAIA et al., 2017). Moreover, the MCTS

algorithm was used to transpose the map of a game in (FERREIRA et al., 2019) and to improve

game balancing in the game Pokémon GO (MAIA et al., 2017).

Additionally, another 11 papers were published along the development of this work,

mostly in the field of Games and Game Development, but some related to Augmented Reality

and Software Engineering.

8.3 Revisiting the Research Hypothesis and Research Questions

The research hypothesis that guided this thesis was presented in Chapter 1. It claims

that “It is possible to create a PCG method that transposes maps of LBGs while preserving their

game balancing.”

Based on the results collected from both the empirical evaluation (Chapter 6) and the

user evaluation (Chapter 7), one can conclude the hypothesis was accepted, since the method

comprised of measurements, algorithms and model were tested in multiple locations and with

LBGs presenting varying styles. In a nutshell, this thesis managed to devise a PCG approach

capable of conducting an automatic transposition of maps that focus on preserving the game

balancing of the original instance.

Regarding the research questions, the first one (RQ1) required the development of

the two measurements (I and M) to estimate and compare the game balancing in LBGs. The

second question (RQ2) concerned the development of a PCG method to automatically transpose

maps of LBGs (Chapter 4) while enforcing the same balancing level among all instances, as

presented by the problem formulation and algorithms in Chapter 5. Lastly, the answer to the last

research question (RQ3) was obtained by the successful validation of the proposed approach

with many users assessing the transposition of distinct types of LBGs to multiple locations.

8.4 Limitations

This work has shown promising results to address the challenge of transposing maps

of LBGs. However, it relies on data provided by third party services, that can provide unreliable

or outdated information. Consequently, the correctness of POIs that compose the transposed map

and the accuracy of the information used to estimate the game balancing are fundamental to the
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success of the method. Thus, this dependency on external entities must be faced as a limitation.

Furthermore, although current location APIs are composed of a massive database

of POIs spread throughout the globe, there are still remote areas that have few or no points

registered. Thus, it is not possible to gather places and data necessary to operate the transposition.

Another restriction in this approach is the resistance to updates in the transposed

map. In this case, if somehow the cost to move between a few POIs is altered and the game must

change to adjust game balancing, the method does not allow the game to be partially updated.

Consequently, any update to a map requires the creation of an entire new instance.

Additionally, the current game model encodes only one information in the graphs,

thus if more than one feature influences the game balancing, they must be combined into a single

weight. This is particularly restrictive if a game relies on multiple aspects to determine game

balancing. This limitation is also discussed in future works.

8.5 Future Work

There are features that can be improved in this work, and can evidently be developed

in the future. For instance, the PWU algorithm can be improved to include a non-deterministic

step that selects branches in large search trees to enable the method to process large graphs.

Besides, the GA can have some of its steps implemented in parallel, so the performance of the

algorithm can be enhanced.

Another aspect that can be improved in the future is the possibility of adapting the

method to update parts of maps in real-time. In this case, it is necessary to modify the game

model and the transposition algorithm to signal parts of the map that must be altered. Hence, it

will be possible to skip POIs that must be preserved and focus on the ones that must be updated.

It is also possible to adapt this approach to include graph consensus, so it will be

possible to use multiple features when determining game balancing. As a result, the transposition

could benefit from this trait to create maps that can be balanced according to multiple aspects,

such as distance, time, calories, etc.

Finally, there are ongoing activities being developed as part of this work. First, a

paper presenting the PWU as a fast approach for finding near optimal solutions to the WGMP,

and another article detailing the transposition method and the evaluations conducted in this work.

Furthermore, a game incorporating the features and technologies originated from this work is

being designed.
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APPENDIX A – USER QUESTIONNAIRE

Question 1. Name:

Question 2. Age:

Question 3. Have you ever played a LBG?

(a) Yes, and I play frequently.

(b) Yes but only for a short period.

(c) No, but I do know how they work.

(d) No, and I don’t know how they work.

Question 4. Do you think that current LBGs can be played everywhere?

(a) Yes, I totally agree.

(b) Yes, I partially agree.

(c) No, I partially disagree.

(d) No, I totally disagree.

Question 5. Do you think that players have advantages depending on their location in LBGs?

(a) Yes, I totally agree.

(b) Yes, I partially agree.

(c) No, I partially disagree.

(d) No, I totally disagree.
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APPENDIX B – KERNELS USED IN THE PWU

Source-code 1 – Parallel Weighted Ullman

1

2 __kernel void weighted_ullman(__global const int* P,

__global const int* G, __global const int* params ,

__global const int* permutations , __global int* res){

3 unsigned int thread_id=get_global_id (0);

4 int row_size=params [0];

5 int col_size=params [1];

6

7 int indexes [10];

8 for (int i = 0; i < row_size; ++i) {

9 indexes[i]= permutations [( thread_id*row_size)+i];

10 }

11

12 int diff = 0;

13 int i_g = 0;

14 int j_g = 0;

15 for (int i = 0; i < row_size; ++i) {

16 i_g = indexes[i];

17 for (int j = 0; j < row_size; ++j) {

18 j_g = indexes[j];

19 if ((i!=j) && (P[i * row_size + j] != -1)) {

20 diff += abs(P[i * row_size + j] - G[i_g * col_size

+ j_g]);

