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ABSTRACT

The Internet of Things (IoT) is a technological revolution that has generated new opportunities

in academia and industry. In this context, IoT enables the emergence of several new ecosystems

and computing environments. One of these new environments that, in the view of some authors,

is considered of high importance in the context of the IoT devices is Fog and Mist Computing

(FMC). FMC uses computational resources located at the edge of the network, reducing the

latency and bandwidth problems, when compared to the use of Cloud computing platforms

focused on IoT applications, also called Cloud of Things (CoT). Both infrastructures Fog and

Mist computing are located on the edge of the network, however, the Fog computing processing

usually occurs at the gateway layer that connects the IoT devices with the Internet. On the other

hand, Mist computing, although it is a subset of Fog computing, concentrates its processing in the

direct neighborhood of the device. The FMC environment offers new opportunities and benefits,

however, due to the considerable dynamism of the topology and heterogeneity of devices, new

challenges also arise. This thesis focuses on the problem of how to handle with this dynamism

considering the issue of predictive discovery of computational resources in this environment

and, thus, proposing a predictive model based on collective knowledge of previous experiences

of resource allocations used by IoT devices in this ecosystem. In the proposal, the problem

is subdivided into three distinct sub-problems, as follows. The first is how to evaluate from

the client device perspective if it is interesting to use the infrastructure of the Fog/Mist/Cloud

computing. Subsequently, once the answer is positive for Fog or Mist computing, the work

seeks to find mechanisms on how to maintain data in this highly dynamic environment of the

network topology. To address this issue, the work proposes a bio-inspired self-adaptive hierarchy

structure of devices that use epidemic models to address this problem. Finally, the work presents

a prediction algorithm of resources based on collaborative filters combined with an estimator of

temporal availability of the devices that are part of the FMC environment. The evaluation is done

with simulation using the Contiki operating system and the simulator Cooja. The results suggest

the effectiveness of the proposal, even in cases where the FMC environment is composed of few

devices that follow a pattern of permanence behavior within the network.

Keywords: Mist computing. Fog computing. Internet of Things. Collaborative Recommender

systems. Bio-inspired systems.



RESUMO

A Internet das Coisas (Internet of Things – IoT) é uma revolução tecnológica que gerou novas

oportunidades na academia e na indústria. Neste contexto, também emergem diversos novos

ecossistemas e ambientes computacionais. Um desses novos ambientes que, na visão de alguns

autores, é considerado de grande importância no contexto dos dispositivos IoT é a Fog e a

Mist Computing (FMC). A FMC utiliza recursos computacionais localizados na borda da rede,

reduzindo a latência e os problemas de largura de banda, quando comparada com o uso de

plataformas de Computação em Nuvem focadas em aplicações IoT, também chamadas Cloud

of Things (CoT). Tanto a Fog como a Mist estão localizadas na borda da rede, no entanto, na

Fog computing o processamento ocorre geralmente na camada de gateways que conecta os

dispositvos IoT com a Internet. Por outro lado, a Mist computing, embora seja um subconjunto

da Fog computing, concentra o seu processamento na vizinhança direta do dispositivo. Embora

este ambiente de FMC ofereça novas oportunidades e benefícios, devido ao grande dinamismo da

topologia e heterogeneidade dos dispositivos, também surgem novos desafios. Essa tese foca no

problema de como lidar com esse dinamismo considerando o problema de descoberta preditiva

de recursos computacionais neste ambiente, e propondo, assim, um modelo preditivo baseado

no conhecimento coletivo de experiências anteriores de alocações de recursos computacionais

utilizados por dispositivos IoT nesse ecossistema. No trabalho, o problema é subdividido em

três subproblemas distintos, descritos a seguir. O primeiro é como avaliar, do ponto de vista

do dispositivo cliente, se é interessante utilizar a infraestrutura da Fog/Mist/Cloud computing.

Posteriormente, considerando que a resposta seja positiva para Fog ou Mist, a proposta busca

encontrar mecanismos de como manter dados nesse ambiente de alta dinamicidade da topologia

de rede, propondo uma estrutura hierárquica auto adaptativa e bio-inspirada nos dispositivos

e utilizando modelos epidêmicos para tratar essa questão. Finalmente, o trabalho propõe um

algoritmo de predição de recursos computacionais distribuído baseado em filtros colaborativos,

combinado com um estimador de disponibilidade temporal dos dispositivos que compõem o

ambiente FMC. A validação do trabalho foi feita por meio de simulação, utilizando o sistema

operacional Contiki e simulador Cooja, e os resultados sugerem a efetividade das propostas

mesmo em casos cujo ambiente FMC seja muito dinâmico.

Palavras-chave: Mist computing. Fog computing. Internet das Coisas. Sistemas de Recomen-

dação colaborativos. Sistemas Bio-inspirados.
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1 INTRODUCTION

This work proposes algorithms and protocols for predictive computing resource

allocation in the Fog/Mist computing (FMC) environment using machine learning techniques

and bio-inspired systems concepts.

The current Chapter introduces this thesis as follows. Section 1.1 describes the

research context and the motivation of this work as well as the problem addressed. Next, Section

1.2 introduces the thesis goals and main contributions. Section 1.3 presents the hypothesis and

research questions. After that, Section 1.4 presents the research methodology followed during

this thesis work. Finally, Section 1.5 presents the organization of this thesis.

1.1 Contextualization and Motivation

The Internet of Things (IoT) is a revolution that has presented itself as the future of

the internet, as it enables connectivity with a global scope reaching almost every object of our

everyday world. (AAZAM; HUH, 2016) (YI et al., 2015a). Thus, IoT incorporates intelligence

and connectivity into virtually every object that is part of the people environment and creates a

large global network in which people, software, services and ”things” interact among themselves.

In the context of IoT, ”things” are defined as the intelligent devices that have digital

and physical entities and perform some task for humans or for the environment of which they are

part (AAZAM; HUH, 2016).

In this new ecosystem, smart devices can interact, collaborate, and obtain com-

puting resources with other peer devices in their neighborhood or large cloud-hosted server

infrastructures.

Since many IoT smart devices have serious battery, processing, or storage restrictions,

a common approach to IoT application development has been to connect these devices to servers

hosted on a powerful cloud computing infrastructure (YI et al., 2015b). In this model, it

is common for large cloud computing providers such as Amazon AWS1, Microsoft Azure2,

IBM Bluemix3, and Google4 to commercially explore the model Platform as a Service (PaaS)

(PFLANZNER; KERTESZ, 2016).
1 https://aws.amazon.com/iot/
2 https://azure.microsoft.com/pt-br/services/iot-hub/
3 https://console.bluemix.net/catalog/services/internet-of-things-platform
4 https://cloud.google.com/solutions/iot/
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IoT PaaS usually gets, from Infrastructure as a Service (IaaS), computational process-

ing and storage resources in an elastic way, implements several protocols used in IoT, provides

automatic data analysis tools, data visualization tools, integration with other services, and Soft-

ware Development Kits (SDK) to allow connection between the main hardware platforms used

in IoT with the PaaS supplier (BOTTA et al., 2016).

Thus, the adoption of IoT PaaS in the IoT application development process abstracts

the developer from many of the inherent challenges of the IoT environment, thus, reducing risks,

costs and efforts, as well as simplifying the complexities involved in the development of an IoT

application.

Although the use of IoT PaaS in a large number of IoT applications has proved to be

a good and cost-effective solution, there are many IoT applications where the simple introduction

of latency, inherent in cloud computing, makes it impossible to meet design requirements.

Examples of such applications are real-time streaming, real-time gaming, augmented reality, and

real-time applications on connected cars (YI et al., 2015b).

Another relevant issue that should be taken into account when adopting PaaS is

that their use is normally associated with costs of subscription rates, volumes of data trafficked,

processed and stored.

A proposed solution for these questions, suggested by (BONOMI et al., 2012), is Fog

Computing. In their proposal, computational resources are used at the edge of the network, thus

reducing latency and bandwidth problems. Hence, this approach enables numerous opportunities

and new applications. Among the leading applications, according to (YI et al., 2015a), the

following can be cited: Augmented Reality and real-time video analytics; Mobile Big Data;

Content Delivery and Caching; and others. However, Fog computing also brings several new

challenges that, according to Dasgupta (DASGUPTA; GILL, 2017) in their systematic review,

the Fog computing challenges can be broadly classified into four main categories:

• Security - in the environment of Fog computing, it is common to have devices with limited

processing power and battery restrictions. Thus, the use of public key cryptography

becomes inadequate requiring new approaches to ensure a secure environment.

• Data governance - according to IDC FutureScape (MACGILLIVRAY et al., 2017), the

data volume expected by IoT devices by 2020 will be about 44 Zettabytes. Given that

huge data volume generated by IoT devices, a considerable volume of these data needs

to be processed and stored locally, avoiding network transfer bottlenecks and excessive
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storage costs. However, this creates challenges and related research gaps on how the data

owner can monitor and control his data, ensuring confidentiality and data integrity.

• Device Management - the devices that compose the Fog computing infrastructure are

heterogeneous with different processing power, storage capability, and network interfaces.

Thus, configuring these devices is an extremely complex task, the open Fog consortium

recommends the use of machine learning to address these issue.

• Operational, Technology and methods - Although there are several studies of issues

associated with Fog computing and IoT, there is a gap in the literature when the issues

are the implementation of IoT applications in the environment of Fog computing. Thus,

one relevant challenge is the fog enable IoT implementation of application development

support frameworks.

An extension of the idea of Fog Computing is Mist computing, in which the respon-

sibility of running computational resources such as middleware and services goes to devices in

the direct neighborhood of the requesting client device that performs these tasks collaboratively

and in a distributed way (PREDEN et al., 2015)

The research proposed in this thesis focuses mainly on issues related to the third

category of challenges addressing the problem of ”Device Management” in the Fog and/or Mist

(FMC) computing IoT environment with machine learning techniques and collective intelligence.

So, in the context of IoT, the FMC environment provides a series of benefits to intel-

ligent devices, making it possible to provide a low latency, high speed, robust, decentralized and

usually their use. However, conventional mechanisms for discovering and allocating resources in

this environment may not work properly, due to the high dynamicity of the network topology,

heterogeneity of devices and communication links, and constant substitution of devices that are

part of the network infrastructure.

On the other hand, in the view of the advances in the technological development

of the last decades, it is common to increasingly come across complex systems, which usually

involve several types of entities that interact locally and externally. One relatively common

solution approach adopted in this class of problems has been the use of collective intelligence

techniques.

Collective intelligence is an area of evolutionary computing, in which the general

concept is based on the idea that individuals (people, machines, robots, software agents) acting

as a group can be smarter than an individual acting in isolation from the (HEYLIGHEN, 1999)
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group. In other words, there is a synergy associated with the interactions of individuals in the

search for the best solutions to problems. Examples of applications of collective intelligence

algorithms are:

• Systems of recommendations in e-commerce such as Amazon5, submarine, Alibaba

Express6;

• Navigation systems that consider traffic such as Waze7 and Google maps8; and

• Tourist recommendation systems such as Trip Advisor9 and Open Table10 that are special-

ists in restaurants.

In all these systems, the application domain consists of a complex environment and

difficult mathematical modeling. In the collective intelligence approach, information from a

collectivity of individuals is collected, processed and classified to generate information that helps

to optimize the experience of other users in different context. For example, in the case of e-

commerce quoted before, the product recommendation system seeks to maximize user satisfaction

by suggesting products they have some interest in. The system bases these suggestions on

purchases from other users who have a profile similar to the target user.

In the case of navigation systems, the algorithm suggests routes in which the user

minimizes the time of travel to avoid congestion. The system calculates these routes using transit

information (average speed of the route, amount of information, etc.) provided by other users of

the system who collaborate with their information to obtain a global view of the traffic in the

region.

In the case of tourism recommendation systems, the goal is to maximize the tourist

experience by suggesting attractions, restaurants, and hotels that have been well evaluated by

other tourists on previous visits.

Similarly, the FMC environment is a complex environment, difficult to model in

many application contexts. In this way, it is possible to propose methods and algorithms of

collective intelligence in the context of FMC applied to the predictive discovery of computational

resources.

For example, when the scenario of a highway with smart cars sharing computing

resources with each other is considered, it is reasonable to suppose that, on any given weekday,
5 https://www.amazon.com/
6 https://www.aliexpress.com/
7 www.waze.com
8 https://www.google.com/maps/
9 https://www.tripadvisor.com
10 https://www.opentable.com/
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a considerable proportion of vehicles on the highway will be the same ones that will be on the

same highway at similar times and days of the week. This phenomenon happens due to the

characteristic of routines of human activities like working, studying, practicing sports or even

having fun that in general follow patterns of schedules and days of the week. Thus, imagine how

useful it would be for the task of discovering the availability of computational resources if the

cars had the capacity to learn these routines, and therefore instead of executing some protocol of

discovery of computational resources, the vehicle already knows where are the vehicles at that

time and day would have the target computational resource available. Certainly, the data traffic

on the network and time for resource availability would be reduced and allow better optimization.

1.2 Research Goal, Expected Contributions, and Scope

Taking in consideration the issues tackled in Section 1.1, the main goal of this thesis

is then to propose a robust and efficient mechanism for the discovery and predictive allocation

of computational resources for IoT devices in the FMC environment.Thus, the proposal of this

thesis goes towards the construction of mechanisms that allow the use of the FMC environment

as IaaS. In order to achieve this, the following activities should be done:

• Elaborate a literature review of the state of the art related to predictive methods of resource

discovery in the FMC environment;

• Identify the main research gap in the context of the predictive methods of resource

discovery in the FMC environment;

• Elaborate solutions to issues related to the identified gap; and

• Validate the proposed solutions in terms of efficiency and robustness.

At the end, the main expected contributions of this work are summarized as follows:

• A systematic mechanism for discovering computational resources in the FMC environment

that meets constraints imposed on these computational resources;

• A bio-inspired adaptive mechanism of data dissemination within FMC networks with high

dynamicity in topology; and

• A mechanism and prediction model of temporal availability of computational resources in

network FMC with decentralized adaptive architecture based on collaborative filters.

In this work, the efficiency is considered as the index of correctness between the

availability forecast and the real availability of the computational resource in the FMC envi-

ronment. The evaluation of the robustness is based on the ability of the method to support the
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percentage of exchange of the devices that are part of infrastructure and continues generating

acceptable predictions.

