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RESUMO

A maioria das redes de ruas está atualmente equipada com sensores para monitoramento do

tráfego em tempo real. A enorme quantidade de dados históricos de sensores coletados constitui

uma rica fonte de informações que pode ser usada para extrair conhecimento útil para municípios

e cidadãos, além de contribuir para a implementação de sistemas de transporte inteligentes.

Neste trabalho, estamos interessados em explorar esses dados para estimar a velocidade futura

em sensores dinâmicos de tráfego e redes de ruas, já que predições precisas têm o potencial

de melhorar a capacidade de tomada de decisões dos sistemas de gerenciamento de tráfego. A

criação de modelos preditivos de velocidade eficazes nas grandes cidades representa desafio

importante que resulta da complexidade dos padrões de tráfego, do número de sensores de

tráfego normalmente implantados, e da natureza em evolução das redes de sensores. De fato,

sensores são freqüentemente adicionados para monitorar novos segmentos de ruas ou substituídos

/ removidos devido a razões diferentes (por exemplo, manutenção). A utilização de um grande

número de sensores para uma predição de velocidade efetiva, requer soluções inteligentes para

coletar grandes volumes de dados e treinar modelos preditivos eficazes. Além disso, a natureza

dinâmica das redes de sensores do mundo real exige soluções que sejam resilientes não apenas a

mudanças no comportamento do tráfego, mas também a mudanças na estrutura das redes. Este

trabalho propõe três abordagens diferentes no contexto de redes de sensores grandes e dinâmicas:

local, global e baseada em cluster. A abordagem local cria um modelo preditivo específico para

cada sensor da rede. Por outro lado, a abordagem global constrói um modelo preditivo único

para toda a rede de sensores. Finalmente, a abordagem baseada em cluster agrupa sensores em

clusters homogêneos e gera um modelo para cada cluster. Outra contribuição é o fornecimento

de um grande conjunto de dados, gerado a partir de registros de ∼1.3 milhões coletados por

até 272 sensores implantados em Fortaleza, Brasil. Ele é usado para avaliar experimentalmente

a eficácia e resiliência dos modelos preditivos construídos de acordo com as três abordagens

mencionadas anteriormente. Os resultados mostram que as abordagens global e baseada em

cluster fornecem modelos preditivos bastante precisos, que se mostram robustos a mudanças

no comportamento do tráfego e na estrutura das redes de sensores, que, por sua vez, incluem o

problema de cold start. Além disso, esta Tese propõe ainda uma abordagem de domínio cruzado

que aplica modelos preditivos originalmente construídos a partir do domínio de sensores, no

domínio da trajetórias. Mais especificamente, a abordagem global aqui proposta é usada para

construir modelos preditivos a partir de dados de sensores, e usá-los para executar predições



relativas ao domínio de dados de trajetória. Por fim, demonstra-se que as generalizações entre

domínios não são triviais e os recursos devem ser cuidadosamente selecionados para ajudar a

obter resultados mais precisos.

Palavras-chave: Predição de Velocidade. Redes Dinâmicas de Sensores de Tráfego. Redes de

Ruas. Mobilidade Urbana.



ABSTRACT

Most urban road networks are nowadays equipped with sensors monitoring traffic in real-time.

The huge amount of historical sensor data collected constitutes a rich source of information that

can be used to extract knowledge useful for municipalities and citizens and to contribute to the

realization of intelligent transportation systems. In this work, we are interested in exploiting

such data to estimate future speed in dynamic traffic sensors and road networks, as accurate

predictions have the potential to enhance decision-making capabilities of traffic management

systems. Building effective speed prediction models in large cities poses important challenges

that stem from the complexity of traffic patterns, the number of traffic sensors typically deployed,

and the evolving nature of sensor networks. Indeed, sensors are frequently added to monitor new

road segments or replaced/removed due to different reasons (e.g., maintenance). Exploiting a

large number of sensors for effective speed prediction requires smart solutions to collect vast

volumes of data and train effective predictive models. Furthermore, the dynamic nature of real-

world sensor networks calls for solutions that are resilient not only to changes in traffic behavior

but also to changes in the network structure. We study three different approaches in the context of

large and dynamic sensor networks: local, global, and cluster-based. The local approach builds a

specific prediction model for each sensor of the network. Conversely, the global approach builds

a single prediction model for the whole sensor network. Finally, the cluster-based approach

groups sensors into homogeneous clusters and generates a model for each cluster. We provide a

large dataset, generated from ∼1.3 billion records collected by up to 272 sensors deployed in

Fortaleza, Brazil, and use it to experimentally assess the effectiveness and resilience of prediction

models built according to the three aforementioned approaches. The results show that the global

and cluster-based approaches provide very accurate prediction models that prove to be robust to

changes in traffic behavior and in the structure of sensor networks, which, in turn, includes the

cold start problem. We also propose a cross-domain approach that uses prediction models from

the sensor domain into the trajectory domain. More specifically, we apply our global approach to

build prediction models from sensor data and use it to perform predictions regarding the domain

of trajectory data. We demonstrate that cross-domain generalizations are not trivial and the

features must be carefully selected to help in achieving more accurate results.

Keywords: Speed Prediction. Dynamic Traffic Sensor Networks. Road Networks. Urban

Mobility.
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1 INTRODUCTION

Intelligent Transportation Systems (ITS) continuously improve the efficiency of

urban transportation services thanks to increasingly advanced algorithms, increasing computing

power and distributed sensor networks capable of collecting large volumes of data from road

networks (SMITH et al., 2002). Traffic prediction techniques are fundamental to enhance urban

mobility and smart transportation technologies. Indeed, the ability to produce accurate short-

term traffic predictions enables to devise highly valued services that can significantly improve

urban environments – for instance, dynamic route guidance, control and management of traffic

congestion, optimal routing and dispatching, detection of road accidents, and so on.

Movements of vehicles on road networks are determined by complex traffic processes

governed by stochastic and non-linear interactions between individual drivers. As such, the

problem of predicting the speed of vehicles is as complex as predicting the underlying traffic

processes, a problem that is considered challenging in the existing literature (HOOGENDOORN;

BOVY, 2001). Approaches that attempt to tackle this problem by restricting themselves to some

traditional analysis on historical data are typically limited by the inherent characteristics of such

data – for instance, they cannot take into account unpredictable events capable of disrupting

traffic flows, such as road accidents, breakdowns and structural changes affecting a road network

infrastructure, and so on (SORENSEN et al., 2008). These uncertain events can possibly combine

with each other, thus making the problem even more complex and requiring the use of state-

of-the-art non-linear prediction techniques. Such techniques overcome the limitations of linear

models in the context of traffic predictions in roadways extensively studied in (SCHMITT; JULA,

2007).

In this work, we are interested in estimating future traffic speeds in sensor networks.

To achieve our goal of forecasting traffic speeds, we need to overcome the following challenges.

The huge volume of data collected by real-time traffic monitoring sensors and the emergence

of smart transportation technologies in urban settings, coupled with the increased capabilities

and availability of sensor devices, requires traffic prediction techniques that are fast, scalable

and suitable for dynamic sensor networks, where sensors are continuously added and removed.

Besides, it is difficult to generalize predictive models built from traffic sensor data and apply

them over the whole road network. To the best of our knowledge, we do not know other works

that address the latter challenge.

We address the challenges mentioned above with the following contributions:
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• We propose and analyze three different approaches that can be used to train machine-

learned prediction functions: local, global, and cluster-based. The local approach is the

solution commonly used in the literature, where each sensor is considered separately

from others to train a specific predictive function. It suffers the cold start problem and

therefore hardly applies to dynamic sensor networks, where sensors are continuously

added and removed. The global approach builds a single prediction model for the whole

sensor network. It provides substantial benefits in terms of reduced complexity and costs;

also, relying on a single prediction function that is independent of specific sensors. The

cluster-based approach groups sensors into homogeneous clusters and builds a model

for each cluster. It allows to find out a good compromise between the local and global

approaches, that is, depending on the number of clusters used, the behavior of this approach

may resemble the local approach (when a high number of clusters is used) or the global

approach (when few clusters are used).

• We devise a set of features that can be successfully used to train robust and accurate speed

prediction models and we also study the relevance of each of those features in our proposed

approaches.

• We provide a comprehensive experimental evaluation to assess the effectiveness of the

predictive models trained according to the three approaches. The training is conducted

by using four different state-of-the-art machine learning algorithms – namely, historical

average time-series, multivariable linear regression, random forests and gradient boosting.

Machine learning algorithms play an important role in capturing the influence of upstream

and downstream flow or other traffic-related factors (WANG et al., 2016a). The evaluation

shows that the models created using the global and cluster-based approaches represent good

solutions for dynamic sensor networks since they prove to be accurate and resilient both to

model aging and to structural changes in the sensor infrastructure. We also propose a cross-

domain approach that uses prediction models from the sensor domain into the trajectory

domain. More specifically, we apply our global approach to build prediction models from

sensor data and use it to perform predictions regarding the domain of trajectory data. We

demonstrate that cross-domain generalizations are not trivial and the features must be

carefully selected to help in achieving more accurate results.

• We release to the scientific community the real-world dataset used to assess our proposals.

The dataset originates from ~3 billion records collected during the whole 2014 by 272
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different road traffic sensors deployed in the city of Fortaleza, Brazil. To the best of our

knowledge, this is the largest and richest dataset made publicly available for research on

speed prediction in dynamic sensor networks.

• We compare the evaluation of our local and global approaches using different sets of

features.

• We propose and evaluate a cross-domain strategy to perform speed predictions using

prediction models from the sensor domain over input data extracted from the trajectory

domain, i.e., we use prediction models from the sensor domain in the trajectory domain.

• We propose a methodology to aggregate speed-related features from real moving object

trajectory data that we can use to create new prediction models and to serve as inputs to

existing prediction models.

The remainder of this document is organized as follows: Chapter 2 reports an

overview of the related works dealing with the traffic prediction and cross-domain machine

learning problems. Chapter 3 proposes three speed prediction approaches targeting dynamic

sensor networks. Chapter 4 evaluates our global approach introduced in Chapter 3 with real-world

trajectory data. Finally, Chapter 5 shows our conclusions and plans for future works.
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2 RELATED WORK

This chapter reports an overview of the related works regarding the main research

topics presented in Chapters 3 and 4 of this Thesis, which are traffic prediction and cross-domain

machine learning.

2.1 Traffic Prediction

Short-term traffic prediction aims at estimating traffic conditions from few seconds to

few hours in the future, based on current and past traffic information. The field has an extensive

and longstanding research history that originates in the 1980s in the context of intelligent

transportation systems. A comprehensive and recent survey (VLAHOGIANNI et al., 2014)

observes how this research area moved from a classical statistical perspective (e.g. ARIMA)

to data-driven modeling techniques based on machine learning and neural networks. Most of

the interest in this field focuses on developing methodologies that can be used to model traffic

characteristics such as volume, density, speed, travel times, and produce estimates of future

traffic conditions.

The IEEE ICDM 2010 Contest (WOJNARSKI et al., 2010) fostered the development

of Machine Learning solutions tackling traffic prediction. One of the tasks of the contest

addressed speed prediction based on a real-time stream of synthetic data from vehicles in Warsaw

(Poland). The data stream consisted of Global Positioning System (GPS) locations of the

traveling vehicles sampled every 10 seconds, and the task asked to predict the average speed on

selected road segments for a close time interval (0-6’ minutes) and a farther one (24-30’ minutes).

The winning solution proposed the adoption of a random forest model (HAMNER, 2010). The

authors employ two kinds of features to model the speed: i) features computed by a global traffic

flow model common to all road segments and ii) features computed by a local traffic flow model

that strictly depends on the road segment considered. The global traffic flow model outputs 68

features while the local traffic flow models compute from 6 to 42 features, depending on the road

segment.

The most related aspect of the aforementioned article to our work is the adoption of

some form of “global” knowledge to make the learned solutions more robust and effective. In this

work we remark that we investigate machine learning models trained on all or subsets of sensors

deployed in a large road network. On the one hand, we believe that the increasing availability
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and heterogeneity of traffic data, pushed both by innovations in sensor technologies and the

urgency of mobility problems faced in highly-populated urban areas, call for methodologies

that are accurate, robust to variations in the characteristics of the road segments considered,

and that can accommodate dynamic networks of traffic sensors. On the other hand, to the best

of our knowledge state-of-the-art solutions for short-term speed prediction are limited to local

models trained on historical data collected from individual sensors. Thus, while a local approach

allows to train very effective prediction models at sensor level, it is also very demanding in that

it requires to train and maintain periodically different models for each sensor – indeed, this issue

becomes relevant when the number of sensors becomes large, or sensors are frequently added

(removed) to (from) the network.

For what concerns the machine learning techniques considered in our work, we report

that state-of-the-art solutions (ZHANG; HAGHANI, 2015; WANG et al., 2016a) use models

based on Gradient Boosting Regression Trees (GBRT), as this technique proves to be superior

to others. We also report, however, that the existing literature evaluates the aforementioned

techniques limitedly to some local approach.

Recent works experiment deep learning technologies for predicting short-term vehi-

cle speed. Deep learning algorithms use multiple-layer deep architectures to extract inherent

features from data to model patterns and structures. Indeed, deep learning allows to represent

complex traffic features without previous knowledge (HUANG et al., 2014; LV et al., 2015).

A deep learning architecture composed of a Deep Belief Network (DBN) and a multitask re-

gression layer is proposed in (HUANG et al., 2014). The DBN is used for unsupervised feature

learning, while the multitask regression layer above the DBN is used to supervise the prediction

through multitask learning. The experimental evaluation shows that the proposed approach

outperforms well-established competitors such as AutoRegressive Integrated Moving Average

(ARIMA) (VOORT et al., 1996), Bayesian (SUN et al., 2006), Support Vector Regression (SVR)

(CASTRO-NETO et al., 2009), Locally Weighted Learning (LWL) (SHUAI et al., 2008), Multi-

variate Non-parametric Regression (MNR) (CLARK, 2003), and neural networks (CHAN et al.,

2012). (YU et al., 2016) proposes a data grouping approach based on a convolutional neural

network called Disordered Graph Convolutional Neural Network (DGCNN) to forecast urban

short-term traffic flows, where the neural network uses spatial relations between traffic locations

to train predictive models. In the experimental evaluation the authors show that the DGCNN

produces more accurate predictions than competitors such as historical average, ARIMA, and
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Stacked Autoencoder (SAE) (LV et al., 2015). In (Li et al., 2017) the authors propose the use of

convolutional neural networks, centered on the notion of diffusion convolution, to capture spatial

and temporal dependencies among traffic flows. Finally, in (Zhang et al., 2017) the authors

propose Spatio-Temporal Residual Network (ST-ResNet), a deep-learning-based approach that

forecasts the inflow and outflow of crowds in spatial regions within urban areas – as such, we

note that this work targets a different problem with respect to the one considered in our work.

