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“Do not worry about the results of your actions,

just pay attention to the action itself. The result
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RESUMO

Definimos e estudamos uma versão discreta do clássico problema de classificação no espaço

Euclidiano. O problema em questão é definido em um grafo, onde os vértices não classificados

precisam ser classificados levando em consideração a classificação dada para outros vértices.

A partição de vértices em classes é baseada no conceito de convexidade geodésica em grafos,

como uma substituta da convexidade Euclidiana no espaço multidimensional. Chamamo-lo

de Problema de Classificação Geodésica - CG (Geodesic Classification Problem, em inglês) e

consideramos duas variantes: duas classes, único grupo e duas classes, multigrupo. Propomos

abordagens baseadas em programação inteira para cada versão considerada do problema CG,

assim como um algoritmo de branch-and-cut para resolvê-las exatamente. Fizemos também

um estudo dos poliedros associados, o que inclue a determinação de algumas famílias de

desigualdades que definem facetas e algoritmos de separação. Condições para definição de facetas

para a versão único grupo foram traduzidas para a versão multigrupo. Relacionamos nossos

resultados com alguns já conhecidos na literatura para a classificação Euclidiana. Finalmente,

realizamos experimentos computacionais para avaliar a eficiência computacional e a acurácia

da classificação das abordagens propostas, comparando-as com alguns métodos de resolução

clássicos para o problema de classificação com convexidade Euclidiana.

Palavras-chave: Classificação. Convexidade Geodésica. Combinatória Poliédrica.



ABSTRACT

We define and study a discrete version of the classical classification problem in the Euclidean

space. The problem is defined on a graph, where the unclassified vertices have to be classified

taking into account the given classification of other vertices. The vertex partition into classes is

grounded on the concept of geodesic convexity on graphs, as a replacement for the Euclidean

convexity in the multidimensional space. We name such a problem the Geodesic Classification

(GC) problem and consider two variants: 2-class single-group and 2-class multi-group. We

propose integer programming based approaches for each considered version of the GC problem

along with branch-and-cut algorithms to solve them exactly. We also carry out a polyhedral

study of the associated polyhedra, which includes some families of facet-defining inequalities

and separation algorithms. Facetness conditions for the single-group case are carried over to the

multi-group case. We relate our findings with results from the literature concerning Euclidean

classification. Finally, we run computational experiments to evaluate the computational efficiency

and the classification accuracy of the proposed approaches by comparing them with some classic

solution methods for the Euclidean convexity classification problem.

Keywords: Classification. Geodesic Convexity. Polyhedral Combinatorics.
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1 INTRODUCTION

Supervised learning denotes the automatic prediction of the behavior of unknown

data based on a set of samples. It is a tool widely used in many everyday situations of the

nowadays information society. In general terms, it can be described by the following two-phase

procedure: in the initial phase, or training phase, the sample set is analyzed. Each sample

consists of an array of encoded attributes that characterize an object of a certain type together

with a label that associates a class to the corresponding object. Most commonly, only two classes

are considered. A tacit assumption made at this phase is that there is an underlying pattern

associated with the samples of each class that sets them apart from the samples of the other

classes. Thus, the purpose of the training phase is to determine a mapping from all possible

objects into the set of possible classes as an extension of an underlying pattern of the samples.

Then, in the second phase, the mapping determined in the training phase is used to respond to

queries for the class of objects that do not belong to the sample set.

An optimization problem is usually associated with the training phase. Referred to

as classification problem, it consists in grouping similar samples to get clusters as internally

homogeneous as possible. A wide range of solution methods is available, each depending on the

coding of the samples and the criterion adopted to express homogeneity. A prevalent approach is

to encode the samples as vectors in the Euclidean space and to assume that the class patterns can

be appropriately characterized by convex sets. In this vein, continuous optimization methods,

including linear and quadratic programming, have been developed in the last 40 years. See

e.g. (ARTHANARI; DODGE, 1993; CARRIZOSA; MORALES, 2013; CORTES; VAPNIK,

1995; FREED; GLOVER, 2007; PARDALOS; HANSEN, 2008). More recently, integer linear

programming tools started to be used in conjunction with continuous methods, as we can see

in (BERTSIMAS; SHIODA, 2007; MASKOOKI, 2013; SUN, 2011; UNEY; TURKAY, 2006;

XU; PAPAGEORGIOU, 2009).

Inspired by the version of the classification problem based on Euclidean convexity

discussed in (CORRÊA et al., 2019), we define a new variant of the classification problem

that is stated in terms of notions of convexity in graphs. For this new problem, we develop

some integer linear programming formulations. The main purpose of this thesis is the structural

study of the polyhedra associated with these formulations, which can help make the Euclidean

solution methods more robust. The statement of this classification problem assumes the following

hypotheses:
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1. The objects are not encoded numerically. Instead, each object is characterized by its

similarities with other objects. The configuration of the objects is thus represented by a

similarity graph G = (V,E), connected, where V is the set of all objects, and E gives the

pairs of similar objects. The objects associated with the sample set constitute a proper

subset of V . In addition, it is assumed the existence of an underlying sample patterns

that can be expressed, or at least approximated, by the notion of geodesic convexity in

graphs ((PELAYO, 2013)). Such a convexity is defined with respect to the shortest paths

in G (analogously to the definition of Euclidean convexity with respect to the Euclidean

distances between points in Rn).

2. The sample set may contain an arbitrary number of misclassified objects, called outliers,

which result from possible sampling errors or due to inherent characteristics of the pheno-

menon being modeled. From the mathematical point of view, an outlier is that classified

object that leads the underlying pattern of the samples in its class to deviate from the

convexity definition. The possible occurrence of outliers poses an additional challenge to

any method used to solve the classification problem since they have to be detected and

disregarded so that accurate solution may be found. The goal is to divide the vertex set

into 2 classes, based on the classification of the samples. Each class may comprise a single

group of vertices, in the basic version of the problem, or multi-group of vertices, in the

generalized version.

Considering the hypotheses above, the 2-class Single-group Geodesic Classification

(2-SGC) problem and the 2-class Multi-group Geodesic Classification (2-MGC) problem tackled

in this thesis become purely combinatorial. In integer linear programming formulations, those

combinatorial aspects are expressed by binary variables used for two purposes:

1. Identification, and possibly counting, of points considered to be discrepant. Once identified,

the outliers can be disregarded in the obtaining of the patterns that yield a solution to the

classification problem. In several formulations proposed in the literature, the optimization

criterion is the minimization of the number of outlier points, which implies the necessity

of counting such points.

2. Division of the object sets (vertices) into subsets and their associations to classes.

From the practical point of view, these problems allow encoding object similarities

through some binary relation (instead of Euclidean distances), a fact that benefits many practical

applications in big data. As detailed later, a solution is neither a covering nor a partitioning of G
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in convex sets in the sense studied in (ARTIGAS et al., 2011; BUZATU; CATARANCIUC, 2015).

Thus, besides the applications, the study of the geodesic classification problems is motivated

by theoretical interest since it brings with it the possibility of establishing new interesting

problems on graphs. Moreover, these problems can be seen as the combination of a graph

convexity problem and the well known set covering problem ((KARP, 1972)), as shown by the

mathematical models proposed in Sections 4.1 and 5.2. Besides, the study of their combinatorial

structure may be useful to design solution methods for other versions of the classification

problem, including those based on Euclidean convexity.

To the best of our knowledge, these geodesic classification problems have not been

mentioned in the literature yet. We state three integer programming formulations and derive

some families of facet-defining inequalities (a part of this work can be seen in (ARAÚJO et al.,

2019) where another integer linear formulation is used). In addition, we present a branch-and-cut

algorithm for each formulation and run some computational experiments. The accuracy of the

geodesic convexity approach is validated by comparing the prediction provided by the proposed

algorithm with the one obtained, for similar instances, by SVM and MLP (these are two of the

most used approaches for the Euclidean convexity classification problem).

1.1 Applications

Applications for the geodesic classification problem are easily found in the fields of

data mining and classical statistics. As examples, we have text classification and communities

detection in social networks, historic files similarity prediction, content recommendation in

Netflix, and spam filtering for e-mails. In the text classification on Twitter, for instance, we

want to find text mining tools that help us to understand messages on Twitter, as for sentimental

analysis, like recommendation, friend recommendation and others ((HONG; DAVISON, 2010)).

In these contexts, combinatorial aspects emerge from the relations between samples. The same

can be applied to many other social network applications.

1.2 Results and contributions

We introduce two versions of a classification pattern defined on graphs using the

notion of geodesic convexity. Such a notion is formalized in the definition of two versions of

the problem: 2-class Single-group Geodesic Classification (2-SGC) problem and 2-class Multi-
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group Geodesic Classification (2-MGC) problem, which have not appeared in the literature. The

division of the problem into these two versions allows us to study the inherent properties of the

different aspects of the classification approach. Inspired by the work presented by (CORRÊA et

al., 2019) on Euclidean classification, we present three integer linear programming formulations

to solve such problems. The first one is a set covering formulation with an exponential number

of constraints, while the second one is a compact formulation with a polynomial number of

constraints. We carry out some theoretic comparison between all formulations and study the

associated polyhedra, giving some valid inequalities, families of facet-defining inequalities

and separation algorithms. Results for the 2-SGC problem are carried over to the 2-MGC

problem. Finally, we show a branch-and-cut algorithm to solve each integer formulation and run

computational experiments to compare the proposed approaches. We analyze two aspects: the

computational performance of the solution methods and the accuracy of the generated solutions.

1.3 Text structure

This text is organized as follows. Chapter 2 presents some basic concepts notation

and results in graph theory, linear algebra, polyhedral combinatorics and linear programming.

In Chapter 3, we formalize the Euclidean convexity classification problem and show some

solution methods found in the literature. The definition of the 2-class single-group geodesic

classification problem is introduced in Chapter 4 along with integer linear formulations and

a study of the associated polyhedra. Analogously, the definition of the 2-class multi-group

geodesic classification problem and integer linear formulations are presented in Chapter 5. In

Chapter 6, we present the branch-and-cut algorithms and show computational experiments results

to evaluate the performance of each approach. Finally, we present some concluding remarks and

directions for future works in Chapter 7.
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2 PRELIMINARIES

In this chapter, we show some basic concepts and properties from graph theory, linear

algebra, polyhedral combinatorics and linear programming. We also establish the notation. Most

of the statements are well known so that proofs are usually omitted. However, in subsections

2.2.1 and 2.2.2, we present some results that will be frequently used in Chapters 4 and 5 and that

are not easily found in a text book.

2.1 Graph theory

Basic concepts in graph theory are easily found in any introductory graph book. In

particular, we follow the terminology used in (BONDY; MURTY, 2008).

A simple graph G is an ordered pair (V,E), where V is a finite set of elements called

vertices and E is a set of elements called edges, with each edge being a non-ordered pair of

distinct vertices (when they are ordered pair of vertices, we call them arcs and the graph is called

a directed graph. It is called dag or direct acyclic graph if there is no cycle). We denote by V (G)

the set of vertices of G and E(G) (resp., A(G), in case of arcs) the set of edges (resp., arcs) of G.

If e = {u,v} is an edge, then we say that e affects u and v, or u and v are its extreme

points or that u and v are adjacent. We also denote {u,v} by uv.

A walk in a graph G is a sequence of vertices W = (v1,v2, . . . ,vl), l ≥ 1, such that

{vi,vi+1} ∈ E(G) for i = 1, . . . , l− 1. In this case, we call V (W ) = {v1, . . . ,vl} and E(W ) =

{{vi,vi+1} : i = 1, . . . , l−1}. We say that v1 is the start or source, and vl is the end of W , and that

W is a walk from v1 to vl . The length of W is l−1. If W has no repeated vertices, then we say

that W is a path (between v1 and vl). In this case, its length, l−1, is equal to the number of edges

or, equivalently, to the number of vertices minus 1. When this length is minimum among all

paths between v1 and vl in G, we say that it is a shortest path from v1 to vl . If P = (v1,v2, . . . ,vl)

is a path with l ≥ 3 and {vl,v1} ∈ E(G), then C = (v1,v2, . . . ,vl,v1) is a cycle.

An incomplete path (resp., incomplete walk) PI from v1 to vl in a graph G is a

subsequence, not necessarily continuous, of a path (resp., walk) between v1 and vl in G that

contains v1 and vl . If a corresponding path of PI is a shortest path in G, then we call PI an

incomplete shortest path. Sometimes, to distinguish from an incomplete path (resp., incomplete

walk), we denote path (resp., walk) and shortest path by complete path (resp., complete walk)

and complete shortest path, respectively.
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A graph G is connected if, for any pair of distinct vertices u and v in G, there is at

least one path between u and v. A tree is a connected graph with no cycle.

If two graphs G = (V,E) and H = (W,F) are such that V ⊆W and E ⊆ F , then G is

called a subgraph of H. If X ⊆V (G), then the subgraph of G induced by X , denoted by G[X ], is

the graph whose set of vertices is X and where edges are those of G with both extreme points in

X . If G is a path, then a subgraph of G that is a path is called subpath.

A set of vertices S is an independent set if there is no edge between any pair of

vertices of S, and it is a clique if there is an edge between any pair of vertices of S.

A geodesic between two vertices h and j in G is a shortest path between h and j in

the graph and its length is denoted by δ (h, j). The closed interval D[h, j] is the set of all vertices

lying on a geodesic between h and j. We also denote Dh j = D[h, j] \ {h, j} = {i ∈ V\{h, j} |

i belongs to a shortest path between h and j}. Given a set S ⊆ V (G), D[S] =
⋃

u,v∈S D[u,v]. If

D[S] = S, then S is a convex set. For k ≥ 1, let Dk[S] be the result of the iterative application

of operator D from S for k iterations, i.e. D1[S] = D[S] and Dk+1[S] = D[Dk[S]]. Note that

Dk+1[S] = Dk[S] if and only if Dk[S] is convex. The convex hull of S, denoted by H[S], is the

smallest convex set containing S. This minimum set is unique. If H[S] =V , then S is a hull set.

Observe that H[S] = Dk[S] for some k ≥ 1. In other terms, H[S] can be obtained by the iterative

application of D.

From (ARTIGAS et al., 2011), the analogy between the concept of a convex set in

continuous and discrete mathematics can be made by considering the vertex set of a connected

graph and the distance between two vertices (number of edges in a shortest path between them)

as a metric space. Thus, a vertex subset S of V (G) is said to be convex if it contains the vertices

of all shortest paths connecting any pair of vertices in S. This concept of convexity is called

geodesic convexity. Other definitions of convexity have been studied by considering different path

types such as chordless paths ((FARBER; JAMISON, 1986)) and triangle paths ((CHANGAT;

MATHEW, 1999)).

Some of the early papers that generalize the Euclidean concepts of convex sets to

graphs date to the eighties: (HARARY; NIEMINEN, 1981), (EDELMAN; JAMISON, 1985),

(FARBER; JAMISON, 1986). More recently, convexity on graphs have been studied under

several aspects, like geodesic sets, hull and convexity numbers ((CáCERES et al., 2006), (DOU-

RADO et al., 2009a), (DOURADO et al., 2010)).
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2.2 Basic concepts of polyhedra and linear programming

A linear programming problem (LP) is a problem of minimizing (or maximizing)

a linear function subject to a set of linear constraints. These constraints can be expressed as

equalities and inequalities.

A polyhedron P is a set of the form P = {x ∈ Rn : Ax ≤ b}, where (A,b) is a

(m× (n+ 1)) matrix. In this case, we also denote P by P(A,b). Thus, LP can be seen as a

problem of minimizing a linear function over a polyhedron.

An integer linear programming problem (ILP) is an LP where all variables can only

receive integer values. When those integer values are restricted to 0 or 1, we call an ILP/01.

While LP’s can be solved in polynomial time, ILP’s are NP-hard in general.

Formally, an integer linear programming is an LP in the form

min cT x

s.t. Ax≤ b

x ∈ Zn
+.

Every feasible solution of an ILP with a minimization objective function gives an

upper bound for the optimal value, where f (x) = cT x is called the objective function and every

point x ∈ Zn
+ such that Ax ≤ b is called a feasible solution. However, there are problems in

which finding good feasible solutions is as hard as solving the ILP itself. On the other hand,

there are polynomial methods to find lower bounds for an ILP. One of these methods consists in

solving the problem obtained by removing the integrality constraints, which is called the linear

relaxation of the ILP.

In general, a problem zR = min{ f (x) : x ∈ T ⊆ Rn} is a relaxation of z = min{ f (x) :

x ∈ X ⊆ Zn} if X ⊆ T and f (x)≤ c(x) for each x ∈ X . Observe that z≥ zR.

A point x ∈ Rn is a linear combination of points x1, . . . ,xl ∈ Rn if, for some

α = (α1, . . . ,αl) ∈ Rl , x = ∑
l
i=1 αixi. Such a linear combination is called

1. affine combination if α1 +α2 + . . .+αl = 1;

2. conic combination if α1,α2, . . . ,αl ≥ 0;

3. convex combination if it is affine and conic.
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For a non-empty set S⊆ Rn, we define the affine hull of the elements of S, denoted

by affine(S), as the set of all points that are an affine combination of a finite number of elements

of S. Analogously, we define the convex hull of S, denoted by conv(S), as the set of all points

that are a convex combination of a finite number of points of S.

A set S ⊆ Rn is linearly independent if, for any finite subset of points {x1, . . . ,xl}

of S and α ∈ Rl such that ∑
l
i=1 αixi = 0, we have α1 = α2 = . . .= αl = 0. Similarly, S⊆ Rn is

affinely independent if, for any finite subset {x1, . . . ,xl} of S and α ∈ Rl such that ∑
l
i=1 αixi = 0

and ∑
l
i=1 αi = 0, it hold that α1 = α2 = . . .= αl = 0. For some proofs of affinely independence

along this text, we use the notation ei ∈ {0,1}n to mean the binary vector with value 1 only in

the entry indexed by i. Besides, we denote e = ∑i ei.

For S⊆ Rn, the rank of S, denoted by rank(S), is the cardinality of a largest subset

of S that is linearly independent. Similarly, affine-rank of S, denoted by affine-rank(S), is the

cardinality of a largest affinely independent set contained in S.

The dimension of a polyhedron P, denoted by dim(P), is the maximum number of

affinely independent points in P minus one, i.e., dim(P) =affine-rank(P)− 1. A polyhedron

P⊆Rn has full dimension if dim(P) = n. It can be shown that, if affine(P) = {x ∈Rn : Ax = b},

then dim(P) = n− rank(A).

We say that an inequality aT x≤ a0 is a valid inequality for a set S if aT w≤ a0 for

all w ∈ S.

We call F a face of polyhedron P if F = {x ∈ P : aT x = a0} for a valid inequality

aT x≤ a0 for P. A non-empty face F of P is a facet if dim(F) = dim(P)−1. If F is a facet of

P and F = {x ∈ P : γT x = γ0}, where γT x ≤ γ0 is valid for P, we say that γT x ≤ γ0 defines (or

induces) the facet F .

If P has full dimension, then P has a unique minimal description, given by the

inequalities that define the facets of P. By minimal we mean that removing any of these

inequalities yields a different polyhedron. The uniqueness is implied by the fact that every

facet-defining inequality of a full -dimensional polyhedron has a unique expression, except

for scalar multipliers. When the polyhedron does not have full dimension, the facet-defining

inequalities are not expressed in a unique form. Thus, showing that an inequality defines a

facet usually demands a more laborious proof in the non-full dimensional case. Fortunately, all

polyhedra studied in this work are full-dimensional.
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2.2.1 Affine transformations

An affine transformation is a mapping Q : Rn→ Rm such that Q(x) = Qx+q for

some matrix Q∈Rm×n and vector q∈Rm. Injectiveness and surjectiveness of Q(x) = Qx+q are

given by the rank of Q (ROCKAFELLAR, 1997). Given a set P⊆Rn, let Q(P) = {Q(x) : x∈P}.

Valid inequalities for P and Q(P) can be related as follows.

Proposition 2.2.1 Let Q ∈ Rm×n. If rank(Q) = n, then LQ = I for L = (QT Q)−1QT . If

rank(Q) = m, then QR = I for R = QT (QQT )−1.

Proof Suppose that rank(Q) = n. To prove that QT Q is invertible, we consider x ∈Rn satisfying

QT Qx = 0 and show that x = 0. Indeed, we have that xT QT Qx = 0, that is, (Qx)T (Qx) = 0,

which leads to Qx = 0. Since rank(Q) = n, we must have x = 0. Thus, L = (QT Q)−1QT is

well-defined and clearly LQ = (QT Q)−1QT Q = I. The second part is the first one for QT . �

Proposition 2.2.2 Let Q : Rn→ Rm be an affine transformation such that Q(x) = Qx+q. If

rank(Q) = n, then Q is injective. If rank(Q) = m, then Q is surjective.

Proof Suppose that rank(Q) = n. Let x,x′ ∈ Rn such that Q(x) = Q(x′), i.e. Qx = Qx′. Using

matrix L given by Proposition 2.2.1, we get x = x′. Then Q is injective. Now, suppose that

rank(Q) = m and let matrix R be given by Proposition 2.2.1. Let y ∈Rm and x = R(y−q). Then,

Q(x) = QR(y−q)+q = y. Therefore, Q is surjective. �

Proposition 2.2.3 Let P ⊆ Rn, and Q : Rn→ Rm and R : Rm→ Rn be two mappings. If R

is affine, R(Q(x)) = x for all x ∈ P and πT x≤ π0 is valid for P, then πT R(y)≤ π0 is a valid

(linear) inequality for Q(P). Conversely, if Q is affine and µT y ≤ µ0 is valid for Q(P), then

µT Q(x)≤ µ0 is a valid (linear) inequality for P.

Proof Let ȳ∈Q(P). Then, there is x̄ ∈ P such that ȳ =Q(x̄), and so R(ȳ) = x̄. Since πT x̄≤ π0,

we get πT R(ȳ) ≤ π0. Now, let x̄ ∈ P and ȳ = Q(x̄) ∈Q(P). Since µT ȳ ≤ µ0, we have that

µT Q(x̄)≤ µ0. Observe that πT R(ȳ)≤ π0 and µT Q(x̄)≤ µ0 are linear inequalities since R and

Q are affine. �
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The statement of Proposition 2.2.3 can be rephrased in terms of the matrices defining

R and Q.

Proposition 2.2.4 Let P⊆ Rn and Q : Rn→ Rm be an affine transformation such that Q(x) =

Qx+q. If rank(Q) = n and πT x≤ π0 is valid for P, then πT Ly≤ π0 +πT Lq is valid for Q(P),

where L = (QT Q)−1QT . If µT y≤ µ0 is valid for Q(P), then µT Qx≤ µ0−µT q.

Proof Assume that rank(Q) = n so that L is well-defined. Let R : Rm→ Rn be the affine trans-

formation R(y) = Ly−Lq. Then, R(Q(x)) = L(Qx+q)−Lq = LQx = x. By Proposition 2.2.3,

we deduce that πT Ly≤ π0 +πT Lq is valid for Q(P). The second part is a direct consequence of

Proposition 2.2.3. �

We can also relate affinely independent points in P and Q(P).

Proposition 2.2.5 Let P ⊆ Rn be a finite set, and Q : Rn → Rm and R : Rm → Rn be two

mappings. If R is affine, R(Q(x)) = x for all x ∈ P and P is an affinely independent set, then

Q(P) is affinely independent. Conversely, if Q is affine and Q(P) is affinely independent, then

P is affinely independent.

Proof Let P = {x1, . . . ,xp} and yi = Q(xi) for i = 1, ..., p. Consider αi ∈ R, i = 1, ..., p, such

that ∑
p
i=1 αi = 0. First, suppose that R is affine, R(yi) = xi and P is affinely independent. Then,

∑
p
i=1 αiyi = 0 implies 0 = R

(
∑

p
i=1 αiyi)−R(0) = ∑

p
i=1 αiR(yi) = ∑

p
i=1 αixi, where the second

equality is implied by ∑
p
i=1 αi = 0. As P is affinely independent, it must be αi = 0 for all

i = 1, ..., p. Therefore, Q(P) is affinely independent. Now, suppose that Q is affine and Q(P) is

affinely independent. Then, ∑
p
i=1 αixi = 0 implies 0 = Q

(
∑

p
i=1 αixi)−Q(0) = ∑

p
i=1 αiQ(xi). It

follows that αi = 0 for all i = 1, ..., p, and so P is affinely independent. �

Particularly, an affine transformation applied to a polyhedron results in a polyhedron.

Theorem 2.2.6 If P⊆ Rn is a polyhedron and Q : Rn→ Rm is an affine transformation, then

Q(P)⊆ Rm is a polyhedron.
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In our context, however, we will be more interested in the application of an affine

transformation to a subset of a polyhedron.

Proposition 2.2.7 Let P′ = {x ∈ Rn : Ax ≤ b} and Q : Rn→ Rm be an affine transformation

such that Q(x) = Qx+q. If rank(Q) = n and P⊆ P′, then Q(P)⊆ {y ∈ Rm : ALy≤ b+ALq},

where L = (QT Q)−1QT . If rank(Q) = m and P ⊇ P′ then Q(P) ⊇ {y ∈ Rm : ARy ≤ b+ARq},

where R = QT (QQT )−1.

Proof If rank(Q) = n and P′ ⊆ P, the result directly follows from Proposition 2.2.4. Now,

suppose that rank(Q) = m and P⊇ P′. By Proposition 2.2.1, QR = I for R = QT (QT Q)−1. Let

y ∈ Rm such that (AR)y≤ b+(AR)q, that is, AR(y−q)≤ b. Then x = R(y−q) ∈ P′ ⊆ P, and

Qx = y−q. Therefore, y ∈Q(P). �

The composition of an affine mapping and the convexification operator is interchan-

geable.

Proposition 2.2.8 Let P⊆Rn and Q :Rn→Rm be an affine transformation. Then, Q(conv(P))

= conv(Q(P)).

Proof Let I be a finite set and, for all i∈ I, xi ∈ P and αi ≥ 0 with ∑i∈I αi = 1. Since ∑i∈I αi = 1,

we get that Q(∑i∈I αixi) = ∑i∈I αiQ(xi). This equality leads to the desired result. �

2.2.2 Projection

Let Z ⊆ Rp×Rq be a set where each point is given by a pair (x,y) ∈ Rp×Rq. The

(orthogonal) projection of Z onto the x-space is the set

projx(Z) = {x ∈ Rp : (x,y) ∈ Z for some y ∈ Rq}.

The projection operator is a special case of an affine (actually linear) transformation. Indeed,

projx(Z) = Q(Z), where Q(x,y) =
[
I 0

]x

y

. Therefore, if Z is a polyhedron, then so is

projx(Z). Moreover, the projected polyhedron can be described as follows.
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Theorem 2.2.9 Let Z = {(x,y) ∈ Rp×Rq : Ax+By ≤ b} be a polyhedron. Then projx(Z) =

{x ∈ Rp : (uT A)x ≤ uT b,∀u extreme direction of U}, where U = {u ≥ 0 : uT B = 0} is called

projection cone.

Proof By definition, x ∈ projx(Z) if, and only if, the set {y ∈Rq : By≤ b−Ax} is nonempty. By

Farkas’s Lemma, it is equivalent to ask that uT (b−Ax)≥ 0, for all u ∈U . As U is a polyhedral

cone, it suffices to consider the subset of these inequalities related to the extreme directions of U .

�

It is worth to mention that not every extreme direction of the projection cone induces

a facet of projx(Z). (BALAS, 1998) introduced a transformation that produces another cone

whose extreme directions induce facets of the projection. Regardless, it is not an easy task to

relate facets of the original and projected polyhedra. Valid inequalities for these sets are more

easily related though. In particular, those valid for projx(Z) are trivially valid for Z.

Proposition 2.2.10 If πT x≤ π0 is valid for projx(Z), then πT x≤ π0 is valid for Z.

Proof Suppose that πT x ≤ π0 is valid for projx(Z). Let (x̄, ȳ) ∈ Z. Then, x̄ ∈ projx(Z) and so

πT x̄≤ π0. Hence, (x̄, ȳ) satisfies the inequality πT x≤ π0, which is then valid for Z. �

On the other hand, we can use Theorem 2.2.9 to derive valid inequalities for projx(Z)

from valid inequalities for Z, for example as follows.

Proposition 2.2.11 If πT x+λ T y≤ π0 is valid for Z = {(x,y) ∈ Rp×Rq : Ax+By≤ b}, then

(π +π ′)T x≤ π0 +π ′0 is valid for projx(Z) for every (π ′,π ′0) ∈ Rp×R such that U ′ := {u≥ 0 :

uT A = (π ′)T ,uT B =−λ T} 6= /0 and π ′0 ≥max{uT b : u ∈U ′}.

Proof Suppose that πT x+λ T y ≤ π0 is valid for Z. Then, Z = {(x,y) ∈ Rp×Rq : Ax+By ≤

b,πT x + λ T y ≤ π0}. Let (π ′,π ′0) ∈ Rp ×R such that U ′ := {u ≥ 0 : uT A = (π ′)T ,uT B =

−λ T} 6= /0 and π ′0 ≥ max{uT b : u ∈ U ′}. Let ū ∈ U ′. Observe that (ū,1) ∈ {(u,v) ≥ 0 :

uT B+ vλ T = 0}. Using the equivalent expression of Z and Theorem 2.2.9, we conclude that

(ūT A+πT )x≤ ūT b+π0 is valid for projx(Z). Since (π ′)T = ūT A and π ′0 ≥ ūT b, it follows that
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(π +π ′)T x≤ π0 +π ′0 is valid for projx(Z). �

Corollary 2.2.12 If πT x≤ π0 is valid for Z, then πT x≤ π0 is valid for projx(Z).

The dimension of projx(Z) can be inferred from the dimension of Z ((BALAS;

OOSTEN, 1998)). In particular, full-dimensional polyhedra are projected onto full-dimensional

polyhedra.

Proposition 2.2.13 If dim(Z) = p+q then dim(projx(Z)) = p.

Proof Suppose that dim(projx(Z))< p. Then, there is an equality πT x = π0 satisfied by every

point x ∈ projx(Z). Therefore, it is also satisfied by every point (x,y) ∈ Z, which implies that

dim(Z)< p+q. �

As a particular case of Proposition 2.2.8, we have the following property.

Proposition 2.2.14 Let Z ⊆ Rp×Rq. Then, projx(conv(Z)) = conv(projx(Z)).

Results and other concepts about polyhedra, linear programming, duality, branch-

and-bound and branch-and-cut can be found in (FERREIRA; WAKABAYASHI, 1996), (SCH-

RIJVER, 1986), (NEMHAUSER; WOLSEY, 1988).

2.3 The set covering problem

Let U = {e1, . . . ,em} be a finite set of elements, S = {S1, . . . ,Sn} be a given collec-

tion of subsets of U and c = (c1, . . . ,cn) be a vector of costs, where c j ≥ 0, ∀ j = 1, . . . ,n. Let F

be an index subset of {1, . . . ,n}. F is said to cover U if
⋃

j∈F S j =U . The cost of F is ∑ j∈F c j.

The set covering problem consists in determining a minimum-cost cover of U , if it

exists. Note that
⋃n

j=1 S j 6=U implies that there is no solution for the problem. The set covering

problem can be stated as

(SC) min{cT x | Ax≥ 1, x ∈ {0,1}n},
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where A = (ai j) is an m×n matrix with ai j ∈ {0,1}, ∀i, j, and ai j = 1 if, and only if, ei ∈ S j. We

use 1 as the m-vector of 1’s. For a given general 0-1 matrix A, this problem is NP-hard ((KARP,

1972)).

The set covering polytope is defined as

PI(A) := conv{x ∈ Rn | Ax≥ 1, 0≤ x≤ 1, x integer}.

We also consider the polytope related to the linear relaxation of (SC):

P(A) := conv{x ∈ Rn | Ax≥ 1, 0≤ x≤ 1}.

Let M and N be the row and column index sets, respectively, of A. Assume that A has no zero

rows or zero columns. From (BALAS; NG, 1989), we have the following statements about the

set covering problem (SC):

1. PI(A) is full-dimensional if and only if ∑
n
j=1 ai j ≥ 2 for all i ∈M.

In the following we assume that PI(A) is full-dimensional.

2. All facet defining inequalities αx≥ α0 for PI(A) have α ≥ 0 if α0 > 0.

3. The inequality

n

∑
j=1

ai jx j ≥ 1

defines a facet of PI(A) if and only if

(F’1) there exists no k ∈M with ak j ≤ ai j, ∀ j ∈ N, and ∑
n
j=1 ak j < ∑

n
j=1 ai j;

(F’2) for each k such that aik = 0, there exists j(k) such that ai j(k) = 1 and ah j(k) = 1 for

all h ∈M0(k) := {h ∈M | ahk = 1 and ah j = 0,∀ j 6= k, such that ai j = 0}.

4. The only minimal valid inequalities (hence the only facet-defining inequalities) for PI(A)

with integer coefficients and right-hand side equal to 1 are those of the system Ax≥ 1.

More results about valid inequalities and facet-defining properties for the set covering

problem can be found in (CORNUÉJOLS; SASSANO, 1989) and (SÁNCHEZ-GARCÍA et al.,

1998).
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3 EUCLIDEAN CLASSIFICATION PROBLEM

In this chapter, we formalize the Euclidean classification problem in a multidimensi-

onal space. Then, we show some solution methods based on mathematical programming found

in the literature.

The elementary Euclidean classification problem in two classes can be described

as follows. Let S = {s1, . . . ,sm} be a set of samples such that, for all i ∈ [m], [m] = {1, . . . ,m},

we have si = (xi,yi), xi ∈ Rd , d ≥ 1 and yi ∈ {1,2}. The value of yi indicates the class which

point xi belongs to. We use the notation X = {x1, . . . ,xm} for the set of points associated with

S , which is partitioned into X1 = {xi ∈X | yi = 1} and X2 = {xi ∈X | yi = 2}. The general

objective of the classification problem is a partitioning of the Rd space, based on the partition

X1, X2 of the samples, and the assignment of each part to exactly one of the two classes. So, if

R⊆ Rd is the part assigned to class y ∈ {1,2}, then every point x ∈ R is classified as belonging

to class y. The set associated with class y corresponds to the pattern established for this class.

Figure 1 – Example of the Euclidean classification problem in R2. Circles are points of class 1,
while squares represent points of class 2.

An example of instance for this classification problem is illustrated in Figure 1 where

the marked line partitions the R2 space into two parts on the underlying pattern established by

the points of each class. In this figure, it is shown the set of samples and a partitioning of the

space. The situation in this example is such that the determination of the existing pattern in

both classes is relatively simple. A bit more complex situation is illustrated in Figure 2 where

there are class 1 points in the “middle"of class 2 points, and vice-versa. One sample si ∈ S is an

outlier (or a discrepant point) if yi is inconsistent with the value of xi according to the pattern
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established for class yi. When sample si is an outlier, we also say that the corresponding point xi

is an outlier. An example of such a situation is shown in Figure 2. In this case, the partitioning

presented in Figure 1 still seems to be a good solution. Its determination, however, requires the

detection of the outliers and their disregard in the recognition of the patterns.

A generalization of this classification problem consists in considering multiple

classes, that is, more than two classes. It is an interesting problem due to many associated

applications. In this thesis, however, we only focus on the classification problem with two

classes.

Figure 2 – Example of Figure 1 in which some points are misclassified, becoming discrepant
points.

There are several solution methods for the Euclidean classification problem that are

based on mathematical programming. Some of the most studied ones are summarized below.

In this text, these methods are divided according to how the samples are separated to form the

desired partition.