It is also important to mention that is out of the scope of this thesis to address security

issues as well as data governance, and power consumption issues of devices when they are using

the proposed mechanisms.

1.3 Hypothesis and Research Questions

The thesis research seeks to validate the following hypothesis: It is possible to make

a predictive discovery and allocation of the computational resources to smart devices in the

context of Fog and Mist Computing using data locally stored, in an efficient and robust manner.

From this hypothesis, the following Research Questions (RQ) are extracted:

• Research Question 1 (RQ1): How can a device systematically evaluate the feasibility of

using computational resources available in the FMC computational infrastructure? Many

IoT applications typically use the Cloud of Things (CoT) as a base IT infrastructure for

computing resources (processing, storage, services). However, it is not always possible to

meet the application’s communication latency or bandwidth requirements, because of the

intrinsic latencies of Cloud Computing. Thus, one of the first questions that the device

must address when it needs external computing resources is what infrastructure (Fog /

Mist / Cloud computing) should use.

• Research Question 2 (RQ2): How to store information in an FMC environment, consid-

ering the ephemerality of device availability in this environment? In Bonomi’s original

proposal of Fog computing, the use of computing resources at the edge of the network usu-

ally resulted from the use of the computational infrastructure that connected the "things"

to the cloud computing environment, usually called the gateway. However, the recent idea

of the Mist computing creates the possibility of using any device that has a computational

resource located in the vicinity of the client device. Thus, the permanence or availability

of these devices within this environment is often ephemeral, so, the use of these resources

requires new strategies and approaches. In this context, this research question seeks to

explore how to use, in particular, the small volume data storage resource considering this

complexity imposed by the FMC environment. This data can be context data, information

shared by other devices, or specific to an application. In particular, in this thesis, the data

that will be shared are the configuration parameters of the predictors of computational
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resources.

• Research Question 3 (RQ3): What would be a way to automatically capture knowledge

of the discovery and use of computational resources in the Fog / Mist computing environ-

ment to make discovery and allocation predictions efficiently and robustly? The FMC

environment can be characterized by the great dynamics of its network topologies and

ephemerality of the devices that comprise it. This characteristic imposes several new

challenges to methods of discovery and allocation of computational resources. Consider-

ing that in many human environments the existence of routines is common, the idea of

extracting knowledge from previous experiences can be a good way of getting around the

challenges imposed by the environment.

To make the understanding of RQ3 easy, an analogy with human experiences can be

done as follows: suppose a person is in a city s/he does not know and wants to eat at

an excellent Italian restaurant nearby. One way to find this restaurant would be to do a

search in the region analyzing the atmosphere and menu of each restaurant found, thus,

choosing what best suits your taste. This method, although it is a rational way of choice,

requires that the person defines a geographic region where s/he will do the search and that

s/he systematically spends time in this task until s/he finds the chosen restaurant. Note

that not necessarily s/he will be able to find, and even finding an Italian restaurant in

the region, there is a possibility that s/he does not like the food. Another more current

and probably more efficient approach is that before the person goes out in search of the

Italian restaurant, s/he consults TripAdvisor and, based on the choice of other users and

their personal preferences, makes her/his choice, addressing thus directly to the chosen

restaurant and therefore reducing the time of the restaurant search. Although there is still

a risk that s/he does not like the food, this way s/he minimizes such risk, since there are

previous experiences of others who have already evaluated the service of the restaurant.

Therefore, the person has at least reduced the search time, since her/his choice used the

previous experiences of other individuals.

Analogously, the study of this last research question seeks to identify methods that allow

the application of this concept of recommender systems in the context of intelligent devices

in FMC environments.
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1.4 Research Methodology

Based on the objectives presented in Section 1.2 and 1.3, the research methodology

of this thesis is defined. In a nutshell, this research is organized into three main phases, and each

phase includes a set of activities, as depicted in Figure 1. These phases are:

(i) Conception, in which the research problem and questions based on the literature review

are refined;

(ii) Development, in which a solution is proposed to the problem addressed; and

(iii) Evaluation, in which the developed solution is evaluated.

Figure 1 – Research Methodology

Source – the author.

For the purpose of building the conception phase, four main activities are listed as

follows:

• The first activity is the Literature Review, which comprises the search for papers

related to the mechanism for the discovery and predictive allocation of computational

resources for IoT devices in the FMC environment. Based on this literature review, it is an
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objective to compile the main research papers related to the proposed thesis and identify

the related research questions. The research, a non systematic review was performed using

online databases, such as Scopus11, IEEE Xplorer12 and ACM DL13. The Mendeley tool

also was used to organize and catalog the selected scientific papers in the research. It is

worth noting that this search, as presented in Chapter 3, involves the thesis’ hypothesis as

well as the related research questions.

• Define and review objectives - during the literature review process, the objectives should

be reviewed for checking their feasibility;

• To identify research gaps in related research themes; and

• To define hypothesis and the research questions that means to divide the problem into

smaller sub-problems for the proposed thesis.

Aiming to implement the development phase, this phase is divided into five main activities listed

as follows:

• In the first place, the literature review needs to be refined focused on each defined research

questions aiming to identify the specifics issues related to research question, challenges

and opportunities, related works, existing state of the art of the proposal solutions, and

reference works.

• To identify the gaps related to research question.

• To propose a solution for at least one of the found gaps for each research question solutions.

This activity is subdivided into two subactivities:

– Elaborate a model of the identified problem of the mathematical format and present

the premises and limits of the model;and

– Propose algorithm or adaptation of existing algorithms to solve the problem ad-

dressed.

• To validate results from proposed solution using simulation experiments in controlled

situations. Analyze and compare the obtained results whenever possible with results of

similar work by identifying the strengths, weaknesses and major contributions of the

proposal.

• Publish the results in congresses/journals specialized in the area of the work to validate

with the academic community.
11 http://scopus.com/
12 http: // ieeexplore.ieee.org
13 http://dl.acm.org/
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It is important to realize that for each research question all described activities are

performed.The development phase will be finalized only when all research questions have been

covered.

In order to implement the evaluation phase, this phase was divided into five main

activities listed as follows:

• The first activity is to consolidate the results obtained with the research questions and to

organize them in order to validate the hypothesis of the thesis;

• To define experiments that allow evaluating the hypothesis of this thesis.

• After this, to define metrics that allow evaluating the results of the proposal considering

the hypothesis of the thesis raised;

• In order to prove or refute the hypothesis, to design an experiment that uses the assumptions

of the hypothesis and defined metrics to generate experimental results that allow to analyze

the hypothesis raised in the thesis; and

• Finally, based on the results of the experiment and analysis of the metrics obtained to

validate or refute the hypothesis raised.

1.5 Structure of the Thesis

This Chapter introduced this thesis by describing the motivation and goals of this

work, and the research questions that the results aims to answer. Also, this chapter described the

research hypothesis and presented the research methodology.

Besides this Introduction Chapter, this thesis is organized in five more chapters, as

follows:

• Chapter 2 (Background) outlines the mains concepts related to this thesis proposal: Edge

computing, Fog computing, Mist computing, epidemic models, collective intelligence,

recommender systems, and collaborative filters. Moreover, it also describes the formalism

used throughout this thesis.

• Chapter 3 (Related Work) compares the proposal of this thesis with studies found in the

literature addressing the three research questions raised in this thesis. The Chapter also

compares the differentials of the proposals presented in this thesis with similar works.

• Chapter 4 (Smart Shadow) presents in details the mechanisms and algorithms proposed

in this thesis, related to some of identified gaps in the three research questions. The Chapter

also elaborates a mathematical model for related problems.
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• Chapter 5 (Evaluation) describes the assessments of the method proposed through ex-

periments focused on to validate the proposals presented in this thesis. The proposed

experiments were performed through simulation in the simulator Cooja, which is part of

the Contiki operating system widely used in IoT and WSN.

• Chapter 6 (Conclusion) summarizes the achieved contributions and discusses some future

research directions.
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2 BACKGROUND

In this chapter, the main concepts and theoretical foundations required to understand

the issues related to the hypothesis of the proposed thesis are presented. Aiming at organizing

area-related topics, the chapter is divided into two Sections, Network infrastructure technologies,

and bio-inspired systems focused on collective intelligence systems.

In the first section, the main concepts, questions, theoretical foundations, and tech-

nologies related to Edge Computing (EC) are presented. In Section 2.2, a brief introduction

about the area of Bio-inspired systems (BIS) is given. Finally, Section 2.3 concludes this chapter.

2.1 Network infrastructure technologies

2.1.1 Cloud Computing

According to the official National Institute of Standards and Technology’s (NIST)

definition, ”cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications and services) that can be rapidly provisioned and released with minimal management

effort or service provider interaction” (MELL et al., 2009).

Cloud computing brings a number of benefits to users, such as they gain scale in

costs and the use of the model of computing as a service allows them only to pay for the resources

they use. Therefore, there is a reduction in large investments in Information Technology (IT)

infrastructure (ARMBRUST et al., 2010).

2.1.2 Edge Computing

A relatively common phenomenon in several areas of human activities is the struggle

between centralization and decentralization (LOPEZ et al., 2015).

Particularly in the area of computing, this phenomenon can also be observed when

analyzed the history of the computer ages. In the early 1960s, the first computers were centralized

by being characterized within the Mainframe era. In fact, this era was predominant until the

1980’s when the first Personal Computers (PC) that emerged the decentralized computing by

popularizing the use of computers for all people. Again, in the 1990’s with the advent of the

Internet, this trend again reversed with the emergence of Cloud Computing, which concentrated
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on computing in large Data Centers.

With Internet of Things that virtually embedded computers in every object of our

daily life, a new, globally distributed computing infrastructure was provided (MADAKAM et al.,

2015). The IoT devices have an embedded computer and their own Internet connection link and

usually generate huge amounts of data that can create network bottlenecks if used with Cloud

Computing (DOLUI; DATTA, 2017a).

After all, a new wave of computing decentralization called Edge Computing (EC)

arises. The EC uses the computational resources of the IoT devices and the network infrastructure

located in the vicinity of the user, creating then an intermediate layer between the end devices

and Cloud Computing. In Bilal’s (BILAL et al., 2018) view, technologies related to EC are still

in their infancy, without any definition of standards, architectures, and protocols yet, similarly

the Cloud computing before its standardization.

The edge computing technologies should not be considered as a substitute for the

cloud paradigm, rather, as shown in Figure 2, these technologies will complement the cloud

and extend cloud services to the edges. Hence, EC complements Cloud Computing primarily

in applications where latency is critical or if the generated data volume is too large, making it

unfeasible for its transfer over the internet.

According to Garcia (LOPEZ et al., 2015), EC encompasses the following elements:

• Proximity is on the edge: In general, the data communications between neighbors nodes of

a network is more efficient than when compared with nodes with intermediaries between

them.

• Intelligence is on the edge: The EC prioritizes connections to locally close of the network

nodes. Thus, the processing power provided by the EC comes from the Central Processing

Unit (CPU) embedded in the IoT devices and component of the network infrastructure.

• Trust is on the edge: In general, sensitive personal and social data is generated and stored

at the edge of the network. Therefore, it is natural that trust management is also carried

out at the edge of the network.

• Control is on the edge: In EC context, the edge nodes performs all coordination and

management of applications.

• Humans are on the edge: Human-centered designs should put humans on the control loop,

so that the EC allows users to retake control of their information.

Despite the existence of a gap in the literature concerning strategies for implementing
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Figure 2 – Cloud Computing versus Edge Computing application areas.

Source – Computer Networks (BILAL et al., 2018)

the EC, according to (DOLUI; DATTA, 2017a), there are basically three EC implementation

paradigms:

1. Fog Computing: The Fog Computing implementation is a decentralized Computing

infrastructure based on Fog Computing Nodes (FCN) placed at any point of the architecture

between the end devices and the cloud. In Section 2.1.3, it will be described this subject in

details.

2. Mobile Edge Computing (MEC): MEC is the edge technology initiated by European

Telecommunications Standards Institute (ETSI) (BILAL et al., 2018) and it is one of

the EC implementations that brings computing and storage to Radio Access Networks

(RAN). This form of EC according to (HU et al., 2015) is a key technology for the new

5G networks having a considerable support from the large telephony companies for its

deployment. Figure 3 gives an overview of the MEC architecture.

3. Cloudlet Computing: The Cloudlets are like a ”Data center in a box” running a virtual

machine, capable of providing computational resources for end-devices and user over a
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Table 1 – Comparation of EC architecture implementation.
Item Fog Computing Mobile Edge Computing Cloudlet Computing
Node devices Routers, Switches, Access

Points, Gateways
Servers running in base
stations

Data Center in a box

Node location Varying between End De-
vices and Cloud

Radio Network Con-
troller/Macro Base Station

Local/Outdoor installation

Software Archi-
tecture

Fog Abstraction Layer
based

Mobile Orchestrator based Cloudlet Agent based

Context aware-
ness

Medium High Low

Proximity One or Multiple Hops One Hop One Hop
Access Mecha-
nisms

Bluetooth, Wi-Fi, Mobile
Networks

Mobile Networks Wi-Fi

Internode Com-
munication

Supported Partial Partial

Source – Author.

Wireless Area Network (WLAN) in their neighborhood. Similarly, the other architectures

implementations of the Cloudlet computing provide low latency and high bandwidth. Still,

it requires host devices with reasonable processing power to run a virtual machine.

In Table 1, a comparison between the technologies of EC implementation architec-

tures, regarding the relevant characteristics of each implementation, is presented.

Figure 3 – Overview of Mobile Edge Computing architecture.

Source – <http://www.accelleran.com/solutions/mobile-edge-computing/>.

http://www.accelleran.com/solutions/mobile-edge-computing/
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2.1.3 Fog Computing

Proposed by Bonomi (BONOMI et al., 2012), Fog computing is a form of imple-

mentation of the EC in which the computational resources are made available to the client using

the network layer called the Field Area Network (FAN) that connects the user to the Internet.

FAN is usually composed of routers, switches, embedded server, and gateways that,

in the literature, are called Fog Nodes. In general, the Fog Nodes are physically located in the

vicinity of the end customer, thus providing high-speed connections with low latency and usually

with one Hop of distance (VAQUERO; RODERO-MERINO, 2014).

Figure 4 shows the Fog Computing architecture and the FAN layer in this architecture,

in the (BONOMI et al., 2012) vision.

Figure 4 – Fog Computing architecture.