The approach relies on three residual neural networks to model some properties characterizing

spatio-temporal data, more precisely, temporal closeness, period, and trend properties of crowd

traffic. The aggregated output of the networks is then integrated with external factors, such as

weather and day of the week, to predict at once the inflows and outflows of the spatial regions

considered.

Overall, the works mentioned above are orthogonal to our proposal, as we investigate

how to reduce management complexity by minimizing the number of models to be trained and

maintained with respect to the local approach. It is recognized that deep learning models trained

on large datasets outperform those using small training dataset. Although a similar investigation

is out of the scope of this chapter, it is likely that short-term vehicle speed prediction based on

deep neural networks can benefit from the global or cluster-based approaches we propose, thanks

to the present availability of large amounts of training samples.

2.2 Cross-domain machine learning

Cross-domain machine learning also known as transfer learning is extensively applied

in Chapter 4 and other works. Transfer learning techniques try to transfer the knowledge from

some previous tasks to a target task when the latter has fewer high-quality training data (PAN et

al., 2010). Transfer learning and domain adaptation refer to the situation where what has been

learned in one setting is exploited to improve generalization in another setting (GOODFELLOW

et al., 2016).

(ASIF et al., 2014) state that factors such as changes in transportation infrastructure

can significantly affect long-term traffic patterns, and that supervised learning methods may not

work well in such cases. Then, they suggest the use of techniques based on transfer learning in

such scenarios.

(XU et al., 2016) propose an approach to learn a prediction model from graphical

traffic condition data provided by Baidu Map, which is a commercial, close-source map provider
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in China, and apply the model on Open Street Map (OSM) so that one can predict the traffic

conditions with nearly 90% accuracy in various parts of Shanghai, China, even though no traffic

data is available for that area from Baidu Map. The system can be used in urban planning,

transportation dispatching as well as personal travel planning.

(WANG et al., 2016b) propose a deep learning method with an Error-feedback Re-

current Convolutional Neural Network structure (eRCNN) for continuous traffic speed prediction.

Another contribution is a weight pre-training method, which adopts a transfer-learning notion by

clustering similar yet contiguous road segments into a group for the generation of a same set

of initial weights. This not only helps to reduce the learning process of eRCNN for every road

segment, but also improves the chance of finding better optimal solutions.

(MILLER; GUPTA, 2012) show the high level of transfer learning possible by

training a model on one region and testing the model on incidents from a different year and

region. This is in some extent similar to what we do when we create prediction models that

generalize the behavior of groups of sensors, and use those models to perform predictions for

new sensors.

This work also applies transfer learning by using predictive models built from sensor

data in the trajectory domain. The aforementioned related works apply cross-domain machine

learning, but in different domains and exploring other features.
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3 SPEED PREDICTION IN DYNAMIC TRAFFIC SENSOR NETWORKS

Highly populated cities increasingly face mobility challenges caused by transport

and traffic. The huge volume of data collected by real-time traffic monitoring sensors provides

new opportunities to develop models and algorithms that enhance transportation services towards

intelligent transportation systems, in particular those dealing with traffic predictions. Vehicle

speeds on road networks are determined by complex traffic processes governed by stochastic and

non-linear interactions between individual drivers (HOOGENDOORN; BOVY, 2001), hence

predicting the speed of vehicles is as complex as predicting the underlying traffic processes.

Short-term traffic prediction techniques have been investigated and exploited since some time

(VLAHOGIANNI et al., 2014). However, the emergence of smart transportation technologies in

urban settings, coupled with the increased capabilities and availability of sensor devices, requires

traffic prediction techniques that are fast, scalable and suitable for complex and heterogeneous

urban networks.

Many different traffic sensor technologies are currently used to monitor road net-

works, such as those based on inductive-loop detectors, magnetometers, video image processors,

microwave radar sensors, laser radar sensors, passive infrared sensors, ultrasonic sensors, pas-

sive acoustic sensors, and devices exploiting combinations of the aforementioned technologies

(KLEIN et al., 2006). In this chapter we focus on sensors capable of capturing the speed of

vehicles traveling over large and dynamic sensor networks, where devices can be added or

removed from the network for various reasons, and we address the problem of training accurate

prediction models that are capable of maintaining their accuracy over time – we call this the

model aging problem – and cope with structural changes affecting sensor networks – we call this

Figure 1 – Traffic sensors monitoring vehicles in fixed locations of a city.
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the network dynamicity problem. Figure 1 represents three traffic sensors monitoring vehicles in

a city.

We address these challenges by proposing and analyzing three different approaches

that can be used to train machine-learned prediction functions: local, global, and cluster-based.

The local approach is the solution commonly used in the literature, where each sensor is

considered separately from others to train a specific predictive function. This approach suffers

the cold start problem and therefore hardly applies to dynamic sensor networks, where sensors

are continuously added and removed. Moreover, in large and dynamic sensor networks the

local approach requires to train and maintain a large amount of different prediction models. To

overcome these issues we propose the global and cluster-based approaches, where models are

trained on data coming from all the sensors in the network (or groups of similar sensors, in

the cluster-based case) to build resilient predictive functions. The global approach provides

substantial benefits regarding reduced complexity and costs. Furthermore, by relying on a

single prediction function that is independent of specific sensors, it naturally solves the cold

start problem. The global approach is expected to be robust concerning structural changes

occurring in sensor networks, thus also addressing the dynamicity problem. We also show that

the cluster-based approach allows us to find out a good compromise between the local and global

approaches: indeed, depending on the number of clusters, the behavior of this approach may

resemble the local approach (when we use a high number of clusters) or the global approach

(when we use few clusters). In general, this approach allows us to tune the number of clusters to

fit the needs and characteristics of specific sensor networks.

The contributions of this chapter can be summarized as follows:

• we propose the global and cluster-based approaches for learning vehicle speed prediction

functions in large and dynamic sensor networks;

• driven by three experimental questions, we provide a comprehensive evaluation to assess

the effectiveness of the predictive models trained according to the three approaches. The

training is conducted by using different state-of-the-art machine learning algorithms on

a large, real-world sensors dataset. The dataset covers a time span of 12 months, during

which 130 (145) sensors were added (removed) to (from) the network. The evaluation

shows that the models created using the global and cluster-based approaches represent

good solutions when dealing with dynamic sensor networks, as they prove to be accurate

and resilient both to model aging and to structural changes in the sensor infrastructure
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(which, in turn, includes the cold start problem);

• we release to the scientific community the real-world dataset used to assess our proposals.

The dataset originates from ∼1.3 billion records collected during the whole 2014 by 272

different road traffic sensors deployed in the city of Fortaleza, Brazil. Due to privacy

concerns we do not release the original raw data, but a dataset obtained after an aggregation

and cleaning process. To the best of our knowledge, this is the largest and richest dataset

made publicly available for research on speed prediction in dynamic sensor networks.

The chapter is structured as follows: Section 3.1 defines our prediction problem and

discusses three approaches to solve the problem. Section 3.2 presents the dataset used in our

experiments, as well as the pre-processing steps used to transform the data into a format suitable

for speed prediction. Section 3.3 details the experimental evaluation and discusses the results.

Finally, Section 3.4 draws the final conclusions and sketches potential lines of future research.

3.1 Problem definition

Let S = {s1, . . . ,sn} be a network of n sensors overseeing the traffic conditions of a

specific geographical area. Within a given time interval T , sensors in S produce a collection of

observations, where each observation is a triple (t j,s j,xspeed) recording the time t j ∈ T of the

event of a vehicle passing by some sensor s j ∈ S with a speed xspeed .

Let us then denote by O the set of average speed observations that are produced as

follows: the whole time interval T is split in time-buckets of fixed length (e.g., 5 minutes each)

and, for each bucket and sensor, the average speed of all the vehicles observed is computed.

Each average speed observation is thus represented by a triple (k, i,speed), where k and i are

respectively the identifiers of the time bucket and sensor, while speed is the average vehicle

speed observed. Moreover, let y(k, i) be a function that, given the identifiers of the bucket and

sensor, returns the observed average speed, i.e., y(k, i) = speed.

Then, we define the PREDICTSPEED problem as the problem of finding an accurate

function f for predicting y(k, i) given all the previous observations recorded in O, i.e., all the

observations having a time bucket identifier lower than k.

Definition 3.1.1 (PREDICTSPEED) The PREDICTSPEED problem requires to find a predictive

function f̂ over the class of all possible predictive functions H such that:

f̂ = argmin
f∈H

∆( f ), (3.1)
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where ∆ is a loss function assessing the quality of a candidate predictive function f over the

observations in O. In this work we use the Mean Squared Error (MSE) loss function defined as:

∆MSE( f ) =
1
|O′| ∑

(k,i,speed)∈O′
( f (k, i)− y(k, i))2 (3.2)

where O′ is the set of observations used to assess the quality of the prediction and f (k, i) is

the estimate returned by function f for y(k, i). The smaller the value yielded by the above loss

functions, the better the predictive performance of f .

We employ Machine Learning (ML) techniques to address the PREDICTSPEED

problem. More specifically, we aim at learning from the observations in O some function f̂

that minimizes the error measured by ∆. We train the prediction models on datasets containing

examples built from past sensors observations, where each example is represented by an high-

dimensional vector of features. The aim of these features is to model relations between the

traffic conditions observed in time buckets prior to k and the speed y(k, i) that will be recorded

by sensor i within the time bucket k (in other words, the label to predict). To train the models

we rely on state-of-the-art machine learning techniques for regression tasks (FRIEDMAN et al.,

2001): GBRT (FRIEDMAN, 2001; FRIEDMAN, 2002), Random Forests (BREIMAN, 2001)

and Linear Regression (FREEDMAN, 2009).

In this work we address large traffic sensor networks typically instrumenting the

roads of large cities. As such, we are interested in studying speed prediction techniques that

are resilient not only to changes in traffic behavior, but also to changes in the network where

sensors are frequently added to monitor new road segments or replaced/removed due to various

maintenance reasons. To investigate this scenario we introduce three different approaches that

can be used to learn f̂ , i.e., the local, global and cluster-based approaches. The local approach

learns a different prediction function f̂i for each sensor si using the observations recorded by

si and defines the prediction function f̂ in terms of n distinct local prediction functions f̂i. The

global approach learns the prediction function f̂ from the observations of all sensors. Finally, the

cluster-based approach uses a similarity measure to partition the sensors into k disjoint clusters,

and learns a distinct prediction function f̂c for each cluster c via the observations recorded by the

sensors associated with c.

To the best of our knowledge state-of-the-art techniques solving the speed prediction

problem employ the local approach, as this strategy fits the dynamics of individual sensors within

the network nicely. However, the local approach cannot be applied to new sensors added to the

network due to the lack of historical data – this is also known as the cold start problem. Moreover,
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Figure 2 – Sensor based approaches. Left-hand side: local (model per sensor). Center: Global
(single model for all sensors). Right-hand side: Cluster-based (model per cluster)

using the local approach in large networks typically implies a huge data management overhead

due to the training and maintenance of possibly hundreds of different prediction models.

The most natural strategy to tackle this issue is to use the global approach, where a

single prediction model is trained over data from the whole sensor network. Indeed, this approach

is expected to generalize well over previously unseen sensors and adapts well to changes in

traffic behaviors. Unfortunately this generalization power comes with a cost, as a global model

might not fit the dynamics of individual (or groups of) sensors.

Finally, we argue that the cluster-based approach allows finding a proper trade-off

between the advantages and disadvantages of the local and global approaches: the higher the

number of clusters, the more the models generated by the cluster-based approach fit the dynamics

of individual sensors; conversely, the lower the number of clusters, the more the generated

models tend to capture general traffic dynamics. Figure 2 represents the three sensor-based

approaches proposed in this chapter: local, global and cluster-based approaches, respectively,

where each small circle represents a traffic sensor, and the color of each circle represents a

distinct prediction model in the city of Fortaleza.

3.2 Dataset preparation

We evaluate the local, global, and cluster-based approaches introduced in Section

3.1 by means of a real-world dataset containing data from traffic sensors deployed in the city

of Fortaleza (Brazil). The dataset is provided by Autarquia Municipal de Trânsito e Cidadania

(AMC), the authority supervising Fortaleza’s road-network. The raw dataset consists of about

1.3 billions records, collected by a network of 302 sensors during the whole year of 2014, for

a total of 60 GB of data. Each record is associated with the passage of one vehicle in the area

covered by one of the sensors. Each record contains five fields: i) sensor ID, representing the
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Figure 3 – Raw data sample regarding sensors.

identifier of the sensor that produced the record, (ii) timestamp t, indicating when the record

was produced, (iii) lane number l, indicating the number of lanes monitored by the sensor, (iv)

maximum lane velocity sl , the maximum speed allowed in the lane(s), and (v) speed s of the

vehicle that triggered the record creation. Figure 3 presents a sample of raw data regarding

sensors.

Among the sensors in the dataset, only 154 were always continuously active during

all the months of the year. Indeed, the sensor network was subjected to frequent additions and

removals, mainly due to hardware malfunctions, contract expirations, contract renewals, and so

on. Figure 4 shows the locations of 234 sensors that were active during January and February

2014, while Table 1 presents some characteristics of the dataset: the column # records reports

the number of observations gathered during the associated month, while the column # sens.

added reports the number of active sensors in a given month that were not appearing in the

preceding month. Similarly, the column # sens. removed reports the number of sensors that

were not active in a given month while they are active in the preceding one. Finally, the column

# active sens. reports the overall number of active sensors within the associated month. From

the figures in the Table we observe that the network of sensors is highly dynamic, thus indicating

the importance of prediction models that are resilient to changes in the network.