3.1 Linear separation

As in the example illustrated in Figure 1, the partitioning using linear separation

is defined by a hyperplane pT x+q = 0, p ∈ Rd and q ∈ R. The classification of a point x′ is

made according to the Euclidean position in relation to that hyperplane. There are two possible

cases: if pT x′+q < 0, then x′ is classified in class 1; otherwise, class 2 is used to classify x′.

The existence of such a separating hyperplane, that correctly classifies every sample in S, is only

ensured if this set has a special characteristic.
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A set of S samples is linearly separable if the convex hulls of X1 and X2 are disjoint.

In mathematical terms, a necessary and sufficient condition for S to be linearly separable is that

there is no λ = (λ1, . . . ,λm) such that

∑
i∈[m],yi=1

λixi = ∑
i∈[m],yi=2

λixi,

∑
i∈[m],yi=1

λi = 1,

∑
i∈[m],yi=2

λi = 1.

Then, Farkas’s lemma allows us to conclude that a set of samples is linearly separable if, and

only if, there are p ∈ Rd and q,r ∈ R such that

r−q < 0

pT xi +q≤ 0, i ∈ [m],yi = 1 (3.1)

pT xi + r ≥ 0, i ∈ [m],yi = 2.

Since there is no constraint on the signal of q and r, we can define δ = q− r and then

express condition (3.1) equivalently as the non-emptiness of any of the sets (a)− (d) defined in

Figure 3.

Figure 3 – Equivalent conditions for the existence of linear separation.

In particular, if S is linearly separable, then condition (c) in Figure 3 indicates that

there exist p, q and δ > 0 such that pT xi + q ≤ −δ is satisfied for all xi ∈ S with yi = 1, and

pT xi +q≥ δ is satisfied for all xi ∈ S with yi = 2. Since p and q can be chosen such that δ = 1,

we get the condition (d) shown in Figure 3. Therefore, given p and q satisfying (d), the linear

separation is given by the hyperplane pT x+q = 0.
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Figure 4 – Example of a separating hyperplane and margins of the classes for the example of
Figure 1.

If a set of samples S is linearly separable, there may be several separating hyperplanes

(satisfying (d)). In order to express the quality of a separator, the concept of margin is useful. A

margin of a class is a hyperplane defining a face of the convex hull of the points in that class.

If the set is linearly separable, there are parallel margins for the two classes. A good separator

would lie halfway between them.

A well-known quadratic programming formulation aims at finding a linear separator

satisfying (d) that maximizes the distance to the margins of the two classes.

Precisely, if the margins are defined by pT x+ q = −ε and pT x+ q = ε , then the

distance between them is equal to 2ε

||p|| . Thus, maximizing such a distance is equivalent to

minimizing ||p|| or still ptp. This results in the formulation:

min
1
2

pT p

s. t. pT xi +q≤−1, i ∈ [m],yi = 1,

pT xi +q≥ 1, i ∈ [m],yi = 2,

p ∈ Rd,

q ∈ R.

A solution to this formulation, with the separating hyperplane and margins of the classes, is

shown in Figure 4. Note that the separating hyperplane is defined by pT x+q = 0.

The above formulation leads to a solution method known as SVM (Support Vectors

Machine), which is very efficient for linearly separable sample sets, according to several empirical

studies.
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3.2 Outlier points

Naturally, there are cases of sample sets that are not linearly separable, which occur

very often in practice. One reason for that is the presence of outliers (see Figure 2). In this case,

the classification problem can be defined as:

Problem 1. 2-class Single-group Euclidean Classification Problem:

Given the Euclidean space of dimension d, sets of initially classified samples X1

(blue points) and X2 (red points), find subsets A1 ⊆X1 and A2 ⊂X2 such that

conv(A1)∩ conv(A2) = /0, and (3.2)

|(X1\A1)∪ (X2\A2)| is minimum. (3.3)

The subsets A1 and A2 consist of the non outlier points of each class. Thus, (X1\A1)∪ (X2\A2)

is the set of all outlier points. Condition (3.2) states that the sample set becomes linearly separable

when disregarding the outliers. So, it ensures the existence of a separating hyperplane which

leads to a classification of any initially non-classified point in Rd , according to the half-space it

belongs to. Besides, we want to find a solution with the minimum number of outliers, which is

required by (3.3).

In such cases where outliers appear, the SVM method loses much of its efficiency,

justifying the search for alternative formulations. One of these formulations is the following

linear programming model derived by (BERTSIMAS; SHIODA, 2007):

min ∑i∈[m] εi

s. t. pT xi +q≤−1+ εi, i ∈ [m],yi = 1,

pT xi +q≥ 1− εi, i ∈ [m],yi = 2,

εi ≥ 0, i ∈ [m],

p ∈ Rd,

q ∈ R.

Note that, instead of minimizing the number of outliers, the formulation minimizes

the total violation (distance from an outlier to the half-space assigned with class yi).
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The formulation above separates the samples to minimize the violations εi, for all

i ∈ [m]. If S is linearly separable, the optimal value of this problem is 0. Otherwise, the points

xi ∈ X with εi > 0 are considered outliers, and the remaining points are separated by the

hyperplane defined by p and q.

A mixed integer programming formulation can be obtained from the previous linear

formulation. It seeks to minimize the number of samples considered as outliers. Such a

formulation, inspired by the formulation of (BERTSIMAS; SHIODA, 2007), uses the following

variables:

• Binary variable: oi = 1, if si is an outlier, and oi = 0 otherwise.

• Real variables: p and q to define the separating hyperplane.

• Positive constant: M (big enough).

min ∑i∈[m] oi

s. t. pT xi +q≤−1+Moi, i ∈ [m],yi = 1,

pT xi +q≥ 1−Moi, i ∈ [m],yi = 2,

oi ∈ {0,1}, i ∈ [m],

p ∈ Rd,

q ∈ R.

The formulation above is quite similar to the previous one. The difference is that

the real variables εi are replaced by the binary variables oi, for all i ∈ [m]. These new variables

are used only to determine if an initially classified point (sample) is an outlier (oi = 1) or not

(oi = 0). Thus, if si is considered as an outlier, the corresponding separator constraint must be

ignored, which is assured by the big positive constant in the right-hand side.

Finally, a pure integer formulation is also found in the literature ((BLAUM et al.,

2019a)). It only uses variables oi ∈ {0,1}, for all i ∈ [m], to determine if si is an outlier or not 1.
1 Actually, the original formulation in (BLAUM et al., 2019a) uses variables ai = 1− oi, i ∈ [m], instead, to

indicate whether xi is not an outlier. We preferred to replace the variables to keep the correspondence with other
formulations presented in this work.
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It is

(ILPE)min ∑
i∈[m]

oi

s. t. conv({si | oi = 0,yi = 1})∩ conv({si | oi = 0,yi = 2}) = /0, (3.4)

oi ∈ Bm. (3.5)

We denote by PE the convex hull of the points satisfying constraints (3.4) and (3.5). It is worth

noting that the linear separation constraint (3.4) in the formulation can be modeled by the

inequalities

∑
xi∈S∪T

oi ≥ 1. (3.6)

for every S ⊆X1 and every T ⊆X2 such that S and T are linearly inseparable, i.e. conv(S)∩

conv(T ) 6= /0. (BLAUM et al., 2019a) studied the polytope associated with ILPE .

3.2.1 N -Set inequalities

In order to derive valid inequalities for ILPE and study facetness properties, (BLAUM

et al., 2019a) introduced the following definition and notation. Let (S⊆X1,T ⊆X2) be linearly

inseparable. An N -set for (S,T ) is a minimal N ⊆ S∪ T such that (S\N,T\N) is linearly

separable. Let N (S,T ) = {N ⊆ S∪T | N is an N -set for (S,T )} and, for each xi ∈ S∪T ,

νi = min{|N| | N ∈N (S,T ),xi ∈ N}.

We assume that νi = ∞ if {N ∈N (S,T ) | xi ∈N}= /0 and 1
∞
= 0. Also, we say that N is a perfect

N -set for (S,T ) if νi = |N| for all xi ∈N. We define N ∗(S,T ) = {N |N is a perfect N -set for

(S,T )}.

Lemma 3.2.1 Let (S⊆X1,T ⊆X2) be linearly inseparable. The following N -set inequality

is valid for PE:

∑
xi∈S∪T

oi

νi
≥ 1. (3.7)

Proof Let ō be a feasible solution for ILPE and N′ = {xi ∈ S∪T | ōi = 1}. Since ō is a fe-

asible solution, N′ 6= /0. Then, there exists N ⊆ N′ such that N ∈ N (S,T ), which leads to

∑xi∈S∪T
ōi
νi
= ∑xi∈N′

1
νi
≥ ∑xi∈N

1
νi
≥ ∑xi∈N

1
|N| = 1, as νi ≤ |N|,∀xi ∈ N. �
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Figure 5 – Examples of N -set inequalities that define facets of PE ((BLAUM et al., 2019a)).

Figure 5 shows some examples of such inequalities. In each example, the depicted

points define a linearly inseparable (S,T ) pair. By the theorem below, these examples define

facets of PE .

Theorem 3.2.2 ((CORRÊA et al., 2019)) The inequality (3.7) defines a facet of PE if (|T |= 1

or (|T | = 2 and T ∩ conv(S) = /0)) and S is minimal with respect to the property conv(T )∩

conv(S) 6= /0 (i.e., conv(T )∩ conv(S′) = /0, for every S′ ⊂ S).

It is worth observing that the formulations presented in this subsection assume

that the reason for the samples set to be linearly inseparable is solely the presence of outliers.

However, there are cases in which the linear inseparability is due to the own nature of the

samples set (see Figure 6). A way of dealing with such a situation is to transform the samples

si = (xi,yi) ∈ S to samples (g(xi),yi), where g is a function that maps a point xi ∈ Rd to a point

in an Euclidean space of dimension d′ greater than d. The transformation aims to turn the set of

transformed samples linearly separable. Thus, finding a separating hyperplane in such a higher

dimension space corresponds to a non-linear separation in the original space Rd . This strategy,

when used with SVM, may lead to an efficient classification method when the set of samples

does not contain discrepant points. However, one may need to consider a very high dimension d′

when the samples are highly linearly inseparable.

Another way to deal with non-linear separability is discussed next.
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Figure 6 – An instance for the classification problem in which the sample set is linearly insepara-
ble and poorly classified with a single separating hyperplane.

3.3 Piecewise linear separation

We now show a piecewise linear separation approach for classification and present

two integer linear programming models. This separation approach is best suited to cases where

the set of samples is linearly inseparable due to its own nature. To deal with this scenario, the idea

is to partition X1 and X2 into subsets, called groups, for better identification of the underlying

patterns, while simultaneously eliminating discrepant points. As a result, we have the families

{X 1
1 , . . . ,X L1

1 } and {X 1
2 , . . . ,X L2

2 }, where L1 and L2 are constants previously defined. A

constraint is imposed for the grouping, namely: after the removal of the discovered discrepant

points, the subset of points in X k
1 ∪X l

2 , k ∈ {1, . . . ,L1}= [L1] and l ∈ {1, . . . ,L2}= [L2], must

be linearly separable (see Figure 7). The linear separation of each pair (X k
1 ,X

l
2 ) generates a

separating hyperplane pT
k,lx+qk,l = 0, which separates the space into two half-spaces, leaving

the points of X k
1 within one of them and the points of X l

2 within the other one. For each

k ∈ [L1], the polyhedron of group k is given by the intersection of the half-spaces defined by the

hyperplanes separating X k
1 and X l

2 , for each l ∈ [L2]. The union of the polyhedra of all groups

in [L1] form the points of the space assigned to class 1. The points assigned to class 2 are those

of the polyhedra of groups l ∈ [L2], similarly defined. Notice that there may exist a point not

covered by the union of these polyhedra. The class of any such a point is arbitrarily chosen (see

Figure 7).

This classification problem can be defined as below:

Problem 2. 2-class Multi-group Euclidean Classification Problem:
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Given the Euclidean space of dimension d, sets of initially classified samples X1

(blue points) and X2 (red points), and upper bounding parameters L1, L2, find groups Ak ⊆X1,

k ∈ [L1], and Ak′ ⊂X2, k′ ∈ [L2], such that

1. conv(Ak)∩ conv(Ak′) = /0, for all k ∈ [L1], k′ ∈ [L2], and

2. |X1∪X2|− |(
⋃

k Ak∪
⋃

k′ Ak′)| is minimum (which is the number of outlier points).

For any k ∈ [L1], conv(Ak) is called a blue (class 1) convex set. Similarly, we name

conv(Ak′) the red (class 2) convex sets. Thus, points in (Rd\(X1∪X2)) that belong to a blue

(resp., red) convex set are set to the blue (resp., red) class. If a point xi ∈X1 (resp., xi ∈X2)

does not belong to
⋃

k Ak (resp.,
⋃

k′ Ak′), then xi is an outlier. It may happen that a point in

(Rd\(X1∪X2)) does not belong to any colored convex set. In such cases, we arbitrarily choose

a class for it. An example of a solution in such a form is illustrated in Figure 7.

Figure 7 – Hyperplanes to separate each pair of groups of opposite classes for the example of
Figure 6, with L1 = L2 = 2.

A general mathematical formulation for this approach is given by the model described

in (BERTSIMAS; SHIODA, 2007) and (SHIODA, 2003). Its associated polyhedron is studied in

(CORRÊA et al., 2019). The variables for this formulation are:

• Binary variables: aki = 1, if xi ∈X k
yi

, and aki = 0 otherwise, for all i ∈ [m] and k ∈ [Lyi].

The role of this variable is to activate the corresponding separation constraint in the

formulations below only if point xi is assigned to group k.

• Real variables: εi ≥ 0. Used to indicate how much a point xi ∈X violates any separating

hyperplane constraint, if it is the case.
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• Real variables: pT
kl and qkl to define the separating hyperplanes for each k ∈ [L1] and

l ∈ [L2].

• Positive constant: M (big enough).

With these elements, two formulations arise:

• Formulation minimizing outlier violations:

min ∑i∈[m] εi

s. t. pT
klxi +qkl ≤M− (M+1)aki + εi, i ∈ [m],yi = 1,k ∈ [L1], l ∈ [L2],

pT
klxi +qkl ≥−M+(M+1)ali− εi, i ∈ [m],yi = 2,k ∈ [L1], l ∈ [L2],

∑k∈[Lyi ]
aki = 1, i ∈ [m],

aki ∈ {0,1}, i ∈ [m],k ∈ [Lyi],

εi ≥ 0, i ∈ [m],

pkl ∈ Rd, k ∈ [L1], l ∈ [L2],

qkl ∈ R, k ∈ [L1], l ∈ [L2].

• Formulation minimizing the amount of outliers:

max ∑i∈[m]∑k∈[Lyi ]
aki

s. t. pT
klxi +qkl ≤M− (M+1)aki, i ∈ [m],yi = 1,k ∈ [L1], l ∈ [L2],

pT
klxi +qkl ≥−M+(M+1)ali, i ∈ [m],yi = 2,k ∈ [L1], l ∈ [L2],

∑k∈[Lyi ]
aki ≤ 1, i ∈ [m],

aki ∈ {0,1}, i ∈ [m],k ∈ [Lyi], (3.8)

pkl ∈ Rd, k ∈ [L1], l ∈ [L2],

qkl ∈ R, k ∈ [L1], l ∈ [L2].

Each of the formulations above defines one separating hyperplane for each pair of

groups of opposite classes, precisely pT
klx+qkl = 0, for each k ∈ [L1] and l ∈ [L2]. The difference

between the formulations is that the first one determines the outlier points using the ε variables

(εi > 0 if, and only if, xi ∈S is an outlier) while the second one determines them by the variables

a (∑k∈[Lyi ]
aki = 0 means xi is an outlier).

These formulations include a relatively large amount of binary variables. In (BERT-

SIMAS; SHIODA, 2007), a strategy is presented to reduce this number of variables through a
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prior step of clustering, and then a later grouping of the clusters thus obtained. In (CORRÊA

et al., 2019), the authors explore the integer programming aspects of the classification part of

CRIO ((BERTSIMAS; SHIODA, 2007)). They deduce facet-inducing inequalities coming from

the stable set polytope, showing that this classification problem has exploitable combinatorial

properties.

In the next chapter, we define a new classification problem, called geodesic classifi-

cation problem, which has similarities between samples defined by non-numerical relations. The

solution method for such a new problem was inspired by formulation ILPE , as we can see in the

integer formulation models also in the next chapter. Thus, we focus on minimizing the number

of outliers as the objective criterion of the problem.
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4 GEODESIC CLASSIFICATION PROBLEM

In this chapter, we define the notions of linear separation and classification on graphs

using the geodesic convexity. We define convexity constraints to be used to classify data on

graphs and study the associated polyhedron.

When we use a graph to model similarities, the vertices represent the elements of a

universe while an edge between two vertices indicates some notion of similarity between them.

Thus, by making a parallel between the graph and the Euclidean counterpart, we can use the

former as input for a classification problem. Precisely, we are given a connected graph G where

two disjoint subsets VB,VR ⊆ V (G) are identified, respectively, as belonging to the blue and

red classes. These are called initially classified vertices and correspond to the samples. The

remaining ones are the unclassified (neutral) vertices and define the set VN . These vertices are

the analog of the points in the space different from the samples. An example of such a graph, to

be called classification graph, is illustrated in Figure 8.

Figure 8 – An example of a classification graph. The filled vertices are those associated with the
two classes.

The goal is to classify the vertices in VN as blue or red by partitioning the vertices

of the classification graph according to some convexity pattern (e.g., geodesic convexity). See

Figure 9.

In the classification context, a mapping from points in the space to a classification

graph can be obtained by defining an edge for each pair of points that are within a certain

threshold distance. However, other similarity metrics can be applied. The classification graph

can model classification scenarios where the objects are not numerically encoded, and similarities

are measured by taking into account qualitative information. Most prominent examples are
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Figure 9 – Vertex partition of a classification graph according to the geodesic convexity.

complex networks, such as social networks, networks of citations of scientific articles, etc.

An analogy between the convexity concepts in discrete and continuous mathematics can be

established if we consider the vertex set of a connected graph and the distance between vertices

as a metric space. Thus, a vertex v is a convex combination of two other vertices u and w if v

belongs to a shortest path between u and w (geodesic convexity). Other definitions of convexity

on graphs have already been studied.

In analogy to the Euclidean version of the classification problem, we introduce the

following definition.

Definition 4.0.1 A triple (AB ⊆VB,AR ⊆VR,AN ⊆VN) is linearly separable (with respect to G)

if

(C1) H[AB]∩AR = /0,

(C2) H[AR]∩AB = /0, and

(C3) H[AB]∩H[AR]∩AN = /0,

and linearly inseparable otherwise. For the sake of simplicity, we refer to (AB,AR,AN) as (AB,AR)

if AN =VN .

Recall that the convex hull H[S] of S⊆V is the minimum convex set (related to the

geodesic convexity) containing S. The subsets AB and AR are called the basis of the blue and red

classes, respectively. Each basis spans on the graph through an operator to express the pattern of

the corresponding class. In this case, the operator is given by the convex hull.
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Figure 10 presents a classification graph where the filled circles represent the vertices

in VB (blue vertices) and the squares represent the vertices in VR (red vertices). In this example,

(VB,VR) is linearly inseparable. Indeed, v is simultaneously in a shortest path between two

red vertices (v1,v2) and two blue vertices (v3,v4). Thus, v ∈ H[VB]∩H[VR] so that condition

(C3) is violated for (AB,AR) = (VB,VR). However, (VB \{vi},VR), for any i ∈ {3,4}, as well as

(VB,VR \{vi}), for any i ∈ {1,2}, are linearly separable.

As a parallel with the Euclidean case, we say that (VB,VR) “becomes"linearly separa-

ble when considering any of v1, v2, v3, v4 as an outlier. This separation leads to the classification

of the vertices in VN . For instance, if we consider v4 as an outlier, we get the classification

depicted in Figure 11. It is worth remarking that considering a vertex w ∈VB∪VR as an outlier

does not mean removing it from the graph. It only signifies that w is considered neither red nor

blue when calculating the convex hull of the red vertices or blue vertices.

Figure 10 – An example of a classification graph where (VB,VR) is linearly inseparable and
(VB \{v4},VR) is linearly separable. Filled circles are vertices of VB, while squares
are vertices of VR.

Figure 11 – An example of solution with an outlier for the example of Figure 10.

In terms of the linear separability defined above, we could say that (AB,AR) is line-

arly separable if, and only if, (VB,VR) becomes linearly separable when VB \AB and VR \AR are

taken as outliers. Consequently, the class of any unclassified vertex can be established. With this

in mind, we can introduce the geodesic classification problem associated with G, VB and VR. It
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consists of determining the smallest number of outlier vertices in order to make (VB,VR) linearly

separable. More formally, we define:

Problem 3. 2-class Single-group Geodesic Classification Problem (2-SGC):

Given a connected graph G = (V,E), sets of initially classified vertices VB (blue

vertices) and VR (red vertices), and VN =V\(VBR), find subsets AB ⊆VB, AR ⊆VR such that:

(C0) (AB,AR) satisfies (C1), (C2) and (C3), and

(C4) |VBR|− |AB∪AR| is minimum.

The vertices in VBR \ (AB∪AR) are the outliers. Conditions (C1) and (C2) ensure

that if an initially classified vertex i belongs to the convex hull of the non-outlier vertices of

its opposite class, then i must be an outlier, i.e., i 6∈ AB∪AR. Since every initially unclassified

vertex needs to be assigned to exactly one class, it must belong to at most one convex hull of

non-outliers of the same class. This is guaranteed by Condition (C3). Moreover, we want to find

a solution with the minimum number of outliers, which is required by Condition (C4).

It is worth observing that Problem 2-SGC always has a solution. In the worst case,

we could consider all initially classified vertices of a class as outliers. Besides, note that we can

define this classification problem using other objective functions. However, to implement an

application of the geodesic convexity approach for computational experiments, we use the same

objective function (minimization of the number of outliers) as in ILPE (see Section 3.2).

Any feasible solution (AB,AR) of Problem 2-SGC defines a mapping from V onto

{blue,red}, which classifies all neutral vertices in H[AB] as blue class ones and all neutral vertices

in H[AR] as red class ones. Note that there may exist vertices in VN ∩ (V \ (H[AB]∪H[AR])).

However, the classification of such vertices is not in the scope of this work. Due to the outliers

and the vertices in VN ∩ (V \ (H[AB]∪H[AR])), each class does not necessarily define a convex

set. Besides, (H[AB],H[AR]) is neither a covering nor a packing of the vertices of G.

Observe that the definition of linear separability for the geodesic classification

(Conditions (C1)-(C3)) is different from the Euclidean counterpart (Constraint (3.2)). It is

because the relaxed conditions (C1)-(C3) allow to have more feasible solutions that are more

likely to appear in the geodesic version of the classification problem. As an example, consider

the picture in Figure 12. If we define the linear separability in the geodesic version as H[AB]∩
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H[AR] = /0, instead of (C1)-(C3), then we could not have (AB = {v5,v6},AR ⊆ {v1,v2,v3,v4}),

with |AR|> 1, as a feasible solution, since H[AB]∩H[AR] 6= /0.

Figure 12 – An example where H[AB]∩H[AR] 6= /0 but H[AB]∩H[AR]∩VN = /0 in the geodesic
classification problem, for AB =VB and AR =VR \{v3,v4}.

4.1 Integer formulations for the 2-SGC problem

We present two integer linear formulations for the 2-SGC Problem and show that

one is a projection of the other. The first formulation has a linear number of variables but an

exponential number of constraints, whereas the second one has more variables but a polynomial

number of constraints. An interesting feature of the first model is that it expresses the 2-SGC

problem as a set covering problem. Thus, we can take advantage of well-known results from the

literature.

4.1.1 A set covering formulation for the 2-SGC problem

For the first integer linear formulation, we define a binary variable oi for each vertex

i ∈VBR. A vertex i ∈VBR is an outlier if, and only if, oi = 1. Thus, we have

oi =

 1, if i ∈VBR \ (AB∪AR),

0, if i ∈ (AB∪AR).

For every i ∈VBR, let K(i) ∈ {B,R} be the class of vertex i and K̄(i) be the opposite

class to K(i). Besides, if K ∈ {B,R}, then K̄ is the opposite class to K. Then, the following set

covering formulation is valid for the 2-SGC Problem.

(ILP1) min ∑
i∈VBR

oi

st: ∑
j∈S∪{i}

o j ≥ 1, ∀i ∈VBR,∀S⊆VK̄(i) : i ∈ H[S], (4.1)

∑
j∈S∪T

o j ≥ 1, ∀S⊆VB,∀T ⊆VR : H[S]∩H[T ]∩VN 6= /0, (4.2)

o ∈ B|VBR|. (4.3)
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Proposition 4.1.1 Formulation ILP1 is correct.

Proof Let o∈B|VBR| be a feasible solution of ILP1. Define AK = {i∈VK : oi = 0}, for K ∈{B,R}.

Suppose that condition (C1) is not satisfied. Then, there exists i∈AR∩H[AB]. Let S =AB⊆VK̄(i).

Then, o j = 0 for all j ∈ S∪{i}, which violates a constraint in (4.1): a contradiction. Similarly, we

show that condition (C2) holds. Now, suppose that condition (C3) is violated. Thus, constraint

(4.2) is violated for S = AB and T = AR: a contradiction. Therefore, (C1)-(C3) are satisfied.

Now, let AB ⊆ VB and AR ⊆ VR satisfying (C1)-(C3). Define o ∈ B|VBR| such that

oi = 0 if, and only if, i ∈ AB∪AR. We first consider constraints (4.1). Let i ∈VR and S⊆VB such

that i ∈ H[S]. If S⊆ AB, by condition (C1) we must have i ∈VR \AR, and so oi = 1. Otherwise,

there is j ∈ S such that j ∈ VB \AB, and so o j = 1. In both cases, constraint (4.1) is satisfied.

Using condition (C2), we get a similar result for i ∈ VB and S ⊆ VR. To consider constraints

(4.2), let S ⊆ VB and T ⊆ VR such that H[S]∩H[T ]∩VN 6= /0. By condition (C3), S \AB 6= /0

or T \AR 6= /0. Therefore, there is j ∈ S∪T such that o j = 1, showing that constraint (4.2) is

satisfied.

By the definition of the variables, the objective function trivially sums the number of

vertices in VBR \ (AB∪AR), which has to be minimized. �

Consider the following subset of constraints of ILP1:

∑
j∈S∪{i}

o j ≥ 1, ∀i ∈VBR,∀S⊆VK̄(i) : i ∈ H[S],S minimal, (4.4)

∑
j∈S∪T

o j ≥ 1, ∀S⊆VB,∀T ⊆VR : H[S]∩H[T ]∩VN 6= /0, (4.5)

H[S]∩T = H[T ]∩S = /0,S∪T minimal,

where, in (4.4), S is minimal with regard to i ∈ H[S] (i.e, i 6∈ H[S\{u}], for every u ∈ S) and, in

(4.5), S∪T is minimal with regard to H[S]∩H[T ]∩VN 6= /0 (i.e, H[S\{u}]∩H[T ]∩VN = /0, for

every u ∈ S, and H[S]∩H[T\{v}]∩VN = /0, for every v ∈ T ).

We show that every constraint in (4.1)-(4.2) not belonging to (4.4)-(4.5) is redundant.

Proposition 4.1.2 Constraints (4.1) and (4.2) are dominated by (4.4) and (4.5).
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Proof Let K ∈ {B,R}, S ⊆ VK and i ∈ VK̄ such that S is not minimal with regard to i ∈ H[S].

Then, there is N ⊂ S, N 6= /0, such that i ∈ H[S\N] and S\N is minimal. So, ∑ j∈(S\N)∪{i} o j ≥ 1

is valid for ILP1 and dominates ∑ j∈S∪{i} o j ≥ 1. Therefore, (4.1) is dominated by (4.4).

Now, let S⊆VB and T ⊆VR such that H[S]∩T = H[T ]∩S = /0 is not true or S∪T is

not minimal with regard to H[S]∩H[T ]∩VN 6= /0. First, observe that, if H[S]∩T = H[T ]∩S = /0

is not true, then H[S]∩T 6= /0 or H[T ]∩S 6= /0. In both cases, (4.2) is dominated by (4.1) and,

consequently, by (4.4). If S∪T is not minimal with regard to H[S]∩H[T ]∩VN 6= /0, then there

is N ⊂ S∪ T , N 6= /0, such that H[S\N]∩H[T\N]∩VN 6= /0 and (S∪ T \N) is minimal. So,

∑ j∈S∪T o j ≥ 1 is dominated by ∑ j∈(S∪T )\N o j ≥ 1. It implies that (4.2) is dominated by (4.5). �

4.1.2 ILP1’s polyhedron

In this section, we study the polyhedron associated with the formulation ILP1. Since

ILP1 forms a set covering problem, some of the proofs can be obtained as corollaries of the

theorems in (BALAS; NG, 1989). However, in these cases, we present an alternative proof

because parts of them are used in other following proofs.

Let P1 = conv({o ∈ B|VBR| | o satisfies (4.1) and (4.2)}) and |VBR| = n1. Next, we

prove two basic properties of P1.

Proposition 4.1.3 P1 is a full-dimensional polyhedron.

Proof Consider the following points in Rn1: f 0 = e and f 1, . . ., f n1 , where, for i ∈ {1, . . . ,n1},

f i = e− ei. Clearly, these are n1 +1 affinely independent points. To show that they are feasible

solutions of ILP1, first note that point f 0 has f 0
i = 1,∀i ∈ VBR, and so it satisfies constraints

(4.1) and (4.2). Let i ∈VBR. For point f i, there is only one vertex u such that f i
u = 0, which is

u = i. Observe that, for every constraint in (4.1), S is a non-empty set and i 6∈ S. Then, there is at

least one vertex j ∈ S such that j 6= i, and so f i
j = 1, which implies that f i satisfies (4.1). Since

every constraint in (4.2) involve two disjoint and non-empty subsets S and T , there is at least one

vertex j ∈ S∪T such that j 6= i, and so f i
j = 1, which yields that f i satisfies (4.2).

Therefore, P1 is a full-dimensional polyhedron. �

Proposition 4.1.4 Let πT o≥ π0 be a facet-defining inequality of P1. If it is different from oi ≤ 1

and oi ≥ 0, for all i ∈VBR, then π ≥ 0 and π0 > 0.



50

Proof Let i ∈VBR. Since the inequality is different from oi ≤ 1, the facet F := {o ∈ P1 : πT o =

π0} contains a point ō with ōi = 0. Besides, the point o′ such that o′j = ō j, for all j 6= i, and

o′i = 1 belongs to P1. Therefore, πT (o′− ō)≥ π0−π0 = 0, which leads to πi ≥ 0. Since π 6= 0,

there must be i ∈VBR such that πi > 0. As before, since the inequality is different from oi ≥ 0, it

contains a point ô with ôi = 1. Then, π0 = πT ô≥ πi > 0. �

4.2 N -set inequalities

Similarly to the Euclidean version, we use the following definitions. Let (S⊆VB,T ⊆

VR) be linearly inseparable according to Definition 4.0.1. An N -set for (S,T ) is a minimal

N ⊆ S∪ T such that (S\N,T\N) is linearly separable. We define N (S,T ) = {N ⊆ S∪ T |

N is an N -set for (S,T )}, and for each i ∈ S∪T ,

νi = min{|N| | N ∈N (S,T ), i ∈ N}.

We assume that νi = ∞ if {N ∈N (S,T ) | i ∈ N}= /0. Also, we say that N is a perfect N -set

for (S,T ) if νi = |N| for all i ∈ N. We define N ∗(S,T ) = {N | N is a perfect N -set for (S,T)}.

Observe that the concepts above are the same introduced by (BLAUM et al., 2019a) for the

Euclidean case, but now using the notion of linear separability given in Definition 4.0.1.

Proposition 4.2.1 Let (S⊆VB,T ⊆VR) be linearly inseparable. The following N -set inequality

is valid for P1:

∑
i∈S∪T

oi

νi
≥ 1. (4.6)

Proof Same proof of Proposition 3.2.1. �

In the expression of inequality (4.6) we can assume, without loss of generality, that

vi < ∞ for all i ∈ S∪T . Otherwise, (S \ I,T \ I), for I = {i ∈ S∪T | vi = ∞}, is also linearly

inseparable and defines the same inequality. If (S\ I,T \ I) were linearly separable, there would

be an N -set N ⊆ I ⊆ (S∪T ) and we would have vi < ∞ for all i ∈ N ⊆ I.

For each k ∈ N, the safe graph Gk
S,T = (V k

S,T ,E
k
S,T ) is defined by V k

S,T = {i ∈ S∪T |

νi = k} and Ek
S,T = {i j | ∃Ni,N j ∈N ∗(S,T ), i ∈ Ni, j ∈ N j,Ni4N j = {i, j}}. The union of all

such graphs is GS,T = (VS,T ,ES,T ) with VS,T =
⋃

k∈NV k
S,T and ES,T =

⋃
k∈NEk

S,T .
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This notion of safe graph was introduced by (CAMPÊLO et al., 2008) for the study

of the coloring polytope associated with the asymmetric representatives formulation. It is very

useful to prove general facetness conditions. Notice that the coloring problem can be seen

as a covering problem by independent sets. This notion was also used by (BLAUM et al.,

2019a) for their polyhedral studies associated with the Euclidean classification problem, where

Theorem 4.2.2, shown below, was introduced. This theorem shows sufficient conditions for

inequalities (4.6) to be facet-defining. Its proof is strongly inspired by the one in (BLAUM et al.,

2019b).

Theorem 4.2.2 Let (S⊆VB,T ⊆VR) be linearly inseparable. Then, (4.6) defines a facet of P1 if

all the following assertions hold:

(F1) for each k > 1, V k
S,T = /0 or (|V k

S,T |> 1 and Gk
S,T is connected), and

(F2) for each i ∈ VB\S (resp. j ∈ VR\T ), there exists an N ∈ N ∗(S,T ) such that (S ∪

{i}\N,T\N) (resp. (S\N,T ∪{ j}\N)) is linearly separable.

Proof Let F be the face of P1 defined by (4.6), and suppose λ T o = λ0 for every o ∈ F . For

N ∈N (S,T ), let oN be the solution defined by oN
i = 1 for i ∈ (VBR\(S∪T ))∪N, and oN

i = 0

otherwise. Since N is an N -set, then oN is feasible. Besides, if N is perfect, then vi = |N| for all

i ∈ N, and so ∑i∈S∪T
oN

i
νi

= ∑i∈N
1
|N| = 1. Therefore, oN ∈ F whenever N is perfect.

Now, observe that Gk
S,T is connected, for every k ∈ N. If k > 1, (F1) holds by

hypothesis. If k = 1, it is implied by the fact that G1
S,T is complete or empty.

Let i, j ∈ S∪T such that νi = ν j = k ∈ N. Then, i, j ∈V k
S,T . If i j ∈ Ek

S,T , then there

are two perfect N -sets Ni and N j such that i ∈ Ni, j ∈ N j and Ni4N j = {i, j}. Then, oNi ∈ F

and oN j ∈ F . Besides, these two solutions only differ in the variables oi and o j, and so we have

λi = λ j. If i j 6∈ Ek
S,T , we still get λi = λ j since Gk

S,T is connected.

Now, let i, j ∈ S∪T such that νi 6= ν j, νi,ν j ∈ N. Let k ∈ N such that i ∈ V k
S,T . If

i has at least one neighbor in Gk
S,T , then the hypothesis (F1) ensures the existence of a perfect

N -set Ni with i ∈ Ni and Ni ⊆V k
S,T . On the other hand, if i is an isolated vertex in Gk

S,T , then the

hypothesis (F1) ensures νi = k = 1, hence Ni = {i} is a perfect N -set. In any case, we have a

perfect N -set Ni such that |Ni|= νi and λl = λi for all l ∈ Ni. The same argument ensures the
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existence of a perfect N -set N j such that |N j|= ν j and λl = λ j for all l ∈ N j. This implies that

oNi ∈ F and oN j ∈ F , so λ T oNi = λ T oN j , hence νiλi = ν jλ j.