Source – ACM MCC ’12
(BONOMI et al., 2012).

According to (YI et al., 2015c), a general definition of Fog Computing would be:”Fog

computing is a geographically distributed computing architecture with a resource pool consists of

one or more ubiquitously connected heterogeneous devices (including edge devices) at the edge
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of network and not exclusively seamlessly backed by cloud services, to collaboratively provide

elastic computation, storage and communication (and many other new services and tasks) in

isolated environments to a large scale of clients in proximity”.

Similarly to other EC implementation architecture technologies, Fog Computing

(FC) has as one of its main motivations the possibility of providing fast responses with low

network latencies to their client devices.

According to (MADSEN et al., 2013), the following motivations are important for

FC utilization: (1) ) geographic decentralization of computing resources; (2) the need imposed

by IoT to incorporate large networks of sensors communication, usually through wireless access;

(3) the requirement to support real-time communication and processing with mobile devices

and IoT devices; (4) the need for supporting heterogeneous devices and interoperability with

different providers; (5) the requirement of real time analytic and interplay with the Cloud.

The proposal of Fog computing, in general, brings several benefits for the IoT

environment. Within these benefits, according to (CHIANG; ZHANG, 2016), the following

items can be cited:

• It brings a substantial amount of data to the end user’s vicinity, therefore reducing unnec-

essary data transfer and improving the privacy of the information;

• It also brings various control and processing functions to the edge of the network, reducing

network response time; and

• Substantial reduction of communications and data traffic on the network by concentrating

communications and data traffic in the vicinity of the user.

In Section 1.1 of Chapter 1, the main challenges of FC, according to (DASGUPTA;

GILL, 2017), are presented. For these authors, the challenges can be grouped into four general

groups, listed as follows: Security, Data governance, Device Manager, and Operational or

Technology and process.

On the other hand, (CHIANG; ZHANG, 2016) group the main challenges of FC in a

slightly different way as follows:

• Fog Interfaces With Cloud, Other Fogs, Things, and End Users -This challenge is closely

related to RQ1 of this thesis. The author brings about the main question ”who does what,

at what timescale, and how to put them back together?”

• Fog-Enabled Edge and Access Networking – Considering the scenario where the FC

provides EC support by providing service on a local network, it is necessary to provide
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temporary security credentials for the Fog’ devices to establish reliable communication,

transparently acting as local servers. Then, it is also necessary to develop a new protocol

stack in the end devices to support these new functionalities.

• Security - In general, distributed systems are more vulnerable than centralized systems.

By analyzing the security for the case of FC, this problem becomes more serious due to

the great heterogeneity of devices. In some cases, even with the reduced numbers of nodes

composing the network, there is no guarantee that the available computational resources

are sufficient to protect their devices.

• Intensification of Device Participation - In some cases of using the IoT applications, it is

expected from client devices to voluntarily participate by sharing their computing resources

(processing, storage, connectivity). However, because of security concerns, they end up not

participating. Thus, it is a challenge to create incentive mechanisms for this participation

in FC environments.

• Convergence and Consistency Local- - Although it is already a typical challenge of

distributed systems to maintain the consistency of local states with the overall state of the

system. In FC, this problem becomes even more challenging when considered a massive,

under-organized, possibly mobile fog system with diverse capabilities, and potentially

virtualized a pool of resources shared unpredictably.

• End-to-End Architectural Tradeoffs Fog - FC enables new possibilities for architecture

solution by creating the possibility of combining from fully distributed systems to full

centralized system architectures, depending on the context of application. This strategy

aims at improving the system resilience through redundancy.

2.1.4 Mist Computing

Introduced by (PREDEN et al., 2015) and (MARTIN, 2015) in 2015, Mist Computing

(MC) is a subset of FC that, according to (LIYANAGE et al., 2016), "represents a paradigm in

which edge network devices, that have predictable accessibility, provide their computational

and communicative resources as services in their vicinity via Device-to-Device communication

protocols. Requesters in Mist can distribute software processes to Mist service providers for

execution".

In the strict definition of FC (BONOMI et al., 2012), the devices do not participate

as providers of computational resources, instead, they act as collectors of data and actuators in
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the physical environment (PREDEN et al., 2015). Thus, Fog nodes assume the role of providing

computational resources to devices on the edge.

The approach of Mist Computing (MC) is to utilize the computational resources of

the IoT devices in the neighborhood physically close to the client device. This proposal decreases

the latency and increases the autonomy of the network. On the other hand, MC implementation

has even more challenges than FC because of the complexity of device interactions, topology

dynamics, and fully decentralized network management (PREDEN et al., 2015).

The MC paradigm is not exactly new, the Mobile Ad hoc Grid Computing (MAGC)

research proposed similar ideas for using the high processing power of the ARM CPU of the

mobile phones for computational process distribution (LIYANAGE et al., 2016). However, in

MAGC, there is a certain degree of device homogeneity when compared to the MC environment

in which different types of devices, processing power, storage and wireless network interfaces

may increase the MC challenges.

Mist nodes can be of various types such as devices based on Raspberry Pi, Contiki

devices, TinyOS devices, Android devices, mobile phone, tablets, smart TVs, handheld entertain-

ment devices, among others.So, Mist is provided by heterogeneous devices at the very edge of

IoT network.

Figure 5 presents an overview of the Mist Computing architecture in the Fog com-

puting context.

According to (YOGI et al., 2017), the following principles must guide Mist Comput-

ing (MC) architecture:

• MC must preprocess the sensor data and provide a service with meaningful data for the

context;

• Services and information must be provided only when requested;

• Network component devices should work collaboratively on the subscriber/publisher

model; and

• Devices should constantly adapt to discover who the service providers are and which data

they have, avoiding static connections between devices.
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Figure 5 – The role of Mist in IoT.

Source – <http://kodu.ut.ee/~chang/mist_computing.html>.

2.2 Bio-inspired Systems

2.2.1 Overview

Analyzing Life from a purely scientific point of view, it is relatively simple to

conclude that it is an extremely complex phenomenon.

The National Aeronautics Space Agency (NASA) through its program of exobiology

uses the definition of Life proposed by its researchers Horowitz and Miller (1962), and later,

followed by Joyce (1994) as (LUISI, 2006): "A self-sustaining chemical system capable of

undergoing Darwinian evolution."

The life forged by some millions of years of evolution allowed the emergence of

living organisms. Taking a look at living organisms through an engineering view, it is easy to

notice that besides being complex systems, they exhibit several desirable characteristics such

as evolution, adaptation and fault tolerance, which are proven to be difficult to realize using

traditional engineering methods (MANGE; TOMASSINI, 1998).

http://kodu.ut.ee/~chang/mist_computing.html
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The Bio-inspired systems are an interdisciplinary area of science, which study of

the functions, characteristics, and phenomena observed in the living beings, in order to apply

such knowledge in the conception of new techniques, as well as to creation of new devices

and machines. The fundamental idea is: "If nature took millions of years to improve their own

mechanisms, why not to copy them?"(SOUZA, 2016).

There are many examples of bio-inspired systems used to solve engineering problems,

among which it is possible to mention: velcro inspired by the natural mechanism of seed

dissemination; swimsuits for competitions and ship hulls inspired in shark skin to reduce

aerodynamic drag; radar and sonar systems inspired by bats and dolphins; designs of wings

based on the osseous systems of birds among others.

Similarly, in the area of Computer Science, it is possible to find several applications

of bio-inspired concepts in solving problems of optimization, robotics, autonomous systems,

image recognition, and classification, among others. As an illustration, it can be highlighted

the algorithms and techniques listed below: Neural networks, genetic algorithms, leaping frog

algorithm, ant colony optimization, particle swarm optimization, Bacterial foraging optimization,

cuckoo search, epidemic models, artificial bee colony, firefly algorithm, Bat algorithm, flower

pollination algorithm and artificial plant optimization (KAR, 2016). Figure 6 presents the

evolution of these approaches throughout the years.

Figure 6 – The Bio-inspired algorithms and techniques along the years.

Source – Expert Systems With Applications 59 (2016) 20–32 (KAR, 2016)
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2.2.2 SIR Epidemic Models

The SIR Epidemic Models or so-called Susceptible/Infective/Removed (SIR) models

are mathematical models which were developed to predict the spread of viral or bacterial

infections with the person-person transmission mechanism within a population (ANDERSSON;

BRITTON, 2012a). In general, these models are reasonably accurate to predict and model the

behavior of infections of diseases such as influenza, sexually transmitted diseases (STD), viral

infections such as measles, mumps, rubella, among others.

Although the SIR models were developed with the purpose of application to with

the purpose of application to the health area, their theoretical basis is robust enough to extend

their application to other areas where different problems could be modeled according to the

assumptions of the SIR model.

In the early 2000s, Newman (NEWMAN, 2002) argues that epidemiological models

can be solved exactly on a wide variety of biological networks, Social networks, and technological

networks. Later, Keeling (KEELING; EAMES, 2005) explains the link between SRI and

networks by exploring – in different network topologies - the application of SRI models, in order

to study important parameters of such networks in different contexts like: propagation of ideas

in social networks, evolution and spread of ideas and innovations in societies, and infections in

the context of public health.

In general, the SRI epidemiological models can be mathematically modeled in two

different ways: deterministic or stochastic (BRITTON, 2010).In this Section it will be provided

a brief explanation of the deterministic SRI epidemic models by presenting their premises

theoretical conceptualization and limitations. Stochastic SRI epidemic models are not part of the

scope of this thesis.

The deterministic general epidemic model proposed by Bailey (BAILEY et al., 1975)

presumes the following premises:

(i) The individuals of a population are either susceptible (S), infected and infectious (I) or

recovered and immune (R);

(ii) The population is closed, that is, it is assumed that there are no births, deaths, immigration

or emigration during the study period;

(iii) Only susceptible(S) individuals can get infected(I) and, after having been infectious for

some time, an individual recovers and becomes completely immune(R); and

(iv) The population mixes at random.
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Then, considering that s(t), i(t), and r(t) are respectively the percentages of suscep-

tible, infected, and recovery individuals of the population at instant t. Thus, it can be asserted

that the sum of all part is one like it is showed at equation 2.1.

s(t)+ i(t)+ r(t) = 1 (2.1)

Given that β and γ are respectively the average infection rate per individual and

recovery rate, in the proposed model, the differential equations define the infection rates 2.3 and

the decrease of susceptible individuals 2.2.

ds(t)
dt

=−β ∗ s(t)∗ i(t) (2.2)

di(t)
dt

= β ∗ s(t)∗ i(t)− γ ∗ i(t) (2.3)

The solution to this system of differential equations 2.1,2.2, and 2.3 is non-analytically

tractable (ARRATIA A., 2017). However, it is possible to infer the behavior of s(t), i(t) and r(t)

over time by analyzing the dynamics of the system.

Given the initial conditions of the system in which the total number of individuals is

N, the s(0)' N, i(0) = ε where 0 < ε << N, and r(0) = 0.

Initially, the population of infected i(t) is very small (ε), its value begins to grow

exponentially - therefore decreasing the number of susceptible individuals s(t) in equal proportion.

After some time, infected individuals recover and decrease the growth rate of i(t) that tends to

reach a maximum, decreasing after that. On the other hand, the number of recovery individuals

tends only to increase and approximate to N, considering the premise that there are no deaths

during the time of analysis. Figure 7 illustrate the behavior of the functions s(t), i(t), and r(t)

over time.

Although the standard SRI epidemic model has some limitations, such as assuming

that the recovery time is the same for all individuals in the population, regardless of immuno-

logical response differences, it is assumed that all individuals in the population are perfectly

mixed. That means the likelihood of infection is the same for all individuals. The model is the

starting point for more sophisticated models, such as SRI stochastic epidemic models or even

simplifications - as the case of the SIS epidemic model in which individuals, after infected, do

not recover from the infection (DIEKMANN; HEESTERBEEK, 2000).
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Figure 7 – The solution shape of s(t), i(t), and r(t) in a epidemic SRI model.

Source – <https://www.cs.upc.edu/~CSN/slides/11epidemic.pdf> (ARRATIA A., 2017)

2.2.3 Collective Intelligence

The term Collective Intelligence (CI) has become popular, once the success of

Internet big companies like Google (1998) and Netflix(2006) consolidates it, as they have used

CI concepts to create differentiated products in the market. However, CI is an active field of

research that predates the web. Researchers from different fields like sociology, mass behavior,

and computer science have previously made important contributions to this area (ALAG, 2008).

According to Heylighen (HEYLIGHEN, 1999), Collective Intelligence has its general

concept based on the idea that a group of individuals (people, machines, robots, software agents)

acting as a group may be smarter in solving problems than an individual acting in isolation way.

There are many examples where CI concepts help companies or organizations to

offer differentiated products to their customers. The following pages will discuss some famous

cases, identifying the way in which CI is used in their products. Among the famous examples of

using CI in its products, it can be highlighted cases like Trip Advisor, Waze, Amazon, Google,

https://www.cs.upc.edu/~CSN/slides/11epidemic.pdf
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Netflix, and Wikipedia.

In this Section, the first three cases will not be commented, because they have been

previously explained in Chapter 1. Thus, only the last three successful stories are discussed.

In Google’s case, even though there were already large Internet search companies at

the time, the company innovated the market, launching a search engine with results so superior

to its competitor that basically dominated the market in the following years. One of the big

differences in the quality of their searches was the fact that their search engine chose the results

based on the number of links that the page had, thus using the collective knowledge of other web

page developers. (SEGARAN, 2007).

On the other hand, Netflix - an internet streaming service company based on the

concept of a monthly subscription instead of individually renting any movies (WIKIPEDIA,

2018a). The company applies the CI concepts on your movies recommendation system for their

subscribers. The Recommender system utilizes the evaluation of its subscribers on watched

movies to suggest different movies not watched by them. In this way, the suggestions of each

subscriber depending on the movies he or she watched and liked, as well as the evaluation of

other subscribers with similar taste (SEGARAN, 2007).

Another interesting example is the case of Wikipedia, considered today the largest en-

cyclopedia in the world with 5,598,527 articles and 44,597,037 pages and more than 33,236,259

users (WIKIPEDIA, 2018b). This whole knowledge base has been collaboratively built by

editors and reviewers, but not necessarily specialists, in the article areas. According to a study

conducted in 2005 by Scientific journal Nature (GILES, 2005), that compared the content of

Wikipedia articles and the British encyclopedia by submitting it to a specialist group, it was

shown that the accuracy is very close, and in all reviewed articles were found 162 and 123 errors

by reviewers, from Wikipedia and Britannica respectively.