In the next paragraphs we detail the data preparation phases needed to build from

the raw dataset the dataset O of average speed observations given in input to the ML techniques

considered in this work. More precisely, we illustrate how we filtered out the outliers, aggregated

the data, and engineered the various features.
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Figure 4 – Map of the traffic sensors deployed during January and February 2014. Each circle in
the map represents a group of spatially close sensors – darker circles indicate multiple
sensors monitoring different lanes.

Month # records # sens. added # sens. removed # active sens.

January 116,448,334 - - 236
February 89,272,352 5 51 190
March 87,505,939 0 5 185
April 87,838,370 2 0 187
May 113,754,231 53 13 227
June 85,672,156 6 54 179
July 94,307,178 10 0 189

August 125,829,696 66 4 251
September 94,889,414 7 62 196

October 129,457,780 69 0 265
November 125,366,035 9 2 272
December 132,161,025 0 4 268

Tot. records 1,282,502,510
Table 1 – Salient details of the original data produced by the network of sensors monitoring the

city of Fortaleza (Brazil) during the whole 2014.

Data cleaning. We first filter out from the dataset observations that are possibly affected by

anomalies. To this end, we partition the observations by month and compute the mean µ and the

standard deviation σ of the speed within each month. Finally, we remove the observations whose

speed has a distance from µ greater or equal than 3σ . The output of this phase consists of the
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set of observations appearing in the original dataset minus the ones that are deemed anomalous

by the above criterion.

Data aggregation. The goal of this second phase is to generate the set O of average speed

observations from the data obtained at the end of the first phase. To this end we partition the

data into six distinct time intervals, each spanning a period of two months, and aggregate the

data in each partition according to 5-minute time slots. Then, for each sensor and 5-minute time

slot pair we compute the attributes shown in Table 2.

The choice of using 5-minute time slots is common in state-of-the-art literature

(CHEN et al., 2003; CHEN, 2003; MIN; WYNTER, 2011; ZHANG; HAGHANI, 2015; ZHANG;

ZHANG, 2016; RZESZÓTKO; NGUYEN, 2012), while the choice of intervals spanning 2

months represents a proper trade-off between the need to have enough data to perform the

training, validation, and evaluation of the models, and the need to have a reasonable number of

test sets spanning the whole dataset timeline in order to evaluate the robustness of the models

learned with respect to aging.

The resulting dataset is the set of average speed observations O detailed in Table 4

of Section 3.3.1. We report that we released the aggregated dataset to the scientific community1

to ensure the reproducibility of our results and promote research developments in this field.

Feature engineering. We aim at devising a “good” set of features that can be successfully used

to train robust and accurate speed prediction models. Before introducing the features used, we

explain how information in the temporal domain are exploited to derive them. Figure 5 provides

a schema of the temporal intervals considered for feature modeling. From the Figure we first

notice Query time, which represents the time instant in which the prediction request occurs.

Query time is associated with a specific 5-minute time slot, i.e., the 5-minute time slot preceding

the one in which Query time falls: this represents Query time’s time slot of reference and it is

denoted by tsre f .

The speed prediction refers to a future 5-minute time slot, ts f . Inspired by several

works available in the literature (VLAHOGIANNI et al., 2004; SCHMITT; JULA, 2007; WOJ-

NARSKI et al., 2010; MIN; WYNTER, 2011), we use a predictive horizon of 30 minutes after

the beginning of tsre f
2. Besides the fundamental time slots mentioned above, to perform accurate

1 The dataset will be released upon acceptance of the manuscript.
2 In general, we note that the width of all the intervals involved can be parametrized according to specific
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Attribute Description

sensor_id Identifier of the sensor.
n_lanes Number of lanes monitored by the sensor.

speed_limit Maximum speed allowed in the road monitored
by the sensor.

timestamp Time instant associated with the start of the 5
minute time-slot.

vehicle_count Number of vehicles (throughput) that pass by
the sensor within the 5 minute time-slot.

avg_speed Average speed of vehicles that pass by the sensor
within the 5 minute time-slot.

std_speed Standard deviation of the speed of vehicles that
pass by the sensor within the 5 minute time-slot.

min_speed Minimum speed of vehicles that pass by the sen-
sor within the 5 minute time-slot.

max_speed Maximum speed of vehicles that pass by the
sensor within the 5 minute time-slot.

Table 2 – List of the attributes associated with a sensor and a 5-minute time slot.

Figure 5 – Diagram illustrating time-slot related features.

predictions we leverage information contained within few other selected time slots related to

Query time. More specifically we consider:

• ts30: 30-minute time slot that ends at the same time instant of tsre f ’s ending.

• ts1w: 5-minute time slot starting one week before the beginning of ts f .

• ts2w: 5-minute time slot starting two weeks before the beginning of ts f .

For all the 5-minute time slots and all the sensors in S we use the schema highlighted above

to design a set of 25 features that model traffic conditions. Table 3 reports the complete list,

together with the time slots they refer to. These 25 features can be divided into six different

groups as shown in the Table. We note that the second group contains categorical features; as

such, we converted them to numerical values based on the following semantic:

application needs.
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Group of Features Acronym Feature Name

(i) Sensor n_lanes Sensor number of lanes
speed_limit Speed limit

(ii) Time reference
day_of_week Day of week
slot_of_day Slot of day

working_day Working day

(iii) 5 min last time slot (tsre f )

v_count5 Number of vehicles
min5 Minimum speed
max5 Maximum speed
avg5 Average speed
std5 Standard Deviation

(iv) 30 min last time slot (ts30)

v_count30 Number of vehicles
min30 Minimum speed
max30 Maximum speed
avg30 Average speed
std30 Standard Deviation

(v) One week before
prediction time slot (ts1w)

v_count1w Number of vehicles
min1w Minimum speed
max1w Maximum speed
avg1w Average speed
std1w Standard Deviation

(vi) Two weeks before
prediction time slot (ts2w)

v_count2w Number of vehicles
min2w Minimum speed
max2w Maximum speed
avg2w Average speed
std2w Standard Deviation

Table 3 – List of the 25 features considered in our prediction models.

• day of the week: 0 (Monday), 1 (Tuesday), 2 (Wednesday), 3 (Thursday), 4 (Friday), 5

(Saturday) or 6 (Sunday).

• slot of day: value comprised between 0 to 287, due to the discretization of time into

5-minutes time slots (i.e., 24 · (60/5) slots).

• working day: equal to 1 if the time slot falls within a working day, 0 otherwise.

Finally, we use the average speed in the future time slot (ts f ) as the prediction label of the

current observations. It is worth noticing that information concerning sensor identifiers or their

geographical coordinates are not included among our features since we want to train models that

are able to generalize over different sensors.

The features in groups (iii) and (iv) capture two different time slots close to Query

time. We included both of them as they may capture specific time-dependent traffic trends. To the

best of our knowledge, this is the first work that addresses the construction of speed prediction

models based on time-dependent groups of features.
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Figure 6 – Left-hand side: example of sensor clustering using spatial distance. Right-hand side:
example of sensor clustering using similarity between time-series.

3.3 Experimental Evaluation

In this section we discuss the experiments conducted to generate different prediction

models and assess their performance. More specifically, Section 3.3.1 introduces the experimental

setting used to conduct the results evaluation, while Section 3.3.2 introduces the experimental

questions and discusses the results.

3.3.1 Experimental Setting

Test system. We conduct our experiments on a server with 16 Xeon E5520 Intel CPUs, each

clocked at 2.27GHz, with 8192 KB L3 cache, 24 GB of RAM, and Ubuntu OS (16.04 LTS).

Sensor clustering. The cluster-based approach relies on some clustering strategy to operate.

To this end, we evaluate two different strategies: the first one exploits sensor geolocation

information and employs a spatial distance function to compute distances between pairs of

sensors. For the purposes of this work we experimented with the Euclidean, haversine, and road

network distances. The second strategy focuses on the similarity of traffic behaviors observed by

different sensors and clusters sensors accordingly. We implement the latter strategy by modeling

sensors as time series containing sequences of sensor observations. Specifically, each sensor is

modeled by a weekly sequence of average speeds computed for each 5-minute time slot, weighed

by the number of cars observed. In this way, each sensor is represented by a time series of

7×24×60/5 = 2,016 values. Consequently, the similarity between a pair of time series can be
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Months # agg. obs. # sensors # added # removed # intersection

Jan/Feb 2,155,944 235 - - -
Mar/Apr 1,939,679 181 0 54 181
May/Jun 2,063,709 225 8 18 217
Jul/Aug 2,316,110 241 27 19 214
Sep/Oct 2,273,177 255 48 26 207
Nov/Dec 1,306,081 261 57 28 204

Table 4 – Salient details of the dataset containing the aggregated observations.

determined as the Euclidean distance between the associated multidimensional points. Figure 6

provides examples of clusters found with the latter strategy.

We established the best clustering strategy by performing an extensive experimental

evaluation, comparing the MSE yielded by models generated by the cluster-based approach

through different clustering techniques – for the sake of brevity we omit the discussion of these

experiments and report that the clustering strategy achieving the best results uses K-Means++

(ARTHUR; VASSILVITSKII, 2007) to cluster sensors modeled as time-series. Consequently, in

the experiments presented in Section 3.3.2 the cluster-based approach employs this strategy.

Dataset. The dataset used in the experimental evaluation, built as discussed in Section 3.2,

contains 12,054,700 records arranged into six partitions, each representing a pair of consecutive

months. Table 4 provides the most salient details about the dataset. For each pair of months

we report the number of aggregated observations (# agg. obs.) and the number of operating

sensors. The # added (# removed) columns refer to sensors that have been added (removed) with

respect to the data partition covering January and February. Finally, the column # intersection

reports the number of sensors that a partition has in common with the one covering January and

February.

Training, validation, and test sets. We split the data into three distinct partitions, i.e., training,

validation, and test sets. The training and validation sets span a temporal interval covering

January and February 2014, while the temporal interval spanned by the test set depends on the

specific experiment. From Section 3.2 we remember that some of the features refer back to two

weeks before prediction time. Moreover, we report that the cluster-based approach requires 2

weeks of data to cluster the sensors. Consequently, the first two weeks of any temporal partition

are used exclusively for feature and cluster computation, thus leaving the remaining 6 weeks for

training, validation, or evaluation.
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To create the three sets we perform a stratified sampling, based on the identifier

of the sensors, to distribute homogeneously the data of each sensor across the partitions, thus

avoiding to perform predictions that involve sensors not present in the training set. The training

and validation sets include respectively the 65% and 15% of the data of each sensor, while the

fraction of data in the test set depends on the specific experiment.

Machine learning methods. The machine learning methods considered in this work to train

models are Multivariable Linear Regression (MLR) (FREEDMAN, 2009), Random Forest (RF)

(BREIMAN, 2001), and GBRT (FRIEDMAN, 2001; FRIEDMAN, 2002). The implementations

of MLR and RF are provided by the Scikit-Learn machine learning library (PEDREGOSA et al.,

2011), while the implementation of GBRT is provided by XGBoost (CHEN; GUESTRIN, 2016;

CHEN; HE, 2015). We also consider Historical Average (HA), a baseline algorithm that predicts

the average speed in a given time slot tsi by averaging the speed of all the training examples

having the same day_o f _week and slot_o f _day of tsi.

For what concerns the hyperparameters needed by RF and GBRT, we determine

the best combination by means of a grid search. The first hyperparameter required by RF and

GBRT is the maximum tree depth (max_depth) – to this end we consider the range [3,9] (with

step 2). GBRT and RF also require to provide the number of trees (n_estimators) to be used in

a model; to this end the implementation of GBRT employs an early stopping technique to find

out the best value, while for RF we consider the range [20,100] (with step 10) when considering

the local approach, the range [1000,4000] (with step 500) with the global approach, and the

range [50,2000] (with step 100) with the cluster-based approach. Finally, GBRT requires a third

hyperparameter, the learning rate (learning_rate), for which we consider the range [0.05, 0.2]

(with step 0.05). Overall, for each possible combination we generate a model and pick the one

whose model yields the lowest MSE. The evaluation is conducted over the validation set.

3.3.2 Experimental results

The experiments aim at comprehensively answering the following experimental

questions:

EQ1 Which machine learning algorithms achieve the best results when used to address the

PREDICTSPEED problem in the context of a static sensor network? Also, which are the

most relevant features for the local, global, and cluster-based approaches?
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EQ2 In the context of a static sensor network, are the models trained according to the local,

global and cluster-based approaches resilient with respect to aging?

EQ3 Are the prediction models trained according to the local, global, and cluster-based ap-

proaches robust in managing effectively the structural changes affecting a real-world

dynamic network of sensors? Are the global and cluster-based approaches able to address

the cold start problem?

In the following sections we answer the above questions.

3.3.2.1 EQ1 – Evaluation of machine learning techniques and feature relevance

The main goal of this study is to evaluate and establish the best machine learning

technique among those tested for each approach. In this context we consider a static sensor

network and compare the following methods: Historical Average (Hist.Avg.), a commonly used

baseline, Linear Regression (MLR), Random Forest (RF) and Gradient Boosting Regression

Trees (GBRT). The evaluation uses a test set limited to the 20% of sensor data covering January

and February 2014. To counterbalance the sparsity possibly characterizing the data, we consider

only those observations associated with more than 22 passing vehicles within the range of the

sensors in the 30-minutes time slot. We use the MSE and MAPE metrics defined in Section 3.1

to assess the quality of the models. Finally, we report the use of 99% confidence intervals to

determine the best performers.

Table 5 provides a comparison of the competing techniques in the context of the

local approach. From the Table we see that RF and GBRT perform similarly and outperform the

other techniques. Table 6 provides a comparison in the context of the global approach. From

Algorithm Mean MSE Conf. Interval MSE Mean MAPE Conf. Interval MAPE

Hist.Avg. 16.1995 (15.9955, 16.4035) 0.0889 (0.0883, 0.0894)
MLR 11.4155 (11.2787, 11.5524) 0.0765 (0.0760, 0.0770)
RF 10.6961 (10.5643, 10.8280) 0.0735 (0.0730, 0.0740)

GBRT 10.8910 (10.7556, 11.0264) 0.0733 (0.0728, 0.0738)
Table 5 – Local approach, evaluation of ML techniques – 99% conf. interval. The best performers

are highlighted in bold.