Let i ∈VB\S. By hypothesis (F2), let N ∈N ∗(S,T ) be such that (S∪{i}\N,T\N)

is linearly separable. This last condition implies that oN− ei is a feasible solution, where ei is

the i-th unit vector. Since N is perfect, we have oN ∈ F , and so oN− ei ∈ F because i 6∈ S∪T .

Hence, we get λi = 0. A similar argument allows us to conclude that λ j = 0 for every j ∈VR\T .

This implies that λ is a multiple of the coefficient vector of inequality (4.6), which

then defines a facet of P1. �

Let us call N -set elementary inequality an N -set inequality (4.6) related to a

linearly inseparable pair (S,T ) where νi = 1 for all i ∈ S∪T . In this case, we also say that (S,T )

is a linearly inseparable elementary pair.

For N -set elementary inequalities, we can specialize Theorem 4.2.2.

Corollary 4.2.3 Let (S ⊆ VB,T ⊆ VR) be a linearly inseparable elementary pair. The N -set

elementary inequality induced by (S,T ) is facet-defining for P1 if, and only if,

(FE) for each j ∈VB\S (resp. j ∈VR\T ), there exists l ∈ S∪T such that (S∪{ j}\{l},T\{l})

(resp. (S\{l},T ∪{ j}\{l})) is linearly separable.

Proof Consider a linearly inseparable elementary pair (S,T ). First, assume that (S,T ) satisfies

(FE). Since νi = 1 for all i ∈ S∪T , we have V k
S,T = /0 for all k > 1. Therefore, (F1) holds. In

addition, (FE) directly implies (F2). Thus, the N -set elementary inequality is facet-defining.

Now, suppose that (S,T ) does not satisfy (FE). Without loss of generality, we can

then assume that there is i ∈ VB \ S such that (S′ \ {l},T \ {l}), for all l ∈ S∪ T , is linearly

inseparable, where S′ = S∪{i}. This means that (S′,T ) is linearly inseparable, and

ν
′
j := min{|N| | N ∈N (S′,T ), j ∈ N}= 2, ∀ j ∈ S′∪T.

Indeed, ν
′
j ≥ 2 because (S,T ) and (S′,T ) are linearly inseparable. On the other hand,

since ν j = 1 for all j ∈ S∪T , {i, j} is an N -set containing j and i, which implies ν
′
i ≤ 2 and
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ν
′
j ≤ 2 for all j ∈ S∪T . Therefore, ν

′
j = 2 for all j ∈ S∪T ∪{i}, and so the inequality

∑
j∈S∪T∪{i}

o j ≥ 2

is valid for P1. This inequality together with oi ≥ 1 dominate the elementary inequality given by

(S,T ), which then does not define a facet of P1. �

4.2.1 ILP1’s constraints

In this subsection, we derive facet-defining conditions for the constraints of ILP1.

We start with the bounding constraints.

The solutions used in the proof of Proposition 4.1.3 allow us to show that they induce

facets of P1.

Proposition 4.2.4 For every i ∈VBR, oi ≥ 0 and oi ≤ 1 are facet-defining for P1.

Proof Let i ∈ VBR. The face defined by oi ≤ 1 contains the affinely independent points e and

e− e j, for all j ∈VBR \{i}. The face defined by oi ≥ 0 contains the affinely independent points

e− ei and e− ei− e j, for all j ∈VBR \{i}. �

We now relate constraints (4.4) and (4.5) with N -set elementary inequalities.

Proposition 4.2.5 Constraints (4.4) and (4.5) are exactly all N -set elementary inequalities.

Proof First, we prove that every constraint in (4.4) and (4.5) is an N -set elementary inequality.

Consider a constraint in (4.4) related to i and S. Since i∈H[S], then (S,{i}) is linearly inseparable.

Besides, since S is minimal with regard to i i, it implies that i 6∈ H[S\{u}] for every u ∈ S. Then,

H[S\{u}]∩{i}= /0, S\{u}∩H[{i}] = /0, and H[S\{u}]∩H[{i}]∩VN = /0 for every u ∈ S. This

means that, (S\{u},{i}) is linearly separable. Also, (S, /0) is linearly separable. Therefore, {i}

and {u} for every u ∈ S are minimal N -sets. Thus, ν j = 1 for all j ∈ S∪{i}.

Now, consider (4.5) related to S and T . As S∪T is minimal with regard to H[S]∩

H[T ]∩VN 6= /0, we have that, for every j ∈ S∪T , H[S\{ j}]∩H[T\{ j}]∩VN = /0. Since H[S]∩

T = H[T ]∩ S = /0. It implies that (S\{ j}],T\{ j}) is linearly separable for every j ∈ S∪ T .

Therefore, ν j = 1 for all j ∈ S∪T .
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Now, let (S ⊆ VB,T ⊆ VR) be linearly inseparable and ν j = 1 for every j ∈ S∪T .

The corresponding N -set inequality is ∑ j∈S∪T o j ≥ 1. Since (S,T ) is linearly inseparable,

then H[S]∩ T 6= /0 or/and H[T ]∩ S 6= /0 or/and H[S]∩H[T ]∩VN 6= /0. If H[S]∩ T 6= /0, since

ν j = 1 for all j ∈ T , then |T | ≤ 1; otherwise there would be u ∈ T with νu > 1. Also,

since ν j = 1 for all j ∈ S, (S\{ j},T ) is linearly separable and then S is minimal with re-

gard to i ∈ H[S], where T = {i}. Similarly, if H[T ]∩ S 6= /0, then T is minimal with regard

to i ∈ H[T ], S = {i}. In both cases, the N -set inequality is one of the inequalities in (4.4).

Finally, suppose that H[S]∩H[T ]∩VN 6= /0, H[S]∩ T = /0 and H[T ]∩ S = /0. Since ν j = 1

for all j ∈ S ∪ T , (S\{ j},T\{ j}) is linearly separable for every j ∈ S ∪ T . In particular,

H[S\{ j}]∩H[T\{ j}]∩VN = /0 for all j ∈ S∪ T , and so S∪ T is minimal. Therefore, the

N -set inequality is one of the inequalities in (4.5). �

We specialize the definition of N -set elementary inequality for constraints (4.4)

and (4.5). The first ones will be called VBR-disjoint N -set elementary inequalities, whereas the

second ones will be called VN-disjoint N -set elementary inequalities.

From Proposition 4.2.5, we can conclude that ILP1 is a set covering formulation

where the constraint matrix A has rows indexed by M = {(S,T ) | S ⊆ VB,T ⊆ VR is a linearly

inseparable elementary pair}, columns indexed by VBR, and a(S,T ),i = 1 if, and only if, i ∈ S∪T .

Using the definition of the set covering polytope from Subsection 2.3, we have that P1 = PI(A).

Thus, we can relate conditions (F’1) and (F’2) to (FE) of Corollary 4.2.3.

Corollary 4.2.6 The VBR-disjoint and VN-disjoint N -set elementary inequalities, (4.4) and

(4.5) respectively, are facet-defining if, and only if, (FE) holds. Moreover, they are the only

facet-defining inequalities for P1 with integer coefficients and right-hand side equal to 1.

Some special cases of constraints (4.4)-(4.5) are:

oh +o j +oi ≥ 1, ∀i ∈VBR,∀{h, j} ⊆VK̄(i) : i ∈ Dh j, (4.7)

ov +ov′+ow +ow′ ≥ 1, ∀{v,v′} ⊆VB,∀{w,w′} ⊆VR : Dvv′ ∩Dww′ ∩VN 6= /0, (4.8)

H[{v,v′}]∩{w,w′}= H[{w,w′}]∩{v,v′}= /0.
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Constraints (4.7) are given by (4.4) where |S| = 2 and i ∈ H[S] is replaced by the stronger

condition i ∈ D[S]. They will be called generalized 3-path constraints. Inequalities (4.8) are

constraints (4.5) with |S|= |T |= 2. They will be called X-swing constraints. They are easily

separated in polynomial time. Besides, they are viable in practice whenever H[{l, p}] is replaced

by Dl p∪{l, p}, for every l, p ∈V (G), in (4.8). Figures 13 and 14 show examples of them.

Figure 13 – An example of a generalized 3-path constraint.

Figure 14 – An example of X-swing constraint. Vertex 5 belongs to VN .
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Applying Corollary 4.2.6 to (4.7) and (4.8) yields:

Corollary 4.2.7 A constraint of type (4.7) defines a facet of P1 if and only if u 6∈ H[{h, j}] for

every u ∈VK(i)\{i}, or t 6∈ H[{i,u}] for some t ∈ {h, j}.

Corollary 4.2.8 A constraint of type (4.8) defines a facet of P1 if, and only if,

1. for every u ∈ VB\{v,v′}, ({v,v′,u},{t}) is linearly separable, for some t ∈ {w,w′}, or

({t,u},{w,w′}) is linearly separable, for some t ∈ {v,v′}, and

2. for every u ∈ VR\{w,w′}), ({t},{w,w′,u}) is linearly separable, for some t ∈ {v,v′}, or

({v,v′},{t,u}) is linearly separable, for some t ∈ {w,w′}.

4.2.2 Valid and facet-defining N -set non-elementary inequalities for P1

In this subsection, we focus on N -set non-elementary inequalities, i.e. N -set

inequalities different from the constraints of ILP1.
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Proposition 4.2.9 Let SB ⊆VB and SR ⊆VR such that min{|SB|, |SR|}= l ≥ 2. If SR ⊆H[{i, i′}],

for every i, i′ ∈ SB, i 6= i′, and SB ⊆ H[{ j, j′}], for every j, j′ ∈ SR, j 6= j′, thus, the following

inequality is valid for P1:

∑
i∈SB∪SR

oi ≥ l. (4.9)

Proof Let o be a feasible solution. Suppose by contradiction that o uses less than l outliers. By

hypothesis, min{|SB|, |SR|} = l ≥ 2, which implies that there are at least 2 non-outliers in SB

or SR. By symmetry, we can assume that oi = oi′ = 1 for some i, i′ ∈ SB. Since SR ⊆ H[{i, i′}],

constraints (4.1) imply that o j = 1, for all j ∈ SR. So, there are at least |SR| ≥ l outliers: a

contradiction. �

Fortunately, only inequalities with |SB|= |SR|= 2 are non-redundant:

Proposition 4.2.10 Inequalities (4.9) are dominated by inequalities with |SB|= |SR|= 2.

Proof Without loss of generality, suppose that |SB| = l ≥ 2, |SR| = m ≥ 2, and l ≤ m. Then,

there are
( l

2

)
·
(m

2

)
inequalities involving only two vertices of each side. Summing up all these

inequalities yields the following expression:

(l−1)
(

m
2

)
( ∑

i∈SB

oi)+(m−1)
(

l
2

)
( ∑

i∈SR

oi)≥ 2
(

l
2

)(
m
2

)

⇒ (l−1)( ∑
i∈SB

oi)+
(m−1)

( l
2

)(m
2

) ( ∑
i∈SR

oi)≥ 2
(

l
2

)
⇒ (l−1)( ∑

i∈SB

oi)+
l(l−1)

m
( ∑

i∈SR

oi)≥ 2
(

l
2

)
⇒ ∑

i∈SB

oi +
l
m
( ∑

i∈SR

oi)≥ l,

which is equal or stronger than inequality (4.9), as l ≤ m. �
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So, we just look for inequalities where |SB|= |SR|= 2, which we call generalized

C4 inequalities. They become (see the example of Figure 15):

∑
i∈SB∪SR

oi ≥ 2. (4.10)

The validity of (4.10) can also be proved using Proposition 4.2.1. Note that νi = 2

for every i ∈ SB∪SR, and thus (4.10) is an N -set inequality. Moreover, it always defines a facet

of P1, as showed by the proposition below.

Figure 15 – C4 inequality example.

Proposition 4.2.11 Inequalities (4.10) define facets of P1.

Proof Let |SB|= |SR|= 2 with SB = {v,v′} and SR = {w,w′} such that they define an inequality

of type (4.10). Observe that any subset {i, j} ⊂ {v,v′,w,w′} defines a perfect N -set. So,

i j ∈ E2
SB,SR

for every i, j ∈ {v,v′,w,w′}. Since νi = 2 for every i ∈ SB ∪ SR, the safe graph

G2
SB,SR

= (SB ∪ SR,E2
SB,SR

) is complete. Thus, the first condition of Theorem 4.2.2 holds for

(4.10).

Now, let i ∈VB\{v,v′}. Then, N = {w,w′} is a perfect N -set such that ({v,v′, i}\N,

{w,w′}\N) is linearly separable. Similarly, for j ∈VR\{w,w′}, N = {v,v′} is a perfect N -set

such that ({v,v′}\N,{w,w′, j}\N) is linearly separable. Therefore, the second condition of

Theorem 4.2.2 holds for (4.10). �

We anticipate that the generalized C4 inequalities were quite useful to reduce the

computational time of the ILP1 formulation (see Chapter 6 for details). It is worth noting that

these inequalities result from a configuration of geodesic convex combinations that cannot occur

in the Euclidean space.
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An N -set inequality induced by a generalized star is shown in Figure 16. These ine-

qualities are formally defined in the following proposition and will be called star tree inequalities.

Figure 16 – Example of a star tree inequality for ILP1.

1

2

3

45

Proposition 4.2.12 Let K ∈ {B,R}, L⊆VK and i ∈VK̄ be such that i ∈H[{h, j}] for all h, j ∈ L,

h 6= j. The following star tree inequality is valid for P1:

∑
h∈L

oh +(|L|−1)oi ≥ (|L|−1). (4.11)

Moreover, if for every u ∈VK̄\{i}, u 6∈ H[L] or j 6∈ H[{i,u}], for some j ∈ L, then (4.11) defines

a facet of P1.

Proof The pair ({i},L) is linearly inseparable. Besides, it is easy to see that νi = 1 and

νh = |L|− 1 for all h ∈ L. By Proposition 4.2.1, ∑h∈L oh +(|L|− 1)oi ≥ (|L|− 1) is valid for

P1. Also, note that G1
{i},L = ({i}, /0) and G|L|−1

{i},L = (L,E |L|−1) are complete safe graphs, since

any N ⊂ L with |N|= |L|−1 is a perfect N -set. Thus, condition 1 of Theorem 4.2.2 holds for

(4.11).

Since νi = 1, N = {i} is a perfect N -set such that ({i}\N,L∪{w}\N) is linearly

separable for every w ∈VK\L. By hypothesis, for every u ∈VK̄\{i}, u 6∈ H[L] or j 6∈ H[{i,u}],

for some j ∈ L. So, there is a perfect N -set N ⊂ (L∪{i}) such that ({i,u}\N,L\N) is linearly

separable for every u ∈VK̄ \{i}. Therefore, condition (F2) of Theorem 4.2.2 holds. �

Next, we show another N -set inequality to be called generalized alternating path

inequality or alternating path inequality for short. These inequalities are inspired by a family of

facet-defining inequalities defined by (LIMA, 2011) for the convex recoloring problem.
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Proposition 4.2.13 Let Sh j =< h = l1,q1, . . . , lt ,qt , j >, t ≤ bδ (h, j)c, be a sequence of distinct

vertices of VBR with odd cardinality that corresponds to an incomplete or complete shortest path

from h to j in G. Let the vertices along the sequence have alternating classes. So, the alternating

path inequality is valid for P1:

∑
i∈V (Sh j)

oi ≥ t. (4.12)

Proof This proof is adapted from (LIMA, 2011). We use induction on t. Note that each triple

φ = (h, j, t) can induce one or more inequalities. See Figure 17. When t = 1, the corresponding

inequalities are exactly the ones in (4.7), which are already in the formulation, and so are valid.

Now, let t = 2. Consider the sum of the following three valid inequalities for t = 1:

ol1 +oq1 +ol2 ≥ 1

+ol2 +oq2 +o j ≥ 1

+ol1 +oq2 +o j ≥ 1

2ol1 +oq1 +2ol2 +2oq2 +2o j ≥ 3

Thus, we have that inequality 2ol1 +oq1 +2ol2 +2oq2 +2o j ≥ 3 is valid for P1. Summing this

inequality with the inequality oq1 ≥ 0, we get:

2ol1 +2oq1 +2ol2 +2oq2 +2o j ≥ 3.

Then, dividing the inequality above by the common coefficient 2 yields:

ol1 +oq1 +ol2 +oq2 +o j ≥
3
2
.

Since we want integer valued solutions for the variables o, we can round up the right-hand side

to get the following stronger valid inequality for P1:

ol1 +oq1 +ol2 +oq2 +o j ≥ 2.

Therefore, all generalized alternating path inequalities for φ = (h, j,2) are valid for P1. They are

obtained by the Chvátal-Gomory procedure.

For a better illustration of the combination and the round up procedure, let us show

the validity proof for the generalized alternating path inequalities for φ = (h, j,3). Consider the

sum of the following four valid inequalities:
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+ol1 +oq1 +ol2 +oq2 +ol3 ≥ 2

+ol2 +oq2 +ol3 +oq3 +o j ≥ 2

+ol1 +oq3 +o j ≥ 1

+oq1 ≥ 0

2ol1 +2oq1 +2ol2 +2oq2 +2ol3 +2oq3 +2o j ≥ 5.

Dividing the inequality above and rounding up the right-hand side yields:

ol1 +oq1 +ol2 +oq2 +ol3 +oq3 +o j ≥ 3.

Therefore, all generalized alternating path inequalities related to φ = (h, j,3) are valid for P1.

We can apply an analogous procedure to obtain the inequalities induced by φ(h, j, t),

t ≥ 4. Precisely, we sum up the following four inequalities:

• the inequality induced by φ(h = l1, lt , t−1);

• the inequality induced by φ(l2, j, t−1);

• the inequality ol1 +oqt +o j ≥ 1;

• the inequality oq1 ≥ 0.

After that, we divide by 2 the resulting inequality and round up the right-hand side. �

Actually, the generalized alternating path inequalities are N -set inequalities, as the

following proposition states.

Proposition 4.2.14 Inequalities (4.12) are N -set inequalities.

Proof Let Sh j =< h = l1,q1, . . . , lt ,qt , lt+1 = j > as in Proposition 4.2.13. Then, ({l1, . . . , lt+1},

{q1, . . . ,qt}) is linearly inseparable. Besides, νu ≥ t, for every u ∈V (Sh j), since (4.6) is a valid

inequality. Observe that N = {q j | j ∈ {1, . . . , t}} is an N -set such that N contains qi and |N|= t,

for every i ∈ {1, . . . , t}. Since νqi ≥ t, we have νqi = t, for every i ∈ {1, . . . , t}.

We can note that N = ({lu | u ∈ {1, . . . , t}}∪{ j})\{w} is an N -set if w = h = l1 or

w = j (the extreme points of Sh j). Moreover, |N| = t. So, for every i ∈ {1, . . . , t}, there is an

N -set N such that N contains li and |N|= t, which implies that νli = t. The same applies for j,

resulting in ν j = t.

Therefore, νu = t, for every u ∈V (Sh j) leads to the N -set inequality (4.12). �
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Figure 17 – An example of alternating path inequality for ILP1.

4.2.3 A compact formulation for the 2-SGC problem

The second integer linear formulation is obtained by adding some variables to ILP1

so as to reduce the number of constraints to a polynomial order. The new variables, z, are used to

determine if a vertex belongs to the convex hull of the non-outliers of a given class. So, we have

for each i ∈VBR,

oi =

 1, if i ∈VBR \ (AB∪AR),

0, if i ∈ (AB∪AR),

and for each K ∈ {B,R} and i ∈V ,

zKi =

 1, if i ∈ H[AK],

0, otherwise.

The formulation is defined by

(ILP2) min ∑
i∈VBR

oi (4.13)

st: oi ≥ zK̄(i)i, ∀i ∈VBR, (4.14)

zBi + zRi ≤ 1, ∀i ∈VN , (4.15)

zK(i)i +oi ≥ 1, ∀i ∈VBR, (4.16)

zKh + zK j− zKi ≤ 1, ∀K ∈ {B,R},∀h, i, j ∈V : i ∈ Dh j, (4.17)

o ∈ B|VBR|,z ∈ B2|V |. (4.18)

Formulations ILP1 and ILP2 can be related as follows.

Proposition 4.2.15 Let F1 and F2 be the feasible sets of ILP1 and ILP2, respectively. Then,

F1 = projo(F2).

Proof Let o ∈ B|VBR| be a feasible solution of ILP1. As in the proof of Proposition 4.1.1, let

AK = { j ∈VK : o j = 0}, for K ∈ {B,R}. By that proposition, AB and AR satisfy conditions (C1)-

(C3). Define z ∈ B2|V | such that zKi = 1 if, and only if, i ∈ H[AK], for all K ∈ {B,R} and i ∈V .

We have to show that (o,z) is feasible for ILP2. To check constraints (4.14) and (4.16), let i∈VBR
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and suppose that oi = 0 (otherwise they are trivially satisfied). Then, i ∈ AK(i) ⊆ H[AK(i)], and

so zK(i)i = 1. Besides, (C1) and (C2) imply that i /∈ H[AK̄(i)], and so zK̄(i)i = 0. These show that

constraint (4.16) and (4.14) are satisfied by (o,z). Now let i∈VN . By (C3), i /∈H[AB]∩H[AR]. In

other terms, (4.15) is satisfied. Finally, by the geodesic convexity definition, for each K ∈ {B,R}

and i ∈ Dh j, if zKh = zK j = 1 then we must have zKi = 1. This shows that constraints (4.17) are

satisfied. Therefore, F1⊆ projo(F2).

Conversely, let (o,z) ∈ F2. We have to show that o satisfies (4.1)-(4.2). First, let

i ∈VK(i) and S ⊆VK̄(i) such that i ∈ H[S]. Suppose that o j = 0 for all j ∈ S; otherwise (4.1) is

trivially satisfied. By (4.16), zK̄(i) j = zK̄( j) j = 1 for all j ∈ S. Then, since i ∈ H[S], we can use

(4.17) to conclude that zK̄(i)i = 1. So, (4.14) ensures that oi = 1, showing that (4.1) is satisfied.

Now, let S⊆VB and T ⊆VR such that there is i ∈ H[S]∩H[T ]∩VN . Suppose by contradiction

that (4.2) is violated, i.e. o j = 0 for all j ∈ S∪ T . By (4.16), it follows that zR j = 1 for all

j ∈ S, and zB j = 1 for all j ∈ T . Since i ∈ H[S]∩H[T ], (4.17) implies that zRi = zBi = 1, which

contradicts (4.15). Therefore, o satisfies (4.2). Then, we conclude that o ∈ F2. �

Propositions 4.1.1 and 4.2.15 imply the correctness of ILP2.

Corollary 4.2.16 Formulation ILP2 is correct.

Although the feasible sets of ILP1 and ILP2 are related as in Proposition 4.2.15, the

same does not occur with their linear relaxations. Actually, we can find examples where the

linear relaxation of ILP1 provides a better bound than ILP2, and vice-versa.

4.2.4 ILP2’s polyhedron

Let P2 = conv({(o,z) ∈ B|VBR|×B2|V | | (o,z) satisfies (4.14)-(4.17)}). Observe that

there are no = |VBR| of variables o and nz = |CBR||V | of variables z, totalizing n2 = |VBR|+

(|CBR||V |) variables.

Proposition 4.2.17 P2 is a full-dimensional polyhedron.
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Proof Consider the following n2 +1 points in Rn2:

vKi = (e,eki) =
o z zKi z

1 . . .1 0 . . .0 1 0 . . .0
, i ∈V , K ∈ {B,R},

w0 = (e,0) =
o z

1 . . .1 0 . . .0
,

wi = (e− ei,eK(i)i) =
o oi o z zK(i)i z

1 . . .1 0 1 . . .1 0 . . .0 1 0 . . .0
, i ∈VBR.

They clearly are feasible solutions of ILP2. To show that they are affinely indepen-

dent points, let αvKi , and βwi be coefficients such that (∑K∈{B,R}∑i∈V αvKivKi)+∑i∈VBR βwiwi +

∑i∈VBR βw0w0 = 0 and (∑K∈{B,R}∑i∈V αvKi)+∑i∈VBR βwi +βw0 = 0. Observe that oi = 0 occurs

only in point wi, so, since (∑K∈{B,R}∑i∈V αvKi)+∑i∈VBR βwi +βw0 = 0, we can conclude that

βwi = 0, for all i ∈ VBR. Thus, ignoring these points, we can note that zKi = 1 only occurs in

point vKi, for i ∈V , K ∈ {B,R}. So, αvKi = 0, for all i ∈V and K ∈ {B,R}, which implies that

βw0 = 0. Then, all coefficients are equal to 0.

Therefore, P2 is a full-dimensional polyhedron. �

By Propositions 2.2.14 and 4.2.15, we have that:

Proposition 4.2.18 P1 = projo(P2).

Propositions 2.2.10 and 4.2.18 ensure that all valid inequalities derived for ILP1 in

the previous sections are also valid for ILP2. In general, it follows that:

Corollary 4.2.19 If πT o≥ π0 is valid P1, then it is valid for P2.

However, the facetness conditions for P1 are not directly transferred to P2, even

for the bounding inequalities. Anyway, just as in P1, the o-coefficients of all facet-defining
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inequalities for P2, except for the bounding inequalities, are non-negative.

Proposition 4.2.20 Let πT o+ µT z ≥ π0 be a facet-defining inequality of P2. If it is different

from oi ≤ 1, for all i ∈VBR, then π ≥ 0 and π0 > 0.

Proof Let i ∈ VBR. Since the inequality is different from oi ≤ 1, the facet F := {(o,z) ∈ P2 :

πT o+ µT z = π0} contains a point (ō, z̄) with ōi = 0. In addition, the point (o′, z̄) such that

o′j = ō j, for all j 6= i, and o′i = 1 belongs to P2. Therefore, πT (o′− ō)+µT (z− z)≥ π0−π0 = 0,

which leads to πi ≥ 0. So, π ≥ 0. Since oi ≥ zK(i)i ≥ 0 are valid, oi ≥ 0 can not be facet-defining.

Then, there is (ô,z) ∈ F with ôi = 1. Since π 6= 0 and i is an arbitrary vertex in VBR, we can

assume that πi > 0. Thus, we get π0 = πT ô≥ πi > 0. �

4.2.5 ILP2’s constraints

In this subsection, we focus on facet-defining conditions for the constraints of ILP2.

The solutions used in the proof of Proposition 4.2.17 also allow us to show the

following facetness results for the bounding inequalities:

Proposition 4.2.21 For every i ∈VBR, oi ≤ 1 is facet-defining for P2.

Proof The points (e,0), (e− e j,eK( j) j) for every j ∈VBR \{i}, and (e,eK j) for every j ∈V and

K ∈ K ∈ {B,R}, used in the proof of Proposition 4.2.17, all lie in the face defined by oi ≤ 1, and

so it is actually a facet of P2. �

Proposition 4.2.22 Let i∈V and K ∈ {B,R}. If i∈VN , or i∈VBR and K = K̄(i), then inequality

zKi ≥ 0 is facet-defining for P2.

Proof Let i ∈ V , K ∈ {B,R}, and F = {(o,z) ∈ P2 : zKi = 0}. If i ∈ VN , or i ∈ VBR and

K = K̄(i), the points (e,0), (e− e j,eK( j) j) for every j ∈VBR, and (e,eK j) for every j ∈V \{i}

and K ∈ {B,R} belong to F . Then, F is a facet. �
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Proposition 4.2.23 For every i ∈VBR, zK(i)i ≤ 1 is facet-defining for P2.

Proof Suppose that i ∈ VBR and K = K(i). Let F = {(o,z) ∈ P2 : zKi = 1} and assume that

F ⊆ F ′ := {(o,z)∈ P2 : πT o+µT z = π0}. It is enough to prove that π = 0, µK j = 0 for all j ∈V ,

and µK j = 0 for all j ∈V \{i}. We consider the following cases (in each of them we present two

points in F ⊆ F ′ to get the desired result):

• µK j = 0 for all j ∈V : The points (e,eKi) ∈ F and (e,eKi + eK j) ∈ F imply that µT eK j =

µK j = 0. Note that the second point belongs to F even if j = i;

• µK j = 0 for all j ∈ V \ {i}: We apply induction on d j, the distance from i to j in G.

For d ≥ 1, let Vd = { j ∈ V \ {i} : d j ≤ d}. If j ∈ V1, we use the points (e,eKi) ∈ F and

(e,eKi+eK j)∈F to get µK j = 0. Suppose that µK j = 0 for all j ∈Vd , for some d ≥ 1. Now,

consider j ∈Vd+1. The point (e,∑`∈H[{i, j}] eK`) belongs to F . Since H[{i, j}]\{i, j} ⊆Vd ,

we have that µK` = 0, for all ` ∈ H[{i, j}]\{i, j}. Using such a point and (e,eKi) ∈ F , we

conclude that µT eK j = µK j = 0.

• π j = 0 for all j ∈VK: The points (e,eKi) ∈ F and (e− e j,eKi + eK j) ∈ F lead to π j = 0.

• π j = 0 for all j ∈ VK: The points (e,eKi) ∈ F and (e− e j,∑`∈H[{i, j}] eK`) ∈ F show that

π j = ∑`∈H[{i, j}]\{i} µK` = 0. �

Proposition 4.2.24 For every i ∈VN , zBi + zRi ≤ 1 is facet-defining for P2.

Proof Consider the following n2 points:

vKi = (e,eKi) =
o zKi zK̄i z

1 . . .1 1 0 0 . . .0
, K ∈ {B,R},

vK j = (e,eK̄i+eK j
) =

o zKi zK̄i zK j z

1 . . .1 0 1 1 0 . . .0
, j ∈V\{i}, K ∈ {B,R},

v j = (e− e j,eK̄i+eK j
) =

o j o zKi zK̄i zK j z

0 1 . . .1 0 1 1 0 . . .0
, K ∈ {B,R}, j ∈VK\{i}.

They clearly are feasible solutions of ILP2 and satisfy zBi + zRi ≤ 1 at equality. To

show that they are affinely independent points, let ( ∑
K∈{B,R}

∑
j∈V\{i}

αvK jvK j)+( ∑
K∈{B,R}

∑
j∈VK

αv jv j)

+αvBivBi +αvRivRi = 0 and ( ∑
K∈{B,R}

∑
j∈V\{i}

αvK j)+( ∑
K∈{B,R}

∑
j∈VK

αv j)+αvBi +αvRi = 0. Observe
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that o j = 0 occurs only in point v j, so αv j = 0, ∀ j ∈VBR. By ignoring such v j points, we note that

zK j = 1 occurs only in point vK j, for every K ∈ {B,R} and j ∈V\{i}, hence αvK j = 0. Thus, we

end up with αvBivBi +αvRivRi = 0, which yields αvBi = αvRi = 0. Therefore, they are all affinely

independent points. �

Proposition 4.2.25 For every i ∈VBR, oi ≥ zK̄(i)i is facet-defining for P2.

Proof Suppose, without loss of generality, that i ∈VB. Consider the following n2 points:

vi = (e− ei,eK(i)i) =
oi o zK(i)i z

0 1 . . .1 1 0 . . .0
,

vK̄i = (e,eK̄(i)i) =
o zK̄(i)i z

1 . . .1 1 0 . . .0
,

vB j = (e,eRi + eB j) =
o zRi zB j z

1 . . .1 1 1 0 . . .0
, j ∈V .

vR j = (e− ei,eBi + eR j) =
oi o zBi zR j z

0 1 . . .1 1 1 0 . . .0
, j ∈V\{i}.

voB j = (e− e j,eRi + eB j) =
o j o zRi zB j z

0 1 . . .1 1 1 0 . . .0
, j ∈VB\{i}.

voR j = (e− e j− ei,eBi + eR j) =
oi o j o zBi zR j z

0 0 1 . . .1 1 1 0 . . .0
, j ∈VR.

Similarly to the proof of Proposition 4.2.24, we can conclude that these are n2

affinely independent points satisfying oi ≥ zK̄(i)i at equality. �

Proposition 4.2.26 For every i ∈VBR, zK(i)i +oi ≥ 1 is facet-defining for P2.
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Proof Suppose, without loss of generality, that i ∈VB. The n2 points below are affinely indepen-

dent and satisfy zK(i)i +oi ≥ 1 at equality:

v0 = (e,0) =
o z

1 . . .1 0 . . .0
,

vK j = (e,eK j) =
o zK j z

1 . . .1 1 0 . . .0
, j ∈V , K ∈ {B,R}, K j 6= Bi,

v′K j = (e− e j,eK j) =
o j o zK j z

0 1 . . .1 1 0 . . .0
, K ∈ {B,R}, j ∈VK . �

We close this subsection by showing the constraints of ILP2 that do not define facets

of P2. They complement the results of Propositions 4.2.21 and 4.2.23.

Proposition 4.2.27 The constraints below do not define facets of P2.

1. oi ≥ 0, for every i ∈VBR.

2. zK̄(i)i ≤ 1, for every i ∈VBR.

3. zKi ≤ 1, for every i ∈VN and K ∈ {B,R}.

4. zK(i)i ≥ 0, for every i ∈VBR.

Proof By (4.14), oi = 0 implies zK̄(i)i = 0 and zK̄(i)i = 1 implies oi = 1. So, oi ≥ 0 and zK̄(i)i ≤ 1

can not define facet of P2. Clearly, zKi ≤ 1 is dominated by constraint zKi + zK̄i ≤ 1. By (4.16),

zK(i)i = 0 implies oi = 1. So, zK(i)i ≥ 0 can not define a facet of P2. �

4.2.6 Valid and facet-defining inequalities for P2

In this subsection, we derive valid inequalities for P2. Some of them are counterpart

of inequalities presented for P1. First, let us consider the star tree inequalities (4.11). Of course,

they are valid for P2 (see Corollary 4.2.19). However, we can replace variables o by variables z

to set stronger inequalities, as shown below.
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Proposition 4.2.28 Let i ∈V and L ⊆V \{i} be such that i ∈ H[{h, j}] for all h, j ∈ L, h 6= j.

The following inequalities are valid for P2:

∑
h∈L

zKh− (|L|−1)zKi ≤ 1, K ∈ {B,R}. (4.19)

Moreover, for K = K(i) and L⊆VK , (4.19) dominates (4.11).

Proof Let K ∈ {B,R} and suppose that (o,z) is a feasible solution of ILP2. If ∑h∈L zKh ≤ 1, then

inequality (4.19) trivially holds. So, suppose that ∑h∈L zKh > 1. In this case, it means that there

are at least two vertices in L, say j, j′, such that zK j = zK j′ = 1. By hypothesis, i ∈ H[{ j, j′}],

and by constraint (4.17), zKi = 1. Therefore, (|L| − 1)zKi = (|L| − 1) ≥ ∑h∈L zKh− 1, and so

∑h∈L zKh− (|L|−1)zKi ≤ 1 holds.

Now, assume that K = K̄(i) and L ⊆ VK , i.e. K( j) = K for all j ∈ L. Then, (4.19)

becomes

1≥ ∑
h∈L

zK(h)h− (|L|−1)zK̄(i)i.

Using (4.14) and (4.16), we get

1≥ ∑
h∈L

(1−oh)− (|L|−1)oi,

or still

∑
h∈L

oh +(|L|−1)oi ≥ |L|−1,

which is (4.11). �

Figure 18 illustrates an example of a star tree inequality for vertex i = 6 and

L = {1, . . . ,5}. If the star tree is actually an induced star, then inequality (4.19) is a facet-

defining for P2.