From a purely conceptual point of view, CI does not need technological tools for

its implementation. However, it is a fact that the Internet has uniquely and unprecedentedly

enabled the effective use of CI concepts due to its enormous amount of users and facility in

communication between them (LYKOURENTZOU et al., 2009).

According to (LYKOURENTZOU et al., 2009) CI systems can be divided into two

categories:

• Passive CI system - In this type of system the user follows his behavior and action in a

normal way without any modification of his actions by the existence of the system. For
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example, the Google search engine that ranks the pages based on the number of links

pointing to it. Page developers will continue to develop the pages the same way they would

develop without Google’s rankings system.

• Active CI system - Unlike passive systems, in this type of system users do not have a pre-

existing behavior before the system. The system is the inducer of the way in which users

will collaborate with each other. In the same category, users can still collaborate in three

different modes: collaborative, competitive or hybrid. In the collaborative mode, the users

collaborate aiming at the individual and community goals. In the case of the competitive

mode, the users compete with each other in order to reach the best solution. Finally, the

hybrid mode is a mix of the two forms where there is competition and collaboration. A

real example of an active CI system is Wikipedia.

In Table 2, some CI systems and their respective classifications and characteristics

are showed.

Table 2 – Different types of CI systems.

CI system Wikipedia Competitive prob-
lem solving compa-
nies

Vehicular network coordination

Type Active collab-
orative

Active competitive passive

Set of user ac-
tions

Contribute
knowledge

Contribute ideas Accelerate

System state Article quality Solutions received vehicle distances
Community
Objective

High article
quality

Best possible solu-
tion

Minimize traffic congestion, Max-
imize vehicle safety of the net-
work

Individual
objective

Self fulfill-
ment

Monetary compen-
sation

Prompt reaching of one’s destina-
tion low gas consumption maxi-
mize safety of individual vehicle

Source – ACM-MEDES ’09 Proceedings of the International Conference on Management of Emergent Digital
EcoSystems (LYKOURENTZOU et al., 2009).

2.2.4 Recommender Systems

Since the earliest works in the mid-1990s, Recommendation Systems (RS) (HILL et

al., 1995), (RESNICK et al., 1994), (SHARDANAND; MAES, 1995) are a research area that

has attracted reasonable interest from academia and industry mainly for its abundant practical



42

applications (ADOMAVICIUS; TUZHILIN, 2005).

RS is one of the best ways to apply CI concepts to the real world (ALAG, 2008).

There are several real examples of RS applied to the suggestion of books, films, products, music,

scientific articles, websites, among others. Nowadays, the use of RS applications in e-commerce

wide, regarding it as a key to enable technology (JANNACH et al., 2010).

In fact, there are various reasons to explain why the companies and service providers

may want to exploit this technology (RICCI et al., 2011):

• Increasing the number of sold items: Since the recommended items are based on the

user’s preferences, it is very likely that s/he will recognize - with the use of RS - that the

suggested items meet her/his needs, thus increasing her/his chances of buying new items

suggested by the system.

• Selling more diverse items: Another important function of an RS is to present to the

user items that are not necessarily the most popular ones. However, there is a reasonable

likelihood of the user liking and buying them, therefore allowing RS to offer more diversity

of items;

• Increasing user satisfaction: A well-designed RS can enhance the user’s experience

by suggesting interesting, relevant recommendations. On that account, improving the

subjective evaluation of the system by the user.

• Increasing user loyalty: An essential factor that makes a user loyal to a service or product

is highly related to the way he feels treated and differentiated in his service while he or

she is using the service or product. On the other hand, a relatively common feature in RS

is the utilization of customer history and, based on it and other factors, the generation of

its recommendations. So this fact makes it possible for RS to refine its suggestions more

and more, as the user utilizes the system. This way, the RS may be generating better and

more personalized recommendations, thereby enhancing the customer’s loyalty.

• Better understanding of what the user wants: Another benefit of the use of RS is to provide

a reasonable database for the service provider, which are the preferences of their clients.

The use of this data helps with the definition of management strategies, marketing and

policies of relationship with customers.

According Balabanovi (BALABANOVIĆ; SHOHAM, 1997), RS can be classified

into three categories based on how the recommendations are made, which are listed as follows

(see also Table 3):



43

• Content-Based Recommendations: RS uses items preferred by the user in the past to

recommend items similar to these items but not yet chosen by him in the past;

• Collaborative recommendations: RS searches for items chosen by users with similar taste

to the user, in order to recommend him the right suggestions; and

• Hybrid approaches: These methods combine collaborative and content-based methods.

Table 3 – Classification of Recommender Systems
Recommendation
Approach

Recommendation Technique
Heuristic-based Model-based

Content-based
TF-IDF(Information retrieval)
Clustering

Bayesian classifiers
Clustering
Decision trees
Artificial neural networks

Collaborative

Nearest neighbor
(cosine, correlation)
Clustering
Graph theory

Bayesian classifiers
Clustering
Artificial neural networks
Linear regression
Probabilistic models

Hybrid

Linear combination of
predicted ratings
Various voting schemes
Incorporating one component as
part of heuristic for the other

Incorporating one component as a
part of model for the other
Building one unifying model

Source – IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 6, JUNE 2005
(ADOMAVICIUS; TUZHILIN, 2005)

The Content-Based (CB) RS has as its basic principle the use of previous evaluations

of the user in different items, estimating the score of items similar to those evaluated items. They

do that by using a measure of similarity between them (PAZZANI; BILLSUS, 2007). Thus, this

measure of similarity is made based on the content of items that can be structured as a set of

features on the item, or unstructured in a free description of the item (JANNACH et al., 2010).

In the literature, there are several approaches and techniques used to implement

content-based RS. Among them, it can be mentioned (ADOMAVICIUS; TUZHILIN, 2005):

traditional heuristic forms based on Term Frequency/Inverse Document Frequency (TF-IDF)

(SALTON, 1989) measure, or similarity of cosines, Bayesian Classifiers (MOONEY et al., 1998)

(PAZZANI; BILLSUS, 1997), machine learning techniques including clustering, decision trees,

and artificial neural networks (PAZZANI; BILLSUS, 1997).

Figure 8 presents a diagram of inputs/outputs used for Content-based RS.

Unlike content-based recommendation methods, the collaborative recommendation
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Figure 8 – Diagram of Content-based RS inputs.

Source – Recommender Systems An introduction (JANNACH et al., 2010).

systems (or collaborative filtering systems) predict the usefulness of items for a particular user

based on the previous evaluations of other users with similar taste to that item (ADOMAVICIUS;

TUZHILIN, 2005). Similarly to the content-based approach, the collaborative approach also

needs a similarity metric; however, it is necessary to compare items rather than just users to

estimate the usefulness of an item to a particular user.

According to (BREESE et al., 1998), algorithms of collaborative recommendations

can be grouped into two general classes: memory based (or heuristic based), and model-based.

Memory-Based Algorithms use heuristics which, based on all classified items and a measure

related to the similarity between the user and other users, make predictions of the user’s utility

for the item. In this class of memory based RS, the techniques commonly used are the Nearest

neighbor (cosine, correlation), Clustering, and Graph theory (BREESE et al., 1998) (DELGADO;

ISHII, 1999) (NAKAMURA; ABE, 1998).

Unlike collaborative memory-based RSs, the collaborative model-based RSs uses

machine-learning and statistical techniques to learn a model, based on previously-evaluated user

assessments. Again, there are several approaches used to learn the model, among which it is

possible to mention: probabilistic models, cluster models and Bayesian networks proposed by

(BREESE et al., 1998), a statistical model for collaborative filtering (UNGAR; FOSTER, 1998),

machine learning techniques such as artificial neural networks coupled with feature extraction
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techniques (BILLSUS; PAZZANI, 1998).

Figure 9 presents a diagram of inputs/outputs used for Collaborative RS.

Figure 9 – Diagram of Collaborative RS inputs/outputs.

Source – Recommender Systems An introduction (JANNACH et al., 2010).

Hybrid methods combine content-based methods with collaborative methods to help

avoid limitations of both models (BALABANOVIĆ; SHOHAM, 1997) (CLAYPOOL et al.,

1999) (BASU, 1998) (SCHEIN et al., 2002) (PAZZANI, 1999).

In this Hybrid RS mode, it is possible to create the hybrid approach in different ways.

In Figure 10, the diagram of the main inputs and outputs of a hybrid approach are illustrated.

According to (ADOMAVICIUS; TUZHILIN, 2005), the different ways to create the

hybrid approach are discussed and summarized as follows:

• Combining Separate Recommendations: In this approach, two RSs are implemented

independently, one being content-based and the other being collaborative; a quality rec-

ommendation metric is also defined for each RS (BILLSUS; PAZZANI, 2000). The final

evaluation is usually a linear combination of these evaluations with the highest score in the

quality metric (CLAYPOOL et al., 1999).

• Adding Content-Based Characteristics to Collaborative Models: In this approach, it is

implemented an RS based on traditional collaborative techniques. However, it is keeped

for each user their profile related to the content. In contrast to the collaborative RS, that
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Figure 10 – Diagram of Hybrid RS inputs/outputs.

Source – Recommender Systems An introduction (JANNACH et al., 2010).

uses previous evaluations to estimate the degree of similarity of users in this modality, the

content-based profile is used and uses this profile to evaluate the similarity (PAZZANI,

1999) bringing benefits when compared to traditional collaborative approaches (GOOD et

al., 1999).

• Adding Collaborative Characteristics to Content-Based Models: This technique consists

on a content-based RS, yet it is applied a technique of dimensionality reduction in the

user’s profile, such as Latent Indexing Semantics (LIS) (SOBOROFF; NICHOLAS, 1999),

and on this reduced profile it is possible to create a collaborative view of groups of user

profiles.

• Developing a Single Unifying Recommendation Model: This technique proposes a new

model that is different from traditional collaborative and content-based RS models. Among

the techniques classified in this category, it can be highlighted: single rule-based classifier

(POPESCUL et al., 2001), probabilistic latent semantic analysis (HOFMANN, 1999),

and Bayesian mixed-effects regression models combined with Markov chain Monte Carlo

methods for parameter estimation and prediction (CONDLI et al., 1999).
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2.2.5 Collaborative Filters

Collaborative Filters (CB) is an algorithm used in RS that bases its predictions and

recommendations on the classifications performed by other users of the system (EKSTRAND et

al., 2011). Thus, CB based its prediction on those patterns which do not rely on an item or user

attributes (MACKEY, 2009).

The main idea behind this method is the assumption that users agree on quality and

relevance in some items will probably agree on other items as well(EKSTRAND et al., 2011).

According to (MACKEY, 2009), the main function of Collaborative Filters (CF) is to

discover patterns in the behavior of the observed preferences (eg. purchase history, item rankings,

click counts) in a community of users and based on these patterns predict new preferences.

Formally, the CF problem can be described as given the set of users u ∈ {1, ...,U}

and the set of items i ∈ {1, ...,M} and let τ be the training set with real preference values ru,i for

some of the user-item pairs (u, i). Let’s assume R is a sparse matrix where the rows represent the

items, the columns the users, and each element ri,u is the evaluation given to item i by user u.

Note items not evaluated are indicated by the symbol ’?’.

R =


r11 ? r13 . . . x1M

? r22 ? . . . ?

. . . . . . . . . . .

rM1 rM2 ? . . . rMU


The problem aims at predicting unobserved preferences (’?’) of the test set Q with

pairs (i,u) not in τ .

One metric to evaluate the quality of the prediction is to compare the predicted value

of preference r̂i,u with the value of the true preference ri,u in the set Q. This can be done by

calculating the Root Mean Square Error (RMSE) defined as:

RMSE =

√√√√ 1
|Q| ∑i∈Q

u∈Q

|riu− r̂iu|2 (2.4)

Another possible metric to evaluate the quality would also be the Mean Absolute

Error (MAE) defined as follows:

MAE =
1
|Q| ∑i,u∈Q

|riu− r̂iu| (2.5)
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An important point to consider when working with CF is that some users systemati-

cally evaluate with high preference values and some items are also evaluated with high utility

values. Being so, a good practice to be considered is to centralize the data prior to the application

of any CF algorithm, this can be done by removing Bias from the evaluations (EKSTRAND et

al., 2011). Another relevant point about CF is that in the matrix R there may be many items with

little or no previous classifications; this way a possible classification would be the global mean

(µ) of the classifications of all the classified items.

Thus, let’s define some important system parameters:

Global mean rating :

µ =
1
|τ| ∑i,u∈τ

riu (2.6)

Item’s mean rating :

bi =
1
|R(i)| ∑

u∈R(i)

riu (2.7)

where R(u) is the set of users who rated item i.

User’s mean rating :

bu =
1
|R(u)| ∑

u∈R(u)

riu (2.8)

where R(u) is the set of items rated by user u.

Then, to remove the biased term from each rating, it is must use the equation 2.9,

before applying to CF algorithm.

r̃iu = riu−biu (2.9)

In order to adjust the values of the user’s utility, estimate it so that when there is

few or no data the value should tend to the global mean. When the number of evaluations is

large the value tends to the user’s mean. Thus, (FUNK, 2006) proposed the equation 2.10 where

α is a damping term to adjust the degree of shrinkage. In his research, (FUNK, 2006) found

empirically that 25 was a useful value for the damping term.

b̃u =
α

α + |R(u)|
∗µ +

|R(u)|
α + |R(u)|

∗Bu (2.10)

There are several approaches to address the CF problem but in general, these forms

can be classified into two broad categories: Non-Probabilistic Algorithms and Probabilistic
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Algorithms (Naive Bayes Classifier, and EMX algorithm) as shown in Figure 11. In this Section,

probabilistic algorithms are not discussed, since they are not used in this thesis.

Figure 11 – Collaborative Filtering methods.

Source – Collaborative Filtering - University Pittsburgh (SYN, 2005).

Among the non-probabilistic algorithms, the methods most used are Classification

/ Regression methods, K Nearest Neighbor Methods (User-Based Nearest Neighbor and Item-

Based Nearest Neighbor), and Dimension reduction.

A possible approach to CF is to address the problem as several isolated Classi-

fication/Regression problems organized by item. An advantage of this proposal is that the

Classification/Regression problem is a well-known problem having many good prediction al-

gorithms available. However, it can be computationally costly depending on the number of

items.