Algorithm Mean MSE Conf. Interval MSE Mean MAPE Conf. Interval MAPE

Hist.Avg. 94.1161 (93.7075, 94.5246) 0.2864 (0.2852, 0.2876)
MLR 12.2855 (12.1393, 12.4317) 0.0792 (0.0787, 0.0797)
RF 12.4181 (12.2711, 12.5652) 0.0798 (0.0793, 0.0803)

GBRT 11.5756 (11.4354, 11.7159) 0.0767 (0.0762, 0.0772)
Table 6 – Global approach, evaluation of ML techniques – 99% confidence interval. The best

performers are highlighted in bold.



41

the Table we see that GBRT is the clear winner, with RF and MLR following closely. Finally,

Table 7 provides a comparison in the context of the cluster-based approach, where the approach

uses k = 8 clusters. From the Table we see that GBRT is the clear winner, with RF and MLR

following closely. We report that using different values for the number of clusters k yielded

similar results, here omitted for brevity.

We have evaluated different clustering techniques in the context of the cluster-

based approach. The clustering algorithms used to implement the first strategy are K-Means

(HARTIGAN, 1975), Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

(ESTER et al., 1996) and Hierarchical Clustering (HC) (ROKACH; MAIMON, 2005). We

report that with the DBSCAN approach we use the Euclidean Distance (ED), Haversine Distance

(HD), and Road Distance (RD). For K-Means we use ED and also a customized version of

K-Means that create clusters based on the similarity between the speed Time-Series (TS) of

sensors. Figure 6 provides an overview on the geolocation of clustered sensors using different

clustering strategies. Finally, with HC we report that we use the RD with the ward, complete and

average techniques.

K-Means TS strategy attempts to cluster the sensors according to the similarity

characterizing their speed time-series, where each time-serie represents a sequence of 5-minute

slots having weekly period. As such, each time-serie contains 2016 time-slots that span a week

(i.e., 288 time-slots per single day or 12 time-slots per hour).

Finally, each slot is associated with the average speed of sensors registered within

the slot weighted by the number of cars that passed by the sensor within the time slot.

For brevity, we present the evaluation by employing the MLR technique; however,

we report that the findings hold for the other ML techniques as well. Tables 8 and 9 presents the

results. From the experiments, we observe that increasing the number of clusters has the effect

of yielding better results for all the clustering approaches considered. Finally, from the tables we

observe that our customized K-Means TS clustering strategy achieves the best results.

Algorithm Mean MSE Conf. Interval MSE Mean MAPE Conf. Interval MAPE

Hist.Avg. 17.6529 (17.4730, 17.8328) 0.1020 (0.1014, 0.1027)
MLR 11.9701 (11.8283, 12.1119) 0.0784 (0.0779, 0.0789)
RF 11.7423 (11.6019, 11.8826) 0.0776 (0.0771, 0.0781)

GBRT 11.1659 (11.0303, 11.3014) 0.0754 (0.0749, 0.0759)
Table 7 – Evaluation of ML techniques in the context of the cluster-based approach. The cluster-

ing technique used is K-Means TS, with k = 8. Confidence interval is set to 99%. The
best performers are highlighted in bold.
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# clusters DBScan RD DBScan ED DBScan HD HC Ward RD K-Means ED K-Means TS

2 12.2753 12.2790 12.2753 12.2683 12.2706 12.2083
4 12.2656 12.2670 12.2203 12.2477 12.2438 12.1147
8 12.2000 12.1848 12.2019 12.2119 12.2081 11.9703

16 12.1521 12.1988 12.1988 12.1512 12.1238 11.8712
32 12.0580 12.0439 12.0533 12.0250 12.0258 11.7692
64 11.8993 11.8621 11.8374 11.8369 11.8678 11.6713

Table 8 – Evaluation of clustering techniques according to the MSE metric. The ML technique
used is MLR. The best performers are highlighted in bold.

# clusters DBScan RD DBScan ED DBScan HD HC Ward RD K-Means ED K-Means TS

2 0.0792 0.0792 0.0792 0.0792 0.0792 0.0791
4 0.0791 0.0791 0.0790 0.0791 0.0791 0.0788
8 0.0790 0.0790 0.0790 0.0790 0.0791 0.0784

16 0.0789 0.0789 0.0789 0.0789 0.0788 0.0781
32 0.0786 0.0786 0.0786 0.0786 0.0786 0.0778
64 0.0782 0.0781 0.0781 0.0780 0.0781 0.0775

Table 9 – Evaluation of clustering techniques according to the MAPE metric. The ML technique
used is MLR. The best performers are highlighted in bold.
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Figure 7 – Analysis on the relevance of features. Left-hand side: feature relevance with the local
approach. Center side: feature relevance with the global approach. Right-hand side:
feature relevance with the cluster-based approach.

Relevance of features. In the batch of experiments that follows we study the relevance of the

features introduced in Section 3.2, Table 3, in the contexts of the local, global, and cluster-based

approaches. We employ GBRT, since in the previous study it proved to be the best ML technique.

The relevance of each feature is estimated by counting the number of times it is used in a split

node of any decision tree in the GBRT forest. Figure 7 presents the results. The more an attribute

is used in decision trees, the higher its relative importance.
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From the plots we observe how the temporal-dependent features exhibit the highest

relevance; in particular, some of the features belonging to group (ii), namely slot of the day

and day of the week, exhibit maximal or near-maximal relevance for all the approaches. This

represents a quite intuitive result, as time of the day and day of the week help to characterize

traffic flows. Similarly, other temporal-dependent features exhibiting high relevance are those

related to the time slots associated with prediction time – namely, the features of group (iii) (5

min last time slot), group (iv) (30 min last time slot), group (v) (one week before prediction time

slot), and finally group (vi) (two weeks before prediction time slot). In general we observe that,

the more a feature group refers to a time slot distant from prediction time, the less relevant the

associated features. Finally, we observe that the non-temporal features belonging to group (i)

exhibit the lowest relevance.

In conclusion, this study shows that GBRT represents the best ML technique for

all the considered approaches, with RF following closely. The study also shows that the most

relevant features are the ones concerning temporal information, with features associated to time

slots close to prediction time exhibiting more relevance than those associated with farther time

slots.

3.3.2.2 EQ2 – Evaluation of the aging of predictive models generated by the local, global, and

cluster-based approaches with a static sensor network

The main goal of this study is to evaluate how predictive models generated by the

local, global, and cluster-based approaches age over time. Indeed, we recall that traffic behavior

tend to change due to holiday periods, large events, changes in the road network, seasonal trends,

and so on. It is therefore reasonable to suspect that a model built on data covering a specific

period may not represent well the traffic behavior in subsequent periods. Assuming that we want

to avoid a frequent re-training of the models, this study aims to understand which approaches

achieve the most consistent predictive performance over time.

In the batch of experiments that follows we consider a scenario with a static sensor

network and analyze the performance of the predictive models built on January and February over

a period of one year. We train our models on the training set dstrain and consider six different test

sets, one for each pair of months available in the dataset (Table 4). To simulate a static sensor

network, we limit our analysis to the set of 156 sensors that operated continuously across the

whole 2014. We observe that the test set associated with January and February covers the 20%
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of sensor data, as the remaining data is used for training and validation. For what concerns the

other pairs of months, the related test sets cover the last 6 weeks, since the first 2 weeks are used

to compute specific subsets of features – more precisely, the groups (v) and (vi) – and to cluster

the sensors. The performance of the approaches is evaluated by means of the MSE and MAPE

metrics (Section 3.1). Specifically, we consider (i) the average performance and (ii) the fraction

of sensors for which the global and cluster-based approaches perform better than the local one.

The ML technique used to generate the models is GBRT. Finally, the cluster-based

approach uses k values comprised in the [2,64] range – indeed, this range represents an appropri-

ate transition from the global approach to the local one. Tables 10 and 11 summarize the MSE

and MAPE values yielded by the local, cluster-based and global approaches using models trained

only on sensors present in January and February (i.e., our reference months). Figure 8 provides a

pictorial overview of the results.

From the results we observe how the local approach achieves the best results only

in January and February, while its performance degrades noticeably in the months that follow.

Conversely, the results highlight the robustness and resilience of the cluster-based (with k ∈ [2,8])

Partition Local Cluster (k = 8) Cluster (k = 4) Cluster (k = 2) Global

Jan-Feb 10.89 11.17 (37.4%) 11.30 (27.7%) 11.42 (21.7%) 11.58 (18.3%)
Mar-Apr 13.81 13.00 (81.2%) 13.00 (79.6%) 12.99 (79.0%) 13.13 (67.4%)
May-Jun 14.23 12.64 (86.6%) 12.26 (86.6%) 12.18 (87.6%) 12.33 (84.3%)
Jul-Aug 14.47 11.99 (81.8%) 11.88 (80.4%) 11.83 (76.6%) 11.84 (72.4%)
Sep-Oct 15.49 12.62 (89.4%) 12.49 (87.9%) 12.18 (86.5%) 12.23 (82.6%)
Nov-Dec 15.60 12.19 (87.7%) 12.02 (87.7%) 11.74 (85.8%) 11.75 (85.3%)

Table 10 – MSE yielded by the local, global and cluster-based approaches (with 8, 4 and 2
clusters) in a static network of sensors for each pair of months. The percentages in
parentheses represent the fraction of sensors for which the cluster-based or global
approaches performs better than the local one. Winners are highlighted in bold.
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Figure 8 – Comparison of the local, global, and cluster-based approaches on a static sensor
network. The left-hand side plot presents the evaluation according to the MSE metric,
while the right-hand side plot presents the evaluation according to the MAPE metric.
Each curve is associated to a specific pair of months.
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Partition Local Cluster (k = 8) Cluster (k = 4) Cluster (k = 2) Global

Jan-Feb 0.0733 0.0754 (17.9%) 0.0759 (13.6%) 0.0763 (8.5%) 0.0767 (8.1%)
Mar-Apr 0.0882 0.0862 (58.6%) 0.0863 (61.9%) 0.0862 (59.7%) 0.0867 (52.5%)
May-Jun 0.0848 0.0807 (79.3%) 0.0793 (77.0%) 0.0791 (74.2%) 0.0796 (70.0%)
Jul-Aug 0.0841 0.0780 (71.5%) 0.0775 (68.7%) 0.0774 (68.7%) 0.0772 (66.4%)
Sep-Oct 0.0882 0.0805 (76.8%) 0.0800 (77.3%) 0.0789 (73.4%) 0.0789 (72.0%)
Nov-Dec 0.0846 0.0756 (79.9%) 0.0750 (78.4%) 0.0742 (77.9%) 0.0740 (77.9%)

Table 11 – MAPE yielded by the local, global and cluster-based approaches (with 8, 4 and 2
clusters) in a static network of sensors for each pair of months. The percentages in
parentheses represent the fraction of sensors for which the cluster-based or global
approaches performs better than the local one. Winners are highlighted in bold.

and global approaches, as they consistently achieve better accuracy than the local approach

and their performance tend to remain stable across the months. The very same trends can

be observed when considering the fraction of sensors for which the global and cluster-based

approaches perform better than the local one. In general, we argue that the local approach

performs consistently worse due to its inability to generalize traffic behavior. The global and

cluster-based approaches consistently achieve very good performance, thus suggesting that they

are capable to effectively capture changes in global traffic behavior over time. Finally, the plots in

Figure 8 show that the cluster-based approach tends to generate increasingly less accurate models

as the number of clusters becomes large: indeed, for sufficiently large values this approach

suffers from the same limitations of the local approach.

3.3.2.3 EQ3 – Evaluation of the resilience of predictive models generated by the local, global,

and cluster-based approaches with a dynamic sensor network

In this study we consider a scenario with a dynamic sensor network, and analyze the

performance of the global and cluster-based approaches to assess their resilience with respect to

changes that affect the network over time. Thus, differently from the previous studies we do not

limit ourselves to a fixed subset of sensors but consider also sensors that are added to the network

outside the temporal interval spanned by the training set (i.e., beyond the end of February 2014).

To this end we conduct two different batches of experiments: in the first batch we focus on the

performance of the global and cluster-based approaches over one year of data, and verify that it

is consistent with the performance observed in the case of a static sensor network; note that in

this context we do not consider the local approach, as the training data within dstrain does not

allow to create models for sensors added to the network beyond the end of February 2014. In the

second batch of experiments we compare the performance of the local, global, and cluster-based
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Figure 9 – Comparison of the global and cluster-based approaches on a dynamic network of
sensors over the whole 2014. The left-hand side plot presents the evaluation according
to the MSE metric, while the right-hand side plot presents the evaluation according
to the MAPE metric. Each curve is associated with a specific pair of months. Notice
the local approach is not present here since new sensors do not have a trained model

approaches limitedly to some of the sensors added to the network beyond the end of February

2014, to prove the superior predictive performance of the latter approaches.

In the first batch of experiments we train our models on the training set dstrain and

consider six different test sets, one for each pair of months available in the dataset (Table 4).

We observe that the test set associated with January and February covers the 20% of sensor

data, as the remaining data is used for training and validation. For what concerns the other

pairs of months, the related test sets cover the last 6 weeks, since the first 2 weeks are used to

compute specific subsets of features – more precisely the groups (v) and (vi) – and to cluster

the sensors. The performance of the approaches is evaluated by means of the MSE and MAPE

metrics (Section 3.1). The ML technique used to generate the models is GBRT. Finally, the

cluster-based approach uses k values in the [2,64] range. Figure 9 presents the results.

From the Figure we observe that the results resemble closely the ones achieved in

the context of EQ2 (Figure 8), thus proving that the global and cluster-based approaches are able

to manage effectively structural changes in dynamic sensor networks.