Proposition 4.2.29 Let i ∈V and L⊆V \{i} be such that |L| ≥ 2, (i, j) ∈ E(G), for all j ∈ L,

and (u,w) 6∈ E(G), for all u,w ∈ L. The following inequalities are facet-defining for P2:

∑
h∈L

zKh− (|L|−1)zKi ≤ 1, K ∈ {B,R}. (4.20)
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Figure 18 – An example of star tree inequality for ILP2.
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Proof Let K ∈ {B,R} and F = {(o,z) ∈ P2 : ∑h∈L zKh− (|L| − 1)zKi = 1}. Assume that F ⊆

F ′ := {(o,z) ∈ P2 : πT o+µT z = π0}. We prove that πT o+µT z = π0 is a multiple of ∑h∈L zKh−

(|L|−1)zKi = 1 by cases, as follows:

• µK j = 0 for all j ∈V : The points (e,eKh)∈ F and (e,eKh+eK j)∈ F , for an arbitrary h∈ L,

imply that µT eK j = µK j = 0. Note that the second point belongs to F even if j ∈ L∪{i};

• µK j = 0 and π j = 0 for all j ∈ V \ (L∪{i}): We apply induction on d j, the distance

from j to the star L∪{i} in G, that is, d j = min{δ ( j,v) | v ∈ L∪{i}}. For d ≥ 1, let

Vd = { j ∈ V \ (L∪{i}) : d j ≤ d}. If j ∈ V1 and ( j,h) ∈ E(G) for some h ∈ L, we use

the points (e,eKh) ∈ F and (e,eKh + eK j) ∈ F to get µK j = 0. If j ∈V1 and ( j,h) 6∈ E(G)

for all vertex h ∈ L, then ( j, i) ∈ E(G) and we use the points (e,∑u∈H[L∪{i, j}] eKu) ∈ F

and (e,∑u∈H[L∪{i}] eKu) ∈ F to get µK j +∑w∈H[L∪{i, j}]\H[L∪{i}] µKw = 0. Since it was pro-

ved that µKw = 0 for every w ∈ V \ (L∪{i}) with (w,h) ∈ E(G) for some h ∈ L, then

∑w∈H[L∪{i, j}]\H[L∪{i}] µKw = 0, which leads to µK j = 0.

Suppose that µK j = 0 for all j ∈ Vd , for some d ≥ 1. Now, consider j ∈ Vd+1. If its

distance is determined by a vertex h ∈ L, then the point (e,∑u∈H[{h, j}] eKu) belongs to

F . Since H[{h, j}] \ {h, j} ⊆ Vd , we have that µKw = 0, for all w ∈ H[{h, j}] \ {h, j}.

Using such a point and (e,eKh) ∈ F , we conclude that µT eK j = µK j = 0. Otherwise,

if its distance is determined by i, the point (e,∑u∈H[L∪{i, j}] eKu) belongs to F . Since

H[L∪{i, j}]\{i, j} ⊆Vd , we have that µKw = 0, for all w ∈ H[L∪{i, j}]\{i, j}. Using

such a point and (e,∑u∈H[L∪{i}] eKu) ∈ F , we conclude that µT eK j = µK j = 0.

Similarly, we can prove that π j = 0 for all j ∈V \ (L∪{i});

• πi = 0: If K = K(i), the points (e,∑u∈H[L∪{i}] eKu) ∈ F and (e− ei,∑u∈H[L∪{i}] eKu) ∈ F

lead to πi = 0. Otherwise, we choose the points (e,eKh) ∈ F , for some h ∈ L, and
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(e− ei,eKh + eK̄i) ∈ F to get πi = 0, since µK̄i was proved to be zero;

• πh = 0 for all h ∈ L: If K = K( j), the points (e,eKh) ∈ F and (e− eh,eKh) ∈ F lead

to π j = 0. Otherwise, the points (e,eKh′) ∈ F and (e− eh,eKh′ + eK̄h) ∈ F , for some

h′ ∈ L \ {h}, imply πh + µK̄h = 0. Since µK̄h was proved to be zero previously, we get

π j = 0;

• µKh = µKh′ for all h,h′ ∈ L, h 6= h′: The points (e,eKh) ∈ F and (e,eKh′) ∈ F show that

µKh = µKh′;

• µKi = −(|L| − 1)µKh for any h ∈ L: The points (e,eKh′) ∈ F , for some h′ ∈ L, and

(e,∑u∈H[L∪{i}] eKu)∈F imply that µKi+∑h∈L\{h′} µKh + ∑
w∈H[L∪{i}]\(L∪{i})

µKw = 0. Since

µKw = 0 for all w ∈ H[L∪{i}]\ (L∪{i}), we get µKi =−(|L|−1)µKh′ . �

In (LIMA, 2011), a generalization of the convexity inequalities (4.17) was presented

for the Path Convex Recoloring Problem (PCR). We noted that these generalized inequalities are

also valid for the geodesic classification problem. They are counterparts of the alternating path

inequalities (4.12) and will be called generalized convexity inequalities. An example can be seen

in Figure 19.

Figure 19 – An example of generalized convexity inequality for ILP2.

Proposition 4.2.30 Let Sh j =< h = l1,q1, . . . , lt ,qt , j >, t ≤ bδ (h, j)c, be a sequence of distinct

vertices with odd cardinality that corresponds to an incomplete or complete shortest path from h

to j in G. So, the following inequalities are valid for P2:

(
t

∑
i=1

zKli)+ zK j− (
t

∑
i=1

zKqi)≤ 1, K ∈ {B,R}. (4.21)

Proof Note that each triple φ = (h, j, t) can induce one or more inequalities for a given class K.

We say that such an inequality is induced by φ = (h, j, t).
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Analogous to the Proposition 4.2.13, we are going to prove that the generalized

convexity inequalities are valid for P2 using induction on t. Since when t = 1, the corresponding

inequalities are exactly the convexity inequalities (4.17) of ILP2. Let K ∈ {B,R} and consider

the sum of the following three valid inequalities for t = 1:

+zKl1 −zKq1 +zKl2 ≤ 1

+zKl2 −zKq2 +zK j ≤ 1

+zKl1 −zKq2 +zK j ≤ 1

2zKl1 −zKq1 +2zKl2 −2zKq2 +2zK j ≤ 3.

Thus, we have that inequality 2zKl1− zKq1 +2zKl2−2zKq2 +2zK j ≤ 3 is valid for P2. Summing

this inequality with the inequality −zKq1 ≤ 0, we get:

2zKl1−2zKq1 +2zKl2−2zKq2 +2zK j ≤ 3.

Dividing the inequality above by 2 yields:

zKl1− zKq1 + zKl2− zKq2 + zK j ≤
3
2
.

Since we want integer valued solutions for the variables z, we can round down the right-hand

side to get the following stronger valid inequality for P2:

zKl1− zKq1 + zKl2− zKq2 + zK j ≤ 1.

Therefore, all generalized convexity inequalities φ = (h, j,2) are valid for P2. We can generalize

this procedure for the inequalities induced by φ(h, j, t), t ≥ 3. To do so, we sum up the following

four inequalities:

• the inequality induced by φ(h = l1, lt , t−1);

• the inequality induced by φ(l2, j, t−1);

• the inequality zKl1− zKqt + zK j ≤ 1;

• the inequality −zKq1 ≤ 0.

After that, we divide by 2 the resulting inequality and round down the right-hand side. �

We now show that the generalized convexity inequalities are facet-defining when the

base sequence corresponds to a complete shortest path.
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Proposition 4.2.31 Let Sh j =< h = l1,q1, . . . , lt ,qt , j > be a shortest path from h to j in G. So,

the following inequalities are facet-defining for P2:

(
t

∑
i=1

zKli)+ zK j− (
t

∑
i=1

zKqi)≤ 1, K ∈ {B,R}. (4.22)

Proof Let K ∈ {B,R} and F = {(o,z) ∈ P2 : (
t
∑

i=1
zKli) + zK j − (

t
∑

i=1
zKqi) = 1}. Assume that

F ⊆ F ′ := {(o,z) ∈ P2 : πT o+ µT z = π0}. We prove that πT o+ µT z = π0 is a multiple of

(∑
i

zKli)+ zK j− (∑
i

zKqi) = 1 by cases, as follows (for this proof, we consider lt+1 = j):

• µK` = 0 for all ` ∈V : The points (e,eKh) ∈ F and (e,eKh + eK`) ∈ F imply that µT eK` =

µK` = 0. Note that the second point belongs to F even if `= h;

• µK` = 0 and π` = 0 for all ` ∈ V \V (Sh j): We apply induction on d`, the distance

from ` to the path Sh j in G, that is, d` = min{δ (`,v) | v ∈ V (Sh j)}. For d ≥ 1, let

Vd = {` ∈ V \V (Sh j) : d` ≤ d}. If ` ∈ V1 and (`, li) ∈ E(G), for some i ∈ {1, . . . , t + 1},

we use the points (e,eKli) ∈ F and (e,eKli + eK`) ∈ F to get µK` = 0. If ` ∈ V1 and

(`, li) 6∈ E(G) for all i ∈ {1, . . . , t + 1}, then (`,qi) ∈ E(G), for some i ∈ {1, . . . , t}, and

we use the points (e,∑u∈H[{li,qi,li+1}] e
Ku) ∈ F and (e,∑u∈H[{li,qi,li+1,`}] e

Ku) ∈ F to get

µK` + ∑w∈H[{li,qi,li+1,`}]\H[{li,qi,li+1}] µKw = 0. Since µKw = 0 for every w ∈ V \V (Sh j)

with (w, l j)∈ E(G) for some j ∈ {1, . . . , t+1}, then ∑w∈H[{li,qi,li+1,`}]\H[{li,qi,li+1}] µKw = 0,

which leads to µK` = 0.

Suppose that µK` = 0 for all `∈Vd , for some d ≥ 1. Now, consider `∈Vd+1. If its distance

is determined from a vertex li, i ∈ {1, . . . , t +1}, then the point (e,∑u∈H[{li,`}] e
Ku) belongs

to F . Since H[{li, `}] \ {li, `} ⊆ Vd , we have that µKw = 0, for all w ∈ H[{li, `}] \ {li, `}.

Using such a point and (e,eKli) ∈ F , we conclude that µT eK` = µK` = 0. Otherwise, if

its distance is determined from qi, i ∈ {1, . . . , t}, the point (e,∑u∈H[{li,qi,li+1,`}] e
Ku) be-

longs to F . Since H[{li,qi, li+1, `}] \ {li,qi, li+1, `} ⊆ Vd , we have that µKw = 0, for all

w ∈ H[{li,qi, li+1, `}]\{li,qi, li+1, `}. Using such a point and (e,∑u∈H[{li,qi,li+1}] e
Ku) ∈ F ,

we conclude that µT eK` = µK` = 0.

Similarly, we can prove that π` = 0 for all ` ∈V \ (V (Sh j));

• πli = 0 for all i ∈ {1, . . . , t +1}: If K = K(li), the points (e,eKli) ∈ F and (e−eli,eKli) ∈ F

lead to πi = 0. Otherwise, we choose the points (e,eKlu) ∈ F , for some u ∈ {1, . . . , t +1}\
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{i}, and (e− eli,eKlu + eK̄li) ∈ F to get πi = 0, since µK̄li was proved to be zero;

• πqi = 0 for all i ∈ {1, . . . , t}: If K = K(qi), the points (e,∑u∈H[{li,qi,li+1}] e
Ku) ∈ F and (e−

eqi,∑u∈H[{li,qi,li+1}] e
Ku) ∈ F lead to πqi = 0. Otherwise, we choose the points (e,eKlu) ∈ F ,

for some u ∈ {1, . . . , t + 1}, and (e− eqi,eKlu + eK̄qi) ∈ F to get πi = 0, since µK̄qi
was

proved to be zero previously;

• µKli = µKli′ for all i, i′ ∈ {1, . . . , t + 1}, i 6= i′: The points (e,eKli) ∈ F and (e,eKli′ ) ∈ F

show that µKli = µKli′ ;

• µKqi =−µKli for all i ∈ {1, . . . , t}: The points (e,∑u∈H[{li,qi,li+1}] e
Ku) ∈ F and (e,eKli+1) ∈

F imply that µKli + µKqi + ∑w∈H[{li,qi,li+1}]\{li,qi,li+1} µKw = 0. Since µKw = 0 for all

w ∈ H[{li,qi, li+1}]\{li,qi, li+1}, we get µKqi =−µKli . �

The corollary below follows from Proposition 4.2.31.

Corollary 4.2.32 Let h, j, i ∈V such that (h, i) ∈ E(G), (i, j) ∈ E(G) and (h, j) 6∈ E(G). Then,

constraint (4.17) defines a facet of P2.

A generalization of inequalities (4.21) can be obtained by allowing some vertices to

appear more than once in the base sequence. In such cases, it relates to walks, not paths. The

following proposition shows this generalization and its validity.

Proposition 4.2.33 Let S =< v1,v2, . . . ,v2t+1 >, t ≥ 1, be a sequence of vertices with odd

cardinality that corresponds to an incomplete or complete walk in G such that

{v2i, . . . ,v2 j}∩Dv2i−1v2 j+1 6= /0, ∀1≤ i≤ j ≤ t. (4.23)

Then, the inequalities below are valid for P2:

t

∑
i=0

zKv2i+1−
t

∑
i=1

zKv2i ≤ 1, K ∈ {B,R}. (4.24)

Proof Let K ∈ {B,R} and suppose that (4.24) is not valid for P2, that is, there is an integer

point (o,z) ∈ P2 such that
t
∑

i=0
zKv2i+1−

t
∑

i=1
zKv2i ≥ 2. Then, there are i, j, such that 1≤ i≤ j ≤ t,
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zKv2i−1 = zKv2 j+1 = 1 and zKvl = 0 ∀l ∈ [2i,2 j]. Particularly, zKv2l = 0 ∀l ∈ [i, j], which contradicts

(4.23) and (4.17). �

The requirements (4.23) mean that, for any two vertices i, j in odd positions in the

sequence S, there is at least one vertex w in an even position in S between them such that w ∈Di j.

As a consequence, a given vertex v can not appear in two different odd positions in S because

Dvv = /0. However, the same vertex can appear many times in even positions.

We call inequalities (4.24) generalized walk inequalities. An example is shown in

Figure 20. Note that S = {v1,v2,v3,v4,v5,v2,v6}, v2 ∈ Dv1v3 ∩Dv1v5 ∩Dv1v6 ∩Dv3v6 ∩Dv5v6 and

v4 ∈ Dv3v5 , which satisfy (4.23).

Figure 20 – Generalized walk inequality example.
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As a counterpart of the generalized C4 inequalities (4.10) given for P1, we now

present valid inequalities for P2 that also involve variables z for vertices in VN .

Proposition 4.2.34 Let SB = {i, i′} and SB = { j, j′} be subsets of V (G) such that SB ⊆ VBN ,

SR ⊆ VRN . If j ∈ H[{i, i′}], j′ ∈ H[{i, i′}], i ∈ H[{ j, j′}] and i′ ∈ H[{ j, j′}], thus the following

inequality is valid for P2:

∑
i∈SB∩VN

(1− zBi)+ ∑
i∈SB∩VB

oi + ∑
i∈SR∩VN

(1− zRi)+ ∑
i∈SR∩VR

oi ≥ 2. (4.25)

If the subgraph induced by SB∪SR is exactly a C4, then (4.25) are facet-defining, as

stated below.
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Proposition 4.2.35 Let SB = {i, i′} and SR = { j, j′} be subsets of V (G) such that SB ⊆ VBN ,

SR ⊆VRN . If SB∪SR is an induced C4, thus the following inequality is a facet-defining for P2:

∑
i∈SB∩VN

(1− zBi)+ ∑
i∈SB∩VB

oi + ∑
i∈SR∩VN

(1− zRi)+ ∑
i∈SR∩VR

oi ≥ 2. (4.26)

Proof By following the same approach used in the proof of Propositions 4.2.29 and 4.2.31,

we can prove by induction that ∑
i∈SB∩VN

(1− zBi)+ ∑
i∈SB∩VB

oi + ∑
i∈SR∩VN

(1− zRi)+ ∑
i∈SR∩VR

oi ≥ 2

defines a facet of P2. �
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5 PIECEWISE LINEAR SEPARATION FOR THE GEODESIC CLASSIFICATION

PROBLEM

Another way of dealing with linear inseparability (instead of just considering outliers)

is to divide the blue and red sets of samples in subsets, which are called groups, and then impose

the convexity constraints for each group separately, as shown in Figure 22. In this example, the

set of blue samples is divided into two groups, AB1 and AB2 , whereas the set of red samples forms

a single group AR. Note that each pair of blue and red groups is linearly separable in the sense of

Definition 4.0.1.

Figure 21 – An example of instance for the geodesic classification problem.

Figure 22 – An example of solution with multi-group for the example of Figure 21.

As in 2-class multi-group Euclidean classification (Problem 2), we can think of an

approach to geodesic convexity classification that combines two strategies: identification of

outliers and division of the non-outlier vertices in groups. As a result, we require any pair of

opposite color groups to be linearly separable and aims at minimizing the number of outliers. To

formalize this idea, we introduce the following definition.



77

Definition 5.0.1 Let FB ⊆ 2VB and FR ⊆ 2VR be families of subsets of VB and VR, respectively,

and AN ⊆VN . A triple (FB,FR,AN) is piecewise linearly separable (with respect to G) if

(M1) H[A]∩A′ = /0, A ∈ FB, A′ ∈ FR,

(M2) H[A′]∩A = /0, A ∈ FB, A′ ∈ FR, and

(M3) H[A]∩H[A′]∩AN = /0, A ∈ FB, A′ ∈ FR,

and piecewise linearly inseparable otherwise, where FB = {A | A is a blue group} (resp., FR =

{A | A is a red group}). We can omit the word piecewise when it can be understood by the con-

text. For the sake of simplicity, we refer to (FB,FR,AN) simply as (FB,FR) if, and only if, AN =VN .

To define the geodesic classification problem with multi-groups, we use two fun-

damental parameters, LB and LR, that represent an upper bound on the number of groups, for

each class respectively, that can be used in a solution. Let LBR = LB +LR. We denote by CB

(resp., CR) the set of indices of the blue (resp., red) groups, CBR =CB∪CR, VBN =VB∪VN and

VRN =VR∪VN . Thus, LB = |CB| and LR = |CR|. When we use K ∈ {B,R} to specify a class, K̄

denotes the opposite class. Besides, K(i) and K̄(i) denote the color of the initially classified

vertex i ∈ VBR and its opposite color, respectively. The definition of the problem is described

below.

Problem 4. 2-class Multi-group Geodesic Classification Problem (2-MGC):

Given a connected simple graph G = (V,E), sets of initially classified vertices VB

(blue vertices) and VR (red vertices), with VN =V\(VBR), and upper bound parameters LB, LR,

find groups Ak ⊆VB, ∀k ∈ {1, . . . ,LB}, and Ak′ ⊂VR, ∀k′ ∈ {1, . . . ,LR}, such that:

(M0) (
⋃

k∈CB
Ak,
⋃

k′∈CR
Ak′) satisfies (M1), (M2) and (M3),

(M4) Ak∩A j = /0, ∀k, j ∈CB or ∀k, j ∈CR, and

(M5) |VBR|− |(
⋃

k∈CB
Ak∪

⋃
k′∈CR

Ak′)| is minimum.

The vertices in VBR\
⋃

k∈CBR
Ak are the outliers. It is worth observing that this problem

reduces to the 2-class single-group geodesic classification problem when |LB|= |LR|= 1.

In the solution of the 2-MGC problem, G is divided in blue and red convex sets given

by H[Ak], k ∈CB, and H[Ak′], k′ ∈CR, respectively. Vertices in VN that belong to a blue (resp.,
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red) convex set are set to the blue (resp., red) class. In addition, there can be vertices in VN that

do not belong to any convex set. It is worth remarking that the classification of such vertices is

not in the scope of this work. For a vertex i and a convex set k, we define i as active if i belongs

to k, and inactive otherwise.

Note that there is no constraint about intersection of convex sets of the same class,

that is H[Ak]∩H[Ak′], k,k′ ∈CB (or k,k′ ∈CR). However, convex sets related to opposite classes

can intercept only at outliers. Other important point to note is that condition (M4) could be

removed without changing the optimum. Indeed, consider a solution satisfying (M1)-(M3).

Suppose K ∈ {B,R} and l ∈ Ak ∩Ak′ , for some k,k′ ∈ CK , k 6= k′. Define Â j = A j,∀ j ∈ CK ,

j 6= k, and Âk = Ak\{l}. Thus, Â j ⊆ A j and H[Â j]⊆H[A j] and Â j ⊆ A j, ∀ j ∈CK , which implies

that conditions (M1), (M2) and (M3) remain satisfied. Also, (
⋃

j 6=k A j)∪Ak = (
⋃

j 6=k Â j)∪ Âk,

keeping the same number of outliers and, consequently, the same value for the objective function.

By repeating this process, we initially get a solution satisfying (M4).

5.1 Computational complexity of the 2-MGC problem

Let Lo be a parameter corresponding to the maximum number of outliers in a

solution of the 2-MGC problem. We denote by 2-MGCD(G,VB,VR,LB,LR,Lo) the following

decision problem:

Problem 5. 2-class Multi-group Geodesic Classification Decision Problem (2-MGCD):

Given a connected simple graph G = (V,E), sets of initially classified vertices VB

(blue vertices) and VR (red vertices), with VN =V\(VBR), and upper bound parameters LB, LR,

Lo, are there groups Ak ⊆VB, k ∈ {1, . . . ,LB}, and Ak′ ⊂VR, k′ ∈ {1, . . . ,LR}, such that:

1. (
⋃

k∈CB
Ak,
⋃

k′∈CR
Ak′) satisfies (M1), (M2) and (M3),

2. Ak∩A j = /0, ∀k, j ∈CB or ∀k, j ∈CR, and

3. |VBR|− |(
⋃

k∈CB
Ak∪

⋃
k′∈CR

Ak′)| ≤ Lo ?

We conjecture that this decision problem is NP-complete even for |LB|= |LR|= 1.

Let us observe its similarity with the problems studied in (ARTIGAS et al., 2011) and (BUZATU;

CATARANCIUC, 2015), which were proved to be NP-complete problems. In the first reference,



79

the authors proved that deciding whether a graph can be partitioned into 2 (disjoint) convex sets

is NP-complete. On the other hand, the same complexity was proved in the second reference for

the covering by 2 convex sets. The 2-MGCD problem looks for “improper"covering/packings in

the sense that some vertices in VBR and some vertices in VN may not be covered by some convex

subsets whereas some vertices in VBR (up to Lo) may be in the intersection of the convex subsets.

We have shown, in Subsection 4.1.1, that this problem for LB = LR = 1 can be view

as a special case of the well-known set covering problem. Actually, in the next subsection, we

obtain a similar result for the general case. Although we have not established its computational

complexity yet, we know some cases where it can be solved in polynomial time. They are

described below:

1. LB ≥ |VB| and LR ≥ |VR|: a trivial solution can be obtained by setting each vertex to its

own group;

2. |VBR| ≤ 2 or |VB|= |V | or |VR|= |V |: a trivial solution can be obtained defining one group

with all blue vertices and another group with all red vertices;

3. Lo ≥min{|VB|, |VR|}: a trivial solution can be obtained by defining each vertex in VB (or

VR, if |VR|< |VB|) as an outlier (it gives an upper bound for the problem);

4. Lo or VBR is constant: we can use a brute force algorithm;

5. Path instances with fixed LB and LR: For this type of instances, we can find an optimal

solution using a brute force algorithm. It suffices to divide the path into LB +LR parts,

where some of them may be empty, and to choose the class of each part. By combinatorial

calculation, the number of such possibilities is less than or equal to
(2(LB+LR−1)+|VBR|−1

LB+LR−1

)
·(LB+LR

LB

)
, which is polynomial.

5.2 Integer formulations for the 2-MGC problem

In this section, we present the analog of those formulations presented in Section 4.

In addition, a third formulation is obtained by a variable transformation from ILP2.
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5.2.1 A set covering formulation for the 2-MGC problem

To define the analogous formulation to ILP1, we now include a new index k in the

variables, which represents a group. Thus, for each i ∈VBR and k ∈CK(i),

oki =

 1, if i ∈VBR \Ak,

0, if i ∈ Ak.

Then, the formulation becomes:

(ILP1M) min ∑
i∈VBR

∑
k∈CK(i)

oki− ∑
K∈{B,R}

|VK|(LK−1) (5.1)

st: ∑
k∈CK(i)

oki ≥ LK(i)−1, ∀i ∈VBR, (5.2)

∑
j∈S

ok j +oki ≥ 1, ∀i∈VBR,∀k∈CK(i),∀k∈CK̄(i),

∀S⊆VK̄(i):i∈H[S], (5.3)

∑
j∈S

ok j + ∑
j∈T

ok j ≥ 1, ∀k∈CB,∀k∈CR,
∀S⊆VB ∀T⊆VR:H[S]∩H[T ]∩VN 6= /0, (5.4)

o ∈ B|VB|LB+|VR|LR. (5.5)

Constraints (5.2) indicate that each vertex in VBR can not belong to more than

one group (condition (M4)). The slackness of (5.2) indicates whether i is an outlier or not.

It is important to note that this condition is related to groups but not to their convex hull.

Constraints (5.3) ensure that, if an initially classified vertex belongs to the convex hull of a

group of its opposite class, then it must be an outlier, i.e., it can not belong to any group of its

class (conditions (M1) and (M2)). The VN-free intersection of convex sets of opposite classes is

described by (5.4) (condition (M3)). If i ∈VN belongs to the convex hull of a blue (resp. red)

class, then i is assigned to the blue (resp. red) class. Finally, by summing up the slackness of

(5.2), we see that the objective function minimizes the number of outliers (condition (M5)).

Below, we translate the informal argument presented above into a formal proof of

the correctness of the formulation.

Proposition 5.2.1 Formulation ILP1M is correct.

Proof First, observe that conditions (M1), (M2) and (M3) are a replication of conditions (C1),

(C2) and (C3) for each pair (k,k) ∈ CB×CR. Similarly, for each pair (k,k) ∈ CB×CR, cons-

traints (5.3)-(5.4) are exactly constraints (4.1)-(4.2), which model conditions (C1), (C2) and
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(C3), according to Proposition (4.1.1). Besides, constraints (5.2) model condition (M4). Indeed,

they are equivalent to ∑k∈CK(i)
(1−oki)≤ 1, for all i ∈VBR, which ensure that each vertex i ∈VBR

takes part in at most one set Ak, k ∈ CK(i). Finally, observe that, due to (5.2), the objective

function counts exactly the number of vertices from VBR outside
⋃

k∈CBR
Ak. �

We remark that constraints (5.2) could be discarded from ILP1M, as condition (M4)

is not necessary for the definition of 2-MGC. However, because of them, we can replace (5.3) by

a smaller set of strengthened constraints, as follows.

Proposition 5.2.2 Let o ∈ B|VB|LB+|VR|LR satisfying (5.2). Then, o satisfies (5.3) if, and only if, o

satisfies

∑
j∈S

ok j + ∑
k∈CK(i)

oki ≥ LK(i), ∀i ∈VBR,∀k ∈CK̄(i),∀S⊆VK̄(i) : i ∈ H[S]. (5.6)

Proof First, suppose that o satisfies all constraints in (5.3). Let i ∈VBR, k ∈CK̄(i) and S⊆VK̄(i)

such that i ∈ H[S]. If oki = 1 for all k ∈CK(i), then (5.6) trivially holds. Otherwise, by (5.3),

∑ j∈S ok j ≥ 1. This together with (5.2) implies (5.6).

Now suppose that o does not satisfy one of the constraints in (5.3). Then, there

are i ∈VBR, k ∈CK(i), k ∈CK̄(i) and S ⊆VK̄(i) with i ∈ H[S] such that ∑ j∈S ok j = 0 and oki = 0.

Therefore, the left-hand side of (5.6) becomes ∑c∈CK(i)\{k} oci, which is at most LK(i)− 1. It

follows that one constraint in (5.6) is not satisfied. �

5.2.2 The associated polytope - PM
1

Let PM
1 be the polytope associated with ILP1M, that is,

PM
1 = conv{o ∈ B|VB|LB+|VR|LR : (5.2)− (5.4)}.

Recall that constraints (5.2) could be discarded from ILP1M. Thus, we also consider the relaxed

polytope:

P̄M
1 = conv{o ∈ B|VB|LB+|VR|LR : (5.3)− (5.4)}.

It is worth observing that PM
1 and P̄M

1 are equal to P1 when LB = LR = 1.
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Proposition 5.2.3 PM
1 and P̄M

1 are full-dimensional.

Proof Consider the |VB|LB+ |VR|LR+1 points e and e−eki for each i∈VBR and k ∈CK(i). Since

they are affinely independent and belong to PM
1 , this set is full-dimensional. Besides, P̄M

1 ⊇ PM
1

implies that P̄M
1 is full-dimensional. �

Similarly to Proposition 4.1.4, we can deduce that any facet-defining inequality

different from a bounding inequality has non-negative coefficients.

Proposition 5.2.4 Let πT o ≥ π0 be a facet-defining inequality of PM
1 or P̄M

1 . If it is different

from oki ≤ 1 and oki ≥ 0, for all i ∈VBR and k ∈CK(i), then π ≥ 0 and π0 > 0.

5.2.3 Relations with P1

In this subsection, we relate polytope PM
1 with P1 through affine transformations.

These relations will yield the conversion of valid inequalities for one polytope into valid inequa-

lities for the other one.

Let us partition any vector o ∈ B|VBR| into (oB,oR), where oB and oR comprise the

components indexed by i ∈VB and i ∈VR, respectively. For the ease of the notation, we write

o = (oB,oR). Similarly, for o ∈ B|VB|LB+|VR|LR and k ∈CBR, let ok comprise the components oki,

for all i ∈VBR such that K(i) = k. Thus, we may highlight the components of o related to k ∈CBR

and write o = (ok,o′), where o′ comprises the remaining components.

We start by defining an injective affine transformation that maps P1 to PM
1 ⊆ P̄M

1 .

Proposition 5.2.5 Let k ∈CB and k ∈CR. Let Qkk : R|VBR|→ R|VB|LB+|VR|LR be the affine trans-

formation such that Qkk(oB,oR) = (ok,ok,o′), where
ok

ok

o′

=


I|VB| 0

0 I|VR|

0 0


oB

oR

+


0

0

e

 . (5.7)

Then, Qkk(P1)⊆ PM
1 .
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Proof It suffices to prove that an integer point (oB,oR) ∈ P1 is mapped to an integer point

(ok,ok,o′) ∈ PM
1 . Since ok′ = e for all k′ ∈CBR \ {k,k}, Inequalities (5.2) are satisfied. It also

implies that all inequalities (5.3)-(5.4), expect for those related to the pair (k,k), are trivially

satisfied. Besides, each of those inequalities associated with (k,k) holds, provided that (oB,oR)

satisfies (4.1)-(4.2). �

It is worth remarking that the inclusion stated in Proposition 5.2.5 can be strict.

Moreover, it can occur that
⋃
(k,k)∈CB×CR

Qkk(P1) ( PM
1 . For example, consider G = (VB ∪

VR∪VN ,E) as a path with 3 vertices, where VB = {v1,v3} contains the end vertices, VR = {v2}

contains the middle vertex and VN = /0. Let CB = {b,b′} and CR = {r}. Observe that the point

o ∈ B5 where the non-null components are obv1 = ob′v3 = 1 belongs to PM
1 . However, Qbr(P1)

yields either ob′v1 = ob′v3 = 1 whereas Qb′r(P1) yields either obv1 = obv3 = 1, implying that

PM
1 ) Qbr(P1)∪Qb′r(P1).

In the following two lemmas we identify points in PM
1 or P̄M

1 that are not directly

mapped by these affine transformations from points in P1. Despite this, such transformations are

still useful in this context. For ease of the notation, we use Qkk and Qkk indistinctly (provided

that k ∈CB and k ∈CR, or k ∈CR and k ∈CB).

Lemma 5.2.6 Let i∈VBR, k∈CK(i) and k∈CK̄(i). If o∈P1 satisfies ∑ j∈S o j ≥ 1, for all S⊆VK̄(i)

such that i ∈ H[S], then Qkk(o)− ek′i ∈ P̄M
1 , for all k′ ∈CK(i) \{k}.

Proof Let o ∈ P1 with ∑ j∈S o j ≥ 1, for all S ⊆VK̄(i) such that i ∈ H[S]. To obtain the claimed

result, it suffices to assume that o is integer and show that ô = Qkk(o)− ek′i satisfies (5.3)-(5.4).

Observe that

ôc j =


o j, if c ∈ {k, k̄},

0, if c = k′ and j = i,

1, otherwise.

(5.8)

By contradiction, first suppose that ô violates (5.3) for some ` ∈ VBR, c ∈ CK(`), c̄ ∈ CK̄(`)

and S ⊆ VK̄(`) such that ` ∈ H[S]. Then, ∑ j∈S ôc̄ j = ôc` = 0. Observe that we must have

{c, c̄} 6= {k,k}; otherwise, by (4.1) we would have ∑ j∈S ôc̄ j + ôc` = ∑ j∈S o j + o` ≥ 1. On the

other hand, since |S| ≥ 2 and ∑ j∈S ôc̄ j = 0, it must be c̄ ∈ {k,k}, and so c /∈ {k,k}. As ôc` = 0, it
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follows that c = k′ and `= i. Thus, S⊆VK̄(i) and i ∈ H[S]. Therefore, by hypothesis, we have

∑ j∈S ôc̄ j = ∑ j∈S o j ≥ 1: a contradiction.

Now suppose that ô violates (5.4) for some c ∈CB, c ∈CR, S⊆VB and T ⊆VR such

that H[S]∩H[T ]∩VN 6= /0. This means that ∑ j∈S ôc j = ∑ j∈T ôc j = 0. Since |S| ≥ 2 and |T | ≥ 2,

it must be {c,c}= {k,k}. Then, by (4.2), ∑ j∈S ôc j +∑ j∈T ôc j = ∑ j∈S∪T o j ≥ 1: a contradiction.

�

Corollary 5.2.7 Let i ∈VBR, k ∈CK(i) and k ∈CK̄(i). If o ∈ P1 is such that oi = 0, then Qkk(o)−

ek′i ∈ P̄M
1 , for all k′ ∈CK(i) \{k}.

Proof By Constraints (4.1), oi = 0 implies ∑ j∈S o j ≥ 1, for all S⊆VK̄(i) such that i ∈ H[S]. The

result then follows by Lemma 5.2.6. �

Lemma 5.2.8 Let i ∈VBR, k ∈CK(i) and k ∈CK̄(i). Let o ∈ P1 satisfying oi = 1 and ∑ j∈S o j ≥ 1,

for all S⊆VK̄(i) such that i ∈ H[S], then Qkk(o)− ek′i ∈ PM
1 , for all k′ ∈CK(i) \{k}.

Proof Let o ∈ P1 with oi = 1 and ∑ j∈S o j ≥ 1, for all S ⊆ VK̄(i) such that i ∈ H[S]. It suf-

fices to prove the result when o is integer. By Lemma 5.2.6, ô = Qkk(o)− ek′i satisfies

(5.3)-(5.4). Then, it remains to consider Constraints (5.2). Recall the expression of ô in

(5.8). Let ` ∈ VBR. If ` 6= i, then ∑c∈CK(`)
ôc` = o` + |CK(`)| − 1 ≥ LK(`)− 1. If ` = i, then

∑c∈CK(`)
ôc` = oi + |CK(`)|−2 = LK(`)−1. In both cases, ô satisfies (5.2). �

We can now show that P1 is a projection of PM
1 and P̄M

1 .