In the Classification/Regression proposal, the following steps described must be

followed to predict one rating riu for item i for user u:

1. Choose one Classifier/Regression algorithm, treating each user as an incomplete vector of

user’s ratings for all items except i;

2. Train separate predictors for each item; and

3. To predict riu for user u and item i, apply item i′s predictor to vector of user u′s incomplete

ratings vector.
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Another very popular CF approach is K Nearest Neighbor (KNN) (RESNICK et al.,

1994) (SHARDANAND; MAES, 1995) (HILL et al., 1995). In such method, it is considered

rating measured by a degree of similarity of users and/or items, in order to calculate the prediction

of the evaluation of item i for a user u.

Depending on which group (users or items) it is used to evaluate the similarity, two

different modalities can be performed using the KNN method: user-based or item-based.

In the user-based approach, the main idea is that users with similar ratings on many

items are likely to agree on an item not evaluated by one of them. This way, the prediction is

a rate measured by the similarity of K neighbor users from u, where K is a previously defined

integer.

The equation 2.11 expresses this concept in a mathematical form calculating the

prediction rating of user u about item i.

pui = r̄u +
∑u′∈N s(u,u′)∗ (riu′− r̄u′)

∑u′∈N s(u,u′)
(2.11)

where N ⊂U is defined as neighbor of u, U is the set of users, and s(u,u′) is the

similarity function between u and u′.

Normally three similarity metrics are used to measure 2.12, 2.13, and 2.14 this a

degree of similarity between users defined as following:

1. Cosine similarity

s( #»u , #»u ′) =
#»u · #»u ′

| #»u || #»u ′|
(2.12)

2. Pearson correlation coefficient

s( #»u , #»u ′) =
( #»u −mean( #»u )) · ( #»u ′−mean( #»u ′))
|( #»u −mean( #»u )||( #»u ′−mean( #»u ′)|

(2.13)

3. Inverse Euclidean distance

s( #»u , #»u ′) =
1

|( #»u − #»u ′|
(2.14)

These metrics assume complete vectors, so it is possible to compute it only over a

subset of items rated by both users.

Similarly, in the item-based approach, the main idea is users rate similar items

likewise. Thus the prediction is a weighted average by the similarity of K neighbor items from i,

where K is a previously defined integer.
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The equation 2.15 expresses this concept in a mathematical form calculating the

prediction rating of user i about item u (SARWAR et al., 2001).

pui =
∑ j∈S s(i, j)∗ riu′

∑ j∈S s(i, j)
(2.15)

where S⊂ I defined as similar items of i, I is the universe set of items, and s(i, j) is

similarity function between i and j.

The similarity functions are the same as those used in the user-based method calcu-

lated according to the equations 2.12,2.13, and 2.14.

In many real scenarios, it is common for the number of users and items to be very

large, therefore generating a matrix R of very high dimensions. Thus, a technique widely used in

Machine Learning (ML) to reduce the computational complexity of the problem is to reduce the

dimensions by using the Singular Value Decomposition (SVD) theorem (GOLUB; REINSCH,

1970). Intuitively this reduction would be equivalent to grouping with K similar user groups and

K groups of similar items as well, instead of dealing with the totalities of users and items.

Applying the SVD theorem for the matrix Rmxn can be written in the form of a

factorization showed at the equation 2.16.

R =UΣV ∗ (2.16)

where:

• U is an m×m matrix;

• Σ is a diagonal m×n matrix with non-negative real numbers on the diagonal;

• V is an n×n matrix;

• V ∗ is the conjugate transpose of V; and

• the columns of U,U?,V, and V ? are orthonormal bases.

The dimensionality reduction consists on truncating the Σ matrix using only the

largest singular k values to yield ΣK , thus, generating an approximation of the matrix R see

equation 2.17.

Computing the SVD of the ratings matrix results in the following factorization,

with m = |U |, n = |V |, and Σ a k× k diagonal matrix. Figure 12 illustrates the dimensionality

reduction process.
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Figure 12 – Dimensionality reduction process.

Source – Collaborative Filtering Recommender Systems (EKSTRAND et al., 2011).

R≈UΣV ∗ (2.17)

In the literature, there are several forms to calculate SVD for complete matrices and

with missing elements. Among the main ones, it can be highlighted: Expectation-Maximization

(EMX) algorithm, Alternating Least Squares (ALS) algorithm, and Gradient descent algorithm.

In this Section, it will be not detail these methods because SVD in not a scope this thesis.

2.3 Summary

This Chapter presented the background of this thesis. First, Network topics are

introduced the related to network environment studied in the thesis. Next, the main related to

the topics involved in this thesis work, which are Edge Computing, Fog Computing, and Mist

Computing, are described. Besides that, a set of challenges related to the before mentioned topics

is presented.

Regarding the Bio-inspired systems, this Chapter first introduced the main concepts

and ideas, highlighting its importance of this kind of system in the Computer Science area. After

that, it was presented the SRI Epidemic models used by us in a data distribution method, which

is proposed in this thesis for handling the dynamism of network topology in FMC environment.

The Recommender system was addressed by introducing the concepts of collective

intelligence. Furthermore, it was depicted how the Recommender system applied Collective

Intelligence concepts, including how they are classified. The Collaborative Filtering is important
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to support the development of the Collective Recommender systems engines.

The collaborative filtering technique will be used in the thesis to be the tool to capture

knowledge of the computational resources and devices that are part of the network environment

being studied.
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3 RELATED WORK

This chapter details the literature review conducted by a research on studies con-

cerning issues related to the research questions (RQ1, RQ2 and RQ3) of this thesis, which are

presented in Chapter 1. The searches are done using the databases and search tools available

from IEEE Xplore, ACM Digital Library, ScienceDirect and Google Academics.

The following sections present the studies found in the literature: Section 3.1 presents

the studies related to IoT network infrastructure selection to provide computational resources;

Section 3.2 discusses the studies concerning the data dissemination in the IoT environment

domain; Section 3.3 presents the work related to the use of the Recommender System in IoT

environment for service of computing resource allocation; and, finally, Section 3.4 concludes

this chapter.

3.1 IoT environment selection (RQ1)

In this Section, scientific work were searched in a similar way to the presented

algorithms or models of architectures - help in choosing the best computational infrastructure

to get computational resources in Cloud, Fog or Mist computing or combination of them. This

issue refers to the first question of research for this thesis.

In general, the selected related works can be grouped into four categories.

The first category is composed of articles intended to serve as a design guide or

reference for IoT designers. In particular, the environment at the edge of the network. In this

category, the following papers can be highlighted:

In Shi et al. (SHI et al., 2015) focus on proposing a model of integration between

Fog and cloud computing through the CoAP Protocol in a P2P-style architecture, distinct from

the traditional hierarchical proposal. However, the work does not provide feasibility analysis or

limitations of the use of computational resources in Cloud or Fog computing.

In Aazam et al. (AAZAM; HUH, 2016), the authors feature computing paradigms

for the provision of computer resources used in IoT (Fog, Cloud or Hybrid) discussing the

strengths, weaknesses, architectures and issues of each approach. The work is a guide for IoT’s

application designers. However, the article does not propose a precise mechanism that can be

evaluated by devices for choosing the best paradigm according to the context of the environment.

In Bruin et al. (MASIP-BRUIN et al., 2016), authors make an extensive discussion of



55

the challenges in the open Fog computing models, defending an architecture with the introduction

of a new management layer that should coordinate resources between Fog and Cloud computing.

However, the proposal is not a model of decision and an architectural model that the authors

suggest taking advantage of the best capabilities of both platforms.

In Pereira et al. (PEREIRA et al., 2017), the authors do a practical study and

characterization of latency in an e-health IoT application by using a mobile gateway for e-health

sensor data capture, that relies on ETSI M2M communications for sending to the openEHR

platform for storing and exposing health records. Nevertheless, the focus of the paper is the

characterization of latency in each phase of architecture, not in its scope selecting computing

resource on FMC environment.

In Dolui et al. (DOLUI; DATTA, 2017b), the authors present Edge Computing as

a new paradigm, discussing the major forms of its implementations: Fog Computing, Mobile

Edge Computing, and Cloudlet Computing. In this work, the authors also compare these

implementations and suggest a guide for choosing one of them, depending on design requirements.

However, the article’s focus is to serve as a guide for the designer, not proposing any solutions

that fit dynamically depending on context.

In the second category of work, the main focus is to create a model that allows,

through some optimization technique, to optimize one or several variables of the study network

environment, such as latency or cost. In this category, the following works can be highlighted:

Aazam et al. (AAZAM et al., 2016) present a model of resource allocation in

probabilistic Fog Computing to enable better resource management, obtaining good results in

a practical experiment. However, the proposed model does not consider limitations of latency

introduced by a Fog computing environment topology.

The work of Deng et al. (DENG et al., 2016) proposes a mathematical model

that considers energy consumption and delays in Cloud and Fog computing environment. The

proposed model, validated through simulations, suggests an optimal allocation of resources

between the Cloud and Fog computing. However, the proposed optimization is made centrally

and does not consider issues such as the monetary cost of CoT.

In Sarkar et al. (SARKAR, 2016), the authors propose a mathematical model for Fog

computing, and compare it with the traditional model of cloud computing focusing on energy

consumption. The authors show that applications that using part of the infrastructure in fog

computing can save about 40% of energy expenditure. However, the authors do not explore other
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constraints typically found in some IoT applications.

In the third category, it is presented works that propose as a solution a combination

of computational resources provided by Fog and Cloud computing. In this line of research the

following works can be highlighted.

Sharma et al. (SOUZA et al., 2016) propose a resource optimization model using a

combination of Fog computing and Cloud computing. In this proposal, authors further subdivide

Fog computing into two additional layers: one with little latency, and another with average

latency. This proposal seeks to optimize the problem of resources, minimizing the total system

delay restricted to the condition of the requested resources. Nevertheless, like the previous model,

this proposal also does not consider issues associated with the costs of the services of the CoTs

and is optimized centrally.

Qui et al. (PHAM; HUH, 2016) address the problem of task scheduling between Fog

and Cloud computing, considering the priority of tasks, topological distribution of nodes of Fog

Computing and costs associated with the services of the CoTs. However, the work cannot be

applied on a large scale and does not cover the use of other features of Fog computing in addition

to processing.

In klein et al. (KLEIN et al., 2012), the authors propose a service combination model

in an almost optimal solution that using genetic algorithms. The presented results suggest that

the proposal presents good results and that scale better than similar solutions. However, the

approach presented is centralized and again does not consider specific requirements of a client

device.

In Wang et al. (WANG et al., 2016), the authors propose the network-aware cloud

service composition approach, named NetMIP that formalizing the service composition goal as a

multiobjective constraint optimization problem. The proposal, unlike similar works, considers

the impact on network resource consumption and aim to find an optimal service composition

solution with minimal network resource consumption and realistic QoS optimality. However,

although some concepts of the proposal can be applied in other network environments, the focus

of the study is cloud computing.

In Yadwadkar et al. (YADWADKAR et al., 2017), the authors present PARIS, a

data-driven system that uses a novel hybrid offline and online data collection and modeling

framework to provide accurate performance estimates with minimal data collection. The proposal

is able to predict workload performance for different user-specified metrics, and resulting costs
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for a wide range of Virtual Machine (VM) types and workloads across multiple cloud providers.

The tool assists in reducing costs with cloud computing services by allowing the user to select

the lowest cost VM configuration that meets their estimated workload. However, the proposal is

not applicable in FMC environment.

Finally, the last category of work, in which this thesis fits, aims to identify the best

device in the environment, capable of providing a particular computational resource. In this

category, the following works can be highlighted.

In Wang et al. (WANG et al., 2017), the authors propose in the context of Mobile

Edge Computing(MEC) a model of selection of the best server edge using a recommendation

system that uses collaborative filtering and similarity of Pearson Correlation Coefficient (PCC).

between server edges to select the server to be used by a user. The work shows good results

of the techniques when applied in the Shanghai Telecom dataset. However, the paper does not

address FMC context issues such as heterogeneity.

In Lei et al. (LEI et al., 2016), the authors propose an adaptive mobile data traffic

offloading model selecting multiples data transfer mechanisms based on analysis of data Traffic

Offloading Rate (TOR) on continuing time Markov chain in cellular M2M networks, and Local

Resource Consumption Rate (LRCR)) . However, the work does not consider latency requirement

issues or another one defined by the client device.

In Aazam et al. (AAZAM; HUH, 2015), the authors a computational resource estima-

tion model in conjunction with a pricing model for services in the Fog computing environment.

However, the work presumes the figure of a smart gateway that plays the role of coordinating

this pre-allocation of resources.

In Table 4, it is presented a brief comparative summary of the related works. The

main differences of this thesis compared to those mentioned before are the introduction of the

feasible Fog concept, which allows reducing search space, and the fact that this proposal is open

to adding other requirements necessary to client devices. Conversely, all related work cited here

focus on predefined requirements, such as latency, energy or processing power.