In the second batch of experiments we compare the performance of the local, global,

and cluster-based approaches. In this context we notice that the global and cluster-based models

used in the first batch of experiments can be straightforwardly reused. Due to its characteristics,

however, the local approach requires a different training procedure since it requires to train a

model each time a new sensor is added to the network. This in turn requires to limit the analysis

to the set of sensors added to the network beyond the end of February 2014. Accordingly, each

local model is trained over the first three weeks in the pair of months where its sensor appears,

and evaluated using the data within the subsequent five weeks. This implies that we have to

consider only those sensors whose data is present both in the training and test sets, and explains
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Temporal # Sensors Cluster Cluster Cluster
Partition Added Local (k=8) (k=4) (k=2) Global

Mar-Apr 0 – – – – –
May-Jun 2 17.34 17.42 (50.0%) 16.59 (100.0%) 14.63 (100.0%) 15.05 (100.0%)
Jul-Aug 10 10.97 11.01 (60.0%) 10.91 (60.0%) 10.80 (60.0%) 10.81 (60.0)%)
Sep-Oct 26 15.47 16.32 (30.77%) 16.36 (34.6%) 15.90 (42.3%) 15.48 (46.2%)
Nov-Dec 52 15.87 16.76 (51.92%) 16.11 (51.9%) 15.72 (53.9%) 15.42 (65.4%)

Table 12 – MSE yielded by the local, global and cluster-based approaches (with 8, 4 and 2
clusters) in a dynamic network of sensors for each pair of months. The percentages
in parentheses represent the fraction of sensors for which the cluster-based or global
approaches performs better than the local one. Winners are highlighted in bold.

Temporal # Sensors Cluster Cluster Cluster
Partition Added Local (k=8) (k=4) (k=2) Global

Mar-Apr 0 – – – – –
May-Jun 2 0.1442 0.1452 (50.0%) 0.1406 (100.0%) 0.1249 (100.0%) 0.1281 (100.0%)
Jul-Aug 10 0.0766 0.0754 (70.0%) 0.0757 (70.0%) 0.0754 (80.0%) 0.0756 (80.0%)
Sep-Oct 26 0.0895 0.0926 (34.6%) 0.0920 (38.5%) 0.0904 (53.9%) 0.0889 (61.5%)
Nov-Dec 52 0.0876 0.0900 (42.3%) 0.0889 (51.9%) 0.0867 (63.5%) 0.0857 (69.2%)

Table 13 – MAPE yielded by the local, global and cluster-based approaches (with 8, 4 and 2
clusters) in a dynamic network of sensors for each pair of months. The percentages
in parentheses represent the fraction of sensors for which the cluster-based or global
approaches performs better than the local one. Winners are highlighted in bold.

why the number of added sensors may be different between Tables 12, 13 and Table 4. We assess

the performance of the approaches by considering the average error achieved over all the sensors

considered and by considering the fraction of sensors for which the global and cluster-based

approaches perform better than the local one. Tables 12 and 13 presents the results – note that

the tables do not provide any result for March and April, as no new sensors were added with

respect to the preceding pair of months.

The results show that the global and cluster-based (with k = 2) approaches generally

outperform their competitor, both in terms of average accuracy and in the fraction of sensors

where they achieve better performance. This proves that the global and cluster-based approaches

are able to effectively tackle changes in dynamic sensor networks. Furthermore, the results

demonstrate that they properly address the cold start problem since the global and cluster-based

approaches achieve comparable or superior accuracy to the local approach without the need

to retrain a model each time a new sensor is added to the network. Finally, we notice that all

the approaches achieve their best performance over the months of July and August: we argue

that this is due to the similarity of traffic behavior between January/February and July/August –

indeed, both pairs of months include extensive holiday periods.
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3.4 Discussion

In this chapter we consider the problem of predicting the speed of vehicles by

analyzing data collected from a large and dynamic network of sensors. To this end we evaluate

three different approaches, called the local, global and cluster-based, that leverage state-of-the-art

supervised machine learning techniques. These approaches have complementary advantages: the

local approach, which is the traditional strategy adopted by state-of-the-art literature, trains a

model for each sensor, and generally achieves high performance in the presence of long term

historical data. However, this approach suffers from the cold start problem and can be hardly

applied to dynamic sensor networks, where sensors are frequently added and removed. Moreover,

the local approach entails consistent data management costs with large and dynamic sensor

networks, as it requires to train and maintain many different prediction models.

To tackle the limitations of the local approach, in this chapter we propose the cluster-

based and global approaches. The cluster-based approach trains prediction models on clusters of

sensors to capture traffic behavior observed by “similar” sensors, while the global approach trains

a single prediction model over the observations of all the sensors of the network. Subsequently,

we formally introduce the speed prediction problem and design a methodology that allows to

train models according to the three approaches.

To evaluate the approaches we conduct an extensive experimental evaluation on

a very large dataset collected in the city of Fortaleza, Brazil – we also report that we made

the dataset publicly available to ensure the reproducibility of our results and promote research

developments in this field. Driven by three experimental questions, we first analyze three state-

of-the-art machine learning techniques for the speed prediction problem, and prove that gradient

boosting with regression trees outperforms the other techniques. Subsequently, we focus on

the characteristics of static sensors networks, studying how the models, trained according to

the three approaches, age over time. Here we observe how the local approach achieves the best

results when tested over the same period covered by the training set, while it degrades noticeably

over the subsequent temporal periods due to its inability to generalize different traffic behavior.

On the contrary, the global approach addresses the aging problem effectively, as it allows to train

models that capture traffic changes without the need to perform expensive re-trainings, with the

cluster-based approach following closely. Finally and most importantly, the evaluation shows

that the global and cluster-based approaches consistently outperform the local approach when

facing consistent structural changes in dynamic sensor networks, thus addressing effectively the
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network dynamicity problem and the cold start problem.

Overall, the superior performance of the global and cluster-based approaches is

determined by their resilience to model aging and to structural changes affecting dynamic sensor

networks, and we believe that these results have the potential to impact intelligent transportation

systems and current data management practices in the field of speed prediction.

One possible line of future research deals with feature engineering; for instance, one

may consider introducing features related to information in various domains to further improve

the accuracy, such as weather conditions, accidents, road-network maintenance, and so on. Other

features may be engineered to consider information related to spatially close (according to some

proximity function or clustering process) sensors. Finally, another possible line of research

may leverage the approaches presented in this work to generate cost functions in the context of

time-dependent road networks (MAGALHÃES et al., 2015).
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4 VALIDATING THE GLOBAL APPROACH WITH TRAJECTORY DATA

In Chapter 3 we considered the problem of predicting the speed of vehicles using

mobility data generated by dynamic sensor networks. To address this problem we evaluated three

different approaches and demonstrated that the global approach yields the best results. Indeed,

the experimental evaluation shows that global models maintain high levels of accuracy over time

and are resilient to changes in the network, thus demonstrating that the global approach allows

us to capture and exploit urban-wide traffic behaviors effectively.

Using sensor data as the sole source of information allows us making predictions

only over road segments covered by the sensor network. In this chapter, we aim at expanding the

reach of predictive models by combining the use of sensor data with trajectory data. Trajectory

data is a sequence of time-stamped points regarding a moving object, each of which contains the

information of latitude and longitude. Optionally, we could also use the altitude, but it is out of

the scope of this work. Figure 10 shows an example of a cross-domain strategy. Vehicle data

collected from traffic sensors (dssensors) placed in roads A and D are used to create the predictive

models (M). Those elements are highlighted in green. On the other hand, the elements in red

represent trajectory data (dstra j) in roads B and C. We can use the features extracted from dstra j

and compatible with the features from models M as inputs to M to perform speed predictions in

roads B or C, that is, in roads not covered by M. Figure 11 illustrates data from both domains

with predictive models built from sensor data on the left-side and the raw trajectory data on the

right-side of the figure.

Specifically, we propose a hybrid strategy: on the one hand, we use sensor data to

extract traffic behaviors (i.e., train the models), since sensor networks constitute a reliable and

continuous source of traffic information that operates round the clock. On the other hand, we aim

at using trajectory data to gather information over road segments that are not covered by sensors

to aggregate features and use them as a test set. In the following, we evaluate models built

from sensor data over the test set. The evaluated models follow the global approach considering

three sets of features. The evaluation results compare the effectiveness of the global approach

concerning speed predictions in those sets of features. We also consider two periods of time to

split our trajectory dataset into two partitions and evaluate them independently.

The main contributions of this chapter can be summed up as follows:

• We propose a cross-domain approach that uses data from one domain in another one. More

specifically, we apply our global approach to build a prediction model from sensor data
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Figure 10 – Cross-domain strategy. Vehicle data collected from traffic sensors on roads A and D
are represented by the elements highlighted in green (sensor domain). The elements
in red on roads B and C represent trajectory data (trajectory domain).

Figure 11 – Cross-domain data. Left-hand side: Predictive models built from Sensor data. Right-
hand side: Raw trajectory data.

and use it to perform predictions regarding the domain of trajectory data.

• We engineer three sets of features that allow us to combine the use of sensor data with

trajectory data.

• We propose a methodology to aggregate speed related features over road segments traversed

by trajectories.

• We evaluate the proposed strategy over test sets built from trajectory data and compare its

outputs with results achieved by using solely sensor data, i.e., the approach presented in

Chapter 3.

• We have developed an Open Source Python library called PyRoad1 to simplify queries

and visualization of trajectories and other spatial-temporal data.

The chapter is structured as follows: Section 4.1 presents some preliminary notions

used throughout the chapter. Section 4.2 presents the methodology used to evaluate the global

approach with trajectory data. Section 4.2.1 presents the data sets used in our experiments and the
1 <https://github.com/InsightLab/PyRoad>

https://github.com/InsightLab/PyRoad
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steps to pre-process such data into a format suitable for data prediction. Section 4.3 presents the

experimental evaluation. Finally, Section 4.4 draws the final conclusions and presents potential

future research.

4.1 Preliminaries

This section presents key concepts and definitions regarding our strategy of evaluating

a prediction model built from sensor data by using test sets made from trajectory data.

Definition 4.1.1 (Road network) The structure of a road network can be modeled by a graph

where the nodes represent the intersections, start and end points of a road segment (e.g. a street

or avenue), and the edges connect the nodes. Depending on the application, additional points

may represent changes in the curvature or the maximum velocity of a segment. Consider graph

G = (V,E,C) where: (i) V = {v1, ...,vn} is a set of vertices (nodes); (ii) E = {(vi,v j)|vi,v j ∈

V, i 6= j} is a set of edges; (iii) C = {w(vi,v j)|(vi,v j) ∈ E,w(vi,v j) ∈ R≥0} is a set of costs, where

w(vi,v j) is a cost that assigns a positive weight to the edge (vi,v j). In road networks, this is the

distance or the travel time between intersections vi and v j. In this chapter we consider C as

the distance between intersections vi and v j. The existence of an edge (vi,v j) does not imply

the existence of (v j,vi). Besides, it allows that the opposite edges, (vi,v j) and (v j,vi), may hold

wvi,v j 6= wv j,vi .

The movements of objects moving over a road network are typically captured by

GPS-enabled devices and subsequently represented in the form of trajectories. To this end, it is

useful to provide some basic definitions.

Definition 4.1.2 (Trajectory) The movement of a moving object o j can be described in terms of

a continuous function M j :R≥0→R2 from the domain of real non-negative numbers, representing

time instants, to a 2D space. Given an object o j and a time interval [tBegin, tEnd), a trajectory

T R is the restriction of the movement M j with respect to [tBegin, tEnd).

In mobility applications it is common to assume that the continuous movement of a moving

object cannot be completely known. As such, trajectories are often described in terms of a finite

set of time-stamped positions, also known as trajectory tracks.

Definition 4.1.3 (Trajectory track) Given a temporally ordered sequence < t1, · · · , tn > of

timestamps, the track of a trajectory T for the given timestamps is represented by the tem-
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porally ordered sequence of trajectory points < p1 = (x1,y1, t1), · · · , pn = (xn,yn, tn)>, where

the pair (xi,yi) represents the geographical coordinates associated with pi, while ti represents

the associated timestamp. Finally, we use T (ti) = (xi,yi) to denote the geographical coordinates

of T at time ti.

For the sake of brevity we use the term trajectory instead of trajectory track throughout the rest

of the chapter.

Definition 4.1.4 (Map Matching) Map matching is a process to convert a sequence of raw

latitude/longitude coordinates to a sequence of road segments (ZHENG, 2015). The key problem

in map matching is the tradeoff between the roads suggested by the location data and the

feasibility of the path.

For the purposes of this work we assume map matching as the matching of the

original geographic coordinates of trajectories to the edges of the underlying road network.

(ZHENG, 2015) presents a comprehensive overview of the existing algorithms. This work uses a

Hidden Markov Model (HMM) map matching algorithm (NEWSON; KRUMM, 2009) to find

the most likely road route represented by a time-stamped sequence of latitude/longitude pairs.

The HMM accounts for measurement noise and the layout of the road network. The states of

the HMM are the individual road segments, and the state measurements are the noisy vehicle

location measurements. The goal is to match each location measurement with the proper road

segment. This state representation naturally fits the HMM, because transitions between road

segments are governed by the connectivity of the road network.

More formally, the discrete states of the HMM are the N road r segments, ri, where

i = 1...Nr. Distinct road segments run between intersections. For each 2D latitude/longitude

location measurement zt , the goal is to find the most probable path through the lattice by picking

one road segment for each t. This path should be sensitive to both the measurements and

the reasonability of the paths between the road segments. This tradeoff is made based on the

probabilities governing the measurements and probabilities governing the transitions between

the road choices at each time.

4.2 Predicting the speed of vehicles with sensor and trajectory data

This section proposes a strategy to perform speed predictions in road segments

covered and even not covered by traffic sensors. To this end, we aggregate features from
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trajectory data and use them as input to prediction models based on the global approach defined

in Chapter 3. The proposed strategy allows us to evaluate those models by using a test set built

from trajectory data.

The basic requirement to perform a speed prediction using a predictive model m is

to provide a new observation o, represented as a vector of features, as input to the model. Then,

the model m receives o as input and outputs the predicted speed s.