Corollary 5.2.9 Let k ∈CB and k ∈CR. Then, P1 = proj
(ok,ok)

PM
1 = proj

(ok,ok)
P̄M

1 .

Proof By Proposition 5.2.5, we conclude that P1 ⊆ proj
(ok,ok)

PM
1 . Besides, proj

(ok,ok)
PM

1 ⊆

proj
(ok,ok)

P̄M
1 due to PM

1 ⊆ P̄M
1 . Now, let o = (oB,oR) ∈ proj

(ok,ok)
P̄M

1 . Then, for all i ∈VBR and

S⊆VK̄(i) such that i ∈ H[S], Constraints (5.3) lead to ∑ j∈S o j +oi ≥ 1. Similarly, for all S⊆VB

and T ⊆VR such that H[S]∩H[T ]∩VN 6= /0, Constraints (5.4) imply that ∑ j∈S o j +∑ j∈T o j ≥ 1.

Then, o satisfies (4.1)-(4.2). In particular, we have shown that the integer points in proj
(ok,ok)

P̄M
1
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belong to P1. It follows that proj
(ok,ok)

P̄M
1 ⊆ P1. Therefore, P1 = proj

(ok,ok)
PM

1 = proj
(ok,ok)

P̄M
1 . �

A surjective affine mapping from a subset of PM
1 to P1 can also be established.

Proposition 5.2.10 Let Q be any of the affine transformations defined in Proposition 5.2.5 and

R : R|VB|LB+|VR|LR → R|VBR| be the affine transformation such that R(o) = õ, where

õi = ∑
k∈CK(i)

oki−LK(i)+1 ∀i ∈VBR. (5.9)

Then R(Q(oBR)) = oBR, for all oBR = (oB,oR) ∈ R|VBR|, and P1 ⊆R(PM
1 ).

Proof Let oBR = (oB,oR)∈R|VBR|, ô=Q(oBR) = (oB,oR,e), and õ=R(ô). Let i∈VK . Assume

that Q=Qkk, for k∈CK , k̄∈CK̄ and K ∈{B,R}. Then, õi =∑k′∈CK(i)
ôk′i−LK(i)+1= ôki = oBR

i ,

that is, R(Q(oBR)) = oBR. In particular, P1 = R(Q(P1)). By Proposition 5.2.5, it follows that

P1 ⊆R(PM
1 ). �

The example presented after Proposition 5.2.5 also shows that it can occur the strict

inclusion P1 ( R(PM
1 ). Indeed, for the point o ∈ B5 given in that example, we have R(o) = 0,

but 0 /∈ P1. Anyway, Proposition 5.2.10 ensures that valid inequalities for R(PM
1 ) are valid for P1.

In other terms, we can derive valid inequalities for P1 from valid inequalities for PM
1 , as follows.

Proposition 5.2.11 If ∑k∈CBR(π
k)T ok ≥ π0 is valid for PM

1 then (πk)T oB + (πk)T oR ≥ π0−

∑k′∈CBR\{k,k}(π
k′)T e is valid for P1, for every k ∈CB and k ∈CR.

Proof Let k ∈CB and k ∈CR. Let Qkk(o) = Qo+ q be defined as in Proposition 5.2.5, with

matrix Q and vector q given by (5.7). Then, Qkk(P1)⊆ PM
1 , and so ∑k∈CBR(π

k)T ok ≥ π0 is valid

for Qkk(P1). By Proposition 2.2.4, it follows that (πk)T oB+(πk)T oR≥ π0−∑k′∈CBR\{k,k}(π
k)T e

is valid for P1. �

We can also obtain a valid inequality for P1 by combining coefficients, from a valid

inequality for PM
1 , related to different groups of the same color.
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Proposition 5.2.12 If ∑k∈CBR(π
k)T ok ≥ π0 is valid for PM

1 , then ∑i∈VBR πkiioi ≥ π0−∑i∈VBR

∑k∈CK(i)\{ki}πki is valid for P1, where πkii = min{πki : k ∈CK(i)} for all i ∈VBR.

Proof Let õ ∈ P1. By Proposition 5.2.10, there is o ∈ PM
1 such that õ = R(o), that is, õi =

∑k∈CK(i)
oki−LK(i)+1 = ∑k∈CK(i)

(oki−1)+1 for all i ∈VBR. It follows that

∑
i∈VBR

πkiiõi = ∑
i∈VBR

∑
k∈CK(i)

πkii(oki−1)+ ∑
i∈VBR

πkii

≥ ∑
i∈VBR

∑
k∈CK(i)

πki(oki−1)+ ∑
i∈VBR

πkii (due to πkii ≤ πki,oki ≤ 1)

≥ π0 + ∑
i∈VBR

∑
k∈CK(i)\{ki}

πki (due to ∑
k∈CBR

(πk)T ok ≥ π0).

Therefore, ∑i∈VBR πkiioi ≥ π0−∑i∈VBR ∑k∈CK(i)\{ki}πki is valid for P1. �

Note that πkii is the “best” coefficient for oi in a ≥-inequality among the coefficients

of oki, for k ∈CK(i). However, the decrease in the right-hand side needed to make the inequality

with these best coefficients valid leads this inequality to be dominated by the inequalities

defined in Proposition 5.2.11. Indeed, given k ∈CB and k ∈CR, the summation of (πk)T oB +

(πk)T oR ≥ π0−∑k′∈CBR\{k,k}(π
k)T e with the valid inequalities (πki−πkii)oi ≤ (πki−πkii), for

all i ∈ CB, and (πki− πkii)oi ≤ (πki− πkii), for all i ∈ CR, gives exactly ∑i∈VBR πkiioi ≥ π0−

∑i∈VBR ∑k′∈CK(i)\{ki}πk′i.

5.2.4 Valid inequalities and facets

Corollary 5.2.9 and Proposition 2.2.10 allow us to directly derive valid inequalities

for P̄M
1 (and consequently for PM

1 ) from those valid for P1.

Proposition 5.2.13 If πT oB +λ T oR ≥ π0 is valid for P1 then πT ok +λ T ok ≥ π0 is valid for PM
1

and P̄M
1 , for all k ∈CB and k ∈CR.

In the following, we focus on facetness properties. For easiness of the presentation,

we start considering the upper bounding constraints.



87

Proposition 5.2.14 For every i ∈VBR and k ∈CK(i), oki ≤ 1 defines a facet of PM
1 and P̄M

1 .

Proof Consider the points e and e− ek′ j, for each j ∈ VBR and k′ ∈CK( j) with (k′, j) 6= (k, i).

They are affinely independent points of PM
1 in the face defined by oki ≤ 1. Then, this face is

actually a facet of PM
1 . The same occurs for P̄M

1 ⊇ PM
1 . �

We can show that P̄M
1 inherits the facetness properties that hold for P1.

Proposition 5.2.15 If πT oB + λ T oR ≥ π0 is facet-defining for P1 then πT ok + λ T ok ≥ π0 is

facet-defining for P̄M
1 , for all k ∈CB and k ∈CR.

Proof Let k ∈ CB and k ∈ CR. By Proposition 5.2.14, it remains to consider the case where

πT oB +λ T oR ≥ π0 is different from oi ≤ 1, for all i ∈ VBR. Let F = {(oB,oR) ∈ P1 : πT oB +

λ T oR = π0} and FM = {(ok,ok,o′) ∈ P̄M
1 : πT ok +λ T ok = π0}. By Proposition 5.2.13, FM is a

face of P̄M
1 . Consider the following points:

1. Qkk(O), where O is a set of p = |VB|+ |VR| affinely independent points of F . By Propo-

sition 5.2.5, Qkk(O) ⊆ P̄M
1 . Besides, every point (ok,ok,o′) ∈Qkk(oB,oR) has ok = oB,

ok = oR and o′ = e. Therefore, we can deduce that Qkk(O) comprises p affinely indepen-

dent points in FM.

2. For every i ∈ VBR and k′ ∈ CK(i) \ {k,k}, point Qkk(o)− ek′i, where o is a solution in

F with oi = 0 (such a solution exists because F 6= {o ∈ P1 : oi = 1}). Let Ô be the

set formed by these points. Then, Ô ⊂ P̄M
1 by Corollary 5.2.7. Besides, every point

(ok,ok,o′) = Qkk(oB,oR)− ek′i has ok = oB, ok = oR and o′ = e− ek′i. It follows that Ô

has |VB|(LB−1)+ |VR|(LR−1) affinely independent points in FM.

Since the o′-components in Qkk(O) are always 1 and each point in Ô has zero in one of these

components, we can conclude that the whole set of points is affinely independent. Therefore, as

O∪ Ô⊆ FM, we conclude that FM is a facet of P̄M
1 . �

By applying Proposition 5.2.15 to the facet-defining inequalities presented in Sub-

sections 4.2.1 and 4.2.2, we get facet-defining inequalities of P̄M
1 , as follows.

Corollary 5.2.16 The following inequalities define facets of P̄M
1 .
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1. oki ≥ 0, ∀i ∈VBR, k ∈CK(i),

2. The multi-group VBR-disjoint N -set elementary inequalities (corresponding to (4.4), which

includes the corresponding generalized 3-path inequalities (4.7)) satisfying the conditions

of Theorem 4.2.2: ∑ j∈S ok̄ j +oki ≥ 1, for every k ∈CK(i) and k̄ ∈CK̄(i),

3. The multi-group VN-disjoint N -set elementary inequalities (corresponding to (4.5), which

includes the corresponding X-swing inequalities (4.8)) satisfying the conditions of Theo-

rem 4.2.2: ∑ j∈S ok j +∑ j∈T ok̄ j ≥ 1, for every k ∈CB and k̄ ∈CR,

4. The multi-group generalized C4 inequality (corresponding to (4.10)): oki + oki′ + ok̄ j +

ok̄ j′ ≥ 2, for every k ∈CB, k̄ ∈CR,

5. The multi-group N -set inequalities (corresponding to (4.6), which includes the corres-

ponding star tree (4.11) and alternating path (4.12) inequalities) satisfying the conditions

of Theorem 4.2.2: ∑i∈S
oki
νi
+∑ j∈T

ok̄ j
ν j
≥ 1, for every k ∈CB, k̄ ∈CR.

Regarding PM
1 , the presence of constraints (5.2) may require additional conditions to

obtain facet-defining inequalities from P1.

Proposition 5.2.17 Let πT oB +λ T oR ≥ π0 be a valid inequality for P1 defining a facet F such

that, for each i ∈VBR with LK(i) > 1, there is o ∈ F such that oi = 1 and ∑ j∈S o j ≥ 1 for every

S ⊆ VK̄(i) with i ∈ H[S]. Then πT ok +λ T ok ≥ π0 is facet-defining for PM
1 , for all k ∈ CB and

k ∈CR.

Proof Let k ∈ CB, k ∈ CR and FM = {(ok,ok,o′) ∈ PM
1 : πT ok + λ T ok = π0}. By Proposi-

tion 5.2.13, FM is a face of PM
1 . Consider the following points in FM obtained from points in

F = {(oB,oR) ∈ P1 : πT oB +λ T oR = π0}:

1. Qkk(O), where O is a set of p = |VB|+ |VR| affinely independent points of F . By Propo-

sition 5.2.5, Qkk(O) ⊆ PM
1 . Besides, every point (ok,ok,o′) ∈Qkk(oB,oR) has ok = oB,

ok = oR and o′ = e. This implies that Qkk(O) comprises p affinely independent points in

FM.

2. For every i ∈ VBR and k′ ∈CK(i) \ {k,k}, point Qkk(o)− ek′i, where o is a solution in F

with oi = 1 and ∑ j∈S o j ≥ 1 for all S ⊆ VK̄(i) such that i ∈ H[S] (this solution exists by

the hypotheses on πT oB +λ T oR ≥ π0; this case only exists when LK(i) > 1). Let Ô be

the set formed by these points. Then, Ô ⊂ PM
1 by Lemma 5.2.8. Besides, every point
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(ok,ok,o′) = Qkk(oB,oR)− ek′i has ok = oB, ok = oR and o′ = e− ek′i. Therefore, Ô has

|VB|(LB−1)+ |VR|(LR−1) affinely independent points in FM.

Since the o′-components in Qkk(O) are always 1 and each point in Ô has zero in one of these

components, we can conclude that the whole set of points is affinely independent. Therefore, as

O∪ Ô⊆ FM, we conclude that FM is a facet of PM
1 . �

Due to the condition stated in Proposition 5.2.17, only some of the inequalities

enumerated in Corollary 5.2.16 are also facet-defining for PM
1 .

Corollary 5.2.18 The following inequalities define facets of PM
1 .

1. The multi-group VN-disjoint N -set elementary inequalities (corresponding to (4.5), which

includes the corresponding X-swing inequalities (4.8)) satisfying the conditions of Theo-

rem 4.2.2: ∑ j∈S ok j +∑ j∈T ok̄ j ≥ 1, for every k ∈CB and k̄ ∈CR,

2. The multi-group generalized C4 inequalities (4.10): oki +oki′+ok̄ j +ok̄ j′ ≥ 2, for every

k ∈CB, k̄ ∈CR.

It is worth remarking that the conditions stated in Proposition 5.2.17 do not hold for

the non-negativity constraints or constraints (4.1) of ILP1. In this case, the corresponding cons-

traints in ILP1M are dominated by (5.2) and (5.6), respectively. These stronger inequalities are

actually facet-defining for PM
1 . To obtain these and other facets, we use the following proposition.

Proposition 5.2.19 Let ∑ j∈S o j +πioi ≥ π0, π0 ≥ 0, be facet-defining for P1, where i ∈VBR and

S⊆VK̄(i) with i ∈ H[S]. Let k̄ ∈CK̄(i). The following inequality is facet-defining for PM
1 :

∑
j∈S

ok̄ j +πi ∑
k∈CK(i)

oki ≥ π0 +πi(LK(i)−1). (5.10)

Proof First, note that õ j = 1, for all j ∈VK(i), and õ j = 0, for all j ∈VK̄(i), defines a point in P1.

Since ∑ j∈S õ j +πiõi ≥ π0, it follows that πi ≥ π0.

To show validity of (5.10), let o be an integer point in PM
1 . If ∑k∈CK(i)

oki = LK(i),

the inequality holds since πi ≥ π0. Otherwise, we have ∑k∈CK(i)
oki = LK(i)−1 by (5.2), which

means that ok′i = 0 for some k′ ∈CK(i). Now let õ ∈ B|VBR| be such that õ j = ok′ j, for all j ∈VK(i),
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and o j = ok̄ j, for all j ∈VK̄(i). Since o satisfies (5.3)-(5.4), we have that õ satisfies (4.1)-(4.2).

This means that õ ∈ P1, leading to π0 ≤∑ j∈S õ j +πiõi = ∑ j∈S ok̄ j +πiok′i = ∑ j∈S ok̄ j. Therefore,

∑ j∈S ok̄ j +πi ∑k∈CK(i)
oki ≥ π0 +πi(LK(i)−1).

Now, we show facetness. Let FM be the face of PM
1 defined by (5.10). Let k be an

arbitrary element of CK(i). Consider the following |VB|LB + |VR|LR points:

1. Qkk̄(O), where O ⊆ P1 is set of |VBR| affinely independent integer points satisfying

∑ j∈S o j + πioi ≥ π0 at equality. These points do exist due to the hypothesis. By Pro-

position 5.2.5, Qkk̄(O) ⊆ PM
1 . Recall that every point (ok,ok̄,o′) ∈Qkk̄(O) has o′ = e,

oc j = o j, for all j ∈VBR and c ∈CK( j)∩{k, k̄}. This implies that Qkk̄(O) comprises |VBR|

affinely independent points in PM
1 . Moreover,

∑
j∈S

ok̄ j +πi ∑
k′∈CK(i)

ok′i = ∑
j∈S

o j +πi(oi +LK(i)−1)

= ∑
j∈S

o j +πioi +πi(LK(i)−1) = π0 +πi(LK(i)−1).

Thus, Qkk̄(O)⊆ FM.

2. Ô = {Qkk̄(ō)− ec′`+ ec` | ` ∈ VBR,c′ ∈ CK(`) \ {k, k̄},{c} = CK(`) ∩{k, k̄}}, where ō is

an arbitrary point with ō` = 0 in the facet of P1 induced by ∑ j∈S o j + πioi ≥ π0 (such

a point do exist because this inequality is different from o` ≤ 1 as π0 ≥ 0). Let ô =

Qkk̄(ō)− ec′` + ec` ∈ Ô. By item 1, õ = Qkk̄(ō) ∈ FM. Since we are adding ec` and

subtracting ec′` to õ and c,c′ ∈ CK(`), ô ∈ Ô still satisfies (5.2) and (5.6) (and so (5.3)).

Moreover, recall that, for all j ∈ VBR and k′ ∈ CK( j), we have õk′ j = ō j, if k′ ∈ {k, k̄},

and õk′ j = 1, if k′ /∈ {k, k̄}. In particular, õc` = ō` = 0 and õc′` = 1. Therefore, ô is a

binary point. Besides, since ôc′ j = õc′ j = 1 for all j 6= `, õ satisfies constraints (5.4), and

|S| ≥ 2 and |T | ≥ 2 in these constraints, we conclude that ô satisfies (5.4). It follows that

ô ∈ PM
1 . Furthermore, since õ ∈ FM satisfies ∑ j∈S ok̄ j +πi ∑k∈CK(i)

oki ≥ π0 +πi(LK(i)−1)

at equality, the same happens with ô = õ− ec′`+ ec`. Therefore, Ô ⊆ FM. Let us also

remark that Ô is an affinely independent set with |VB|(LB−1)+ |VR|(LR−1) points.

Finally, consider a point (ok,ok̄,o′) ∈Qkk̄(O)∪ Ô. Since the o′-components of any

point in Qkk̄(O) are all 1 and exactly one of them turns to be zero in each point of Ô (a different

component for each point), we conclude that the entire set of points is affinely independent.

Therefore, FM is a facet of PM
1 . �
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By applying Proposition 5.2.19 to the facet-defining inequalities of P1 considered

in Proposition 4.2.4, Corollary 4.2.3, Corollary 4.2.7 and Proposition 4.2.12, we obtain the

following facet-defining inequalities.

Corollary 5.2.20 The following inequalities define facets of PM
1 .

1. Constraints (5.2) (corresponding to oi ≥ 0),

2. The multi-group generalized 3-path inequalities (corresponding to (4.7)) satisfying the

conditions of Corollary 4.2.7: ok̄h +ok̄ j +∑k∈CK(i)
oki ≥ LK(i), for every k̄ ∈CbarK(i),

3. Constraints (5.6) that satisfy the conditions of Corollary 4.2.3,

4. The multi-group star tree inequalities (corresponding to (4.11)) satisfying the conditions

of Theorem 4.2.2: ∑ j∈L ok̄ j +(|L|−1)∑k∈CK(i)
oki ≥ (|L|−1)LK(i), for every k̄ ∈CK̄(i).

As a consequence of Corollary 5.2.20)(1), we can still establish the following result.

Corollary 5.2.21 Let i ∈VBR and k ∈CK(i). Then oki ≥ 0 defines a facet of PM
1 if, and only, if

LK(i) = 1.

Proof If LK(i) = 1, oki ≥ 0 is the same as (5.2), which is facet-defining, according to Co-

rollary 5.2.20(1). If LK(i) ≥ 2, oki ≥ 0 is the summation of (5.2) and −ok′i ≥ −1, for all

k′ ∈CK(i) \{i}. �

To end this section, we relate ILP1M with the formulation that we introduced in

(ARAÚJO et al., 2019). Although presented for the single-group case, it can be readily generali-

zed for the multi-group case, as follows:
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min ∑
i∈VBR

∑
k∈CK(i)

aki (5.11)

st: ∑
k∈CK(i)

aki ≤ 1, ∀i ∈VBR, (5.12)

∑
j∈S

ak j +aki ≤ |S|,
∀i∈VBR,∀k∈CK(i),∀k∈CK̄(i),

∀S⊆VK̄(i):i∈H[S], (5.13)

∑
j∈S

ak j + pi ≤ |S|, ∀i∈VN ,∀k∈CB,
∀S⊆VB:i∈H[S], (5.14)

∑
j∈T

ak̄ j +(1− pi)≤ |T |, ∀i∈VN ,∀k̄∈CR,
∀T⊆VR:i∈H[T ], (5.15)

a ∈ B|VB|LB+|VR|LR, (5.16)

p ∈ B|VN |. (5.17)

The variables aki indicate whether a vertex i is chosen to form a group (basis) Ak.

Thus, we have aki = 1−oki. With this variable transformation, we can see that (5.11) is equivalent

to the objective function (5.1) whereas constraints (5.12) and (5.13) are direct rewritten of (5.2)

and (5.3). In addition, constraints (5.14) and (5.15) are a disaggregation of (5.4) by means of

a binary variable pi, i ∈VN , to indicate whether i is reached by a blue convex set (pi = 0) or a

red convex set (pi = 1). This guarantees that condition (M3) holds. Observe that (5.4) is the

summation of (5.14) and (5.15).

As one can infer from the relation stated above, formulation (5.11)-(5.17) is essenti-

ally ILP1M (with the addition of variable pi, for all i ∈VN). For this reason, we do not consider

it in this text.

5.2.5 A compact formulation for the 2-MGC problem

Similarly to the definition of ILP1M, we add an index k to the o variables in ILP2 in

order to represent groups. Thus, we have for each i ∈VBR and k ∈CK(i),

oki =

 1, if i ∈VBR \Ak,

0, if i ∈ Ak,

and, for each k ∈CBR and i ∈V ,

zki =

 1, if i ∈ H[Ak],

0, otherwise.
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The z variables have exactly the same meaning as in ILP2. The formulation is the following.

(ILP2M) min ∑
i∈VBR

∑
k∈CK(i)

oki− ∑
K∈{B,R}

|VK|(LK−1) (5.18)

st: ∑
k∈CK(i)

oki ≥ LK(i)−1, ∀i ∈VBR, (5.19)

oki ≥ zki, ∀i ∈VBR,k ∈CK(i),k ∈CK̄(i), (5.20)

zki + zki ≤ 1, ∀i ∈VN ,k ∈CB,k ∈CR, (5.21)

zki +oki ≥ 1, ∀i ∈VBR,k ∈CK(i), (5.22)

zkh + zk j− zki ≤ 1, ∀k ∈CBR,h, i, j ∈V : i ∈ Dh j, (5.23)

o ∈ B|VB|LB+|VR|LR, (5.24)

z ∈ B|V |LBR. (5.25)

Constraints (5.20) ensure that, if i belongs to the convex hull of a group of its opposite

class, then i is an outlier (conditions (M1) and (M2)). By (5.19), we have that, for every i ∈VBR,

i must belong to at most one group of its class (condition (M4)). Constraints (5.21) ensure that

vertices in VN can not belong to the intersection of convex sets of opposite classes (condition

(M3)). Constraints (5.22) say that each initially classified vertex must be an outlier and/or belong

to at least one convex set of its class. The convexity of each set, that is, the convex hull of each

group, is ensured by constraints (5.23). The objective function minimizes the number of outliers

(condition (M5)).

Actually, ILP2M is related to ILP1M as follows.

Proposition 5.2.22 Let FM
1 and FM

2 be the feasible sets of ILP1M and ILP2M, respectively. Then,

FM
1 = projo(F

M
2 ).

Proof Similar to the proof of Proposition 4.2.15. �

Propositions 5.2.1 and 5.2.22 imply the correctness of ILP2M.

Corollary 5.2.23 Formulation ILP2M is correct. �
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We remark that constraints (5.19) and (5.20) can be combined into a smaller group

of constraints, as follows.

Proposition 5.2.24 Let o ∈ B|VB|LB+|VR|LR and z ∈ B|V |LBR . Then, (o,z) satisfies (5.19)-(5.20) if,

and only if, (o,z) satisfies

∑
k∈CK(i)

oki− zki ≥ LK(i)−1, ∀i ∈VBR,k ∈CK̄(i) (5.26)

Proof First, suppose that (o,z) satisfies all constraints in (5.19)-(5.20). Let i∈VBR and k ∈CK̄(i).

If zki = 0, then (5.26) becomes the same as (5.19), and so it is satisfied. If zki = 1, by (5.20) we

have that oki = 1 for all k ∈CK(i). Again, (5.26) is satisfied (at equality).

Now suppose that (o,z) satisfies all constraints in (5.26). Let i ∈VBR. If zki = 0 for

all k ∈CK̄(i), then (5.26) becomes the same as (5.19), and constraints (5.20) are trivially satisfied.

If zki = 1 for some k ∈CK̄(i), (5.26) yields that oki = 1 for all k ∈CK(i), which implies that (5.19)

and (5.20) are satisfied. �

Besides, the following property ensures that we can aggregate constraints (5.22).

Proposition 5.2.25 Let F̃M
2 be the set of points satisfying (5.19)-(5.21), (5.23)-(5.25) and

∑
k∈CK(i)

zki + ∑
k∈CK(i)

oki ≥ LK(i), ∀i ∈VBR. (5.27)

Then, FM
2 ⊆ F̃M

2 . Conversely, if (o,z)∈ F̃M
2 then there is (o′,z)∈ FM

2 such that ∑i∈VBR ∑k∈CK(i)
oki

= ∑i∈VBR ∑k∈CK(i)
o′ki.

Proof Notice that (5.27) is the summation in k ∈CK(i) of constraints (5.22). Therefore, FM
2 ⊆

F̃M
2 . Now, let (o,z) ∈ F̃M

2 . If (o,z) satisfies all constraints in (5.22), we just take o′. So, suppose

that there are i∈VBR and k ∈CK(i) such that oki = zki = 0. By (5.19) and (5.27), there is k′ ∈CK(i)

such that zk′i = ok′i = 1. Let us obtain o′ from o by keeping all components except for o′ki = 1

and o′k′i = 0. Since oki +ok′i = o′ki +o′k′i = 1, the last equality in the statement follows. For the

same reason, (o′,z) satisfies (5.19). Besides, zki +o′ki = zk′i +o′k′i = 1 implies that (5.22) holds

for (o′,z). Since the other linear constraints of ILP2M do not involve o variables, it remains to

show that (o′,z) satisfies (5.20), or still that o′ki ≥ zk̄i and o′k′i ≥ zk̄i, for all k̄ ∈CK̄(i). Since (o,z)
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satisfies (5.20), we have 0 = oki ≥ zk̄i, and so zk̄i = 0, for all k̄ ∈CK̄(i). The desired inequalities

then follow. �

5.2.6 The associated polytope - PM
2

Let PM
2 be the polytope associated with ILP2M, that is,

PM
2 = conv{(o,z) ∈ B|VB|LB+|VR|LR×B|V |LBR : (5.19)− (5.23)}.

In addition, discarding the optional constraints (5.19), we also define the relaxed polytope:

P̄M
2 = conv{o ∈ B|VB|LB+|VR|LR : (5.20)− (5.23)}.

Observe that PM
2 and P̄M

2 are equal to P2 if LB = LR = 1.

As before, let eki ∈ B|VB|LB+|VR|LR , for each i ∈VBR and k ∈CK(i), be an unit vector

with 1 in the position indexed by k and i. Besides, for ease of notation, let eki ∈ BLBR|V |, for

each k ∈CBR and i ∈V , also stand for an unit vector with the same feature (but with different

dimension).

Proposition 5.2.26 PM
2 and P̄M

2 are full-dimensional.

Proof Consider the following LB|VB|+LR|VR|+LBR|V |+1 vectors in BLB|VB|+LR|VR|×BLBR|V |:

(e,0), (e− ek j,ek j) for every j ∈ VBR and k ∈CK( j), and (e,ek j) for every j ∈ V and k ∈CBR.

They belong to PM
2 and are affinely independent, thus showing that PM

2 is full-dimensional. Since

PM
2 ⊆ P̄M

2 , P̄M
2 is also full-dimensional. �

Observe that oki≥ 0, for all i∈VBR and k∈CK(i), are dominated by Constraints (5.20).

Thus, similarly to Proposition 4.2.20, we obtain the following property.

Proposition 5.2.27 Let πT o+ µT z ≥ π0 be a facet-defining inequality of PM
2 or P̄M

2 . If it is

different from oki ≤ 1, for all i ∈VBR and k ∈CK(i), then π ≥ 0. Besides, if π 6= 0, then π0 > 0.

5.2.7 Relations with PM
1

By Propositions 2.2.14 and 5.2.22, we have that:
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Proposition 5.2.28 PM
1 = projo(P

M
2 ).

Therefore, according to Proposition 2.2.10, it follows that:

Corollary 5.2.29 If πT o≥ π0 is valid for PM
1 , then it is valid for PM

2 .

5.2.8 Relations with P2

We can derive relations between PM
2 with P2 in the same vein as those obtained

between PM
1 and P1 in Subsection 5.2.3. Here, we recover only those directly involved in the

definition of valid inequalities.

Regarding polytope P2, given a point (o,z) ∈ B|VBR|×B2|V |, we partition o = (oB,oR)

and z = (zB,zR), where B and R indicate the components indexed by i ∈VB and i ∈VR, respecti-

vely. For the ease of the notation, we may write oz, ozB and ozR for (o,z), (oB,zB) and (oR,zR),

respectively. Generalizing this notation to PM
2 and a point (o,z) ∈ B|VB|LB+|VR|LR×BLBR|V |, we

use (ok,zk), for any k ∈CBR, to represent the components oki, for all i ∈VBR such that K(i) = k,

and zki, for all i ∈ V . When highlighting ok in the whole vector o, we may write o = (ok,o′),

where o′ comprises the remaining components. Similarly, we use z = (zk,z′) and oz = (ozk,oz′).

Proposition 5.2.30 Let k ∈CB and k ∈CR. Let Q̃kk : R|VBR|×R2|V |→ R|VB|LB+|VR|LR×RLBR|V |

be the affine transformation such that Q̃kk(ozB,ozR) = (ozk,ozk,oz′), where
ozk

ozk

o′

z′

=


I|VB|+|V | 0

0 I|VR|+|V |

0 0

0 0


ozB

ozR

+


0

0

e

0

 . (5.28)

Then, Q̃kk(P2)⊆ PM
2 ⊆ P̄M

2 .

Proof It suffices to prove that (ozB,ozR) feasible for ILP2 implies (ozk,ozk,oz′) feasible for

ILP2M. Since ok′ = e for all k′ ∈ CBR \ {k,k}, inequalities (5.19) are satisfied. This together

with zk′ = 0 for all k′ ∈CBR \ {k,k} imply that all inequalities (5.20)-(5.21), expect for those
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related to the pair (k,k), are trivially satisfied. Besides, each of those inequalities associated with

(k,k) holds, provided that (ozB,ozR) satisfies (4.14)-(4.15). Similar arguments can be applied to

conclude that constraints (5.22)-(5.23) are trivially satisfied if not related to k or k, and are due

to (4.16)-(4.17), otherwise. �

Proposition 5.2.31 If ∑k∈CBR(π
k)T ok +∑k∈CBR(µ

k)T zk ≥ π0 is a valid inequality for PM
2 then

(πk)T oB +(πk)T oR +(µk)T zB +(µk)T zR ≥ π0−∑k′∈CBR\{k,k}(π
k′)T e is valid for P2, for every

k ∈CB and k ∈CR.

Proof Let k ∈CB and k ∈CR. Let Q̃kk be defined as in Proposition 5.2.30. Then, Q̃kk(P2)⊆ PM
2 ,

and so ∑k∈CBR(π
k)T ok +∑k∈CBR(µ

k)T zk ≥ π0 is valid for Q̃kk(P2). By Proposition 2.2.4, it

follows that (πk)T oB+(πk)T oR+(µk)T zB+(µk)T zR ≥ π0−∑k′∈CBR\{k,k}(π
k)T e is valid for P2.

�

To identify points in PM
2 or P̄M

2 that are not covered by these affine transformations,

it will be convenient to rewrite them by grouping the variables in a different way. Precisely, we

can rewrite Q̃kk(oB,oR,zB,zR) = (Qkk(oB,oR),Q̇kk(zB,zR)), where Qkk(oB,oR) = (ok,ok,o′) is

given by (5.7) and Q̇kk(zB,zR) = (zk,zk,z′) is such that
zk

zk

z′

=


I|V | 0

0 I|V |

0 0


zB

zR

 . (5.29)

Lemma 5.2.32 Let i ∈ VBR, k ∈CK(i) and k ∈CK̄(i). If (o,z) ∈ P2 is such that zK̄(i)i = 0, then

(Qkk(o)− ek′i,Q̇kk(z)+ ek′i) ∈ P̄M
2 , for all k′ ∈CK(i) \{k}.

Proof Let (o,z) ∈ P2 with zK̄(i)i = 0. To obtain the claimed result, it suffices to assume that o is

integer and show that (ô, ẑ) = (Qkk(o)− ek′i,Q̇kk(z)+ ek′i) satisfies (5.20)-(5.23). Observe that

ôc j =


o j, if c ∈ {k, k̄},

0, if c = k′ and j = i,

1, otherwise,

and ẑc j =



zK(i) j, if c = k,

zK̄(i) j, if c = k̄,

1, if c = k′ and j = i,

0, otherwise.
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By contradiction, first suppose that (ô, ẑ) violates (5.20) for some `∈VBR, c∈CK(`) and c̄∈CK̄(`),

i.e. ôc` = 0 and ẑc̄` = 1. Then, we must have c, c̄ ∈ {k, k̄,k′}, and ` = i if c or c̄ equals k′. On

the other hand, since o` ≥ zK̄(`)` by (4.14), we cannot have {c, c̄} = {k, k̄}. Therefore, ` = i,

and either c = k′ or c̄ = k′. Since c̄ ∈CK̄(i) and k′ ∈CK(i), it must be c = k′ and c̄ = k̄. Then,

1 = ẑc̄` = ẑk̄` = zK̄(i)` = zK̄(i)i = 0: a contradiction.

Now suppose that (ô, ẑ) violates (5.21) for some ` ∈ VN , c ∈ CB and c ∈ CR, i.e.

ẑc` = ẑc̄` = 1. Since ` 6= i ∈ VBR, this means that {c,c} = {k,k}. Then, by (4.15) ẑc`+ ẑc` =

zK(i)`+ zK̄(i)` ≤ 1: a contradiction.

To show that (ô, ẑ) satisfies (5.22), let ` ∈ VBR and c ∈ CK(`). We trivially have

ẑc`+ ôc` = 1, if c /∈ {k, k̄}. In the complementary case, ẑc`+ ôc` = zK(`)`+ o` ≥ 1, where the

inequality follows by (4.16).

Finally, observe that (ô, ẑ) satisfies constraints (5.23) related to k or k due to (4.17).

The other constraints in this group are trivially satisfied because zc, for every c /∈ {k,k}, has at

most one non-null entry. �

Lemma 5.2.33 Let i∈VBR, k∈CK(i) and k∈CK̄(i). Let (o,z)∈P2 satisfying oi = 1 and zK̄(i)i = 0.

Then (Qkk(o)− ek′i,Q̇kk(z)) ∈ PM
2 , for all k′ ∈CK(i) \{k}.