3.2 Data distribution in FMC environment (RQ2)

In this Section, a more in-depth analysis of the work directly related to RQ2, as well

as identifying their stronger and weaker points. Also, main differences and contributions of our

proposal is presented the for this research area. The issues dealt with in this Section relate to the
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Table 4 – Comparation of related work for RQ1.
Paper Author Proposal Processing

type
Optimized Pa-
rameters

klein et al.(KLEIN et
al., 2012)

a service combination model in an almost opti-
mal solution that using genetic algorithms

Centralized Latency

Shi et al. (SHI et al.,
2015)

P2P architecture model using CoAp protocol
combining Fog and Cloud computing

Not appli-
cable

Not applicable

Aazam et al.
(AAZAM; HUH,
2016)

Architectural guideline for IoT application de-
signer

Not appli-
cable

Not applicable

Bruin et al. (MASIP-
BRUIN et al., 2016)

Architectural model using a services coordina-
tion layer

Centralized Runtime and
speed

Lung et al.
(AAZAM et al.,
2016)

Statistical model of resource availability in Fog Centralized Latency, cost

Deng et al.(DENG et
al., 2016)

Mathematical model for optimization of com-
puter resource located at Fog and Cloud

Centralized Power con-
sumption,
Delay

Sarkar et al.
(SARKAR, 2016)

Mathematical Model for computer resource al-
location in Fog computing focus on power con-
sumption compared with Cloud computing

Centralized Power con-
sumption

Sharma et al.
(SOUZA et al.,
2016)

Computer resource allocation model at com-
bined Fog/Cloud using integer optimization

Centralized Latency, Com-
putational re-
sources

Qui et al. (PHAM;
HUH, 2016)

Algorithm of task allocation between Fog/-
Cloud considering topological distribution of
nodes

Centralized Runtime, cost

Wang et al. (WANG
et al., 2016)

Cloud service composition with minimal net-
work resource consumption and realistic QoS
optimality

Centralized QoS and
network
resources

Lei et al. (LEI et al.,
2016)

adaptive mobile data traffic offloading model
selecting multiples data transfer mechanisms

Centralized Traffic volume
and resource
comsumption

Wang et al. (WANG
et al., 2017)

Model of selection of the best server edge in
Mobile Edge Computing using a collaborative
Recommendation System

Centralized QoS- Quality
os Service

Yadwadkar et al.
(YADWADKAR et
al., 2017)

a data-driven system that is able to predict work-
load performance for a wide range of VM types
and workloads across multiple cloud providers

Centralized Latency, cost,
CPU, Disk

Dolui et al. (DOLUI;
DATTA, 2017b)

It presents edge computing, showing how its
implementation forms and characterizes each of
them

Not appli-
cable

Not applicable

Pereira et al.
(PEREIRA et
al., 2017)

practical study and characterization of latency
in an e-health IoT application

Centralized Latency

Source – Author.

second research question (RQ2), which seeks to discover mechanisms of how to maintain data in

an environment with high dynamics of the topology.
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In Piotrowski et al. (PIOTROWSKI et al., 2009), the authors present a collaborative

data storage (tinyDSM) middleware that addresses the common problems of store data on

Wireless Sensor Networks (WSN) using data replication on nodes of the network. However, in

the proposal, the decision of having the node assuming the role of data replicators is static, and

uses a random criteria that depends only on the number of nodes and density of the network. It

has created some problems in case that node would disappear from the network.

In Lieskovsky et al. (LIESKOVSKY et al., 2011), the authors present a solution

for data distribution and replication in Vehicle Ad-hoc Networks (VANET) that allows the

perception the whole VANET system as a simple distributed database system. However, the

proposal assumes the existence of fixed nodes in the network called Road Site Units (RSU).

In Liao et al. (LIAO et al., 2013), the authors propose a middleware called Uno,

which separates the storage of physical data and their associated metadata. In the proposal,

the user’s physical data is locally stored in the user’s device, while their metadata is stored in

commercial cloud platforms. With this in mind, the article’s focus is to assure the user’s data

privacy, so it does not handle any mechanism to keep the data available, in case the user’s device

is not online on the network.

In Feki et al. (FEKI et al., 2014), the authors propose a data replication algorithm

based on Q-learning in a Peer To Peer(P2P) framework for highly dynamic environments. The

proposal, when compared to traditional replication methods, presents good results.

In Narendra et al. (NARENDRA et al., 2015), the authors present a decentralized

cloud-based storage solution, specifically tailored for IoT data. The proposed solution uses

object storage (such as Ceph) for Software Defined Storage (SDS), and optimal data distribution

among distributed mini-Cloud. However, the solution assumes the existence and availability of

devices located at the edge of the network, capable of running the SDS platform.

Shwe et al. (SHWE; CHONG, 2016) and Kumar et al. (KUMAR et al., 2016)

propose an architecture that distributes the data in two layer architectures. A local layer that

performs a pre-processing of data, and later replicates them to a layer that is centralized in the

cloud. Although the proposed addresses a relevant problem in the IoT area, the work does not

address the persistence of data at the edge of the network, considering the dynamic environment

of Mist computing.

In Confais et al. (CONFAIS et al., 2016), the authors evaluate - through performance

analysis - three ”off-the-shelf” object store solutions, namely Rados, Cassandra and InterPlanetary
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Table 5 – Comparation of related work for RQ2.
Paper Author Proposal Architecture Pre-defined

rules for nodes
Network
context

Piotrowski et al.
(PIOTROWSKI
et al., 2009)

A collaborative data storage
(tinyDSM) middleware

Decentralized Yes WSN

Lieskovsky et al.
(LIESKOVSKY
et al., 2011)

Solution for data distribution and
replication for VANET using
fixed nodes in the network called
Road Site Units(RSU)

Decentralized Yes VANET

Liao et al. (LIAO
et al., 2013)

Separate the storage of physical
data and their associated meta-
data. The physical data are
stored locally and their metadata
are stored in cloud platforms

Centralized Yes Cloud and
Fog

Feki et al. (FEKI
et al., 2014)

Data replication algorithm based
on Q-learning using Distributed
Hash Tables in a P2P frame-
work for highly dynamic environ-
ments

Decentralized No General
networks

Chaqfeh et al.
(CHAQFEH
et al., 2014)
and Chen at al.
(CHEN et al.,
2008)

Presents a survey about the
data dissemination techniques in
VANETs

Not applicable Not applicable VANETs

Narendra et al.
(NARENDRA et
al., 2015)

Decentralized cloud-based stor-
age solution specifically tailored
for IoT data based on defined
storage software (SDS) platform

Yes Cloud and Fog Not speci-
fied in pa-
per

Shwe et
al. (SHWE;
CHONG, 2016)
and Kumar at al.
(KUMAR et al.,
2016)

Proposes an architecture that dis-
tributes the data in two layer
architectures. A local layer
which performs a pre-processing
of data, that later replicates them
to a layer that is centralized in
the cloud

Centralized Not applicable Fog and
Cloud

Confais et al.
(CONFAIS et al.,
2016)

the authors evaluate through per-
formance analysis three ”off-
the-shelf” object store solutions,
namely Rados, Cassandra and In-
terPlanetary File System (IPFS)
in Fog context environment

Decentralized Yes Fog and
Cloud

Source – Author.
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File System (InterPlanetary File System (IPFS)) in Fog context environment.However, the used

software platforms need devices with some computation processing power, so it is not applicable

for simple devices, often found it in IoT environment.

In Chaqfeh et al. (CHAQFEH et al., 2014) and Chen et al. (CHEN et al., 2008),

the authors conduct a survey on the data dissemination techniques in VANETs, presenting the

main algorithms and protocols used in the area. On the first paper, the authors classified the

data dissemination methods in three types: the push, the pull or the hybrid models exploring the

main features, as well as the advantages and the disadvantages of each model. Similarly, on the

second article, the authors classified the approaches in topology-based and location-based, mainly

exploring the existing protocols, and challenges associated with the research area. Although

there are similarities with the problems approached in this article, the techniques presented in

the article use specific characteristics of the VANET environment, making it difficult to apply

directly in the context of Fog / Mist computing.

In Table 5, a brief comparative summary of the related work is presented. In

particular, the main differences of this work - compared to those mentioned before - are the use

of Bio-inspired strategies for data dissemination, using a P2P architecture in a decentralized

way with device, assuming dynamic rules depending on topology and time of permanence in the

network. Another key point is that the protocol and algorithm proposed here can be performed

in devices with tiny processing power, like sensor and other IoT devices.

3.3 Recommender systems for IoT environment (RQ3)

In (FORESTIERO, 2017), the author presents a multi-agent algorithm that, by

exploring a decentralized and self-organizing strategy, builds a distributed recommendation

system in the IoT environment. In the proposal, the ”things” are associated with an agent who

exchanges information of things descriptors between them. A bio-inspired strategy, using a

similarity measure between descriptors, results in generating geo-distributed clusters, in which

each cluster concentrates similar descriptors. A device that looks for information from similar

devices makes a query for those clusters, obtaining the recommendations of similar objects as a

response. In the proposal, the author does not deal with the allocation of resources and requires a

relatively long time to stabilize the construction of the clusters.

In (NIZAMKARI, 2017), the author addresses the same problem proposed in this

thesis of service allocation in the IoT environment, also using collaborative filters. In the proposal,
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the author uses a trust model graph approach combined with a collaborative filter(CB). The work,

although very interesting, does not address the problem of network topology dynamics - very

common mainly in the environment of Mist computing. Another issue that is not addressed is

the strategy of how to keep the data of the CF in the locality of the network environment.

In (ASIRI; MIRI, 2016), the author proposes a model of trust and reputation in the

IoT environment that applies distributed Probabilistic Neural Networks (PNN), performing as

classifiers of the reliability of nodes in two classes: trusted nodes and malicious nodes. The

model has the ability to learn over time, making use of fully distributed processing, and it is

manipulated by the nodes themselves which ensures better availability. However, the proposal

requires devices with higher processing power and connection to the grid, in a network with few

topology changes and domain subject which is not a computational resource allocation.

In (SAWANT et al., 2017), the authors propose a basic IoT Software Architecture

and CPSs, and a system that intends to provide notifications through email or Short Message

Service (SMS), as well as a recommendation to end users. The work is still at a very early stage,

lacking details, for instance where the architecture would be executed, but it is assumed that the

architecture is centralized and not handling heterogeneity and dynamics of the network topology.

In (MUNOZ-ORGANERO et al., 2010), the authors propose that the Collaborative

Recommendations in an Internet of Things environment relies on user-to-object space-time

interaction patterns. The proposal assumes a centralized architecture where users with mobile

devices rating ”things” associated with Near-Field Communication (NFC) TAGs, by sharing

these assessments on a central server that processes the data and generates recommendations

based on the user and the temporal patterns. The work has a user-centered focus and centralized

architecture, thus not addressing issues related to infrastructure located at the edge of the network.

In (CHEN, 2017), the work has a well-applied character in the context of tracking

within the supply chain of the food industry. In the proposal, the authors seek to add aspects of

business in the recommendation system, using Value Stream Mapping (VSM) as an effective

method for eliminating waste - which enables a company to map the process flow to redesign

value streams with short lead time, reducing then inventories across organizational boundaries.

However, the proposal does not explore all benefits of available computational resources at edge

network, using the fog computing and Cyber-Physical System (CPS) only for data acquisition,

user interface, and system actuators. Thus, in the authors proposal, the recommendation system

runs in a centralized architecture.
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In (LI et al., 2017), the authors present a proposal for a vehicle selection algorithm

within a Vehicular social network, which is applied in the domain of support marketers in

improving marketing effectiveness. The proposal selects Recommenders for Vehicular Social

Networks (SV-VSN) based on the coverage criteria of the area under review, as well as benefits

for marketer, showing that the approach establishes significantly improvements when compared

to similar methods in the state of the art.the authors present a proposal for a vehicle selection

algorithm within a Vehicular social network, applied in the domain of support marketers in

improving marketing effectiveness. The proposal selects Recommenders for Vehicular Social

Networks (SV-VSNs) based on the coverage criteria of the area under review, as well as benefits

for marketer, showing that the approach improves significantly improvements when compared to

similar methods in the state of the art. Again the work uses the IoT devices, in this case, the cars

are just a data collector/output in the context of the application, focusing only on the method of

selecting the vehicle to be used as Recommenders in SV-VS. Nevertheless, in the scope of work

there was nothing related to the dynamics of the topology and service sharing, since the proposal

only identifies data sharing.

In (ZHANG et al., 2013) and (WEI et al., 2017), the authors address the cold

start problem - common to collaborative recommendation systems, especially in the context of

IoT the Cold-start Recommendations Using Collaborative Filtering (CRUC) problem - Cold-

start Recommendations Using Collaborative Filtering in IoT. In general, the cold start issue is

characterized by two aspects: scalability and dispersion. The first resource is caused by the

number of crawled objects and their interaction data. IoT uses sensors to track a large number of

objects as well as their interaction. Thus, the IoT gathers extra-large object interaction data. This

implies that IoT fails to respond quickly to applicants. The last resort arises from the density of

information. Although IoT receives a large number of sensor readings on objects, it acquires

little information about a specific object, particularly on a cold start situation. Correspondingly,

it is a non-trivial task to predict the user’s preference based on cold start IoT systems. Currently,

this problem is still open with few proposals on this subject. In the first work (ZHANG et al.,

2013), the author proposes a CRUC scheme, consisting of two phases: one offline and one online.

In the off-line phase, CRUC reshapes and filters the available data by pre-processing them for

the next phase. Secondly, in the online phase, the CRUC enters a prediction stage that aims at

correcting or lightening the CRUC problem.

In (MASHAL et al., 2015), (MASHAL et al., 2016a) and (MASHAL et al., 2016b),
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in the first manuscript, the authors conceptualize the recommendations of IoT services IoT

Service Recommendation (IoTSRS), showing their importance in the context of IoT. The second

and third works focus on the study of how to model the problem and how to evaluate and analyze

metrics for IoTSRS. The papers also propose a formal hypergraph model to represent the IoT

recommendation system in which each hyper-edge connects users, objects, and services. In the

second article, the same formal model of IoTSRS is again presented, and a comparative study

is made of the usefulness of traditional recommendation schemes and their hybrid approaches

in recommending IoT services (IoTSRS) - based on well-known existing metrics. The work

focuses on a theoretical analysis and on the study of metrics for the evaluation of IoTSRS, being

good references for the evaluation of the results of this thesis. However, it does not address

issues related to the research questions of this study.

In (YAO et al., 2014), the author propose a unified probabilistic based framework by

fusing information across relationships between users and things, in order to make more accurate

recommendations. However, again the work does not address issues about network topology

dynamics nor where the model will be deployed to provide the recommendations.

In (RICCI, 2010), the author makes a survey about the major issues and opportunities

that the mobile scenario opens to the application of recommender systems, especially in the area

of travel and tourism. The paper covers the major techniques and computational models that

have been proposed, presenting some possible future developments and extension in this area.

However, the author focuses heavily on mobile devices, exploring very little the possibilities

generated by the IoT environment.

In (CHA et al., 2016), the authors present a recommendation system in the IoT

environment using a mobile device as a sensing device and user interface connected to a

server at the Cloud, which in real time suggests recommendations according to the detected

context by the mobile device, presenting the recommendations at the mobile device screen. To

demonstrate the feasibility of the proposal the author presents a prototype of a tourism application

recommendation system. However, the proposed architecture distributes the processing between

the mobile device and the recommendation server in the cloud computing environment, thus

taking no advantage of the infrastructures located at the edge of the network.