Let G = (V,E,C) be a graph representing a road-network (Definition 4.1.1). Let also

T R = {T1, · · · ,Tm} be the set of trajectories of objects moving over the road-network represented

by a graph G (Section 4.1.4). The main goal of this section is to expand the prediction reach

of models built from sensor data to edges of the road network represented by G, where we can

aggregate features from T R. Therefore, we use T R to compute a set O of observations associated

with specific edges of the road network represented by the graph G. The set O of observations

reflects traffic behaviors contained within T R. O denotes the set of speed observations that are

produced as follows: from the travel time tt and the length of edge e, we can derive the speed

s in an edge; the whole time interval T is split in time-buckets of fixed length (e.g., 5 minutes

each); for each bucket and each edge we compute the minimum, maximum, mean and standard

deviation of speeds from the trajectories that enter the edge at a time instant contained within the

bucket. Each speed observation is thus represented by a triple (k,e,s), where k and e denote the

identifiers of the time bucket and edge respectively, while s is the quadruple (smin,smax,savg and

sstd) where the elements represent respectively the minimum, maximum, average and standard

deviation of speeds observed in the time bucket k for the edge e.

4.2.1 Datasets

For this work we use two main datasets: the first one contains historical sensor

data provided by the Autarquia Municipal de Transito e Cidadania (AMC), the traffic agency

operating in Fortaleza (Brazil) that we already presented in Chapter 3. The second dataset

is a historical trajectory dataset released by Taxi Simples, a Brazilian cab fleet monitoring

company. The dataset contains GPS data regarding moving cabs in Fortaleza city. Figure 12

presents a visual representation of sample data from taxi trajectories. Since, each taxi driver at

the Taxi Simples company has a mobile phone equipped with a GPS device, this dataset stores

information about the location of taxi drivers. We use the data collected in two periods: Dec/2015

and Dec/2016, summing up 30,971,689 GPS Points from trajectories referring to travels cab
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Figure 12 – A sample of taxi trajectories from Fortaleza (Brazil) on 12th Dec 2015. Each colored
line represents a trajectory.

around the city. Table 15 details the number of samples considered in each step of the data

cleaning and transformation processes presented in this chapter. Each record of taxi trajectories

has the following attributes: trajectoryId, latitude, longitude, and timestamp.

Due to differences in the characteristics of the data collected in distinct years, which

we detail in the following, we have decided to split the whole dataset into two partitions

corresponding to different periods of time with a gap of one year between each other. The first

partition (ds2015) was collected from 1st to 31st December of 2015 and has 22,727,694 GPS

points, where 97.3% of them are from December, 12th. The other partition (ds2016) comprises

data from 1st to 31st December of 2016. It has 8,243,995 GPS points, where 97.25% of the data

concerns the 1st and 2nd of December. Besides the temporal distance between both partitions,

they also keep distinct characteristics that we discuss in the following.

The average sampling rate of ds2015 is 0.573s for 96% of its data, that is, the

interval between consecutive GPS points is around 0.573s on average. While the average

sampling rate of ds2016 is 4.204s for 96% of its data. Another difference from both dataset

partitions concerns the meaning of the trajectory id. The trajectory id in ds2015 is represented

by the taxi identification and it has only 718 unique ids, while in ds2016 the trajectory id is the

identification of a taxi trip and it has 294,418 unique ids. In other words, ds2015 collapses many

taxi trips into a single trajectory id. Such difference brings implications to the results as we

demonstrate in the following sessions. We illustrate the aforemetioned differences between

ds2015 and ds2015 in Table 14.
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Figure 13 – Heatmap of GPS positions from the Taxi Simples dataset on 12th Dec 2015 from
10:00 to 11:00AM.

Figure 13 shows a heatmap of GPS positions on 12th Dec 2015 from 10:00 to 11:00

AM, which is the hour of the day with more GPS data.

We report that regarding the sensor data, we follow the same cleaning and pre-

processing steps defined in Section 3.2. However, we define different steps to pre-process the

trajectory dataset.

Table 14 – Differences between partitions of the raw trajectory dataset.

Step Data Description # Samples
Dec/2015 Dec/2016 Total

Raw Data GPS Points 22,727,694 8,243,995 30,971,689
Cleaning GPS Points 6,725,109 4,810,881 11,535,990
Map-matching Snapped Points + Nodes/Edges 3,634,900 29,261,068 32,895,968
Add features Edges + features 917,761 12,504,670 13,422,431

Feature Aggregation / Test Set
Edges + aggregated features.
Test Set built from trajectory data. 155,403 2,028,049 2,183,452

Table 15 – Number of samples and processing steps regarding the Taxi Simples Dataset.
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4.2.2 Data cleaning and transformation

In the data cleaning and transformation step, we remove outliers and perform some

updates to the trajectory dataset to improve the data quality and to achieve more accurate results.

We have found the following main issues in our raw trajectory data: (i) trajectory data with

wrong timestamps (e.g., timestamps from years 1969, 1970 and 2055); (ii) duplicated data; (iii)

insufficient trajectory data regarding road network edges, so that, we do not have enough data

to aggregate features in edges of the road network; (iv) trajectories from the 2015 partition are

identified by the taxi id and represent many trips of one taxi. Conversely, trajectories from the

2016 partition are uniquely identified by taxi’ trips. In the following, we detail the data cleaning

strategy adopted in this work.

4.2.2.1 Cleaning

The main goal of the data cleaning process is to remove outliers or noisy points, that

is, points added in the trajectory because of a GPS error or any other kind of error. Therefore, we

perform the following five cleaning steps:

(i) Filter out samples with invalid timestamps or from years with an insufficient amount

of data. We keep only the data from 2015 and 2016 because the remaining data has invalid

timestamps or a small amount of data. From this step on we split the dataset into two partitions

(i.e., partitions with data from 2015 and 2016) and apply the following steps in each one of them.

(ii) Select an area and remove trajectory records placed out of it. We keep only the GPS

coordinates in the bounding box of Fortaleza (Brazil). A bounding box (bbox) is an area defined

by a quadruple that consists of two longitudes and two latitudes as follows: (minimum Longitude,

minimum Latitude, maximum Longitude, maximum Latitude). We use the bbox (-38.67, -3.90,

-38.38, -3.68) to limit the area of Fortaleza.

(iii) Remove duplicate records. We order the trajectory dataset by trajectory id and timestamp

attributes, and later we remove consecutive duplicate records. Table 15 shows that the cleaning

step changes the number of samples from 22,727,694 to only 6,725,109 in the partition repre-

senting Dec/2015 (ds2015). The duplicate removal step is responsible for most of the records
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(15,815,159) removed from ds2015 in the cleaning phase. The high sampling rate of ds2015 adds

a lot of duplicate records that are removed.

(iv) Split trajectories based on the inference of new trips inside each trajectory. We split

trajectories, i.e., define a new trajectory id when the delta time between consecutive points

surpasses a given threshold (e.g., 15 minutes). This step is especially useful when the trajectory

is identified by the vehicle id and, therefore, the dataset has very long trajectories. This situation

occurs in the 2015 partition of the Taxi Simples dataset (Table 14). Trajectories from that partition

usually mix multiple taxi trips under the same trajectory id represented by the identification of

the vehicle. Table 16 shows the amount of trajectory ids before and after splitting in the partitions

ds2015 and ds2016. Very long trajectories demands for much more memory footprint then shorter

ones, because some steps require processing of the whole trajectory data. Besides, the mix of

multiple trips under one trajectory id virtually creates non-existing paths/connections between

the different trips. In other words, the last point of a trip is considered connected to the starting

point of another trip as they are under the same trajectory id. The main goal of the splitting

step is to avoid such problems and to give the semantics of trajectory ids represented by trips

to any dataset. At the end of the splitting step, Table 16 shows that the number of trajectory

ids increased a lot for ds2015 and ds2016, but there is still a huge difference in the number of

trajectories between them. We hypothesize that such difference may affect subsequent steps and

the final prediction results.

#Trajectory ids Dec/2015 Dec/2016
Before splitting step (iv) 703 186,527
After splitting step (iv) 2,466 203,520

Table 16 – Number of trajectory ids before and after the splitting step – cleaning step (iv).

(v) Remove very short trajectories. We need at least two points in a trajectory to compute

features like distance, delta time and speed between points. Therefore, we remove trajectories

with a single point to avoid waste of resources to process and store them for subsequent steps.

After the aforementioned cleaning steps the trajectory dataset is comprised of:

11,535,990 GPS points (6,725,109 for 2015 and 4,810,881 for 2016).
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4.2.2.2 Map matching

A key element in our strategy to aggregate features in different locations of a road

network is to identify the sequence of edges associated with the GPS points derived from c

previous cleaning steps. This is possible through a technique called map matching.

In summary, map matching is a process to convert a sequence of raw latitude/longi-

tude coordinates to a sequence of road segments (ZHENG, 2015).

We use GraphHopper2, a robust, fast and widely adopted open-source implemen-

tation of a map matching algorithm that employs a HMM to find the most likely road route

represented by a time-stamped sequence of latitude/longitude pairs (NEWSON; KRUMM, 2009;

KARICH; SCHRÖDER, 2014). The HMM accounts for measurement noise and the layout of

the road network. The map matching procedure associates each point in the original trajectory to

a position in the underlying road network. It also maps each matched point to an edge of the

road network. The final result in a trajectory from point A to point B is a path p with all the

edges traversed from A to B as well as all the timestamps and points matched from the original

GPS points. Map matching consists of matching measured locations to the road network in order

to infer the vehicle’s actual path.

The GraphHopper map matching algorithm works as follows. For each input GPS

position, a number of map matching candidates within a certain radius around the GPS position

is computed. The Viterbi algorithm is used to compute the most likely sequence of map matching

candidates. The Viterbi algorithm (VITERBI, 1967) uses dynamic programming to quickly find

the path through the lattice that maximizes the product of the measurement probabilities and

transition probabilities. This gives an inference of the correct road segment for each location

measurement. Thereby, the distances between GPS positions and map matching candidates

as well as the routing distances between consecutive map matching candidates are taken into

account. The GraphHopper routing engine is used to find candidates and to compute routing

distances.

In this work, the inputs for the map matching algorithm are the road network, as well

as the trajectories, where each trajectory contains the trajectory id, GPS points, and respective

timestamps.

Table 17 shows the number of elements before and after the map matching process.

The mix of trips under the same trajectory reported in Section 4.2.1 and 4.2.2.1 affect negatively
2 https://github.com/graphhopper/map-matching
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the map matching results. We report that the number of GPS Points converted to Matched Points

decreases 15 times (from 6,725,109 to 445,708) in ds2015, but only 3,5 times (from 4,810,881 to

1,375,228) in ds2016. The reason is that many non-existing connections between trips under the

same trajectory result in difficulties to match points. We observe that the number of trajectory ids

remains the same in ds2016, while we lose 237 (2,466 - 2,229) trajectories in ds2015 after the map

matching. We also hypothesize that the final quality of the map matching is not good for ds2015.

Table 17 – Number of elements regarding map matching input and output.

We need to highlight and describe some details about the outputs from the Graph-

Hopper map matching because they will be used in the following steps. In summary, the map

matching process outputs trajectory paths containing a sequence of edges with information about

their nodes and matched points. Each edge is annotated with edge id, length in meters from start

to end node (de – edge distance) and OSM Way Id. The OSM Way Id is the identification of

the road segment in the OSM service3, and it is useful to find some attributes like the number

of lanes and the speed limit of the road segment. The matched points are annotated with their

timestamps. The nodes are annotated with their Latitude and Longitude. However, they are not

associated with a timestamp. Therefore, we apply the linear interpolation/extrapolation method

to compute the timestamp in nodes as we detail in Section 4.2.2.3.

4.2.2.3 Finding speeds on the edges of each trajectory after map matching

In this section, we propose a sequence of steps to find speeds on the edges of each

trajectory yielded from the map matching approach (Section 4.2.2.2). The steps follow a pipeline

that receives as input the resulting output of the previous step.

First, we need to find the timestamps in the start and end nodes of each edge. To

achieve this intermediate goal, for each trajectory we perform the following:

• Augment the samples of the trajectories with the following attributes: tdelta (time delta),

ddelta (distance delta) and speed s between adjacent matched points or nodes, where

s = ddelta/tdelta.
3 https://www.openstreetmap.org/
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Matched Point

Figure 14 – Linear interpolation/extrapolation using timestamps and distances from trajectory
start to find the timestamps of nodes represented with question marks.

• Detect transitions between stops and moves of vehicles, and split trajectories, when those

transitions are inferred4. We detect the occurrence of a stop when tdelta, ddelta or s surpasses

a given threshold for each of those features. Specifically, we use 750m, 200 seconds and

90km/h, respectively for tdelta, ddelta and s. Those values are computed by the mean plus 3

times the standard deviation (3σ ) of each feature.

• Apply the linear interpolation/extrapolation method to find the timestamps of start and end

nodes of each edge yielded from map matching. The interpolation/extrapolation inputs

are the timestamps of matched points and the distance from the trajectory start to nodes /

matched points. The interpolation/extrapolation method outputs the timestamp of each

node, represented with question marks in Figure 14.

Second, we compute the travel time and speed of edges in each trajectory yielded

from map matching. The travel time ttu,v associated to an edge (u,v) is the time needed to

travel from u to v, that is the delta time between nodes u and v. It is given by the difference

between the timestamp in node v (start node) and the timestamp in u (end node). To compute the

average speed of a trajectory in edge (u,v), we divide the travel time ttu,v by the road distance

du,v between u and v.

Finally, at the end of these steps we have for each trajectory, a sequence of tuples

composed of the following features: trajectory id, edge id, OSM Way Id, timestamp of start node

(ts) and speed (S). For brevity, we call such sequence of tuples as our list of edges E.

4.2.2.4 Feature engineering, sensor data aggregation and model generation.

We use the same approach described in Section 3.2 to perform feature engineering,

sensor data aggregation, and model generation, except that in this chapter we consider a set of
4 This step is similar to the one from Section 4.2.2.1, but now we use more parameters that we didn’t have before,

like distance delta and speed. Therefore, we want to remove some occurrences such as a parked car that should
not be considered when determining traffic conditions.
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Feature % of missing data
2015 2016

n_lanes 77.3% 77.5%
speed_limit 79.9% 75.7%

Table 18 – Percentage of missing data regarding the features n_lanes and speed_limit in the
partitions of data from 2015 and 2016.

features with the 15 features in groups (i) to (iv) from our two datasets and reported in Table 3.