Proof Let (o,z) ∈ P2 with oi = 1 and zK̄(i)i = 0. By Lemma 5.2.32, it suffices to assume

that (o,z) is integer and show that (ô, ẑ) = (Qkk(o)− ek′i,Q̇kk(z)+ ek′i) satisfies (5.19). Let

` ∈ VBR. If ` 6= i, then ∑c∈CK(`)
ôc` = o`+ |CK(`)|− 1 ≥ LK(`)− 1. If ` = i, then ∑c∈CK(`)

ôc` =

oi + |CK(`)|−2 = LK(`)−1. In both cases, (ô, ẑ) satisfies (5.19). �

Lemma 5.2.34 Let i ∈V , k ∈CB, k ∈CR and k′ ∈CBR \{k,k}. Let (o,z) ∈ P2. Then, (Qkk(o),

Q̇kk(z)+ ek′i) ∈ PM
2 in the following cases:

1. i ∈VBR and oi = 1; or

2. i ∈VN , k′ ∈CK and zKi = 0, where {K,K}= {B,R}.

Proof Let (o,z) be an integer point of P2. We have to show that (ô, ẑ) = (Qkk(o),Q̇kk(z)+ ek′i)

satisfies (5.19)-(5.23). Since ôc = e for all c /∈ {k,k}, constraints (5.19) trivially hold. Every

constraint in (5.20)-(5.23) that involves only groups k and k also holds because (o,z) satisfies

(4.14)-(4.17). Now, let us analyze the cases where at least one involved group is not k or k. First
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consider constraint (5.20) related to ` ∈VBR, c ∈CK(`) and c̄ ∈CK̄(`). To get this constraint viola-

ted, we should have ôc` = 0 and ẑc̄` = 1. Observe ôc` = 0 implies c ∈ {k,k}, and so c̄ /∈ {k,k}.

Then, ẑc̄` = 1 leads to c̄ = k′ and `= i. Therefore, i ∈VBR, k′ ∈CK̄(i), and 0 = ôc` = ôci = oi. In

particular, i ∈VBR and oi = 0 show that this constraint is not violated in cases 1-2. Now consider

constraint (5.21) for `∈VN , c∈CK and c̄∈CK , K is such that k′ ∈CK . Suppose that it is violated,

i.e. ẑc` = ẑc̄` = 1. Since {c, c̄} 6= {k,k}, it must be k′ = c, `= i and c̄ ∈ {k,k}. Since i = ` ∈VN ,

the constraint is satisfied in case 1. Besides, 1 = ẑc̄` = ẑc̄i = zKi shows that it is also satisfied in

case 2. Finally, constraints (5.22)-(5.23) related to c ∈CBR \{k,k} are satisfied because ôc = e

and ẑc has at most one non-null component. �

We can also show that P2 is a projection of PM
2 and P̄M

2 .

Corollary 5.2.35 Let k ∈CB and k ∈CR. Then, P2 = proj
(ozk,ozk)

PM
2 = proj

(ozk,ozk)
P̄M

2 .

Proof Proposition 5.2.30 implies that P2⊆ proj
(ozk,ozk)

PM
2 ⊆ proj

(ozk,ozk)
P̄M

2 . Now, let (ozB,ozR)∈

proj
(ozk,ozk)

P̄M
2 . Then, (ozk = ozB,ozk = ozR,oz′) ∈ P̄M

2 for some oz′. Since (ozk,ozk,oz′) satis-

fies (5.20)-(5.23), we can deduce that (ozB,ozR) satisfies (4.14)-(4.17). Therefore, the inte-

ger points in proj
(ozk,ozk)

P̄M
2 belong to P2, which implies proj

(ozk,ozk)
P̄M

2 ⊆ P2. Thus, we get

P2 = proj
(ozk,ozk)

PM
2 ⊆ proj

(ozk,ozk)
P̄M

2 . �

5.2.9 Valid inequalities and facets

Corollary 5.2.35 and Proposition 2.2.10 ensure that valid inequalities for P2 directly

yield valid inequalities for P̄M
2 (and consequently for PM

2 ).

Proposition 5.2.36 If πT ozB +λ T ozR ≥ π0 is valid for P2 then πT ozk +λ T ozk ≥ π0 is valid for

PM
2 and P̄M

2 , for all k ∈CB and k ∈CR.

In the following, we analyze when the inherited valid inequalities are facet-defining.

Proposition 5.2.37 If πT ozB +λ T ozR ≥ π0 is facet-defining for P2 then πT ozk +λ T ozk ≥ π0 is

facet-defining for P̄M
2 , for all k ∈CB and k ∈CR.
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Proof Let k ∈CB and k ∈CR. Define C′B =CB \{k} and C′R =CR \{k̄}. Assume that πT ozB +

λ T ozR ≥ π0 is facet-defining for P2. By Proposition 4.2.27, this inequality is different from

oi ≥ 0 for all i∈VBR, zK̄(i)i ≤ 1 for all i∈VBR, and zKi ≤ 1 for all i∈VN and K ∈ {B,R}. Let F =

{(ozB,ozR) ∈ P2 : πT ozB+λ T ozR = π0} and FM = {(ozk,ozk,oz′) ∈ P̄M
2 : πT ozk +λ T ozk = π0}.

By Proposition 5.2.36, FM is a face of P̄M
1 . Consider the following groups of points (represented

in the rows of Table 1):

1. Q̃kk(F ), where F is a set of p = |VBR|+ 2|V | affinely independent points of F . By

Proposition 5.2.30, Q̃kk(F ) ⊆ PM
2 ⊆ P̄M

2 . Notice that every point (ozk,ozk,o′,z′) =

Q̃kk(ozB,ozR) ∈ Q̃kk(F ) has ozk = ozB, ozk = ozR, o′ = e and z′ = 0. They form the

rows identified by 1 in the matrix of Table 1.

2. For every i ∈VBR and k′ ∈CK(i) \{k,k}, point (Qkk(o)− ek′i,Q̇kk(z)+ ek′i), where oz =

(o,z) is a solution in F with zK̄(i)i = 0 (such a solution exists because F 6= {(o,z) ∈

P2 : zK̄(i)i = 1}). Each of these |VB|(LB − 1) + |VR|(LR − 1) points belong to P̄M
2 by

Lemma 5.2.32. Besides, each of them has the form (ozk,ozk,o′,z′), where ozk = ozB,

ozk = ozR, o′ = e− ek′i and z′ = ek′i. They are represented in the two rows of Table 1

identified by 2.

3. For every i ∈ VBR and k′ ∈ CBR \ {k,k}, point (Qkk(o),Q̇kk(z)+ ek′i), where oz = (o,z)

is a solution in F with oi = 1 (such a solution exists because F 6= {(o,z) ∈ P2 : oi = 0}).

Each of these |VBR|(LB+LR−2) points belong to PM
2 ⊆ P̄M

2 by Lemma 5.2.34(1). Besides,

each of them has the form (ozk,ozk,o′,z′), where ozk = ozB, ozk = ozR, o′ = e and z′ = ek′i.

They are represented in the four rows of Table 1 identified by 3.

4. For every i ∈ VN and k′ ∈CK \{k,k} (K ∈ {B,R}), point (Qkk(o),Q̇kk(z)+ ek′i), where

oz = (o,z) is a solution in F with zKi = 0 (such a solution exists because F 6= {(o,z) ∈ P2 :

zKi = 1}). Each of these |VN |(LB+LR−2) points belong to PM
2 ⊆ P̄M

2 by Lemma 5.2.34(2).

Besides, each of them has the form (ozk,ozk,o′,z′), where ozk = ozB, ozk = ozR, o′ = e

and z′ = ek′i. They are represented in the row of Table 1 identified by 4.

Since components (ozk,ozk) in all these |VB|LB + |VR|LR + |V |LBR are always given

by a point in F , we conclude that these points belong to FM. Besides, because of the matrices

E− I in group 2 and I in groups 3-4, the points in these groups are affinely independent. The

same happens in group 1 since F is affinely independent. In addition, the (o′,z′)-components of

these later points are always zero (differently from every point in groups 2-4). Therefore, the

whole set of points is affinely independent. This shows that FM
2 is a facet of P̄M

2 . �
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ok′i zk′i

(ozk,ozk) i ∈VB i ∈VR i ∈VB i ∈VR i ∈VN
# k′ ∈C′B k′ ∈C′R k′ ∈C′B k′ ∈C′R k′ ∈C′B k′ ∈C′R k′ ∈C′BR
1 ∈ F E E 0 0 0 0 0
2 ∈ F E− I E I 0 0 0 0
2 ∈ F E E− I 0 0 0 I 0
3 ∈ F E E I 0 0 0 0
3 ∈ F E E 0 I 0 0 0
3 ∈ F E E 0 0 I 0 0
3 ∈ F E E 0 0 0 I 0
4 ∈ F E E 0 0 0 0 I

Table 1 – Points in FM. The first column indicates the group that the point belongs to. The
remaining columns are entries of the point. E is the matrix of ones. ‘∈ F’ indicates
that each row-vector is a point in F .

Corollary 5.2.38 The following inequalities define facets of P̄M
2 .

1. oki ≤ 1, for every i ∈VBR and k ∈CK(i);

2. zki ≥ 0, for every i ∈VN and k ∈CBR;

3. zk̄i ≥ 0, for every i ∈VBR and k̄ ∈CK̄(i);

4. zki ≤ 1, for every i ∈VBR and k ∈CK(i);

5. zki + zk̄i ≤ 1, for every i ∈VN , k ∈CB and k̄ ∈CR;

6. oki ≥ zk̄i, for every i ∈VBR, k ∈CK(i), and k̄ ∈CK̄(i);

7. zki +oki ≥ 1, for every i ∈VBR and k ∈CK(i);

8. The corresponding star inequalities (4.20): ∑h∈L zkh− (|L|−1)zki ≤ 1, for every k ∈CBR;

9. The corresponding generalized convexity inequalities (4.22) related to a complete shortest

path < l1,q1, . . . , lt ,qt , lt+1 >: (∑
i

zkli)+ zk j− (∑
i

zkqi)≤ 1, for every k ∈CBR.

10. The corresponding C4 inequalities (4.26): ∑
i∈SB∩VN

(1−zki)+ ∑
i∈SB∩VB

oki+ ∑
i∈SR∩VN

(1−zk̄i)+

∑
i∈SR∩VR

ok̄i ≥ 2, for every k ∈CB and k̄ ∈CR.

Regarding PM
2 , we can also guarantee facet-heredity from P2, except for cons-

traints (4.14).

Proposition 5.2.39 If πT ozB +λ T ozR ≥ π0 is a facet-defining inequality for P2 different from

constraints (4.14) for all i ∈VBR such that LK(i) > 1, then πT ozk +λ T ozk ≥ π0 is facet-defining
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for PM
2 , for all k ∈CB and k ∈CR.

Proof Identical to the proof of Proposition 5.2.37, except that Lemma 5.2.33 instead of

Lemma 5.2.32 is used to obtain the points of group 2. Observe that group 2 is only neces-

sary for i ∈VBR such that LK(i) > 1. To apply Lemma 5.2.33, we claim that, for every such an i,

there exists (o,z) ∈ F = {(ozB,ozR) ∈ P2 : πT ozB +λ T ozR = π0} such that oi = 1 and zK̄(i)i. In-

deed, for every such an i, the inequality is different from (4.14), i.e. F 6= {(o,z)∈ P2 : oi = zK̄(i)i}.

This implies the existence of an integer point (o,z) ∈ F such that oi > zK̄(i)i, that is, oi = 1 and

zK̄(i)i = 0. �

By applying Proposition 5.2.39 to the facet-defining inequalities of P2 stated in

Subsection 4.2.3.

Corollary 5.2.40 The following inequalities define facets of PM
2 .

1. oki ≤ 1, for every i ∈VBR and k ∈CK(i);

2. zki ≥ 0, for every i ∈VN and k ∈CBR;

3. zk̄i ≥ 0, for every i ∈VBR and k̄ ∈CK̄(i);

4. zki ≤ 1, for every i ∈VBR and k ∈CK(i);

5. zki + zk̄i ≤ 1, for every i ∈VN , k ∈CB and k̄ ∈CR;

6. zki +oki ≥ 1, for every i ∈VBR and k ∈CK(i);

7. The corresponding induced star inequalities (4.20): ∑h∈L zkh− (|L|−1)zki ≤ 1, for every

k ∈CBR;

8. The corresponding generalized convexity inequalities (4.22) related to a complete shortest

path < l1,q1, . . . , lt ,qt , lt+1 >: (∑
i

zkli)+ zk j− (∑
i

zkqi)≤ 1, for every k ∈CBR.

9. The corresponding induced C4 inequalities (4.26): ∑
i∈SB∩VN

(1− zki)+ ∑
i∈SB∩VB

oki+

∑
i∈SR∩VN

(1− zk̄i)+ ∑
i∈SR∩VR

ok̄i ≥ 2, for every k ∈CB and k̄ ∈CR.

It is worth remarking that, when constraints (5.20) are covered by Proposition 5.2.39

(for i ∈VBR such that LK(i) > 1), they are not facet-defining for PM
2 . Indeed, in this case, cons-

traints (5.20) are dominated by inequalities (5.26). By their turn, these later inequalities are

facet-defining for PM
2 .
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Proposition 5.2.41 For every i ∈VBR and k ∈CK̄(i), inequality (5.26) is facet-defining for PM
2 .

Proof Let i ∈VBR with LK(i)>1, and k̄ ∈CK̄(i). Define F = {(o,z) |∑k∈CK(i)
oki− zk̄i = LK(i)−1}.

Suppose that F ⊆ F ′ := {(o,z) | πT o+λ T z = π0}. The following items show that F is a facet:

• λk j = 0, for k 6= k̄ and j ∈V : it is a consequence of points (e,ek̄i)∈ F and (e,ek̄i+ek j)∈ F .

• λk̄ j = 0, for j 6= i: let c ∈ CK(i), and so c 6= k̄. Then, points (e− eci,eci) ∈ F and (e−

eci,eci + ek̄ j) ∈ F show that λk̄ j = 0.

• πki−λk̄i = 0, for k ∈CK(i): using points (e− eki,eki) ∈ F and (e,ek̄i) ∈ F , we get πki +

λki +λk̄i = 0, and so πki =−λk̄i, as k 6= k̄ and λki = 0 by the first item.

• πk j = 0, for j ∈VK(i) and k ∈CK( j): since k 6= k̄, (e−ek j,ek̄i+ek j)∈ F . This point together

with (e,ek̄i) ∈ F and λk j = 0 imply πk j = 0.

• πk j = 0, for j ∈VK̄(i) and k ∈CK( j): let c∈CK(i), and so c 6= k. The points (e−eci,eci)∈ F

and (e−eci+ek j,eci+ek j)∈ F imply that πk j = λk j. So, the first two items lead to πk j = 0.

�

To complement the study about the constraints of ILP2M, we show below which of

them do not define facets of PM
2 .

Proposition 5.2.42 The constraints below do not define facets of PM
2 .

1. oki ≥ 0, for every i ∈VBR and k ∈CK(i).

2. zk̄i ≤ 1, for every i ∈VBR and k̄ ∈CK̄(i).

3. zki ≤ 1, for every i ∈VN and k ∈CBR.

4. zki ≥ 0, for every i ∈VBR and k ∈CK(i).

Proof Similar to the proof of Proposition 4.2.27. �

5.3 A more compact formulation for the 2-MGC problem

Propositions 5.2.24 and 5.2.25 allow us to rewrite formulation ILP2M in a more

compact way, via the following variable transformation:

oi = ∑
k∈CK(i)

oki−LK(i)+1 ∀i ∈VBR. (5.30)
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Indeed, notice that the objective function (5.18) becomes

∑
i∈VBR

∑
k∈CK(i)

oki− ∑
K∈{B,R}

|VK|(LK−1) = ∑
K∈{B,R}

∑
i∈VK

( ∑
k∈CK(i)

oki− (LK−1)) = ∑
i∈VBR

oi.

In addition, constraints (5.19), (5.26) and (5.27) respectively turn to be:

oi ∈ B ∀i ∈VBR

oi ≥ zki, ∀i ∈VBR,k ∈CK̄(i),

∑
k∈CK(i)

zki +oi ≥ 1, ∀i ∈VBR.

Therefore, by Propositions 5.2.24 and 5.2.25, ILP2M can be rewritten as:

(ILP3M) min ∑
i∈VBR

oi (5.31)

st: oi ≥ zki, ∀i ∈VBR,k ∈CK̄(i) (5.32)

zki + zki ≤ 1, ∀i ∈VN ,k ∈CB,k ∈CR, (5.33)

∑
k∈CK(i)

zki +oi ≥ 1, ∀i ∈VBR, (5.34)

zkh + zk j− zki ≤ 1, ∀k ∈CBR,h, i, j ∈V : i ∈ Dh j, (5.35)

o ∈ B|VBR|, (5.36)

z ∈ B|V |LBR. (5.37)

Observe that ILP3M keeps the same variables z from ILP2M whereas variables o are used like in

ILP1, but with a slightly different meaning. Precisely,

oi =

 1, if i ∈VBR \
⋃

k∈CK(i)
Ak,

0, if i ∈
⋃

k∈CK(i)
Ak,

for each i ∈VBR, and

zki =

 1, if i ∈ H[Ak],

0, otherwise,

for each k ∈CBR and i ∈V . Note that a feasible solution for ILP3M may not satisfy condition

(M4).

5.3.1 The associated polytope - PM
3

Let PM
3 be the polytope associated with ILP3M, that is,

PM
3 = conv{(o,z) ∈ B|VBR|×B|V |LBR : (5.32)− (5.35)}.
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Remark that ei ∈ B|VBR|, for each i ∈ VBR, is a unit vector with 1 in the position

indexed by i. Also, vectors eki ∈ BLBR|V |, for all k ∈CBR and i ∈V , are the unit vectors with 1 in

the position indexed by ki.

Proposition 5.3.1 PM
3 is full-dimensional.

Proof Consider the following |VBR|+LBR|V |+1 vectors in B|VBR|×BLBR|V |: (e,0), (e− e j,ek j)

for every j ∈ VBR and an arbitrary k ∈ CK( j), and (e,ek j) for every j ∈ V and k ∈ CBR. They

belong to PM
3 and are affinely independent, thus showing that PM

3 is full-dimensional. �

Arguments similar to those used to obtain Proposition 5.2.27 can be employed for

PM
3 . Note that oi ≥ 0, for all i ∈VBR, is not facet-defining due to (5.32).

Proposition 5.3.2 Let πT o+ µT z ≥ π0 be a facet-defining inequality of PM
3 . If it is different

from oi ≤ 1, for all i ∈VBR, then π ≥ 0 and π0 > 0.

5.3.2 Relations with PM
2

In this subsection, we derive relations between PM
3 and PM

2 . Toward this end, we

define mappings from one polytope to the other one. Some of them are similar to those introduced

in Subsection 5.2.3, which relate P1 and PM
1 .

As in Subsection 5.2.8, given a point (o,z) ∈ B|VB|LB+|VR|LR×BLBR|V |, we use ozk =

(ok,zk), for any k ∈ CBR, to represent the components oki, for all i ∈ VBR such that K(i) = k,

and zki, for all i ∈V . To separate components ok from the remaining ones in o, we may write

o = (ok,o′). Similarly, we use z = (zk,z′) and oz = (ozk,oz′). As for a point in PM
3 , given

(o,z) ∈ B|VBR|×BLBR|V |, we partition z as before and partition o = (oB,oR), where oB and oR

indicate the components indexed by i ∈VB and i ∈VR, respectively.

Unfortunately, we cannot define an affine transformation from PM
3 to PM

2 similar to

that one from P1 to PM
1 (see Proposition 5.2.5) or from P2 to PM

2 (see Proposition 5.2.30). Howe-

ver, we can still consider the following mapping, which will be useful to relate the polytopes.

Let FM
3 ⊂ B|VBR|×BLBR|V | be the feasible set of ILP3M.
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Proposition 5.3.3 Let T : FM
3 → R|VB|LB+|VR|LR×RLBR|V | be such that T (o,z) = (õ,z), where,

for all i ∈VBR and k ∈CK(i),

õki =

 oi, if k = ki,

1, otherwise,
(5.38)

and ki is any fixed element in CK(i) satisfying zkii = 1 if oi = 0 (such an element exist due to

constraints (5.34)). Then, T (FM
3 )⊆ FM

2 .

Proof Let (o,z) ∈ FM
3 and (õ,z) = T (o,z) ∈ B|VB|LB+|VR|LR×BLBR|V |. Let i ∈VBR. First, from

(5.38), observe that (õ,z) trivially satisfies (5.19). Regarding the other constraints of ILP2M, we

only have to take care of (5.22) when k = ki, as (o,z) satisfies (5.32)-(5.35) and õki = 1 if k 6= ki.

In such a case, we have zki + õki = zkii + oi, which is at least 1 by hypothesis. Consequently,

constraints (5.22) are satisfied. Therefore, (õ,z) ∈ FM
2 . �

In the converse direction, we can define an affine transformation similar to that one

from PM
1 to P1 (see Proposition 5.2.10). Moreover, the transformation from PM

2 to PM
3 is now

surjective.

Proposition 5.3.4 Let T be as defined in Proposition 5.3.3 and R̂ : R|VB|LB+|VR|LR×RLBR|V |→

R|VBR|×RLBR|V | be the affine transformation such that R̂(õ,z) = (ô,z), where

ôi = ∑
k∈CK(i)

õki−LK(i)+1 ∀i ∈VBR. (5.39)

Then R̂(T (o,z)) = (o,z), for all (o,z) ∈ FM
3 , and PM

3 = R̂(PM
2 ).

Proof Let (o,z) ∈ FM
3 . By Proposition 5.3.3, (õ,z) = T (o,z) ∈ FM

2 . Let (ô,z) = R̂(õ,z). By

(5.38), for every i∈VBR, ôi = ∑k∈CK(i)
õki−LK(i)+1 = õkii = oi. Therefore, R̂(T (o,z)) = (o,z),

and so FM
3 = R̂(T (FM

3 )). By Proposition 5.3.3, it follows that FM
3 ⊆ R̂(FM

2 ). This implies, by

Proposition 2.2.8, that PM
3 ⊆ R̂(PM

2 ).

Now, let (ô,z) = R̃(o,z), for some integer point (o,z) ∈ PM
2 . We need to show

that (ô,z) satisfies (5.32)-(5.35). Since the mapping preserves the z-components, the result is

trivial for (5.33) and (5.35). Let i ∈ VBR. If ôi = 1, constraints (5.32) and (5.34) related to i

are clearly satisfied. Now suppose that ôi = 0. By (5.39), there is k ∈CK(i) such that õki = 0.

Then, constraints (5.22) and (5.20) imply that zki = 1 and zki = 0 for all k ∈CK̄(i). Therefore,

constraints (5.32) and (5.34) are satisfied. �
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5.3.3 Valid inequalities and facets

In general, every valid inequality for PM
2 yields a valid inequality for PM

3 in the same

line of Proposition 5.2.12.

Proposition 5.3.5 If ∑k∈CBR(π
k)T ok +µT z≥ π0 is valid for PM

2 then ∑i∈VBR πkiioi+µT z≥ π0−

∑i∈VBR ∑k∈CK(i)\{ki}πki is valid for PM
3 , where πkii = min{πki : k ∈CK(i)} for all i ∈VBR.

Proof Let (ô,z) ∈ PM
3 . By Proposition 5.3.4, there is (o,z) ∈ PM

2 such that (ô,z) = R̂(õ,z), that

is, ôi = ∑k∈CK(i)
õki−LK(i)+1 = ∑k∈CK(i)

(õki−1)+1 for all i ∈VBR. It follows that

∑
i∈VBR

πkiiôi = ∑
i∈VBR

∑
k∈CK(i)

πkii(õki−1)+ ∑
i∈VBR

πkii

≥ ∑
i∈VBR

∑
k∈CK(i)

πki(õki−1)+ ∑
i∈VBR

πkii (due to πkii ≤ πki, õki ≤ 1)

≥ π0−µ
T z− ∑

i∈VBR

∑
k∈CK(i)\{ki}

πki (due to ∑
k∈CBR

(πk)T õk +µ
T z≥ π0).

Therefore, ∑i∈VBR πkiiôi +µT z≥ π0−∑i∈VBR ∑k∈CK(i)\{ki}πki is valid for PM
3 . �

For instance, the application of Proposition 5.3.5 to constraints (5.19) produces

oi ≥ 0. This transformation does not yield strong inequalities, as already observed.

On the other hand, using the rationale of Propositions 5.2.11 and 5.2.31, facet-

defining inequalities for PM
2 can be translated into facet-defining inequalities for PM

3 , provided

that they are valid inequalities for PM
3 .

Proposition 5.3.6 Let ∑k∈CBR(π
k)T ok +µT z≥ π0 defines a facet F of PM

2 , k ∈CB and k ∈CR.

Suppose that Ḟ = {(o,z)∈ F : ok′i = 1,∀i∈VBR∀k′ ∈K(i)\{k,k}} 6= /0. If (πk)T oB+(πk)T oR+

µT z≥ π0−∑k′∈CBR\{k,k}(π
k′)T e is valid for PM

3 , then it is facet-defining for PM
3 .

Proof Since Ḟ 6= /0 and ok′i ≤ 1 defines a facet of PM
2 (see Corollary 5.2.40), for all i ∈VBR and

k′ ∈ K(i), we can conclude that dim(Ḟ) = dim(PM
2 )−|VB|(LB−1)−|VR|(LR−1)−1. There-

fore, there exists a subset OZ of Ḟ with |VB|+ |VR|+LBR|V | affinely independent integer points.

Given (o,z) ∈OZ, let (ô,z) = R̂(o,z), as defined by Proposition 5.3.4, and ÔZ = R̂(OZ). Since
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ok′i = 1 for all i ∈VBR and k′ ∈ K(i)\{k,k}, we have ôi = oki (if i ∈VB) and ôi = oki (if i ∈VR).

By constraints (5.22), zki + ôi = zki +oki ≥ 1, for all i ∈VB, and zki + ôi = zki +oki ≥ 1, for all

i ∈ VR. Then, we can apply to ÔZ the mapping T defined in Proposition 5.3.3 with ki = k,

if i ∈ VB, and ki = k, if i ∈ VR. This way, T becomes an affine transformation. Recall that

o = (ok,ok̄,e). Then, by (5.38), T (ô,z) = (o,z), that is, T (R̂(o,z)) = (o,z). As T is affine

in this case and OZ is affinely independent, Proposition 2.2.5 ensures that ÔZ = R̂(OZ) is

affinely independent. Besides, Proposition 5.3.4 implies that ÔZ ⊂ PM
3 . We also claim that

every point (ô,z) ∈ ÔZ satisfies (πk)T ôB +(πk)T ôR +µT z = π0−∑k′∈CBR\{k,k}(π
k′)T e. Indeed,

(ô,z) = R̂(o,z) for some (o,z) ∈ Ḟ . Then, ôB = ok, ôR = ok, ok′ = e for all k′ ∈ CBR \ {k,k},

and ∑k∈CBR(π
k)T ok +µT z = π0. The claimed equality then follows. In addition, since ôB = ok,

ôR = ok, ok′ = e for all k′ ∈CBR \ {k,k}, for every (o,z) ∈ OZ and (ô,z) = R̂(o,z), it follows

that R̂(o,z) 6= R̂(o′,z) whenever (o,z) 6= (o′,z). Thus, |ÔZ|= |OZ|= |VB|+ |VR|+LBR|V |. �

Corollary 5.3.7 If µT z≥ π0 is facet-defining for PM
2 , then µT z≥ π0 is facet-defining for PM

3 .

Using Proposition 5.3.6, we can show that the following inequalities are facet-

defining for PM
3 .

Corollary 5.3.8 The inequalities below define facets of PM
3 .

1. oi ≤ 1, for every i ∈VBR;

2. zki ≥ 0, for every i ∈VN and k ∈CBR;

3. zki ≥ 0, for every i ∈VBR, k ∈CK(i), such that LK(i) > 1;

4. zk̄i ≥ 0, for every i ∈VBR and k̄ ∈CK̄(i);

5. zki ≤ 1, for every i ∈VBR and k ∈CK(i);

6. zki + zk̄i ≤ 1, for every i ∈VN , k ∈CB and k̄ ∈CR;

7. oi ≥ zk̄i, for every i ∈VBR and k̄ ∈CK̄(i);

8. The corresponding induced star inequality (4.20): ∑h∈L zkh− (|L|−1)zki ≤ 1, k ∈CBR;

9. The corresponding generalized convexity inequality (4.22) related to a complete shortest

path < l1,q1, . . . , lt ,qt , lt+1 >: (∑
i

zkli)+ zk j− (∑
i

zkqi)≤ 1, k ∈CBR.

10. The corresponding induced C4 inequality (4.26): ∑
i∈SB∩VN

(1−zki)+ ∑
i∈SB∩VB

oi+ ∑
i∈SR∩VN

(1−

zk̄i)+ ∑
i∈SR∩VR

oi ≥ 2, for every k ∈ B and k̄ ∈ R.
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We remark that the validity hypothesis used in Proposition 5.3.6 does not always

hold. For instance, consider constraints (5.22). Its direct translation to PM
3 would be zki +oi ≥ 1,

which is not valid. Actually, the corresponding constraints in ILP3M are (5.34), which we show

to be facet-defining next.

Proposition 5.3.9 For every i ∈VBR, constraint (5.34) is facet-defining for PM
3 .

Proof Let i ∈VBR. Consider the following points:

(e,0),

(e− ei,eki), for each k ∈CK(i),

(e− e j,ec j), for each j ∈VBR \{i}, and for an arbitrary c ∈CK( j),

(e,ek j), for each j ∈V \{i},k ∈CK(i),

(e,ek̄ j), for each j ∈V, k̄ ∈CK̄(i).

These are |VBR|+ |V |LBR affinely independent points satisfying ∑k∈CK(i)
zki +oi ≥ 1 at equality.

Therefore, this inequality is facet-defining. �

To complement the analyzes of the constraints of ILP3M, we present the following

remark.

Proposition 5.3.10 The constraints below do not define facets of PM
3 .

1. oi ≥ 0, i ∈VBR,

2. zk̄i ≤ 1, i ∈VBR and k̄ ∈ K̄(i),

3. zki ≤ 1, i ∈VN and k ∈CBR.

Proof Note that oi = 0 implies zk̄i = 0, ∀k̄ ∈ K̄(i), due to (5.32). So, oi ≥ 0 and zk̄i ≤ 1 can not

be facet-defining. Finally, observe that zki ≤ 1 is dominated by constraint zki + zli ≤ 1, where l is

an arbitrary group of the opposite class. �

We now analyze the transformation of valid inequalities in the opposite direction,

that is, from PM
3 to PM

2 .
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Proposition 5.3.11 If πT oB+λ T oR+µT z≥ π0 is valid for PM
3 , then ∑k∈CB πT ok+∑k∈CR

λ T ok+

µT z≥ π0 +(LB−1)πT e+(LR−1)λ T e is valid for PM
2 .

Proof Let πT oB+λ T oR+µT z≥ π0 be valid for PM
3 . Since PM

3 = R̂(PM
2 ) according to Proposi-

tion 5.3.4, it follows from Proposition 2.2.3 and (5.39) that

∑
i∈VB

πi

(
∑

k∈CB

oki−LB +1

)
+ ∑

i∈VR

λi

 ∑
k∈CR

oki−LR +1

+µ
T z≥ π0 (5.40)

is valid for PM
2 . This is exactly the desired inequality. �

It is worth comparing Proposition 5.3.11 with Propositions 5.2.13 and 5.2.36. Let

us consider the inequality πT ok +λ T ok + µT z ≥ π0, for k ∈CB and k ∈CR, which is directly

obtained from a valid inequality πT oB+λ T oR+µT z≥ π0 for PM
3 . Now, this resulting inequality

is dominated by (5.40), whenever π ≥ 0 and λ ≥ 0 (by Proposition 5.3.2, these conditions

hold if πT oB + λ T oR + µT z ≥ π0 differs from oi ≤ 1 and defines a facet of PM
3 ). Indeed, it

is the summation of (5.40) with the valid inequalities πiok′i ≤ (LB− 1)πi, for all i ∈ VB and

k′ ∈CB \{k}, and λiok′i ≤ (LR−1)λi, for all i ∈VR and k′ ∈CR \{k}. Note that these two later

groups comprise valid inequalities because ok′i ≤ 1, πi ≥ 0, λi ≥ 0, and they are used only if

k′ ∈CK(i) \{k,k}, which implies LK(i) ≥ 2.

As an example, consider a constraint (5.32) from ILP3M as πT oB+λ T oR+µT z≥ π0.

For k ∈ CB and k ∈ CR, the corresponding inequality πT ok + λ T ok + µT z ≥ π0 is a cons-

traint (5.20) of ILP2M, which is dominated by (5.26). This later inequality is exactly (5.40) in

this case.

5.3.4 Summary of facetness results

For a better overview of the facetness results, we summarize them in the following

tables and Figure 23:
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Constraint of PM
1 Facet-defining?

oki ≤ 1 yes

oki ≥ 0 yes, iff |CK(i)|= 1

∑
k∈CK(i)

oki ≥ LK(i)−1 yes

∑
j∈S

ok̄ j + ∑
k∈CK(i)

oki ≥ LK(i) yes, if (F1) and (F2) hold

Generalized C4 inequalities yes, if LB = LR = 1

Generalized 3-path inequalities yes, if (F1) and (F2) hold

X-swing inequalities yes, if (F1) and (F2) hold

Star tree inequalities yes, if (F1) and (F2) hold

Alternating path inequalities yes, if (F1) and (F2) hold

Constraint of P̄M
1 Facet-defining?

oki ≤ 1 yes

oki ≥ 0 yes, iff |CK(i)|= 1

Generalized C4 inequalities yes

Generalized 3-path inequalities yes, if (F1) and (F2) hold

X-swing inequalities yes, if (F1) and (F2) hold

Star tree inequalities yes, if (F1) and (F2) hold

Alternating path inequalities yes, if (F1) and (F2) hold
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Constraint of PM
2 Facet-defining?

oki ≤ 1 yes

zki ≥ 0, i ∈VN yes

zk̄i ≥ 0, i ∈VBR yes

zki ≤ 1,k ∈CK(i) yes

zki + zk̄i ≤ 1 yes

zki +oki ≥ 1 yes

oki ≥ zk̄i yes, iff |CK(i)|= 1

∑
k∈CK(i)

oki− zk̄i ≥ LK(i)−1 yes

Star inequalities yes, if the star is induced

Generalized convexity inequalities yes, if it induces a complete path of G

C4 inequalities yes, if the C4 is induced

∑
k∈CK(i)

oki ≥ LK(i)−1 no

oki ≥ 0 no

zki ≥ 0,k ∈CK(i) no

zk̄i ≤ 1 no

zki ≤ 1, i ∈VN no



113

Constraint of PM
3 Facet-defining?

oi ≤ 1 yes

zk̄i ≥ 0, i ∈VBR yes

zki ≥ 0, i ∈VN yes

zki ≤ 1,k ∈CK(i) yes

zki ≥ 0,k ∈CK(i) yes, iff |CK(i)|> 1

zki + zk̄i ≤ 1 yes

oi ≥ zk̄i yes

∑
k∈CK(i)

zki +oi ≥ 1 yes

Star inequalities yes, if the star is induced

Generalized convexity inequalities yes, if it induces a complete path of G

C4 inequalities yes, if the C4 is induced

oi ≥ 0 no

zk̄i ≤ 1, i ∈VBR no

zki ≤ 1, i ∈VN no

Figure 23 – Relations of the polyhedra.
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5.3.5 Comparison of the formulations

Formulations ILP1M, ILP2M and ILP3M are different from each other, but they are

equivalent in the sense that they are all correct for the 2-MGC problem: for each feasible solution
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of one formulation, there is a corresponding feasible solution in each other formulations such

that the outlier vertices, the blue groups and the red groups are the same. Thus, corresponding

solutions have equal objective function values and equally classify the vertices in VN \VA. VA is

the set of all vertices u ∈VN such that u does not belong to the convex hull of any group.