In (CUOMO et al., 2017), the authors propose a mathematical model of a collab-

orative recommendation system applied in the field of Associating Visitors and Artworks in a

Cultural scenario, using mobile devices and IoT Bluetooth sensors to detect the behavior of the
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visitors during the visit. Detecting IoT sensors allows the system to classify visitors and artworks.

In the case of visitors, the sensors can inform the route traveled, artwork visited and time spent

interacting with the interaction of the artwork. According to their behavior pattern, the system

classifies users and develops an artworks’ rating based on the behavior pattern of visitors during

the visit. However, the proposal uses a centralized architecture using IoT devices only as data

collectors and user interface. In the proposal, all devices are similar, that is, not heterogeneous

and do not use external computational resources.

In (FREY et al., 2015), the authors propose an approach to a recommendation system

using people’s smartphone for capturing information such as the installed apps, interactions with

IoT devices, location information among others. With that, they elaborate a digital inventory

that intends to be used to produce a more refined user profile, thus through hybrid collaborative

recommendation system, to propose more accurate and useful recommendations to the user.

The paper presents only the concept and gives the potential of exploring such data. However,

the novelty is limited since in some ways it is not a new idea; big companies like Google and

Facebook have already done this using the web. Also, the article does not explore computing

resources at the edge of the network by simply using the devices like information gatherers.

In (RENJITH; ANJALI, 2014), the author proposes a hybrid collaborative recom-

mendation system applied to the tourism domain, in particular, travel recommendations using

content-based data, collaborative assessments, and demographic information.

In (RAMASWAMY et al., 2009), the authors propose a hybrid collaborative rec-

ommendation system that combines content information about users, spatial-temporal context

information, and rating made by users in the past. The work has the merit of having been one of

the first proposals in this line of research to use mobile phones, but it does not fit the environment

of Edge computing.

Tables 6 and 7 show the works related to the third research question(RQ3) of this

thesis. Table 6 shows the works with a strong connection with the theme of the thesis. In

particular, the works in the same line of research and similar proposal are highlighted in light

green color. Furthermore, Table 7 presents work related to the research question, however not

directly related to the subject of this thesis, such as survey works and works that address issues

relevant to RQ3 in the network environment, the focus of the study.
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Table 6 – Comparation of related work directly related to the thesis theme (RQ3).
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(MUNOZ-
ORGANERO
et al., 2010)

Collaborative Recommenda-
tions in an Internet of Things
environment rely on user-to-
object space-time interaction
patterns

Central No Yes Fixed No F/C User

Asiri e Miri
(2016)

a model of trust and reputation
for IoT using distributed proba-
bilistic neural networks (PNNs)

Dist No No Fixed No Fog Thing

Forestiero
(2017)

geo-distributed clusters of sim-
ilar descriptor along the topol-
ogy

Dist Yes No Fixed Yes F/M Thing

Nizamkari
(2017)

CF combined with trust graph
for provide service recommen-
dations

Dist No No Fixed No F/M Thing

(SAWANT et
al., 2017)

Basic architecture of IoT and
CPSs which provides recom-
mendation services to the end
users

Central No No Fixed No F/C User

(CHEN,
2017)

Traceability using IoT applied
to the food supply chain com-
bined with a recommendation
system using Value Stream
Mapping (VSM)

Central No No Fixed No F/C User

(LI et al.,
2017)

vehicle selection algorithm
within a Vehicular social net-
work applied in the domain of
support marketers in improving
marketing effectiveness

Central No No Fixed No VANETsThing

Source – Author.
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Table 7 – Comparation of related work that are not directly related to the thesis theme (RQ3).
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(RICCI,
2010)

survey about the major issues
and opportunities that the mo-
bile scenario opens to the appli-
cation of recommender systems,
especially in the area of travel
and tourism

NA NA NA NA NA F/C NA

(YAO et al.,
2014)

A unified probabilistic-based
framework by fusing informa-
tion across relationships be-
tween users and things to make
more accurate recommenda-
tions

Central No No Fixed No F/C Thing

(MASHAL
et al., 2015),
(MASHAL et
al., 2016a),
(MASHAL et
al., 2016b)

a formal hypergraph model to
represent the IoT recommen-
dation system, in which each
hyper-edge connects users, and
a comparative study is made
of the usefulness of traditional
recommendation schemes and
their hybrid approaches in rec-
ommending IoT services (IoT-
SRS) - based on well-known ex-
isting metrics

NA NA NA NA NA Fog NA

(CHA et
al., 2016),
(CUOMO et
al., 2017),
(RENJITH;
ANJALI,
2014),
(FREY et al.,
2015), (RA-
MASWAMY
et al., 2009)

Centralized Recommendation
System application using smart-
phones to collect context infor-
mation and user’s ratings.

Central No No Fixed No F/C User

(ZHANG et
al., 2013) and
(WEI et al.,
2017)

address the cold start (CRUC)
problem common to collabora-
tive recommendation systems
and especially in the context of
IoT

NA NA NA NA NA Fog NA

Source – Author.
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3.4 Summary

In this chapter, first, works related to the IoT environment selection (RQ1) were

presented. In particular, this chapter discussed 8 studies related to this issue as well as a more

detailed discussion and identification of the main gaps found in these works.

With regards to the Data distribution in the FMC environment (RQ2), 9 studies

related to data dissemination in Fog/Mist network environment or similar were found. All works

were discussed and the main gaps found in these works were identified.

Finally, works related to Recommender systems for the IoT environment (RQ3) were

also presented, with focus on the hypothesis raised in this thesis, and 19 studies were discussed.

Once more, the identified gaps were presented, along with the strengths and weaknesses of each

study.

The next chapter presents the thesis proposals for supporting the gaps identified in

the three research questions of this thesis. The gaps are summarized as follows:

• Few systematic approaches to choose the best computational infrastructure (Fog, Mist, or

Cloud) to use computational resources;

• Infrastructure choice methods usually have fixed parameters constraints like latency,

consumption or others to choose the best environment. In general, these methods are not

easily adapted to other constraints;

• The vast majority of infrastructure choice algorithms have a centralized architecture;

• Proposals related to RQ2 typically assume fixed roles for devices in the data dissemination

process;

• Considering the works related to RQ3, all of them assume a centralized architecture or,

when unpublished, the nodes have predefined roles that do not allow a dynamic adaptation

of the infrastructure when there are no nodes of a specific type; and

• None of related work of RQ3 addresses the temporal availability of the devices in the

environment to calculate the best recommendation.
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4 SMART SHADOW

This chapter presents the solutions for the main gaps identified in the research

questions (RQ1, RQ2, and RQ3). For RQ1, a method to systematically select the best computing

resource available on FMC environment that attend client devices constraints is proposed. Related

to RQ2, a mechanism for data dissemination in a highly dynamic FMC topology environment

is proposed . Finally, related to RQ3, a mechanism for computational resource prediction is

proposed using a hybrid collaborative filter combined with some temporary availability statistics.

These solutions are detailed in this chapter as follows. Section 4.1 presents an

overview of the relationship and dependencies between the proposed solutions associated with

the research questions. Section 4.2 describes the proposed mechanism, algorithm and concepts in

order to choose systematically the best computational resource available in the FMC environment

that meets the requirements specified by the client device. Section 4.3 presents the proposed

bio-inspired method of data dissemination in the FMC environment based on epidemic models

running in an adaptive hierarchical architecture by the nodes that are part of the edge of the

network. Section 4.4 describes the proposed mechanism of prediction of the best computational

resource available using hybrid collaborative filtering combined with temporal availability

estimator. Finally, Section 4.5 concludes this chapter.

4.1 Overview

A relevant point for understanding the proposals of this thesis is to understand how

the research questions interrelate. Figure 13 illustrates this relationship between RQ1, RQ2 and

RQ3.

The first research question (RQ1 - How one can evaluate systematically the feasibility

of using computational resources available in the FMC computational infrastructure?) generally

seeks to identify the best device or infrastructure available that meets requirements imposed by

a client device located at the edge of the network. The proposal associated with this research

question presents a computational resource search algorithm based on the depth-first search of

graph theory guided by a function of an estimate of the fulfillment of the conditions imposed.

The second research question (RQ2 - How to store information in an FMC envi-

ronment, considering the ephemerality of device availability in this environment?) addresses

the problem of how to disseminate data in a highly dynamic topology network environment.
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Figure 13 – Research questions relationship.

Source – Author.

The proposal for this issue was to use data dissemination techniques based on epidemiological

models combined with a decentralized adaptive hierarchical architecture in which the nodes

assume roles in this structure according to their average time of permanence in the environment.

Finally, the third research question (RQ3 - What would be a way to automatically

capture knowledge of the discovery and use of computational resources in the Fog / Mist

computing environment to make discovery and allocation predictions efficiently and robustly?)

addresses the problem of computational resource prediction within the FMC environment. To

approach this problem a mechanism that uses hybrid collaborative filtering combined with

statistics of the temporal availability of the devices was proposed. However, collaborative

filtering needs to provide useful results of a good computational resource allocations historical

data. It also needs that these data capture the good computational resources available in the

environment at the time. Thus, the RQ1 research question becomes important in the objective of

generating a mass of quality data that allows the prediction mechanism to generate good results.

Another relevant point in the relationship between RQ1 and RQ3 is that the latter is a statistical

prediction mechanism. Therefore, there is the possibility of error, that is, the possibility that the

device indicated by the algorithm is not available at that moment in the environment. Once again,

RQ1 has a relevant role serving as an alternative in cases in which the prediction algorithm was

not successful.

Different from RQ1, which somehow competes with RQ3 because both have the

recommended device for providing the computational resource as output, RQ2 actuates as a

support service for RQ3 since a recommendation system requires parameters and data from past

ratings. Thus, RQ2 provides this service supporting RQ3, allowing the prediction mechanism to
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work in a decentralized and autonomous manner.

4.2 Network Infrastructure Selection (RQ1)

The Fog Computing approach brings advantages associated with latency, local

proximity and extending battery life (BRUNEO et al., 2016). However, it also brings several

challenges related to the heterogeneity of the devices that compose it, as well as the transience

of their permanence in the network. Thus, the choice of which infrastructure a device that

requires external computational resources should choose is not always simple. Thus, this section

addresses the Problem of Allocation of Resources (PAR) considering the computational resource

demand, and the constraints imposed by the client device (CD), aiming at answering how to

systematically identify the best network infrastructure capable of meeting demand between:

Cloud Computing, Fog computing or Mist computing. The PAR is modeled in the form of a

weighted graph that, through a Disjkra-based algorithm, generates a ranking of the feasibility of

provision of the service or resource sorted by an estimator.

This model uses, as input parameters, the restrictions imposed by the client device,

the topology of the devices at the edge of the network, the connection parameters between

devices (latencies, Baud rate and the signal level of Peer To Peer (P2P) links), and CoTs access

parameters (cost, communication bandwidth, latency). For example, client parameters may

be the financial spending limit with CoTs services, maximum latency requirements, minimum

communication link speed, or weights associated with each constraint in decision-making. These

parameters are used to identify devices capable of providing services and also to calculate

weights of the edges of the modeling graph.

Define U as the set of all devices located at the edge of the network with physical

proximity of the device D that needs to request computational resources. Therefore, the PAR can

be modeled as a graph G, where the vertexes (v) of this graph are elements of the set U and the

edges are the communication links between them. In present approach, vertexes are classified

according to the following types.

The client device (D) is defined as a device that demand remote computing resources

from Cloud/Fog or Mist computing infrastructure. Computational resources required by the

device comply with a set of restriction requirements

r = {r1,r2, ...,rk | k ∈ N, where N is the set of natural numbers} .
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As an illustration, the following examples of restriction requirements: minimum link speed; run

time; maximum latency and cost associated with the use of the resource. They are represented in

our model as the unitary set:

D = {v ∈U | with requirements r1,r2, ...,rk and k ∈ N}

Fog computing devices are defined as all devices located on the edge of the network

with direct and stable access to the Internet, and usually with good capability of computational

resources. They are represented in the model as the set of vertexes:

F = {vi ∈U | i,nF ∈ N, where nF is the numbers devices and 1≤ i≤ nF}

Mist computing devices are also located on the edge of the network, but with indirect

access to the Internet and limited computational resources. They are represented in the model as

the set of vertexes:

M = {vi ∈U | i,nM ∈ N , i ∈ and 1≤ i≤ nM}

Where, nM: is the number of vertexes that satisfy this condition.

Available CoTs - given Uc the universe of all CoTs, let C be defined as set of available

CoT the subset of U where each element provides services for the client device D or for any

device of the Fog set. Therefore, in the model, they are represent as the set of vertexes:

C = {ci ∈Uc | i ∈ and 1≤ i≤ nC}

∀ci ∈C, ci provides service for D, union with ∀ci ∈C, where ci provides service for some vi ∈F

Where, nC: is the number of available CoT to the client device plus available CoT for the

Fog computing device set. In the model, the vertexes that represent the Cloud computing are

necessarily connected to vertexes of Fog Computing (F) or directly connected to the client device

(D). Thus, the graph G is defined as:

G = (V,E)

Where V is the set of vertexes formed by the Union of the sets described before, or formally:

V = {vi ∈U | vi ∈ D∪F ∪M∪C}
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And E is the set of edges connecting the vertexes of the set V . Let to define the existence of an

edge ei, j between vertexes vi and v j, if ∃ is the communication link between the vertexes vi and

v j. Given that ET is the set of all possible edges in the set of vertexes V , E is defined formally as:

E =
{

ei, j ∈ ET | ei, j = (vi,v j)∃ link between vi,v j ∈V
}

Figure 14 – Set of layers with devices that meet the constraints rk combined to generate the
G(D) f easible.

Source – Author

4.2.1 Definitions

In the proposed model, not all vertexes of the graph G can provide and meet the set of

requirements r = {r1,r2, ...,rk | k ∈ N} imposed by device D. To clarify the concept, a function

αr j(vi) is defined, for each requirement r j ∈ r, which has as its domain the set of vertexes that

are part of G, and as codomain the set I = {0,1}, where αr j(vi) = 0 if the vertex vi cannot attend

the requirement r j, and αr j(vi) = 1 if the vertex vi can meet the requirement r j.

Definition 4.2.1 Thus, let’s define that the vertex vi attends the requirement r j↔ αr j(vi) = 1.