Given that we want to generate a test set from our list of edges E (Section 4.2.2.3), we have to

make it compatible with the features extracted from the aggregated data from sensors used as the

training set of our prediction models. In other words, we need to generate a test set derived from

trajectory data with the equivalent features used in the training set originated from sensor data.

In Section 3.2 we defined six groups of features extracted from our first dataset.

Groups (iii) to (vi) are time-slot related features. Groups (v) and (vi) represent features regarding

one and two weeks before the prediction time slot, respectively. Our evaluation in Section 3.3.2.1

demonstrates that the features present in groups (v) and (vi) are not so relevant as the features

from other groups of time-slot related features. Besides, for many edges we don’t have enough

trajectory data that can be used to extract features regarding one and two weeks before the

prediction time slot.

We also consider a second set of features consisting of 13 features that do not take

into account the features number of lanes (n_lanes) and speed_limit. We decided to evaluate

such a set of features because we did not find a reliable and complete dataset containing the

features (n_lanes) and speed_limit. As an example, more than 75% of those features are missing

in the Open Street Map (OSM) dataset regarding Fortaleza. In such case, we replace the missing

data values with the mean value of each feature. Table 18 presents the percentage of missing

features concerning features n_lanes and speed_limit in the OSM dataset from Fortaleza in 2015

and 2016.

Besides, we evaluate the third set of features that is a subset of the second set

of features with only 11 features, which suppresses the features representing the number of

vehicles (v_count5 and v_count30). We hypothesize that the features v_count5 and v_count30

have different roles and values in the domains of sensors and trajectories, and therefore, their use

can negatively affect the predictions. In the domain of sensors, the number of vehicles represents

the number of all vehicles that pass through the sensor. However, in the trajectory domain, the

number of vehicles represents only the amount of trajectories that crossed an edge in a given slot
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(interval) of time and, therefore, those features in the sensor domain are orders of magnitude

higher than in the trajectory domain. We highlight that because we are using the domains of

sensors and trajectories, their features expose characteristics associated respectively with sensors

and edges, and therefore we need to find the best possible equivalence between the features

applied in both contexts. Table 19 summarizes the three sets of features evaluated in this chapter.

Table 19 – Groups of features and their allocation according to the three set of features presented
in this chapter. Time. Time-slot related features in groups (iii) and (iv) are highlighted,
respectively, in green and blue.

In the following, we propose the steps to generate observations with the sets of

features from Table 19 in the trajectory domain.

Add number of lanes and speed limit features – group (i) of features – from OSM data.

After the definition of the three sets of features, we get the feature OSM Way Id from each tuple

of the list of edges E, and use it to find the number of lanes and speed limit by querying the OSM

data of Fortaleza through our PyRoad API project5. Next, we add them to each element of E.

Compute and add day of week, slot of day and working day features – group (ii) of fea-

tures – to the list of edges E. They are computed from the timestamp on the start node of each
5 https://github.com/InsightLab/PyRoad
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edge.

Aggregate data in time slots and add time slot related features and label. Our speed pre-

diction approach relies on time-dependent features regarding the speed attributes annotated

in specific edges of the road network. Therefore, we aggregate the count of trajectories that

traversed the edge, as well as, the minimum, maximum, average, standard deviation of speeds

computed for each five and thirty minute time-slots, respectively the groups (iii) and (iv) of

features concerning the interval starting at 5 and 30 minutes before the query time and ending at

the query time as illustrated in Figure 15. The figure also represents our label, that is, the average

speed prediction at a 5-minute time slot, ts f , 25 minutes after the query time.

Figure 15 – Diagram illustrating time-slot related features and the label representing the average
speed at the prediction time. Features concerning the interval starting at 5 and
30 minutes before the query time and ending at the query time are highlighted,
respectively, in green and blue.

4.3 Experimental evaluation

In this section we discuss the experiments that we perform to generate different

prediction models and assess their performance. More specifically, Section 4.3.1 introduces

the experimental setting used to conduct the experiments, while Section 4.3.2 introduces the

experimental questions we want to answer with our research.

4.3.1 Experimental Setting

Test system. We conduct our experiments on a server with 16 Xeon E5520 Intel CPUs, each

clocked at 2.27GHz, with 8192 KB L3 cache, 24 GB of RAM, and Ubuntu OS (16.04 LTS).

Datasets. We use two main datasets regarding pre-processed and aggregated sensor and trajectory
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data, respectively. We present the first one in Sections 3.3.1. We partition the whole data from

2014 in six datasets, each related to a pair of months. We also split each partition in training,

validation and test sets, where each set has the features presented in Table 19. The training,

validation, and test sets include respectively the 65%, 15% and 20% of the data regarding each

sensor. They are created for each of our three sets of features as detailed in Section 4.2.2.4.

For each of our three sets of features, we generate the second dataset from aggregated

trajectory data provided by the company Taxi Simples, a Brazilian cab fleet monitoring company.

We use the resulting dataset as a test set comprising the structure defined in Table 19 according

to the considered sets of features.

Machine learning method. The ML method considered in this chapter is GBRT, a state-of-art

ML algorithm successfully applied in traffic prediction works (Chapter 2) and also the best

performer algorithm evaluated in Chapter 3 using features also considered in this chapter. We

apply the local and global approaches proposed in Chapter 3 to build speed prediction models

from sensor data for the three subsets of the features reported in Section 4.2.2.4. The cluster-

based approach is out of the scope of this chapter because it would require additional steps and

analysis that are not in the main concerns of this chapter. However, we evaluate the cluster-based

approach in comparison with the other approaches for different sets of features in Appendix A.

Such evaluation is limited to sensor data, and therefore it does not use trajectory data. We also

plan to exploit the cluster-based approach in future works.

For what concerns the hyperparameters needed by GBRT, we determine the best

combination using a grid search. The first hyperparameter required by GBRT is the maximum

tree depth (max_depth) – to this end, we consider the range [3, 9] (with step 2). GBRT also

require the number of trees (n_estimators) to be used in a model; to this end the implementation

of GBRT employs an early stopping technique to find out the best value. Finally, GBRT requires

a third hyperparameter, the learning rate (learning_rate), for which we consider the range [0.05,

0.2] (with step 0.05). Overall, for each possible combination we generate a model and pick the

one whose model yields the lowest MSE. The evaluation is conducted over the validation set.

4.3.2 Experimental questions and experiments

We propose a batch of experiments to comprehensively answer the following experi-

mental questions:
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EQ1 Can a global speed prediction model built with a selected subset of features yield similar

evaluation performance to the global model built with the set of features used in Chapter

3?

EQ2 Can the global approach built from sensor data perform accurate predictions over road

segments covered exclusively by trajectories?

In the following sections we propose experiments to answer the above questions.

4.3.3 EQ1 – Compare the evaluation of the global speed prediction approach built from the

whole set of features with the one built from a selected subset of features

We want to know if global models built using subsets of features can achieve similar

evaluation results to a model built with all the features. We consider only sensor data regarding

EQ1.

From Chapter 3 we already have the global GBRT model (mall) and evaluation

results regarding the whole set of features presented in Table 3. So additionally we need to

generate and evaluate GBRT models for the three sets of features defined in Section 4.2.2.4 that

use the selected subsets of the features shown in Table 19.

We perform two batch of experiments concerning EQ1 to check the feasibility of

reducing the dimensionality of our sensor dataset and use it as well as the global models derived

from it in the subsequent experiments. In the first batch of experiments we consider a static

network of sensors, while the second one takes into account a dynamic network of sensors.

Both batches of experiments compare the evaluation of the complete set of 25 features

detailed in Chapter 3 with the subsets of 15, 13 and 11 features, respectively related with the

sets of features 1, 2 and 3 defined in this chapter. The results are presented in Tables 20 and 21.

The percentages in parentheses represent the fraction of sensors for which the global approach

performs better than the local one for the same subset of features. Winners are highlighted in

blue.

We report that the global approach performs better when using the whole set of 25

features. It is also the winner when we consider the percentage of sensors that perform better

using the global approach rather than the local approach. When considering only the sets of

features with 15, 13 and 11 features respectively, we observe that more features usually yields

slightly better results for the static network of sensors. However, the subset of 11 features

performs better in the dynamic network of sensors in comparison with the subsets of 15 and
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13 features. Another insight regarding the dynamic network of sensors is that the predictions

improve when we decrease the number of features in the sets of features with 15, 13 and 11

features. The conclusion is that the four features removed (n_lanes, speed_limit, v_count5, and

v_count10) were affecting negatively the results when we consider the dynamic network of

sensors.

Overall the results indicate that even using fewer features in the three sets of features

that we consider in this chapter, we still get acceptable prediction results, and therefore it is

feasible to evaluate if the prediction models following the global approach are also effective for

achieving accurate predictions concerning test sets built from trajectory data. In other words, it

is feasible to find answers to our experimental question 2 (EQ2).

We present a complementary evaluation comparison between the use of different

sets of features in Appendix A, including the cluster-based approach and also sets of features not

covered in this chapter. Appendix A also presents some situations where it may be feasible to

remove some features, even when getting slightly worse prediction results.

4.3.4 EQ2 – Evaluate the global approach built from sensor data in road segments covered

exclusively by trajectories

To answer EQ2, we compare the evaluation of the prediction models trained from

sensor data yielded in EQ1 with the performance of the same models applied to perform

predictions over test sets built from trajectory data for the three sets of features. We evaluate the

global approach built from sensor data, comparing the predicted speed in edges from our test

sets with the real average speed in edges extracted from the trajectory data.

Table 23 shows that the test set of Dec/2016 (ds2016) performs much better than

the test set of Dec/2015 (ds2015). We have reported in Section 4.2.2.2 the issues with the map

matching quality for ds2015. Those issues hindered subsequent steps and affected its evaluation

negatively. Therefore we plan, as future work, to improve the detection of trips and consequently

the splitting of trajectories before map-matching.

We also observe that in all sets of features and test sets, the results improve as we

decrease the number of features from 15 to 11. The four features removed (n_lanes, speed_limit,

v_count5, and v_count10) were affecting negatively the results.

In the domain concerning sensors, the features v_count5 and v_count10 represent

all the vehicles crossing a road segment monitored by a sensor in a given time slot. On the other
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MSE - Local MSE - Global

Months #Sensors
#Features #Features

25 15 13 11 25 15 13 11
Jan/Feb 235 10.80 10.71 10.70 10.75 11.62 (9.8%) 12.30 (3.0%) 12.58 (2.6%) 12.78 (3%)
Mar/Apr 181 13.56 13.22 13.22 13.27 13.08 (51.4%) 13.38 (25.4%) 13.58 (22.7%) 13.67 (22.1%)
May/Jun 217 13.90 13.72 13.71 13.67 12.27 (74.7%) 12.82 (42.9%) 12.87 (35.5%) 13.01 (35%)
Jul/Ago 214 14.16 14.16 14.14 13.94 11.82 (62.6%) 12.82 (38.3%) 12.9 (35.5%) 12.99 (33.2%)
Sep/Oct 207 15.28 15.41 15.40 15.10 12.20 (66.7%) 13.27 (43.5%) 13.35 (38.2%) 13.53 (34.8%)
Nov/Dec 204 15.14 15.22 15.19 14.93 11.68 (73.0%) 12.68 (51.0%) 12.82 (45.1%) 12.95 (43.1%)

MAPE - Local MAPE - Global

Months #Sensors
#Features #Features

25 15 13 11 25 15 13 11
Jan/Feb 235 0.0733 0.0730 0.0730 0.0732 0.0769 (3.8%) 0.0794 (1.3%) 0.0804 (0.9%) 0.081 (0.9%)
Mar/Apr 181 0.0877 0.0868 0.0868 0.0869 0.0866 (42.0%) 0.0877 (27.1%) 0.0882 (23.8%) 0.0884 (24.3%)
May/Jun 217 0.0841 0.0841 0.0841 0.0839 0.0794 (59.0%) 0.0819 (36.9%) 0.0817 (36.4%) 0.082 (35.5%)
Jul/Ago 214 0.0835 0.0838 0.0838 0.0832 0.0773 (57.5%) 0.0810 (37.9%) 0.0809 (34.6%) 0.081 (31.3%)
Sep/Oct 207 0.0883 0.0886 0.0886 0.0878 0.0788 (65.2%) 0.0830 (42.5%) 0.0825 (39.1%) 0.083 (38.2%)
Nov/Dec 204 0.0840 0.0843 0.0843 0.0836 0.0739 (70.1%) 0.0772 (50.5%) 0.0771 (47.5%) 0.0775 (44.1%)

Table 20 – Evaluation Comparison between different sets of features considering a static network
of sensors in different pairs of months of 2014. The ML technique used is GBRT.
The percentages in parentheses represent the fraction of sensors for which the global
approach performs better than the local one for the same subset of features (#Features).
Winners are highlighted in blue.

MSE - Local MSE - Global

Months #Sensors
#Features #Features

25 15 13 11 25 15 13 11
Jan/Feb 0 - - - - - - - -
Mar/Apr 0 - - - - - - - -
May/Jun 2 17.34 18.62 18.62 21.16 14.92 (100%) 15.62 (100%) 15.71 (100%) 15.56 (100%)
Jul/Ago 10 10.97 11.52 11.60 11.63 10.81 (60%) 11.61 (40%) 11.61 (60%) 11.63 (60%)
Sep/Oct 26 15.47 16.09 16.37 16.49 15.49 (50%) 17.14 (30.8%) 16.77 (38.5%) 16.74 (46.2%)
Nov/Dec 52 15.87 16.85 16.50 16.83 15.48 (63.5%) 17.41 (34.6%) 16.89 (42.3%) 16.86 (53.8%)

MAPE - Local MAPE - Global

Months #Sensors
#Features #Features

25 15 13 11 25 15 13 11
Jan/Feb 0 - - - - - - - -
Mar/Apr 0 - - - - - - - -
May/Jun 2 0.1442 0.1510 0.1510 0.1620 0.1271 (100%) 0.1284 (100%) 0.129 (100%) 0.1259 (100%)
Jul/Ago 10 0.0766 0.0780 0.0786 0.0787 0.0756 (80%) 0.0793 (40%) 0.0791 (50%) 0.079 (50%)
Sep/Oct 26 0.0895 0.0913 0.0919 0.0920 0.0893 (61.5%) 0.0949 (26.9%) 0.0924 (38.5%) 0.0923 (53.8%)
Nov/Dec 52 0.0876 0.0905 0.0897 0.0906 0.0866 (65.4%) 0.0927 (28.8%) 0.0897 (44.2%) 0.0898 (55.8%)

Table 21 – Evaluation Comparison between different sets of features considering a dynamic
network of sensors in different pairs of months of 2014. The ML technique used is
GBTR. The percentages in parentheses represent the fraction of sensors for which
the global approach performs better than the local one for the same subset of features
(#Features). Winners are highlighted in blue.
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hand, in the trajectory domain, they represent only the amount of the available trajectories that

cross a road segment in a given time slot, that is, not all vehicles, but only the ones that we know.