Note that this notion of equivalence says nothing about vertices in VA. It is because

any class can be assigned to them without violating a constraint of the classification problem.

An illustration of equivalent solutions for ILP1M, ILP2M and ILP3M is shown in Figure 24.

Examples (a), (b) and (c) represent a solution of ILP1M, ILP2M and ILP3M, respectively, for a

graph instance with CB = {b1,b2} and CR = {r}. Circles are vertices of VB, squares are vertices

of VR, and triangles are vertices of VN . Close to each vertex, we present the values of the

o-variables and z-variables that are relevant to characterize the solution configuration. Precisely,

we show only non-null z-variables and, if a vertex has more than one associated o-variable, we

show the only that is null.

Figure 24 – An illustration of corresponding solutions.

The set of variables in ILP1M is included in that of ILP2M. So, the latter is an

extended ILP formulation ((VANDERBECK; WOLSEY, 2010)). It is known that extended

formulations may offer some computational advantages. ILP3M can be seen as an intermediate

formulation (between ILP1M and ILP2M), since it aggregates the o-variables related to the same

vertex and uses the same z-variables included in ILP2M.
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Although the number of constraints in ILP1M is potentially exponential (this num-

ber is polynomial in the other two formulations), the convexity constraints (5.3)-(5.4) can be

separated of integer solution in polynomial time (details will be presented in Subsection 6.4.4).

However, separation of a fractional solution is NP-hard as it relates to the Hull Number problem

((DOURADO et al., 2009b)). For the single-group case, we could verify by computational

experiments tests with small instances that the lower bound provided by the linear relaxation of

ILP1 is usually better.

In general, to compare the lower bounds provided by the linear relaxations of the three

formulations, first recall that ILP3M was obtained from ILP2M by the variable transformation

oi = ∑
k∈CK(i)

oki−LK(i)+1, for each i ∈VBR. So the linear relaxation lower bound of ILP2M and

ILP3M are the same. Regarding ILP1M, by computational experiments, we found instances

where the linear relaxation lower bound of ILP1M was better than the linear relaxation lower

bound of ILP2M as well as instances where opposite relation holds. Thus, the linear relaxation

of ILP1M does not dominate and it is not dominated by the other two formulations. Moreover, it

seems that there is no simple theoretical relation between their lower bounds.

However, for the cases with LB > 1 and LR > 1, we can realize that the linear

relaxation lower bound is equal to zero for all three formulations. This is because we can just

obtain a solution in the following manner. For each i ∈ VBR, set oki = ok′i = 0.5, for arbitrary

k,k′ ∈CK(i), and oli = 1 for the remaining l ∈CK(i) \{k,k′}, which leads to oi = 0 in the case of

ILP3M. Besides, set zki = zk′i = 0.5 and null any other z-variables. Thus, we obtain a relaxed

feasible solution with value equal to 0. Thus, the larger is the number of allowed groups, the

weaker is the linear relaxation, which suggests that more effort has to be spent to develop an

efficient branch-and-cut.

Another weakness in the multi-group case is the presence of symmetries due to

group indices, which could be removed, leading to strengthened formulations at the expertise

of adding some symmetry-breaking constraints. In ILP1M and ILP2M, we can also have more

than one value assignment for the o-variables that define the same convex sets (and thus the

same classification while keeping the number of outliers). In ILP3M, there are multiple group

symmetries because there is no limitation for the number of groups that an initially classified

vertex can belong to, since there is no constraint like ∑
k∈CK(i)

oki ≥ LK(i)−1 of ILP1M.
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6 ALGORITHMS AND COMPUTATIONAL EXPERIMENTS

In this chapter, we describe the algorithms and report our computational experiments.

We aim at analyzing two main aspects: the efficiency of the formulations and the efficiency of

the derived facet-defining inequalities as well as the accuracy of the solution of the classification

problem.

We focus on the single-group case. We present the algorithms that we developed to

solve ILP1 and ILP2. Observe that we can think of several different strategies to include the

constraints and valid inequalities in the models. Concerning accuracy, we compare our approach

with two known classic algorithms for the Euclidean version of the classification problem.

To test the algorithms, three sets of instances were used in the experiments, namely

random instances, realistic instances and synthetic instances. The computational experiments

were performed on a machine with an Intel i7-7700 3.6 GHz 8 cores processor, 32 GB RAM and

64 bits Linux OS. The implementation was made using programming language C++ and version

12.8 of the CPLEX package (with default parameters) to solve the linear and integer programming

models.

6.1 Calculation of Dh j

The set Dh j comprises all internal vertices in all shortest paths from h to j. To

calculate all Dh j sets for a graph instance G = (V,E), we applied a breadth-first search algorithm

for each source h ∈V . In such an algorithm, each vertex j has its Dh j set updated every time

an adjacent vertex i of j (i.e., (i, j) ∈ E) with lower distance to h (δ (h, i)< δ (h, j)) is reached.

When it happens, the set Dh j is updated in the following way: Dh j← Dh j∪{i}∪Dhi. So, for a

given source h ∈V , the set Dh j, for all j ∈V , are determined in time O(n+m). Therefore, the

complexity to calculate Dh j for all h ∈V is O(n(n+m)). Algorithm 1 shows the corresponding

pseudocode.

6.2 Convex hull calculation

To calculate a convex hull W of a subset S, we start with W ′ = S and iteratively

update it. At each iteration, we add to W ′ all vertices in Duv, for every pair u,v ∈W ′ (with at

least one of them added to W ′ in the previous iteration). This step is repeated until W ′ does not

change. At this point, we get W =W ′. Sets Duv can be determined a priori with the BFS-like
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Algorithm 1: Dh j calculating algorithm
Data: Graph Instance G.
Result: All Dh j sets.

1 D← /0
2 foreach h ∈V do
3 foreach j ∈V do
4 d[h][ j]← ∞

5 d[h][h]← 0
6 Queue←{h}
7 repeat
8 i← Queue.front()
9 Queue.popFront()

10 foreach j ∈V do
11 if j 6= i and (i, j) ∈ E and d[h][i]< d[h][ j] then
12 if d[h][ j] = ∞ then
13 Queue.pushBack(j)

14 d[h][ j]← d[h][i]+1
15 if d[h][ j]> 1 then
16 Dh j← Dh j∪{i}∪Dhi

17 until Queue = /0

18 return D

algorithm described in Algorithm 1.

6.3 Pre-processing

For a given graph instance G, if a vertex i ∈VN neither belongs to the convex hull of

VB nor to the convex hull of VR, then i can never be reached by any blue or red group in a feasible

solution. In this case, we eliminate i from G (i.e., remove i and all incident edges to i), since it

can be set to any class.

Now, if a vertex i ∈ VN does not belong to the convex hull of VR but it belongs to

the convex hull of VB, then we know that i can never be reached by any red group in a feasible

solution. However, it can still be reached by a blue group, so we fix all z-variables associated

with i and red groups: zri = 0, r ∈CR, for ILP2. A similar fixing can be done in the case in which

i belongs to the convex hull of VR but does not belong to the convex hull of VB. To do so, we

only need to calculate the convex hulls H[VB] and H[VR] and check these conditions.
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6.4 Separation algorithms

Although our computational experiments focus on the single-group case, the sepa-

ration algorithms presented in this section are generalized for the multi-group version of the

geodesic classification problem.

6.4.1 C4 inequalities separator

A separation algorithm for inequalities (4.10) and (4.25) can be obtained by just

enumerating and storing in a list and then checking for violation. This list can be created

during the construction of the initial integer linear programming model by enumerating all

2-sized subsets of VBN and VRN and verifying the subset pairs that satisfy the requirements of the

corresponding inequality. For the sake of time efficiency, our implementation seeks for pairs

({i, i′},{ j, j′}) such that j, j′ ∈Dii′ and i, i′ ∈D j j′ , instead of pairs such that j, j′ ∈H[{i, i′}] and

i, i′ ∈ H[{ j, j′}]. This way we are possibly not considering all inequalities (4.10) or (4.25).

In practice, searching in such a list, instead of enumerating all pairs each time the

separator runs, drastically decreases the algorithm’s overall running time, since the list size is, on

average, much smaller than the worst-case (it is around 0.01% of n4).

6.4.2 Generalized convexity inequalities separator

We developed a clever separation algorithm for the generalized convexity inequali-

ties (4.21), including the case t = 1. The idea is the following: given h ∈V and k ∈CBR, find

a complete or incomplete shortest path from h in G whose corresponding inequality yields the

maximum value in the left-hand side of (4.21). We search for such a path in a dag (direct acyclic

graph) composed by all complete and incomplete shortest paths starting at root h ∈ V to any

other vertex in G. To create such a dag for a given vertex h ∈V , we apply the steps below:

1. Create the dag of all complete shortest paths starting at h. It is easily calculated by a

breadth-first search algorithm similar to Algorithm 1 (Figure 26);

2. Complement the dag of Step 1 by including all necessary arcs to form all incomplete

shortest paths starting at h, that is, calculating the transitive hull (i.e., sequences including

all possible generalized convexity inequalities with source h). To do so, we apply the

known Dijkstra’s algorithm (Figure 27);

3. Finally, create a super sink f and add arcs (v, f ), for all v∈V (Dag[h]) such that δ (h,v)> 1
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(Figure 28).

The resulting dag, for a given vertex h, is denoted by Dag[h].

Figure 25 – Graph instance example.
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Figure 26 – Separation algorithm for the example of Figure 25. Step 1.
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Figure 27 – Separation algorithm for the example of Figure 25. Step 2.
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Figure 28 – Separation algorithm for the example of Figure 25. Step 3.
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Let us consider an even path in Dag[h], from h to f , whose sequence of vertices is

S =< h = v1,v2, . . . ,v2p−1,v2p = f >. The left-hand side of the generalized convexity inequa-
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lity (4.21) induced by S and group k ∈CBR is

zkv1− zkv2 + zkv3 . . .− zkv2p−2 + zkv2p−1 = zkh +
zkv1− zkv2

2
−

zkv2 + zkv3

2
+ . . .−

zkv2p−2 + zkv2p−1

2
.

(6.1)

Thus, to calculate the most violated path in Dag[h], related to group k ∈CBR, we assign to each

arc (u,v) of Dag[h] a weight w(u,v) = zku−zkv
2 . When calculating the weight of a path containing

an arc (u,v), we multiply w(u,v) by 1 or−1 depending on u appearing in an odd or even position

in the path, respectively. The weight of the path is this signed sum plus zkh
2 .

We can then determine the maximum weighted path by traversing Dag[h] in the

topological order and calculating the paths weights. We just have to take care to multiply the

arc weights by 1 or −1 accordingly. In the end, if the weight of the maximum weighted path

is greater than 1, the inequality induced by k and this path is violated; otherwise, no violation

exists for k.

Algorithm 2 describes the generalized convexity inequalities separator just explained.

For each h ∈ V , after computing Dag[h] and adding the artificial sink vertex f , we run a

topological sorting algorithm for Dag[h]. The array pathWeightPos (resp., pathWeightNeg) saves

the maximum weight path from h to each vertex v ∈ V in Dag[h] among the paths where v

appears in an odd (resp. even) position, i.e. the coefficient of zkv is multiplied by 1 (resp. −1) to

set the path weight. The parentPos and parentNeg arrays save the predecessors of each vertex in

the maximum weight path determined in pathWeightPos and pathWeightNeg, respectively. So,

lines 14 - 28 calculate a maximum weight path in Dag[h] from h to the artificial super sink f

that yields to a valid generalized convexity inequality using the topological order. Finally, if the

corresponding inequality of the path is violated, then it is saved to be added to the integer linear

programming model (lines 29 - 31).

The complexity of such a separation algorithm is mainly determined by the Dijkstra’s

algorithm, which has complexity O(n2 logn)). The topological sorting algorithm can be imple-

mented within complexity O(n+m) with a depth-first search algorithm. Lines 6 - 31 has three

for commands which runs in O(|CBR| ·n2) time. Thus, the overall complexity of Algorithm 2 is

O(n2 logn+(|CBR| ·n2)) = O(n2 logn).
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Algorithm 2: Generalized convexity inequality separation algorithm
Data: Graph instance G and continuous solution z.
Result: A set of violated generalized convexity inequalities, one for each pair (h,k),

h ∈V , k ∈CBR.

1 F ← /0
2 foreach h ∈V do
3 Compute Dag[h] using depth-first search and Dijkstra’s algorithms
4 Create a sink node f and add arcs (i, f ) for each i ∈V\{h}
5 Run the topological order algorithm for Dag[h]
6 foreach k ∈CBR do
7 foreach u ∈V (Dag[h]) do
8 parentPos[u]←−1
9 parentNeg[u]←−1

10 pathWeightPos[u]←−∞

11 pathWeightNeg[u]←−∞

12 parentPos[h]← h
13 pathWeightPos[h]← 0
14 foreach v ∈V (Dag[h]) in the topological order do
15 if pathWeightPos[v] =−∞ and pathWeightNeg[v] =−∞ then
16 continue
17 foreach w ∈V (Dag[h])\{ f} do
18 if w 6= v and (v,w) ∈ A(Dag[h]) then
19 if parentPos[v] 6=−1 and (pathWeightPos[v]+ ((zkv− zkw)/2)>

pathWeightNeg[w]) then
20 pathWeightNeg[w]← pathWeightPos[v]+ ((zkv− zkw)/2)
21 parentNeg[w]← v

22 if parentNeg[v] 6=−1 and (pathWeightNeg[v]+ ((−zkv + zkw)/2)>
pathWeightPos[w]) then

23 pathWeightPos[w]← pathWeightNeg[v]+ ((−zkv + zkw)/2)
24 parentPos[w]← v

25 if v 6= f and (v, f ) ∈ A(Dag[h]) and parentPos[v] 6=−1 and
(pathWeightPos[v]+ ((zkv + zkh)/2)> pathWeightNeg[ f ]) then

26 pathWeightNeg[ f ]← pathWeightPos[v]+ ((zkv + zkh)/2)
27 parentNeg[ f ]← v

28 maxPathWeight← pathWeightNeg[ f ]
29 if maxPathWeight > 1 then
30 determine the violated inequality using parentPos and parentNeg arrays
31 add the violated inequality to F

32 return F
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6.4.3 Generalized alternating path inequalities separator

The generalized alternating path inequalities (4.12) are the counterparts, for ILP1, of

the generalized convexity inequalities. Indeed, for a sequence < h = l1,q1, . . . ,qt ,

lt+1 = j >, k ∈CK(h) and k̄ ∈CK̄(h), inequality (4.12) for the multi-group case is okl1 + ok̄q1
+

okl2 +ok̄q2
+ . . .+oklt +ok̄qt

+oklt+1 ≥ t. It can be rewritten as

(1−okl1)−ok̄q1
+(1−okl2)−ok̄q2

+ . . .+(1−oklt )−ok̄qt
+(1−oklt+1)≤ 1. (6.2)

Also, recall that two consecutive vertices in the sequence have opposite classes.

Using expression (6.2), the separation of inequalities (4.12) can be obtained by a

procedure similar to that one presented in Subsection 6.4.2. The two differences are:

• After step 2 (and before step 3), keep in Dag[h] only the arcs that link two initially classified

vertices of opposite classes. Remove the other arcs and the vertices that become isolated.

• The weight of a remaining arc (u,v) is w(u,v) = (1−oku)−ok̄v
2 , if K(u) = K(v), and w(u,v) =

ok̄u+(1−okv)
2 , otherwise. It is important to observe that now we just need to compute a

maximum weighted path from h to f (without multiplying the arc weights by 1 or −1).

In practice, we observed that separating all such inequalities was not rewarding.

Instead, we restricted ourselves to separating the generalized 3-path inequalities (the special case

of (4.12) when t = 2) by enumeration.

6.4.4 Lazy constraints separator for elementary N -set inequalities

Since there can be many constraints in ILP1M, we designed a lazy constraints algo-

rithm to separate integer solutions of ILP1M. We just search for subsets S⊆VB and T ⊆VR whose

corresponding N -set elementary constraint is violated. To do so, it is sufficient to transform

the current integer solution o of ILP1M into the corresponding integer solution (ô, ẑ) of ILP2M,

by explicitly calculating the convex hull of all groups Ak = { j ∈VK | ok j = 0}, for all k ∈CK ,

K ∈ {B,R}. Then, we verify:

• If ∑k∈CK(i)
ôki−LK(i)−1< ẑk̄i, for some i∈VBR and k̄∈CK̄(i), then the constraint ∑ j∈S ok̄ j+

∑k∈CK(i)
oki ≥ LK(i), for S = Ak̄, is violated (note that this condition implies ∑k∈CK(i)

oki =

LK(i)−1 and ∑ j∈Ak̄
ok̄ j = 0, with Ak̄ 6= /0).
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• If ẑki + ẑk̄i > 1, for some i ∈ VN ,k ∈CB, k̄ ∈CR, then constraint ∑
j∈S

ok j + ∑
j∈T

ok̄ j ≥ 1, for

S = Ak and T = Ak̄, is violated.

To get minimal subsets S and T that keeps the inequalities violated, we proceed as

follow. For the VBR-disjoint constraints, we start with S = Ak̄ and T = {i}. If there is u ∈ S such

that H[S\{u}] still reaches i, then we remove u from S. This procedure finishes when S becomes

minimal.

For the VN-disjoint constraints, we start with S = Ak and T = Ak̄. If there is u ∈ S or

w∈ T such that H[S\{u}]∩H[T ]∩VN 6= /0 or H[S]∩H[T\{w}]∩VN 6= /0, then we remove u from

S or w from T , respectively. This procedure finishes when S∪T becomes minimal. It is worth

noting that the second type of constraints only needs to be verified if H[S]∩T = H[T ]∩S = /0;

otherwise it is covered by the first type.

The whole algorithm has complexity O(max(|CB|, |CR|) ·n4).

6.4.5 Lazy constraints separator for convexity constraints

We also implemented a lazy constraints separation for the convexity constraints (5.23)

and (5.35) of ILP2M and ILP3M, since there can be a large number of them for a given instance

of the 2-MGC problem. It is sufficient to enumerate all such convexity constraints and search for

the violated ones, which yields a complexity of O(|CBR| ·n3).

6.5 Geodesic classification algorithms

In this section, we describe the methods used to solve the problem and how they

were implemented. The algorithm that we developed for each formulation runs a branch-and-

bound algorithm ((LAWLER; WOOD, 1966)), which implicitly enumerates all feasible solutions

of the problem via a decision tree structure. It also uses a cutting plane algorithm to solve

a linear relaxation of the root node, which includes some valid inequalities (cuts) found by

separation algorithms, and a lazy constraint approach to find feasible integer solutions. Such a

lazy constraint approach greatly reduces the overall running time as shown by the experiments.

For the formulation ILP1, the main steps of our solution method are described in

Algorithm 3. Similarly, the main steps of the solution method for the formulation ILP2 are

described in Algorithm 4.
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Algorithm 3: ILP1 solving algorithm
Data: Graph Instance G.
Result: Optimal solution for the 2-SGC problem.

1 Computation of all Dh j sets using Algorithm 1.
2 Initial cutoff: Since a trivial solution is obtained by taking all vertices of a class as outliers,

min{|VB|, |VR|} is provided as a cutoff.
3 Initial model configuration: All generalized C4 inequalities (4.10) (with Dh j requirement

instead of H[{h, j}]) are included in the initial model by exhaustive enumeration of all
pairs of 2-sized subsets. None of the constraints (4.4)-(4.5) are used initially.

4 Partial linear relaxation resolution: At the root node of the branch-and-cut tree, we solve
the linear relaxation of the initial model together with generalized 3-path constraints (4.7)
and X-swing constraints (4.8) separated as cuts by enumeration.

5 Exact model resolution: Starting from the model obtained in Step 4, we add the integrality
constraints (4.3) and solve the integer formulation by adding (4.4)-(4.5) as lazy
constraints (with a Lazy Callback procedure of CPLEX).

Algorithm 4: ILP2 solving algorithm
Data: Graph Instance G.
Result: Optimal solution for the 2-SGC problem.

1 Computation of all Dh j sets using Algorithm 1.
2 Initial cutoff: Since a trivial solution is obtained by taking all vertices of a class as outliers,

min{|VB|, |VR|} is provided as a cutoff.
3 Initial model configuration: All generalized C4 inequalities (4.10) (with Dh j requirement

instead of H[{h, j}]) are included in the initial model by exhaustive enumeration of all
pairs of 2-sized subsets. All constraints (4.14)-(4.16) are used and none of the
constraints (4.17) are included initially.

4 Partial linear relaxation resolution: At the root node of the branch-and-cut tree, we solve
the linear relaxation of the initial model together with inequalities (4.21) and (4.25) (with
Dh j requirement instead of H[{h, j}]) separated as cuts (for more details of the
corresponding separation algorithms, see Section 6.4).

5 Exact model resolution: Starting from the model obtained in Step 4, we add the integrality
constraints (4.18) and solve the integer formulation by adding (4.17) as lazy constraints
(with a Lazy Callback procedure of CPLEX).
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6.6 Results and analysis

6.6.1 Random instances

The random instances used in the experiments were categorized by number of

vertices ({50,100,150,200,250}), graph density percentage ({5,10,20,30,50,70}) and initially

classified vertices percentage ({20,40,60,80}). The number of blue and red initially classified

vertices is equal. For each combination of number of vertices v, density d and initially classified

vertices percentage br, we generated 10 random instances. Therefore, there were 1200 random

instances in total, all of them with parameters LB = LR = 1.

Tables 2-5 show the running time comparison between solving the complete pure

integer linear model ILP2 and running Algorithm 4, while Tables 6-9 present a running time

comparison between Algorithm 3 and Algorithm 4. The time limit was set to 3600 seconds

(“-"means this time limit was exceeded). The information presented is:

• Instance: instance name using the format: number of vertices in G (v), density of G (d),

number of groups per class (l) and initially classified vertices percentage (br);

• Diam: diameter of the graph instance;

• Dgmin: minimum degree of the graph instance;

• Dgmax: maximum degree of the graph instance;

• OPT : optimal solution (the minimum number of outliers);

• TILP1(s): running time of Algorithm 3 in seconds;

• TILP2-P(s): running time of solving the complete pure integer linear model ILP2 in

seconds;

• TILP2(s): running time of Algorithm 4 in seconds.

We also studied the effect of the valid inequalities used in each algorithm. For the

sake of comparison, we tested two other versions of each algorithm, each version obtained by the

elimination of Step 3 or Step 4, respectively. The observed results are summarized in Tables 10

and 11. They compare the performance of the three tested versions with respect to a standard

implementation where both steps 3 and 4 were not applied.

We could note that inequalities (4.10) were extremely effective: on average, there

were 2.6|V | (12|V | for ILP2 when (4.25) were added as cuts) inequalities added and they reduced

82% (83% for ILP2) of the running time and 30% (20% for ILP2) of the number of lazy

constraints added. These were the most effective valid inequalities that we found. Remember
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Table 2 – Pure integer linear model ILP2 and Algorithm 4 running times comparison for random
instances with br = 20 (in seconds).

Instance Diam Dgmin Dgmax OPT TILP2-P(s) TILP2(s)
v050-d05-l1-br20 10 1 6 2 0.12 0.03
v050-d10-l1-br20 5 1 9 4 1.04 0.54
v050-d20-l1-br20 3 4 16 4 2.05 0.30
v050-d30-l1-br20 3 7 22 5 1.94 0.27
v050-d50-l1-br20 2 17 31 4 5.06 0.10
v050-d70-l1-br20 2 26 41 3 2.53 0.12
v100-d05-l1-br20 6 1 10 9 16.64 2.84
v100-d10-l1-br20 4 2 17 9 26.38 2.68
v100-d20-l1-br20 3 9 30 10 17.89 1.22
v100-d30-l1-br20 2 17 40 10 30.15 1.92
v100-d50-l1-br20 2 36 61 10 52.80 0.88
v100-d70-l1-br20 2 56 80 9 42.56 0.62
v150-d05-l1-br20 5 1 14 15 167.20 14.81
v150-d10-l1-br20 3 5 24 15 171.92 16.23
v150-d20-l1-br20 3 17 43 15 132.19 6.81
v150-d30-l1-br20 2 29 59 15 341.01 1.38
v150-d50-l1-br20 2 59 90 15 852.08 0.78
v150-d70-l1-br20 2 90 118 15 1031.14 1.18
v200-d05-l1-br20 4 2 19 20 894.77 35.65
v200-d10-l1-br20 3 8 33 20 1014.29 29.30
v200-d20-l1-br20 3 24 57 20 1082.87 5.87
v200-d30-l1-br20 2 42 78 20 - 2.17
v200-d50-l1-br20 2 80 119 20 - 1.15
v200-d70-l1-br20 2 120 154 20 - 1.17
v250-d05-l1-br20 4 2 23 24 - 140.60
v250-d10-l1-br20 3 12 39 25 - 53.95
v250-d20-l1-br20 2 32 67 25 - 8.52
v250-d30-l1-br20 2 52 96 25 - 4.56
v250-d50-l1-br20 2 100 147 25 - 2.38
v250-d70-l1-br20 2 151 193 25 - 2.77

AVERAGE - - - - - 11.36
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Table 3 – Pure integer linear model ILP2 and Algorithm 4 running times comparison for random
instances with br = 40 (in seconds).

Instance Diam Dgmin Dgmax OPT TILP2-P(s) TILP2(s)
v050-d05-l1-br40 12 1 5 7 0.50 0.11
v050-d10-l1-br40 5 1 9 9 2.73 0.52
v050-d20-l1-br40 3 3 16 9 3.35 0.34
v050-d30-l1-br40 3 7 22 10 3.25 0.23
v050-d50-l1-br40 2 15 32 10 3.56 0.15
v050-d70-l1-br40 2 26 41 9 2.99 0.12
v100-d05-l1-br40 6 1 10 19 25.73 3.07
v100-d10-l1-br40 4 3 17 20 31.79 3.44
v100-d20-l1-br40 3 9 30 20 24.11 1.72
v100-d30-l1-br40 2 19 41 20 45.42 0.73
v100-d50-l1-br40 2 36 61 20 73.98 0.37
v100-d70-l1-br40 2 56 80 20 92.51 0.43
v150-d05-l1-br40 5 1 14 29 197.15 9.04
v150-d10-l1-br40 3 5 26 30 214.28 5.95
v150-d20-l1-br40 3 18 43 30 194.89 2.07
v150-d30-l1-br40 2 31 59 30 429.04 0.33
v150-d50-l1-br40 2 57 89 30 1316.79 1.47
v150-d70-l1-br40 2 89 116 30 1842.82 1.68
v200-d05-l1-br40 4 3 18 40 1149.35 27.60
v200-d10-l1-br40 3 9 32 40 1113.57 8.40
v200-d20-l1-br40 3 25 55 40 1481.16 1.30
v200-d30-l1-br40 2 42 76 40 - 2.36
v200-d50-l1-br40 2 80 119 40 - 2.30
v200-d70-l1-br40 2 121 156 40 - 2.83
v250-d05-l1-br40 4 4 22 50 - 106.01
v250-d10-l1-br40 3 13 39 50 - 11.25
v250-d20-l1-br40 2 32 69 50 - 3.37
v250-d30-l1-br40 2 54 95 50 - 2.99
v250-d50-l1-br40 2 101 145 50 - 6.37
v250-d70-l1-br40 2 153 192 50 - 7.38

AVERAGE - - - - - 7.13
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Table 4 – Pure integer linear model ILP2 and Algorithm 4 running times comparison for random
instances with br = 60 (in seconds).

Instance Diam Dgmin Dgmax OPT TILP2-P(s) TILP2(s)
v050-d05-l1-br60 9 1 6 12 0.94 0.42
v050-d10-l1-br60 4 1 9 14 2.78 0.71
v050-d20-l1-br60 3 4 15 15 3.09 0.54
v050-d30-l1-br60 3 8 22 15 2.84 0.38
v050-d50-l1-br60 2 17 32 15 3.27 0.11
v050-d70-l1-br60 2 26 41 15 3.47 0.12
v100-d05-l1-br60 6 1 10 29 27.70 4.21
v100-d10-l1-br60 4 3 17 29 35.49 4.17
v100-d20-l1-br60 3 10 31 30 32.48 0.71
v100-d30-l1-br60 2 18 41 30 43.60 0.33
v100-d50-l1-br60 2 37 62 30 85.46 1.00
v100-d70-l1-br60 2 57 79 30 97.80 1.14
v150-d05-l1-br60 5 1 15 44 260.04 12.22
v150-d10-l1-br60 3 5 25 45 220.65 3.21
v150-d20-l1-br60 3 17 43 45 239.70 0.43
v150-d30-l1-br60 2 30 59 45 557.84 2.58
v150-d50-l1-br60 2 59 91 45 1316.49 2.39
v150-d70-l1-br60 2 88 118 45 2258.76 2.70
v200-d05-l1-br60 4 3 19 60 1255.83 32.64
v200-d10-l1-br60 3 9 32 60 1207.54 3.75
v200-d20-l1-br60 3 24 55 60 1315.32 1.43
v200-d30-l1-br60 2 43 77 60 - 3.15
v200-d50-l1-br60 2 81 119 60 - 8.10
v200-d70-l1-br60 2 122 156 60 - 5.65
v250-d05-l1-br60 4 4 23 75 - 129.13
v250-d10-l1-br60 3 13 39 75 - 6.64
v250-d20-l1-br60 2 32 68 75 - 2.75
v250-d30-l1-br60 2 54 94 75 - 9.91
v250-d50-l1-br60 2 102 147 75 - 14.20
v250-d70-l1-br60 2 153 194 75 - 16.14

AVERAGE - - - - - 9.03
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Table 5 – Pure integer linear model ILP2 and Algorithm 4 running times comparison for random
instances with br = 80 (in seconds).

Instance Diam Dgmin Dgmax OPT TILP2-P(s) TILP2(s)
v050-d05-l1-br80 10 1 6 15 0.92 0.29
v050-d10-l1-br80 5 1 10 19 2.29 1.05
v050-d20-l1-br80 3 4 16 20 2.32 0.61
v050-d30-l1-br80 3 7 21 20 2.37 0.17
v050-d50-l1-br80 2 16 31 20 3.64 0.09
v050-d70-l1-br80 2 27 41 20 4.17 0.13
v100-d05-l1-br80 6 1 10 39 34.15 4.92
v100-d10-l1-br80 4 3 18 40 39.14 1.09
v100-d20-l1-br80 3 10 29 40 28.95 0.39
v100-d30-l1-br80 2 19 42 40 64.82 0.70
v100-d50-l1-br80 2 37 62 40 79.26 1.41
v100-d70-l1-br80 2 57 80 40 85.24 0.82
v150-d05-l1-br80 5 1 14 59 318.11 5.39
v150-d10-l1-br80 3 6 25 60 200.29 0.60
v150-d20-l1-br80 3 17 43 60 250.78 1.12
v150-d30-l1-br80 2 30 59 60 647.25 2.18
v150-d50-l1-br80 2 59 90 60 1762.73 3.31
v150-d70-l1-br80 2 89 119 60 2425.06 4.41
v200-d05-l1-br80 4 2 19 79 1037.29 13.65
v200-d10-l1-br80 3 9 33 80 1320.49 1.28
v200-d20-l1-br80 2 25 56 80 1739.68 2.93
v200-d30-l1-br80 2 43 77 80 - 9.76
v200-d50-l1-br80 2 80 118 80 - 13.43
v200-d70-l1-br80 2 120 156 80 - 18.47
v250-d05-l1-br80 4 4 22 100 - 9.48
v250-d10-l1-br80 3 13 38 100 - 2.73
v250-d20-l1-br80 2 32 67 100 - 6.51
v250-d30-l1-br80 2 56 95 100 - 17.12
v250-d50-l1-br80 2 102 146 100 - 40.88
v250-d70-l1-br80 2 154 193 100 - 54.93

AVERAGE - - - - - 7.33
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Table 6 – Algorithm 3 and Algorithm 4 running times comparison for random instances with
br = 20 (in seconds).

Instance Diam Dgmin Dgmax OPT TILP1(s) TILP2(s)
v050-d05-l1-br20 10 1 6 2 0.01 0.03
v050-d10-l1-br20 5 1 9 4 0.08 0.54
v050-d20-l1-br20 3 4 16 4 0.12 0.30
v050-d30-l1-br20 3 7 22 5 0.10 0.27
v050-d50-l1-br20 2 17 31 4 0.05 0.10
v050-d70-l1-br20 2 26 41 3 0.01 0.12
v100-d05-l1-br20 6 1 10 9 1.14 2.84
v100-d10-l1-br20 4 2 17 9 1.34 2.68
v100-d20-l1-br20 3 9 30 10 1.08 1.22
v100-d30-l1-br20 2 17 40 10 0.96 1.92
v100-d50-l1-br20 2 36 61 10 0.22 0.88
v100-d70-l1-br20 2 56 80 9 0.02 0.62
v150-d05-l1-br20 5 1 14 15 7.96 14.81
v150-d10-l1-br20 3 5 24 15 5.86 16.23
v150-d20-l1-br20 3 17 43 15 2.11 6.81
v150-d30-l1-br20 2 29 59 15 0.56 1.38
v150-d50-l1-br20 2 59 90 15 0.02 0.78
v150-d70-l1-br20 2 90 118 15 0.02 1.18
v200-d05-l1-br20 4 2 19 20 17.55 35.65
v200-d10-l1-br20 3 8 33 20 13.14 29.30
v200-d20-l1-br20 3 24 57 20 3.35 5.87
v200-d30-l1-br20 2 42 78 20 1.06 2.17
v200-d50-l1-br20 2 80 119 20 0.02 1.15
v200-d70-l1-br20 2 120 154 20 0.02 1.17
v250-d05-l1-br20 4 2 23 24 41.13 140.60
v250-d10-l1-br20 3 12 39 25 27.56 53.95
v250-d20-l1-br20 2 32 67 25 2.82 8.52
v250-d30-l1-br20 2 52 96 25 0.44 4.56
v250-d50-l1-br20 2 100 147 25 0.05 2.38
v250-d70-l1-br20 2 151 193 25 0.06 2.77

AVERAGE - - - - 4.29 11.36
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Table 7 – Algorithm 3 and Algorithm 4 running times comparison for random instances with
br = 40 (in seconds).

Instance Diam Dgmin Dgmax OPT TILP1(s) TILP2(s)
v050-d05-l1-br40 12 1 5 7 0.05 0.11
v050-d10-l1-br40 5 1 9 9 0.63 0.52
v050-d20-l1-br40 3 3 16 9 0.58 0.34
v050-d30-l1-br40 3 7 22 10 0.47 0.23
v050-d50-l1-br40 2 15 32 10 0.08 0.15
v050-d70-l1-br40 2 26 41 9 0.02 0.12
v100-d05-l1-br40 6 1 10 19 4.17 3.07
v100-d10-l1-br40 4 3 17 20 5.05 3.44
v100-d20-l1-br40 3 9 30 20 2.46 1.72
v100-d30-l1-br40 2 19 41 20 0.29 0.73
v100-d50-l1-br40 2 36 61 20 0.01 0.37
v100-d70-l1-br40 2 56 80 20 0.02 0.43
v150-d05-l1-br40 5 1 14 29 14.33 9.04
v150-d10-l1-br40 3 5 26 30 3.82 5.95
v150-d20-l1-br40 3 18 43 30 0.64 2.07
v150-d30-l1-br40 2 31 59 30 0.04 0.33
v150-d50-l1-br40 2 57 89 30 0.09 1.47
v150-d70-l1-br40 2 89 116 30 0.12 1.68
v200-d05-l1-br40 4 3 18 40 23.17 27.60
v200-d10-l1-br40 3 9 32 40 4.63 8.40
v200-d20-l1-br40 3 25 55 40 0.30 1.30
v200-d30-l1-br40 2 42 76 40 0.11 2.36
v200-d50-l1-br40 2 80 119 40 0.16 2.30
v200-d70-l1-br40 2 121 156 40 0.22 2.83
v250-d05-l1-br40 4 4 22 50 52.86 106.01
v250-d10-l1-br40 3 13 39 50 7.32 11.25
v250-d20-l1-br40 2 32 69 50 0.12 3.37
v250-d30-l1-br40 2 54 95 50 0.14 2.99
v250-d50-l1-br40 2 101 145 50 0.40 6.37
v250-d70-l1-br40 2 153 192 50 0.57 7.38

AVERAGE - - - - 4.10 7.13
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Table 8 – Algorithm 3 and Algorithm 4 running times comparison for random instances with
br = 60 (in seconds).