21 }

22 }

23 }

24

25 res[thread_id ]=diff;

26 barrier(CLK_LOCAL_MEM_FENCE);



149

27 }

Source-code 2 – Create Root Matrix

1 static int insert_unique(int* match_col , int size , int row ,

int col) {

2 for (int i = 0; i < size; i += 2) {

3 if (( match_col[i] == row) && (match_col[i + 1] == col))

{

4 return size;

5 }

6 }

7 match_col[size] = row;

8 match_col[size + 1] = col;

9 return (size + 2);

10 }

11

12 __kernel void create_root_matrix(__global const int* P,

__global const int* G, __global const int* grades_P ,

__global const int* grades_G , __global const float*

threshold_matrix , __global const int* params , __global

float* res){

13

14 unsigned int thread_id=get_global_id (0);

15 int size_P=params [0];

16 int size_G=params [1];

17 int match_col [50*2];

18 int row_p =( thread_id/size_G);

19 int row_g=thread_id%size_G;

20

21 if(grades_P[row_p] > grades_G[row_g]) {

22 res[thread_id ]=0;



150

23 } else {

24

25 int pos =0;

26 int hasMatch =0;

27 for (int col_p =0; col_p <size_P;col_p ++) {

28 int p_x = P[(row_p*size_P)+col_p];

29 if(( col_p == row_p) || (p_x == -1)) {

30 continue;

31 }

32

33 hasMatch =0;

34 for (int col_g =0; col_g <size_G;col_g ++) {

35 int g_x = G[(row_g*size_G)+col_g];

36 if(( col_g == row_g) || (g_x == -1)) {

37 continue;

38 }

39 float res = abs(p_x - g_x);

40 if(res <= p_x * threshold_matrix [(row_p*size_P)+

col_p]) {

41 pos=insert_unique(match_col ,pos , row_g , col_g);

42 hasMatch =1;

43 }

44 }

45 if(hasMatch ==0) {

46 break;

47 }

48 }

49

50 if((pos ==0) ||( grades_P[row_p] > (pos/2))||( hasMatch ==0)

) {

51 res[thread_id ]=0;

52 } else {
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53 res[thread_id ]=1;

54 }

55 }

56

57 barrier(CLK_LOCAL_MEM_FENCE);

58

59 }

Source-code 3 – Parallel Brute Force

1 static void calculate_diffs(int* remaining , const int* nums

, const int* indexes , int row_size , int col_size) {

2

3 for (int i = 0; i < col_size; i++) {

4 remaining[i] = i;

5 }

6

7 int pos = 0;

8 for (int i = 0; i < col_size; i++) {

9 bool selected = false;

10 for (int j = 0; j < row_size; j++) {

11 if (indexes[j] == -1) {

12 break;

13 }

14 if (nums[i] == indexes[j]) {

15 selected = true;

16 break;

17 }

18 }

19 if (selected == false) {

20 remaining[pos] = nums[i];

21 pos ++;
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22 }

23 }

24 }

25

26 static void decodeIndexes(int* indexes , int id, int

row_size , int col_size , int total) {

27 int partitions [10];

28 partitions [0] = total;

29

30 int nums [50];

31 int remaining [50];

32 for (int i = 0; i < col_size; i++) {

33 nums[i] = i;

34 }

35

36 for (int i = 0; i < row_size; i++) {

37 indexes[i] = -1;

38 }

39

40 int pos = 0;

41 for (int i = 0; i < row_size; i++) {

42 partitions[i + 1] = (partitions[i] / (col_size - i));

43 pos = ((id % partitions[i]) / partitions[i + 1]);

44 calculate_diffs(remaining , nums , indexes , row_size ,

col_size);

45 indexes[i] = remaining[pos];

46 }

47 }

48

49 __kernel void brute_force(__global const int* P, __global

const int* G, __global const int* params , __global int*

res){
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50 unsigned int thread_id=get_global_id (0);

51 int row_size=params [0];

52 int col_size=params [1];

53 int total_permutations=params [2];

54

55 int indexes [10];

56 decodeIndexes(indexes ,thread_id ,row_size ,col_size ,

total_permutations);

57

58 int diff = 0;

59 int i_g = 0;

60 int j_g = 0;

61 for (int i = 0; i < row_size; ++i) {

62 i_g = indexes[i];

63 for (int j = 0; j < row_size; ++j) {

64 j_g = indexes[j];

65 if ((i!=j) && (P[i * row_size + j] != -1)) {

66 diff += abs(P[i * row_size + j] - G[i_g * col_size

+ j_g]);

67 }

68 }

69 }

70 res[thread_id ]=diff;

71 barrier(CLK_LOCAL_MEM_FENCE);

72 }
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APPENDIX C – WEBSITE DEVELOPED TO THE EVALUATION

Figure 67 – Website’s welcome page.

Source: Author

Figure 68 – Page defining Location-based Games.

Source: Author
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Figure 69 – In this page the challenges of this research were explained.

Source: Author

Figure 70 – Page containing a video that provides an overview of this research.

Source: Author
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Figure 71 – Questionnaire to collect data about users’ knowledge on LBGs.

Source: Author

Figure 72 – Page used to select locations where the maps of LBGs must be transposed to.

Source: Author
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