Our conclusion based on those two features is that the compatibility of features between the

two domains (sensor and trajectory) must be carefully analyzed and that features with different

semantics/roles between domains should not be used.

Regarding the features n_lanes and speed_limit, it is not worth using them in the

trajectory domain, because, in more than 75% of our data (Table 18), we could not get reliable

values for them from OSM. Therefore, we use average values for those missing data in the

trajectory domain, but real and reliable values for them in the sensor domain. Such a discrepancy

in the robustness/reliability of the data for some features between domains affect the prediction

results negatively and, therefore, we conclude that such kind of features should not be considered.

We also report that even our best results in the set of features with 11 features

(2016), still have to improve a lot to be competitive in comparison to use the global approach

in the sensor domain. We plan to do a per edge detailed analysis to understand better in which

conditions or locations we obtain feasible results. We can also use other datasets of sensors and

trajectories within the same period. In this chapter, we used sensor data from Jan-Feb/2014 to

build the prediction models and trajectory data of Dec/2015 and Dec/2016. We also have to solve

possible incompatibilities between domains, like always having speed limits in roads monitored

by sensors, but not always having such limits on roads traversed by vehicles. Some drivers can

also have one behavior when crossing a road monitored by a sensor, but another behavior in

roads not monitored.

Besides, we propose a new batch of experiments to verify if we can generate more

accurate prediction models using solely trajectory data than the prediction models following

our cross-domain approach. To this end, for each of the three sets of features considered in this

chapter, we generate a training set, validation set and test set, comprising respectively, 65%,

15% and 20% of the trajectory data for Dec/2015 and Dec/2016. In previous experiments with

trajectory data, we have used the whole trajectory data as test sets for Dec/2015 and Dec/2016.

We report the results in Table 23. We show that prediction models generated only with trajectory

data achieve better results than using our cross-domain strategy. However, as 80% of the

trajectory data is used for training and validation purposes, then such strategy cannot be used to

solve the cold start problem. The superior results of models based only in the trajectory domain

indicate that the cross-domain strategy still needs improvements in the compatibility between
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Set #features MSE MAPE
2015 2016 2015 2016

1 15 204.69 129.03 2.56 1.35
2 13 97.92 62.75 1.67 0.85
3 11 88.17 46.35 1.64 0.77

Table 22 – Evaluation of the cross-domain approach for different sets of features using Taxi
Simples trajectory datasets in Dec/2015 and Dec/2016. Winners are highlighted in
bold.

Set #Features

MSE MAPE
Dec/2015 Dec/2016 Dec/2015 Dec/2016

Cross 
domain

Traj. 
domain

Cross 
domain

Traj. 
domain

Cross 
domain

Traj. 
domain

Cross 
domain

Traj. 
domain

1 15 219.19 20.56 95.17 9.55 2.6611 0.8361 0.9984 0.3187
2 13 95.12 19.51 38.39 9.30 1.6642 0.8182 0.6169 0.3167
3 11 93.34 19.17 38.61 9.21 1.9480 0.8104 0.6904 0.3156

Table 23 – Evaluation of cross-domain (sensor and edge based) versus trajectory only domain
(edge based) both according to the global approach. Winners are highlighted in bold.

domains.

4.4 Discussion

This chapter proposed a methodology for evaluating the global approach introduced

in Chapter 3 using a test set built from trajectory data. We proposed and ran a methodology to

know if the prediction models generated by the global approach can provide good generalizations

of traffic behaviors present in trajectory data. In the meanwhile, we have developed the PyRoad

library6 to simplify queries and visualization of trajectories and other spatial-temporal data.

Our experiments demonstrate that cross-domain generalizations are not trivial and the features

must be carefully analyzed to observe which are compatible with both domains and if they

are relevant to help in achieving accurate results. We also conclude that the mix of vehicle

trips under the same trajectory id affect the results negatively and that we need to improve the

splitting of trajectories before map matching. We want to perform a detailed per edge evaluation

analysis to better understand how to improve the prediction results. With the improvement of the

cross-domain generalizations, we can model more accurate cost functions for Time-Dependent

Road Networks (TDRN) or even build more realistic traffic simulators. A TDRN is a road

network where the edge costs vary with time. The next chapter presents conclusions about this

thesis and highlights some plans for future works.

6 https://github.com/InsightLab/PyRoad



71

5 CONCLUSIONS AND FUTURE WORK

In this thesis, we presented and evaluated three different approaches based on state-

of-the-art supervised machine learning approaches for training models for the speed prediction

problem in a large and dynamic network of traffic sensors. The approaches, namely, the local,

cluster-based, and global approaches have complementary advantages. The local approach which

is the traditional strategy adopted by earlier works fits the dynamics of each sensor of the network

and achieves high performance in the presence of rich historical data. However, it suffers the

cold start problem and cannot be applied to new sensors added to the network. Moreover, using

the local approach in large sensor networks involves training and maintaining a large number

of different prediction models. The evaluation showed that the novel global and cluster-based

approaches proposed in the chapter consistently outperform the local approach when a dynamic

network of sensors is considered.

We made publicly available a very large dataset collected in the city of Fortaleza,

Brazil to ensure the reproducibility of our results and promote research developments in this

field.

We first analyzed state-of-the-art supervised algorithms for the speed prediction

problem, and proved that GBRT algorithm outperforms the other methods experimented. We

also analyzed the relevance of the features engineered for the approaches, showing that the most

relevant ones are associated with information in the temporal domain.

We proposed a cross-domain methodology to use our global approach based on the

sensor domain to perform traffic predictions in road segments covered by data extrated from the

trajectory domain. We have developed an open-source Python library1 to help researchers in

dealing and visualizing spatial-temporal data. We detected issues and challenges to guide our

next steps in improving the proposed methodology.

As future works we want to: improve pre-processing steps before map matching;

perform a detailed per edge evaluation analysis to better understand how to improve the prediction

results; evaluate our cluster-based approach with a test set built from trajectory data, as we did

in Chapter 4 using the global approach; derive cost functions from the global and cluster-based

approaches to be accurately applied in Travel Time predictions over TDRN.

1 https://github.com/InsightLab/PyRoad
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APPENDIX A – EVALUATION OF DIFFERENT SETS OF FEATURES

This appendix presents an evaluation comparison between using different sets of

features for our three proposed approaches: local, global and cluster-based.

We consider three sets of features. The first set of features is composed by the 25

features shown in Table 24.

Table 24 – Groups of features and their allocation according to the three set of features presented
in this chapter. Time. Time-slot related features in groups (iii) and (iv) are highlighted,
respectively, in green and blue.

The second set of features is a subset of the first one containing 15 features from the

groups of features (i) to (iv). Groups (v) and (vi) are not considered.

Finally, the third set of features is a subset of the second one containing 10 features

from the groups of features (i) to (iii).

The evaluation shows the effectiveness of using all the 25 features proposed in

chapter 3 in the three approaches. We can also observe that even removing ten features from 25

to 15, the results are only slightly worse. However, when we move from 15 to 10 features, the

results become much worse, demonstrating that it is not feasible to use only those ten features.

However, although the set of 25 features is clearly the winner, the subset of 15 features may be a

feasible option if: (i) the computational cost (space and time) to compute and store the features
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from one and two weeks before the prediction time is high; (ii) we do not have enough sensor

data to compute those features that requires at least two weeks of data before the initial query

time; (iii) we want to overcome the cold start problem by not having to collect at least two weeks

of data before creating a prediction model that depend on those features.

MSE - Local MSE - Global MSE - Cluster-Based (k=2)

Months #Sensors
#Features #Features #Features

25 15 10 25 15 10 25 15 10
Jan/Feb 235 10.80 10.71 11.02 11.62 (9.8%) 12.30 (3.0%) 15.65 (0.9%) 11.43 (13.6%) 11.98 (4.7%) 14.52 (1.3%)
Mar/Apr 181 13.56 13.22 13.86 13.08 (51.4%) 13.38 (25.4%) 17.00 (9.9%) 12.99 (61.3%) 13.18 (30.4%) 15.91 (13.8%)
May/Jun 217 13.90 13.72 14.43 12.27 (74.7%) 12.82 (42.9%) 16.41 (17.5%) 12.20 (74.2%) 12.69 (44.2%) 15.49 (19.8%)
Jul/Ago 214 14.16 14.16 14.51 11.82 (62.6%) 12.82 (38.3%) 16.24 (18.7%) 11.81 (65.9%) 12.77 (43.0%) 15.39 (20.1%)
Sep/Oct 207 15.28 15.41 15.95 12.20 (66.7%) 13.27 (43.5%) 16.64 (26.1%) 12.17 (69.6%) 13.12 (45.4%) 15.75 (28.0%)
Nov/Dec 204 15.14 15.22 15.82 11.68 (73.0%) 12.68 (51.0%) 15.72 (26.5%) 11.74 (76.0%) 12.66 (53.4%) 15.03 (28.4%)

MAPE - Local MAPE - Global MAPE - Cluster-Based (k=2)

Months #Sensors
#Features #Features #Features

25 15 10 25 15 10 25 15 10
Jan/Feb 235 0.0733 0.0730 0.0741 0.0769 (3.8%) 0.0794 (1.3%) 0.0913 (0.4%) 0.0764 (4.3%) 0.0786 (1.7%) 0.0884 (0.4%)
Mar/Apr 181 0.0877 0.0868 0.0895 0.0866 (42.0%) 0.0877 (27.1%) 0.1009 (13.3%) 0.0862 (51.4%) 0.0871 (29.8%) 0.0983 (14.9%)
May/Jun 217 0.0841 0.0841 0.0870 0.0794 (59.0%) 0.0819 (36.9%) 0.0947 (16.1%) 0.0791 (61.8%) 0.0813 (38.2%) 0.0924 (18.9%)
Jul/Ago 214 0.0835 0.0838 0.0859 0.0773 (57.5%) 0.0810 (37.9%) 0.0932 (15.9%) 0.0773 (61.2%) 0.0807 (38.8%) 0.0910 (16.4%)
Sep/Oct 207 0.0883 0.0886 0.0915 0.0788 (65.2%) 0.0830 (42.5%) 0.0953 (23.2%) 0.0788 (64.7%) 0.0825 (46.4%) 0.0931 (26.6%)
Nov/Dec 204 0.0840 0.0843 0.0876 0.0739 (70.1%) 0.0772 (50.5%) 0.0887 (27.5%) 0.0741 (71.6%) 0.0773 (51.0%) 0.0871 (29.4%)

Table 25 – Evaluation Comparison between different sets of features considering a static network
of sensors in different pairs of months of 2014. The ML technique used is GBRT.
The percentages in parentheses represent the fraction of sensors for which the global
approach performs better than the local one for the same subset of features (#Features).

MSE - Local MSE - Global MSE - Cluster-Based (k=2)

Months #Sensors
#Features #Features #Features

25 15 10 25 15 10 25 15 10
Jan/Feb 0 - - - - - - - - -
Mar/Apr 0 - - - - - - - - -
May/Jun 2 17.34 18.62 26.81 14.92 (100%) 15.62 (100%) 18.72 (100%) 14.61 (100%) 15.12 (100%) 18.08 (100%)
Jul/Ago 10 10.97 11.52 12.90 10.81 (60%) 11.61 (40%) 14.63 (10%) 10.79 (60%) 11.59 (50%) 14.4 (10%)
Sep/Oct 26 15.47 16.09 19.13 15.49 (50%) 17.14 (30.8%) 21.38 (11.5%) 15.85 (42.3%) 17.54 (30.8%) 22.22 (26.9%)
Nov/Dec 52 15.87 16.85 20.00 15.48 (63.5%) 17.41 (34.6%) 22.31 (21.2%) 15.71 (57.7%) 17.45 (38.5%) 22.26 (38.5%)

MAPE - Local MAPE - Global MAPE - Cluster-Based (k=2)

Months #Sensors
#Features #Features #Features

25 15 10 25 15 10 25 15 10
Jan/Feb 0 - - - - - - - - -
Mar/Apr 0 - - - - - - - - -
May/Jun 2 0.1442 0.1510 0.1852 0.1271 (100%) 0.1284 (100%) 0.1434 (100%) 0.1249 (100%) 0.1252 (100%) 0.1397 (100%)
Jul/Ago 10 0.0766 0.0780 0.0837 0.0756 (80%) 0.0793 (40%) 0.0915 (10%) 0.0753 (80%) 0.0792 (50%) 0.0904 (10%)
Sep/Oct 26 0.0895 0.0913 0.1012 0.0893 (61.5%) 0.0949 (26.9%) 0.1088 (15.4%) 0.0903 (53.8%) 0.0957 (26.9%) 0.1085 (30.8%)
Nov/Dec 52 0.0876 0.0905 0.1005 0.0866 (65.4%) 0.0927 (28.8%) 0.107 (25%) 0.0866 (65.4%) 0.0919 (40.4%) 0.105 (42.3%)

Table 26 – Evaluation Comparison between different sets of features considering a dynamic
network of sensors in different pairs of months of 2014. The ML technique used is
GBRT. The percentages in parentheses represent the fraction of sensors for which the
global approach performs better than the local one for the same subset of features
(#Features).
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