Instance Diam Dgmin Dgmax OPT TILP1(s) TILP2(s)
v050-d05-l1-br60 9 1 6 12 0.25 0.42
v050-d10-l1-br60 4 1 9 14 1.19 0.71
v050-d20-l1-br60 3 4 15 15 0.83 0.54
v050-d30-l1-br60 3 8 22 15 0.33 0.38
v050-d50-l1-br60 2 17 32 15 0.02 0.11
v050-d70-l1-br60 2 26 41 15 0.01 0.12
v100-d05-l1-br60 6 1 10 29 3.02 4.21
v100-d10-l1-br60 4 3 17 29 2.11 4.17
v100-d20-l1-br60 3 10 31 30 0.52 0.71
v100-d30-l1-br60 2 18 41 30 0.03 0.33
v100-d50-l1-br60 2 37 62 30 0.11 1.00
v100-d70-l1-br60 2 57 79 30 0.13 1.14
v150-d05-l1-br60 5 1 15 44 17.66 12.22
v150-d10-l1-br60 3 5 25 45 1.47 3.21
v150-d20-l1-br60 3 17 43 45 0.07 0.43
v150-d30-l1-br60 2 30 59 45 0.18 2.58
v150-d50-l1-br60 2 59 91 45 0.24 2.39
v150-d70-l1-br60 2 88 118 45 0.31 2.70
v200-d05-l1-br60 4 3 19 60 14.53 32.64
v200-d10-l1-br60 3 9 32 60 0.46 3.75
v200-d20-l1-br60 3 24 55 60 0.28 1.43
v200-d30-l1-br60 2 43 77 60 0.25 3.15
v200-d50-l1-br60 2 81 119 60 0.90 8.10
v200-d70-l1-br60 2 122 156 60 1.19 5.65
v250-d05-l1-br60 4 4 23 75 9.12 129.13
v250-d10-l1-br60 3 13 39 75 0.42 6.64
v250-d20-l1-br60 2 32 68 75 0.28 2.75
v250-d30-l1-br60 2 54 94 75 0.84 9.91
v250-d50-l1-br60 2 102 147 75 2.70 14.20
v250-d70-l1-br60 2 153 194 75 3.89 16.14

AVERAGE - - - - 2.11 9.03
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Table 9 – Algorithm 3 and Algorithm 4 running times comparison for random instances with
br = 80 (in seconds).

Instance Diam Dgmin Dgmax OPT TILP1(s) TILP2(s)
v050-d05-l1-br80 10 1 6 15 0.31 0.29
v050-d10-l1-br80 5 1 10 19 1.49 1.05
v050-d20-l1-br80 3 4 16 20 1.07 0.61
v050-d30-l1-br80 3 7 21 20 0.16 0.17
v050-d50-l1-br80 2 16 31 20 0.01 0.09
v050-d70-l1-br80 2 27 41 20 0.01 0.13
v100-d05-l1-br80 6 1 10 39 4.28 4.92
v100-d10-l1-br80 4 3 18 40 0.29 1.09
v100-d20-l1-br80 3 10 29 40 0.05 0.39
v100-d30-l1-br80 2 19 42 40 0.08 0.70
v100-d50-l1-br80 2 37 62 40 0.14 1.41
v100-d70-l1-br80 2 57 80 40 0.19 0.82
v150-d05-l1-br80 5 1 14 59 2.67 5.39
v150-d10-l1-br80 3 6 25 60 0.10 0.60
v150-d20-l1-br80 3 17 43 60 0.26 1.12
v150-d30-l1-br80 2 30 59 60 0.24 2.18
v150-d50-l1-br80 2 59 90 60 0.88 3.31
v150-d70-l1-br80 2 89 119 60 1.12 4.41
v200-d05-l1-br80 4 2 19 79 2.96 13.65
v200-d10-l1-br80 3 9 33 80 0.25 1.28
v200-d20-l1-br80 2 25 56 80 0.33 2.93
v200-d30-l1-br80 2 43 77 80 1.04 9.76
v200-d50-l1-br80 2 80 118 80 3.96 13.43
v200-d70-l1-br80 2 120 156 80 5.66 18.47
v250-d05-l1-br80 4 4 22 100 1.60 9.48
v250-d10-l1-br80 3 13 38 100 0.63 2.73
v250-d20-l1-br80 2 32 67 100 0.92 6.51
v250-d30-l1-br80 2 56 95 100 3.14 17.12
v250-d50-l1-br80 2 102 146 100 11.89 40.88
v250-d70-l1-br80 2 154 193 100 16.62 54.93

AVERAGE - - - - 2.08 7.33

Algorithm 3 N. of constraints (4.7)-(4.8) N. of inequalities (4.10) Lazy Const. Reduction Time Reduction
Step 3 only 0 2.6|V | 30% 82%
Step 4 only 14|V | 0 92% 73%

Step 3 and Step 4 2.9|V | 2.6|V | 88% 85%

Table 10 – Effect of the valid inequalities for ILP1 for random instances.

Algorithm 4 N. of inequalities (4.21) N. of inequalities (4.10), (4.25) Lazy Const. Reduction Time Reduction
Step 3 only 0 12|V | 20% 83%

Step 4 only, with (4.21) 8|V | 0 85% 11%
Step 3 and Step 4 5|V | 17|V | 79% 87%

Table 11 – Effect of the valid inequalities for ILP2 for random instances.
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that inequalities (4.10) were proved to be facet-defining for the polytope associated with ILP1

(for more details, see Section 4.2.2) and for the polytope associated with ILP2 (if the generalized

C4 is actually an C4). However, the generalized C4 constraints (4.25) included as cuts in the

root node of the branch-and-cut tree showed only a bit improvement of the linear relaxation

lower bound in Algorithm 4. It is important to note that there were no good results when all the

generalized C4 constraints (4.25) were included in the initial model of ILP2.

Constraints (4.7)-(4.8), added when solving the root node in Step 4 of Algorithm 3,

were very effective as well. Adding them as cuts was much better than including all of them

in the initial model. On average, there were 14|V | constraints added and they reduced 73%

of the running time and 92% of the number of lazy constraints added. On the other hand,

the generalized convexity inequalities (4.21), added when solving the root node in Step 4 of

Algorithm 4, were not very effective in reducing the running time for the random instances,

although reducing 85% of the number of lazy constraints added. On average, there were 8|V |

constraints added and they reduced only 11% of the running time. However, we anticipate that,

for the realistic instances, the running time reduction was 70%, and they showed to be very

useful. Since there are many of these inequalities, including all of them in the initial model

did not give good results, as expected. The combination of all cited inequalities (i.e, including

Steps 3 and 4 in both algorithms) showed an overall running time reduction of 85% for ILP1 and

87% for ILP2, and it drastically reduced the number of lazy constraints added (88% for ILP1

and 79% for ILP2). Moreover, the addition of the generalized C4 inequalities yield a very good

reduction of inequalities (4.7), (4.8) and (4.21) added in the root node.

Star tree inequalities (4.11), (4.19) and generalized walk inequalities (4.24) did not

reduce the running time, so we did not use them in the final version of the branch-and-cut

algorithms.

Regarding the lazy constraints scheme presented in Section 6.4.4, its application in

Step 5 was fundamental to reduce the running time (with respect to an implementation with all

constraints (4.4)-(4.5) added to the initial model). Actually, it is impractical to solve the problem

without the lazy constraints scheme since the number of constraints (4.4)-(4.5) is potentially

exponential. Considering all random instances, the average running time of Algorithm 3 was

about few seconds, so it is shown to be very good even for medium size instances.

In Tables 2-5, we can see how the use of the valid inequalities and the lazy constraints

scheme in Algorithm 4 greatly reduce the running time to solve ILP2. For almost all instances
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with the number of vertices greater than or equal to 200, solving the complete pure formulation

exceeded the time limit. The main information that we can retrieve from these experiments is

that the lazy constraints scheme for the convexity constraints works very well, even for medium

instances, as already noticed.

Tables 6-9 also show the efficiency of the generalized C4 inequalities and the lazy

constraints scheme presented in Section 6.4.4 for formulation ILP1. For almost all instances,

Algorithm 3 had beaten Algorithm 4 in running time, yielding an overall running time TILP1(s)

smaller than TILP2(s). The few cases in which Algorithm 4 produced better results lied on

instances of a low number of vertices and low density. Besides, Algorithm 3 has been shown

to be extremely efficient for dense instances, even for medium instances, because in such cases

the size of S∪T for the model constraints is generally smaller, which can reduce the number

of constraints. Then, for the overall results, TILP1(s) was better than TILP2(s) in 111 instance

configurations from the total of 120, which is 92% of all instances. Given that, Algorithm 3

seems to be better than Algorithm 4 for random instances.

Figure 29 – Running time versus density: Algorithm 3 and br = 20.

Figures 29, 31, 33 and 35 show the running times of Algorithm 3 as a function of the

graph density, whereas Figures 30, 32, 34 and 36 show these results for Algorithm 4. There is a

graphic for each value of br, where the value of n varies with {50,100,150,200,250}. These

results show evidences that Algorithm 3 works extremely well, especially for dense, medium

sized instances. Besides, it can be seen that, for br ≤ 40 and for sufficient large n, the running

times of Algorithm 3 and Algorithm 4 decrease exponentially as the density increases. Moreover,

in general, the instances with density between 5% and 20% or br = 80% were the hardest to

solve.
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Figure 30 – Running time versus density: Algorithm 4 and br = 20.

Figure 31 – Running time versus density: Algorithm 3 and br = 40.

Figure 32 – Running time versus density: Algorithm 4 and br = 40.
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Figure 33 – Running time versus density: Algorithm 3 and br = 60.

Figure 34 – Running time versus density: Algorithm 4 and br = 60.

Figure 35 – Running time versus density: Algorithm 3 and br = 80.

6.6.2 Realistic and synthetic instances

To test the developed algorithms for realistic applications, we performed experiments

using instances derived from two realistic datasets, namely Parkinson’s disease ((LITTLE et al.,
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Figure 36 – Running time versus density: Algorithm 4 and br = 80.

2007)) and cardiac Single Proton Emission Computed Tomography (SPECT) images ((KURGAN

et al., 2001)), both available at https://archive.ics.uci.edu/ml/datasets.html. The datasets come

from instances of the Euclidean version of the classification problem, in which each point

represents the information of a patient to be used to predict new diagnostics. So, as a way to

evaluate the accuracy of class prediction of our algorithms, we also run the classic SVM and the

MLP Euclidean classification algorithms for these datasets (see Sections 6.6.3 and 6.6.4).

For each of these datasets, we derived 10 associated instances for the 2-SGC problem

in the following way. We constructed the associated classification graph using the transformation

suggested by (ZAKI; JR, 2014), where each point becomes a vertex. Then, we randomly chose

20% (or 30%) of the vertices to become unclassified (they form the validation set). These

were the vertices (points in the Euclidean version) used to test the efficiency and accuracy of

the geodesic and Euclidean classification algorithms by comparing their predefined classes,

available in the datasets, with the predicted classes from the solutions returned by Algorithm 3,

Algorithm 4, SVM and the MLP algorithms.

The detailed explanation of the dataset transformation into a graph is presented next.

Each vertex i of the graph represents a point xi of the dataset. To create the edges, we first

compute the pairwise similarity between the points using the Gaussian kernel function given by:

ai j = exp{
−||xi− x j||2

2
},

where ||xi− x j||2 = ∑k(xi(k)− x j(k))2 is the square of the Euclidean distance between points xi

and x j. Then, each pair (xi,x j) has a similarity weight ai j corresponding to the similarity value

between xi and x j. Next, for each vertex i, we compute the top q nearest neighbors in terms of
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the similarity value, given as

Nq(i) = { j ∈V | j 6= i,ai j ≥ aiq},

where aiq represents the similarity value between i and its q-th most similar neighbor (we used

q = 10% of |V |). Then, an edge is added between vertices i and j if, and only if, j ∈ Nq(i) and

i ∈ Nq( j). Finally, if the resulting graph is disconnected, we add the top q most similar (i.e.,

highest weighted) edges between each pair of connected components.

We follow a similar approach to compare the results for the synthetic instances.

By synthetic instance, we mean a randomly generated instance where the optimum solution is

known in advance. As in (BLAUM et al., 2019a), we generated two base synthetic instances for

the Euclidean classification problem, as follows. Given the space dimension d ∈ {2,3} and a

hyperplane in Rd , we chose one point in each half-space, say b and r, each at a distance 1 of

the hyperplane. Point b (resp. r) will work as the center for the blue (resp. red) samples. Then,

we consider a d-dimensional hypercube with side 2 centered at each center point; we randomly

generate p points uniformly distributed within it. Finally, we generate 5 outliers for each class.

We use p = 50 and n = 5. An illustration of the base instance for d = 2 is shown in Figure 37.

From each base instance, we derive 10 Euclidean instances by choosing 20% (and also 30%)

of the points to become unclassified. The corresponding graph instances are obtained with the

same procedure used for Parkinson’s and SPECT instances.

Figure 37 – Synthetic instance example for d = 2.

6.6.3 SVM algorithm

A Support Vector Machine (SVM) is a discriminative classifier formally defined by

a separating hyperplane. In other words, given labeled training data (supervised learning), the

algorithm outputs an optimal hyperplane which categorizes new examples. In a two dimensional
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space, this hyperplane is a line dividing a plane into two parts where in each class lays in one of

the sides.

In our experiments, we used the linearSVC algorithm implementation of the SVM,

found at http://scikit-learn.org/stable/modules/svm.html, as an Euclidean classification algorithm.

It uses a linear kernel, which means that it tries to separate the dataset linearly. Thus, it

is appropriated for comparison with our geodesic classification algorithms, since we used

parameters LB = LR = 1 in our experiments.

6.6.4 Neural networks algorithm MLP

As another Euclidean classification algorithm, we used a Neural Networks imple-

mentation of a Multi-Layer Perceptron (MLP) algorithm, which applies backpropagation. For

more details, see http://scikit-learn.org/stable/modules/neural-networks-supervised.html.

6.6.5 Parkinson’s disease instances

In the Parkinson’s disease dataset, each point represents the information of biomedi-

cal voice measurement of a person that may or not have the Parkinson’s disease. The main aim

of the data is to discriminate healthy people from those with Parkinson’s disease, according to

some previously known information (initially classified points).

The dataset is composed of 195 points, each of them containing a person’s biomedical

voice measurement information divided into 22 attributes. Thus, each point belonging to

R22. Among these 195 points, 48 points are related to healthy people and 147 to people with

Parkinson’s disease.

6.6.6 SPECT heart data instances

The cardiac dataset describes diagnosing of cardiac Single Proton Emission Com-

puted Tomography (SPECT) images. Each of the patients is classified into two categories

(classes): normal and abnormal. The database consists of 267 SPECT image sets (patients) that

were processed to extract features that summarize the original SPECT images. As a result, 44

continuous feature patterns were created for each patient, along with the diagnosis status (normal

or abnormal). This information is used to provide a set of diagnoses for cardiac SPECT studies.
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Table 12 – Algorithm 3, Algorithm 4, SVM and MLP comparison for Parkinson’s instances with
br = 80%.
Instance Diam Dgmin Dgmax OPT TILP1(s) TILP2(s) AcuGC(%) AcuSV M(%) AcuMLP(%)

parkinsons-v195-d5-l1-br80-1 10 1 18 39 68.52 6.21 79.49% 87.18% 79.49%
parkinsons-v195-d5-l1-br80-2 10 1 18 38 89.23 6.18 74.36% 74.36% 71.79%
parkinsons-v195-d5-l1-br80-3 10 1 18 33 57.42 1.10 64.10% 64.10% 74.36%
parkinsons-v195-d5-l1-br80-4 10 1 18 34 88.23 3.65 64.10% 64.10% 76.92%
parkinsons-v195-d5-l1-br80-5 10 1 18 38 36.81 2.95 76.92% 76.92% 82.05%
parkinsons-v195-d5-l1-br80-6 10 1 18 39 151.17 49.64 76.92% 76.92% 76.92%
parkinsons-v195-d5-l1-br80-7 10 1 18 38 92.19 48.60 74.36% 79.49% 71.79%
parkinsons-v195-d5-l1-br80-8 10 1 18 33 53.75 4.11 61.54% 61.54% 69.23%
parkinsons-v195-d5-l1-br80-9 10 1 18 39 169.02 4.84 79.49% 23.08% 79.49%

parkinsons-v195-d5-l1-br80-10 10 1 18 38 40.36 5.00 79.49% 79.49% 71.79%
AVERAGE - - - - 87.64 13.23 73.08% 68.72% 75.38%

6.6.7 Analysis of the realistic instances experiments

Tables 12 (instances with 80% of initially classified vertices) and 13 (instances with

70% of initially classified vertices) present the running time comparison between Algorithm 3

and Algorithm 4, along with the prediction accuracy comparison between the 2-SGC, the SVM

and the MLP approaches for the Parkinson’s instances. Similarly, Tables 14 (instances with 80%

of initially classified vertices) and 15 (instances with 70% of initially classified vertices) show

the corresponding comparison for the SPECT instances. The information presented is:

• Instance: instance name using the format: application name, number of vertices in G (v),

density of G (d), number of groups per class (l), percentage of initially classified vertices

(br) and instance number;

• Diam: diameter of the graph instance;

• Dgmin: minimum degree of the graph instance;

• Dgmax: maximum degree of the graph instance;

• OPT : optimal solution (the minimum number of outliers);

• TILP1(s): running time of Algorithm 3 in seconds;

• TILP2(s): running time of Algorithm 4 in seconds;

• AcuGC(%): percentage of correct class prediction from solutions of Algorithm 3 and

Algorithm 4 (number of correct predictions divided by the number of unclassified vertices);

• AcuSV M(%): percentage of correct class prediction from solutions of the SVM algorithm;

• AcuMLP(%): percentage of correct class prediction from solutions of the MLP algorithm.

A first remark concerns the high number of outliers in the optimal solution. Remem-

ber that we are using linear separation and these realistic instances are more unlikely to have

such a property.

Regarding the Parkinson’s disease instances, we can see that 2-SGC obtained the
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Table 13 – Algorithm 3, Algorithm 4, SVM and MLP comparison for Parkinson’s instances with
br = 70%.
Instance Diam Dgmin Dgmax OPT TILP1(s) TILP2(s) AcuGC(%) AcuSV M(%) AcuMLP(%)

parkinsons-v195-d5-l1-br70-1 10 1 18 40 488.66 28.34 86.21% 63.79% 86.21%
parkinsons-v195-d5-l1-br70-2 10 1 18 29 11.69 1.84 68.97% 68.97% 74.14%
parkinsons-v195-d5-l1-br70-3 10 1 18 34 99.07 2.73 77.59% 77.59% 81.03%
parkinsons-v195-d5-l1-br70-4 10 1 18 31 27.10 6.36 70.69% 70.69% 70.69%
parkinsons-v195-d5-l1-br70-5 10 1 18 33 21.48 13.83 74.14% 25.86% 72.41%
parkinsons-v195-d5-l1-br70-6 10 1 18 34 306.83 20.98 75.86% 75.86% 72.41%
parkinsons-v195-d5-l1-br70-7 10 1 18 34 24.94 2.52 79.31% 77.59% 77.59%
parkinsons-v195-d5-l1-br70-8 10 1 18 34 66.23 7.20 75.86% 24.14% 75.86%
parkinsons-v195-d5-l1-br70-9 10 1 18 38 288.10 41.48 82.76% 84.48% 81.03%

parkinsons-v195-d5-l1-br70-10 10 1 18 34 58.73 46.92 75.86% 82.76% 75.86%
AVERAGE - - - - 139.28 17.22 76.72% 65.17% 76.72%

Table 14 – Algorithm 3, Algorithm 4, SVM and MLP comparison for SPECT instances with
br = 80%.

Instance Diam Dgmin Dgmax OPT TILP1(s) TILP2(s) AcuGC(%) AcuSV M(%) AcuMLP(%)

spectf-v267-d5-l1-br80-1 8 1 36 47 0.20 1.08 86.79% 79.25% 86.79%
spectf-v267-d5-l1-br80-2 8 1 36 42 0.14 0.72 77.36% 83.02% 77.36%
spectf-v267-d5-l1-br80-3 8 1 36 47 0.29 0.76 86.79% 71.70% 83.02%
spectf-v267-d5-l1-br80-4 8 1 36 43 0.15 0.62 79.25% 75.47% 79.25%
spectf-v267-d5-l1-br80-5 8 1 36 42 0.13 0.93 77.36% 49.06% 77.36%
spectf-v267-d5-l1-br80-6 8 1 36 42 0.15 0.74 77.36% 79.25% 77.36%
spectf-v267-d5-l1-br80-7 8 1 36 46 0.32 4.63 83.02% 81.13% 83.02%
spectf-v267-d5-l1-br80-8 8 1 36 41 0.17 0.76 75.47% 73.58% 75.47%
spectf-v267-d5-l1-br80-9 8 1 36 43 0.12 0.93 77.36% 75.47% 77.36%

spectf-v267-d5-l1-br80-10 8 1 36 41 0.13 0.61 75.47% 67.92% 75.47%
AVERAGE - - - - 0.18 1.18 79.62% 73.58% 79.25%

Table 15 – Algorithm 3, Algorithm 4, SVM and MLP comparison for SPECT instances with
br = 70%.

Instance Diam Dgmin Dgmax OPT TILP1(s) TILP2(s) AcuGC(%) AcuSV M(%) AcuMLP(%)

spectf-v267-d5-l1-br70-1 8 1 36 41 0.17 0.66 83.75% 72.50% 83.75%
spectf-v267-d5-l1-br70-2 8 1 36 37 0.26 0.61 78.75% 73.75% 78.75%
spectf-v267-d5-l1-br70-3 8 1 36 38 0.16 0.94 80.00% 75.00% 80.00%
spectf-v267-d5-l1-br70-4 8 1 36 35 0.17 0.70 76.25% 67.50% 75.00%
spectf-v267-d5-l1-br70-5 8 1 36 40 0.37 0.76 81.25% 41.25% 81.25%
spectf-v267-d5-l1-br70-6 8 1 36 39 0.23 0.54 80.00% 62.50% 80.00%
spectf-v267-d5-l1-br70-7 8 1 36 37 0.20 0.67 78.75% 51.25% 78.75%
spectf-v267-d5-l1-br70-8 8 1 36 41 0.22 0.88 83.75% 60.00% 83.75%
spectf-v267-d5-l1-br70-9 8 1 36 46 0.43 0.61 88.75% 87.50% 86.25%

spectf-v267-d5-l1-br70-10 8 1 36 38 0.15 0.55 78.75% 76.25% 72.50%
AVERAGE - - - - 0.24 0.69 81.00% 66.75% 80.00%

best accuracy in 10 of them, while 9 and 11 were the corresponding scores for SVM and MLP,

respectively, from the total of 20 instances. However, on average, SVM got the worst accuracy,

due to the poor performance in some instances. 2-SGC and MLP obtained similar average

accuracy with a slight advantage to the latter. For these instances, we could observe higher

running times for Algorithm 3 in comparison with the random instances. This was possibly

due to the larger diameters and lower maximum degrees of the input graphs. For this reason,

Algorithm 4 got the best running time for all Parkinson’s disease instances in these experiments.

For the SPECT instances, we can observe that the running times of our geodesic

classification algorithms were much smaller than those for the Parkinson’s instances. Note that
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Table 16 – Algorithm 3, Algorithm 4, SVM and MLP comparison for synthetic instances with
dimension 2 and br = 80%.

Instance Diam Dgmin Dgmax OPT TILP1(s) TILP2(s) AcuGC(%) AcuSV M(%) AcuMLP(%)

syntheticDim2-v104-d7-l1-br80-1 17 1 9 13 0.31 0.77 100.00% 90.00% 50.00%
syntheticDim2-v104-d7-l1-br80-2 17 1 9 13 0.83 1.71 90.00% 95.00% 50.00%
syntheticDim2-v104-d7-l1-br80-3 17 1 9 8 0.39 0.50 70.00% 65.00% 30.00%
syntheticDim2-v104-d7-l1-br80-4 17 1 9 11 0.40 0.34 90.00% 70.00% 40.00%
syntheticDim2-v104-d7-l1-br80-5 17 1 9 8 0.22 0.38 75.00% 55.00% 30.00%
syntheticDim2-v104-d7-l1-br80-6 17 1 9 9 0.32 0.34 85.00% 80.00% 45.00%
syntheticDim2-v104-d7-l1-br80-7 17 1 9 11 0.59 0.56 95.00% 75.00% 45.00%
syntheticDim2-v104-d7-l1-br80-8 17 1 9 12 0.50 0.69 95.00% 85.00% 40.00%
syntheticDim2-v104-d7-l1-br80-9 17 1 9 11 0.11 0.49 95.00% 90.00% 45.00%

syntheticDim2-v104-d7-l1-br80-10 17 1 9 10 0.16 0.24 90.00% 85.00% 40.00%
AVERAGE - - - - 0.38 0.60 88.50% 79.00% 41.50%

Table 17 – Algorithm 3, Algorithm 4, SVM and MLP comparison for synthetic instances with
dimension 2 and br = 70%.

Instance Diam Dgmin Dgmax OPT TILP1(s) TILP2(s) AcuGC(%) AcuSV M(%) AcuMLP(%)

syntheticDim2-v104-d7-l1-br70-1 17 1 9 13 2.95 2.77 93.55% 87.10% 45.16%
syntheticDim2-v104-d7-l1-br70-2 17 1 9 12 0.82 0.51 90.32% 87.10% 48.39%
syntheticDim2-v104-d7-l1-br70-3 17 1 9 11 1.05 1.57 90.32% 67.74% 48.39%
syntheticDim2-v104-d7-l1-br70-4 17 1 9 11 0.38 0.74 96.77% 90.32% 38.71%
syntheticDim2-v104-d7-l1-br70-5 17 1 9 13 0.73 0.60 96.77% 96.77% 48.39%
syntheticDim2-v104-d7-l1-br70-6 17 1 9 13 0.88 1.88 90.32% 80.65% 48.39%
syntheticDim2-v104-d7-l1-br70-7 17 1 9 12 0.76 0.60 96.77% 93.55% 45.16%
syntheticDim2-v104-d7-l1-br70-8 17 1 9 10 0.26 0.71 87.10% 90.32% 35.48%
syntheticDim2-v104-d7-l1-br70-9 17 1 9 11 0.37 0.53 96.77% 87.10% 45.16%

syntheticDim2-v104-d7-l1-br70-10 17 1 9 13 4.60 3.51 90.32% 70.97% 38.71%
AVERAGE - - - - 1.28 1.34 92.90% 85.16% 44.19%

in the SPECT graphs the diameters are lower and the maximum degree are higher. Regarding

accuracy, the 2-SGC approach presented the best accuracy in 18 SPECT instances, while SVM

and MLP did it in 2 and 14 instances, respectively. On average, 2-SGC got also the best accuracy,

slightly better than the one by MLP.

Overall, the results show that the accuracy of the 2-MGC approach was the best for

28 instances, while SVM was the best for only 11 and MLP for 25, from the total of 40 instances.

6.6.8 Analysis of the synthetic instances experiments

Tables 16 (instances with 80% of initially classified vertices) and 17 (instances with

70% of initially classified vertices) present the running time comparison between Algorithm 3

and Algorithm 4, along with the prediction accuracy comparison between the 2-SGC, the SVM

and the MLP approaches for the synthetic instances with dimension 2, while Tables 18 (instances

with 80% of initially classified vertices) and 19 (instances with 70% of initially classified vertices)

show the corresponding comparison for the instances with dimension 3.

Regarding the synthetic instances with dimension 2, 2-SGC obtained the best accu-

racy in 18 of them, while 3 and 0 were the corresponding scores for SVM and MLP, respectively,

from the total of 20 instances. On average, 2-SGC got the best result and MLP got a bad result.
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Table 18 – Algorithm 3, Algorithm 4, SVM and MLP comparison for synthetic instances with
dimension 3 and br = 80%.

Instance Diam Dgmin Dgmax OPT TILP1(s) TILP2(s) AcuGC(%) AcuSV M(%) AcuMLP(%)

syntheticDim3-v96-d6-l1-br80-1 10 2 8 16 0.27 0.58 94.74% 94.74% 47.37%
syntheticDim3-v96-d6-l1-br80-2 10 2 8 17 0.31 0.83 100.00% 100.00% 42.11%
syntheticDim3-v96-d6-l1-br80-3 10 2 8 14 0.19 0.33 73.68% 94.74% 47.37%
syntheticDim3-v96-d6-l1-br80-4 10 2 8 17 0.21 0.41 89.47% 94.74% 42.11%
syntheticDim3-v96-d6-l1-br80-5 10 2 8 15 0.12 0.31 100.00% 100.00% 63.16%
syntheticDim3-v96-d6-l1-br80-6 10 2 8 16 0.26 0.76 84.21% 94.74% 68.42%
syntheticDim3-v96-d6-l1-br80-7 10 2 8 14 0.41 0.55 73.68% 89.47% 21.05%
syntheticDim3-v96-d6-l1-br80-8 10 2 8 15 0.32 0.33 94.74% 94.74% 47.37%
syntheticDim3-v96-d6-l1-br80-9 10 2 8 15 0.23 0.41 84.21% 94.74% 63.16%

syntheticDim3-v96-d6-l1-br80-10 10 2 8 15 0.13 0.34 89.47% 89.47% 47.37%
AVERAGE - - - - 0.25 0.49 88.42% 94.74% 48.95%

Table 19 – Algorithm 3, Algorithm 4, SVM and MLP comparison for synthetic instances with
dimension 3 and br = 70%.

Instance Diam Dgmin Dgmax OPT TILP1(s) TILP2(s) AcuGC(%) AcuSV M(%) AcuMLP(%)

syntheticDim3-v96-d6-l1-br70-1 10 2 8 12 0.11 0.12 78.57% 96.43% 50.00%
syntheticDim3-v96-d6-l1-br70-2 10 2 8 16 0.28 0.15 78.57% 100.00% 64.29%
syntheticDim3-v96-d6-l1-br70-3 10 2 8 11 0.15 0.38 92.86% 89.29% 57.14%
syntheticDim3-v96-d6-l1-br70-4 10 2 8 13 0.11 0.38 85.71% 96.43% 50.00%
syntheticDim3-v96-d6-l1-br70-5 10 2 8 11 0.08 0.18 78.57% 85.71% 39.29%
syntheticDim3-v96-d6-l1-br70-6 10 2 8 13 0.10 0.34 82.14% 96.43% 53.57%
syntheticDim3-v96-d6-l1-br70-7 10 2 8 14 0.26 1.23 89.29% 96.43% 28.57%
syntheticDim3-v96-d6-l1-br70-8 10 2 8 15 0.40 2.78 85.71% 96.43% 32.14%
syntheticDim3-v96-d6-l1-br70-9 10 2 8 12 0.13 0.20 82.14% 92.86% 53.57%

syntheticDim3-v96-d6-l1-br70-10 10 2 8 13 0.05 0.27 78.57% 96.43% 57.14%
AVERAGE - - - - 0.17 0.60 83.21% 94.64% 48.57%

In most instances, Algorithm 3 has beaten Algorithm 4 in running time, but the difference was

very small.

On the other hand, for the synthetic instances with dimension 3, 2-SGC obtained the

best accuracy in 6 of them, while 19 and 0 were the corresponding scores for SVM and MLP,

respectively, from the total of 20 instances. On average, SVM got the best result and, again, MLP

got a very bad result. Algorithm 3 has beaten Algorithm 4 in running time in all but one instance,

showing that Algorithm 3 was better.

Overall, the results show that the accuracy of the 2-SGC approach was the best for

24 instances, while SVM was the best for 22 and MLP for none of them, from the total of 40

instances. Therefore, for these experiments, the performance of 2-SGC showed to be similar to

that of SVM.
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7 CONCLUDING REMARKS

In this work, we defined two versions of the geodesic classification problem on graphs

(2-class single-group geodesic classification and 2-class multi-group geodesic classification

problems) as the analog of the Euclidean classification problem. These new problems present

pure combinatorial optimization aspects and appear as an intersection of a graph convexity

problem and the well-known set covering problem. Their applications arise in the fields of data

mining and statistics, which have been increasingly studied in recent years.

We proposed three integer programming formulations for these new combinatorial

optimization problems. As the main focus of this work, we studied the polyhedra associated

with these formulations for the single-group and the multi-group cases, giving some valid

inequalities and facet-defining conditions. We also established conditions to transform valid and

facet-defining inequalities from the single-group case to the multi-group case, making a parallel

between the polyhedra of both cases. In order to run computational experiments to validate

the accuracy of the geodesic classification approach and the efficiency of the proposed valid

inequalities, we developed a branch and cut algorithm to solve, exactly, the integer formulations

for the single-group case. An interesting point of the theoretical results is that one of the families

of facet-defining inequalities, namely the generalized C4 inequalities, is related to a structure of

mutual convex combinations that is not possible to appear in the Euclidean space. Moreover,

they showed to be extremely useful, as stated by the experiments.

The results of the computational experiments also show that the proposed solution

methods are very promising since the branch-and-cut algorithms for the integer formulations

proved to be very efficient (in running time and accuracy), even for medium-sized instances.

The algorithm for the set covering formulation ILP1 was the best one for the most of the tested

instances. It is important to remark that the proposed lazy constraints scheme and a cutting plane

algorithm were fundamental to reduce the running time.

We validated the accuracy of the geodesic convexity approach by comparing the

prediction provided by the proposed algorithms with two of the most used approaches for the

Euclidean convexity classification problem, namely SVM and MLP. The prediction accuracy

of the geodesic approach showed to be stable and as good as such classic linear separation

algorithms for the multidimensional space. Therefore, it seems that the analogy performed to

transform the Euclidean convexity method into a geodesic convexity method on graphs was

successful.
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An interesting idea for the use of the classification graph would be the use of weighted

edges determined by how often the vertices receive the same class or the same group index given

by various resolution methods for the Euclidean classification problem. Then, the weighted

edges would try to simulate the underlying pattern of the samples better, and a new classification

approach in such a graph could be even more accurate.

As future works, we intend to carry on a deeper polyhedral study and try to eliminate

the symmetries in the formulations to improve the performance of the branch-and-cut algorithms.

Although we know some cases in which the geodesic classification problem can be solved in

polynomial time, it seems to be an NP-hard problem in general due to its similarities with other

NP-hard problems that involve geodesic convexity on graphs. But it remains an open question

whether that problem does belong to the NP-hard class set. It would also be interesting to study

other variants of the classification problem, such as the multi-class variant, where more than

2 classes are used to classify the samples. For this variant, the formulations proposed for the

2-class version can be easily adapted to characterize its solution set. Thus, most of the techniques

and methods presented in this work can be also applied to the multi-class version of the geodesic

classification problem.
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