Formally represented in the model as:

αri : V → N, 1≤ i≤ k
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αr j(vi) =

0, if vi does not meet requirement r j

1, if vi meets requirement r j

where r : Resource constraint

k : Number of constraints

Definition 4.2.2 Defining the feasible neighborhood graph of device D or G(D) f easible as the

subset of G, where all vertexes of G(D) f easible meet all requirement constraints imposed by

device D, G(D) f easible can be formally represented as:

G(D) f easible = (Vf easible,E f easible)

where,Vfeasible=

{
vi ∈V ⇔

k

∏
j=1

αrk(vi) 6= 0

}
,

where, 1≤ i≤ n∗ , 1≤ j≤ k and Efeasible =
{

ei, j ∈ E⇔∃ communication link between vi , v j
}

,

where, vi,v j ∈Vfeasible and n∗ is the number of vertexes of G

that attends the requirements imposed by D.

Figure 14 illustrates the construction of graph Gfeasible(D). Let’s first consider that the

FMC environment consists of the sets by vertexes {F1,F2,F3,F4,F5} ∈ F(Fog), {M1,M2,M3} ∈

M(Mist), and {C1} ∈C(Cloud). Let’s also consider that the set r =
{

r1,r2, ...,rp | p ∈ N
}

is the

set of constraints imposed by device D. The first step to build the feasible neighborhood graph

of device D, or Gfeasible(D), is for each constraint rp to identify which devices can able to meet

it. This process is represented in Figure 14 by the planes r1,r2, ...,rp, where the vertexes vis are

filled with black if they meet the constraint rp, and unfilled otherwise. An extra index on the

vertex was also added to indicate which constraint is referenced. For example, the vertex C1,1

means vertex C1 submitted to constraint r1. After repeating this process for each constraint rp,

Gfeasible(D) is the set of vertices that have met all constraints. To put it differently, the vertexes

that are filled in the planes associated with all constraints. In Figure 14, these vertices are shown

in the plane Gfeasible(D), in the rightmost layer, where the vertices are filled and are connected to

each other. An important point that must be observed in the proposed model for the construction
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of G is that all vertices that are part of the cloud set must have a connection with all vertices that

have access to the internet.

Moreover, it is important to realize that some restrictions in the application directly

depend on the route between the device and the vertex in focus. Thus, to facilitate the analysis, it

is convenient to define a function that encapsulates this complexity depending on the path taken

in the graph G. From the graph theory, it can be said that:

Definition 4.2.3 The open path from v1 to vk is a finite sequence of the form

{
v1,e1,2,v2,e2,3...,vk−1,ek−1,k,vk

}
,

that consists of alternating vertexes and edges of G on the condition that any vertex

is visited at most once and v1 6= vk.

Using this concept, it can be defined:

Definition 4.2.4 The extended restriction function of r j of the vertex vi in G(V,E) related with

vertex D, namely Φr j(pmin(vi,D)), is defined as a function that has the set P, defined as the set

of all possible routes from D to vi in graph G(V,E), as its domain and the set of R as codomain.

Besides that, the value of Φr j(pmin(vi,D))) encapsulates the effect of all paths from D to vi

related with r j on the condition that the pmin(vi,D) is the path between the vertex vi and D,

where the effect of constraint r j is minimum.

pmin =
{

vi,ei, j,v j, ..,ek,D,D
}

Φ(p)rk : P → R

The function Φr j(pmin(vi,D)) depends on the type of constraint. For example,

considering the maximum latency constraint and given that pmin(vi,D) is the path of vertex

between D and the vertex vi in question, and Φr j(pmin(vi,D)) the function extended latency from

D and the vertex vi, a function that best models the problem could be the function sum of the

latencies of all edges that are part of pmin(vi,D), namely minimum path from D to vertex vi.

Formally:

Φ(pmin)Latency =
n

∑
j=1

Latency(e j),

| p = {v1,e1,v2, ..,en−1,vn} , v1 = D and vn = vi
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Where n is the number of edges of path pmin(vi,D). Conversely, let to consider the communica-

tion speed link restriction, namely Φ(pmin)Speed, the best function to model this constraint should

be the minimum function of all speed link of all edges in the minimum path from D to vi. Thus,

formally:

ΦSpeed(pmin(vi,D)) = min((espeed1,espeed2, ..,espeedn).

Therefore, to decide whether vi ∈ G can meet constraint requirements r j, a function

Φr j(pmin)(vi,D) must be defined so that it models the problem and uses its value as decision

criterion to attend the restriction requirement. To clarify the decision criteria and help to

combine the result with other constraints imposed by device D, a function ωrk() is defined, called

resistivity restriction for r j, which uses the extended restriction function of constraint rk as its

input parameter. This function provides an estimate of the degree of difficulty of the device meet

the specified constraint. Thus, formally:

Definition 4.2.5 Define ωrk(Φr j(pmin(vi,D))), or simply ωrk(x) as a function of x ∈ R and as

codomain the interval [0,1] ∈ R, where 1 means it is unfeasible to attend restrictions rk, and 0

means it is feasible to attend restrictions rk.

ωr j : R → R

R → [0,1]

Note that this definition purposely omits to define the type of function to be used. The reason is

that any function that meets the requirement description can be chosen and is able to model it

in the analysis. In other words, the function must assume the value zero when the device has

full capability to attend the constraint. Otherwise, the function must take the value 1 when the

device is completely unable to attend that restriction. For instance, let r j be the constraint of

maximum latency of 100 ms, the function ωr j could be chosen as the limited ramp function

shown in Figure 15. In case the latency is zero, the ideal case, the function has value 0, meaning

the situation of maximum feasibility, and for any latency above the maximum latency (100ms),

the function takes value 1, showing complete unfeasibility. For latency between 0 ms and 100

ms, the function reflects a feasibility grade.
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Figure 15 – Example of a limited ramp function for ωLatency(pmin(vi,D)).

Source – Author

Definition 4.2.6 A function λr,vi,D(ωr1,ωr2, ...,ωrk) will be defined, as resistivity of service for

restrictions r related with D and the vertex vi. The idea for this function is to aggregate the

influence of all constraints imposed by D. Similarly to function ωrk(vi,D), the function λr,vi,D()

has the interval [0,1] ∈R as its codomain. In the same way, when it acquires value 1, it means it

is fully unfeasible to attend the set of restrictions r, and 0 value means total feasibility to attend

the set of restrictions r. However, differently from ωrk(vi,D) function, its domain is Rk, where k

is the number of individual constraints of r. Given α1,α2, ...αk, the weights of the importance of

D respectively the restrictions r1,r2, ...,rk such that

k

∑
i=1

αi = 1

Thus, it can be defined:

λr,vi,D : Rk → R

(r1,r2, ..,rk) → [0,1]

λr,vi,D(ωr1,ωr2, ...,ωrk) =
k

∏
j=1

(ωr j(vi,D))α j

4.2.2 Proposed Model

Given the client device D in an FMC environment, F is located in the geographical

proximity of D. Let us consider that the device D requests a remote computational resource rc,
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but it is imposed that the resource must follow the restrictions set:

r = {r1,r2, ...rk} .

Given also that G(V,E) is the graph formed by the set IoT devices, where IoT devices

are the set of vertexes (V ), and the communication link between them represents the set of edges

(E).

In the proposal, the first step of the problem is to identify the vertex

vi ∈ G |vi meets ri, ∀ri ∈ r.

Considering that all vertexes of G are aware of the sets of r restrictions and, respectively,

the weights that D gives to each constraint, the first step of the proposal is to discover the

G(D) f easible. Thus, each vertex vi ∈ G calculates the function Φrk(p(vi,D) for any restriction

ri ∈ r and compares with the constraint imposed and published by D. Therefore, in the case that

a vertex meets all restrictions, it belongs to the feasible graph of D.

Given that the feasible graph of D had been made, G(D) f easible = (V,E), it must be

considered now the calculation of the weight of each path from D to vi∀vi ∈ V . The weights

of paths in the graph must be calculated using the function λr,vi,D() (resistivity of service for

restrictions r related with D and the vertex vi). Consequently, now it is possible to built an

ascending ranking for all vertexes of G f easible based on the λr,vi,D() function value. This value

may be interpreted as a metric of a vertex’s capacity for providing the resource for D, where the

lowest values mean the greater capability to provide the resource. Note that the calculation of

λr,D(p) itself does not guarantee the imposed service restrictions.

On the other hand, it would not be necessary, because for a vertex to belong to

G(D) f easible, it is necessary that this vertex meets all constraints using the extended constraint

function, which, by definition, incorporates this warranty. Another important point to be noted is

that, from the point of view of vertexes, the λr,vi,D() function encapsulates the complexity of the

minimum path(pmin). Thus, each vertex only needs to choose the path that features the smallest

value of the λr,vi,D() function.
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Figure 16 – Graph of feasible neighborhood of D (G(D) f easible).

Source – Author

Therefore, the PAR is reduced to select the first vertex vi in λr,vi,D() ranking. Simi-

larly, the problem of choosing of which environment should be used is now reduced in figuring

out within which network infrastructure subset the top ranking vertex is part of:

• If vi ∈ F → the choice is Fog computing;

• If vi ∈C→ the choice is Cloud computing; and

• If vi ∈M→ the choice is Mist computing.

Figure 16 illustrates the G f easible(D) and, respectively, the function calculations based on the

examples showed in Figure 14.

4.2.3 Proposed Algorithm

This section shows a macro description of the algorithm and the communication

protocol that was implemented on devices that are part of the network edge. The detailed

algorithm and implementation are available on a Github repository.1

Assuming that all devices at the network edge have communication links between

them and the vertexes, and communication links are distributed in a graph topology, the first

step of the algorithm is to generate neighbors’ feasible graph of the client device D. With this

in mind, the device D needs to send information about the requested service, restrictions, and
1 Avaliable source code in the address <https:https://github.com/GREatResearch/Contiki/>

https: https://github.com/GREatResearch/Contiki/
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priority weights of each constraint to other network devices.

The best way of sending this information to network avoiding message collision on

the network and minimizing message traffic is using a token. This token will serve to store the

requested service information and also to map the topology and parameters of the network.

For this purpose, the strategy of using a control token to avoid communication

conflicts between the vertexes and synchronize messages is adopted. In this strategy, only

the vertex which holds the communication control token may broadcast messages for the

network. Particularly, broadcast messages are used to map the vertex’s neighbors and to provide

information to allow them to calculate if they are part of the feasible graph of D. Then, as soon

as the controller vertex completes the identification of feasible neighbors, it forwards the token

recursively to the child vertexes, similar to the depth-first search algorithm (DFS) (AWERBUCH,

1985) in graphs. Consequently, the token travels through all graph’s vertexes and is also used to

carry information about network’s topology, network’s parameters, and the minimum route from

D to each vertex of the graph.

In the proposal, there are two cases where a vertex has the token ownership: either

the vertex is the client device (D), or it is a device in its vicinity. In both cases, the procedure

performed by the vertex is very similar. In the first case, the device(D) broadcasts a message

containing: the required resource, the necessary restrictions (r), and the respective priority

weights(α’s). Hence, the vertexes on its neighborhood can calculate if they are part of the

feasible graph and, if so, to answer their resistivity of service for restrictions r related with D

in a peer to peer (P2P) message for device D. As a result, the device D receives and processes

this message, registering in the token all neighbors that are feasible, altogether with measured

network parameters and topology. Additionally, the device D puts the neighborhood vertexes in

a queue in its memory.

Finally, the device D gets the first device in the queue and sends the token that

restarts the mapping process. The algorithm terminates when the token returns to D and there

are no more neighbors to visit. In the second case, the device will receive the token from device

D, or another vertex similar to it, and do exactly the same procedure. However, when the queue

contains no more vertexes to visit, the device hands back the token to its parent vertex.

The device chosen to provide the resource will be the one which showed the lowest

resistivity of service for restrictions r(λ () function).

In short, given that the vertex received a broadcast message from the token owner, it
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will perform the following steps:

1. First, it must compute whether it is able to meet the requirement constraint using the

extended restrictions function of r (Φrk(pmin(D,vi)) for each rk constraint of r.

2. If the vertex is able to meet all restrictions, through a P2P message, it will notify the vertex

which sent the broadcast message that it must be added to the queue of feasible neighbors

of the parent vertex.

3. Otherwise, if the vertex is unable to meet any of the restrictions, it will report its parent

vertex that is not going to be a part of the graph G(D) f easible. Therefore, it will signal to

parent to stop broadcasting the message M through its path.

4. On the other hand, the token owner device must wait for the answer of all its neighbors so

that it passes the token to the first neighbor in its queue. The neighbor that receives the

token restarts the process and gives back the token once all its children have completed the

discovery of vertexes of feasible graph of D (G(D)).

It was defined as stop condition for the algorithm of calculation of G(D) f easible, the

situation where vertex D does not have any other neighbor vertex to explore. Thus, given the

graph G(D) f easible, the next step is to assign a score to each vertex vi, j ∈ G(D) f easible based

Algorithm 1: Algorithm of vertex with token to build G(D) f easible.
input :Requirements constraints and priority weights of D
output :Assembly of feasible neighborhood from D(G(D) f easible)

begin
1 D sends Message(r,weights) to neighbors;

// identify neighbors
2 while not (time out) do
3 wait answer from neighbor;
4 if (vertex v meets all restrictions) then

// Store path with minimum lambda for vertex
5 if (λr,D(p) received < λr,D(pmin) in token) then
6 pmin← p;
7 λr,D(pmin)← λr,D(p) received;
8 store (v,λr,D(p)) in token;
9 store (v, pmin) in token;

end
10 putInQueue(vertex);

end
end

11 while queue is not empty? do
12 vertex← getFromQueue(vertex);
13 send Token to vertex;
14 wait Receive token;

end
// Send Token back or stop

15 if (self is not D) then
16 send back Token to parent;

else
17 stop condition achieved;

end
end
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Algorithm 2: Algorithm of vertex with no token to build G(D) f easible.
input :Requirements constraints and priority weights of D
output :Assembly of feasible neighborhood from D (G(D) f easible)

begin
// Wait to receive message M from vertex with Token

1 receive(M);
// parent is the node that sent the message

2 parent← sender;
3 if (M is Token?) then
4 Perform Token mode algorithm;

else
// Check if vertex meets requirements
// r = {r1,r2, ...rk}

5 p← p+ sel f ;
6 for j = 1; j < k do

// Calculates extended restrictions
7 Calculates Φ(p)r j ;

end
8 Calculates ωr,D(p) for p;

// Check if the node attends the requirements:r = {r1,r2, ...rk}
9 if (node meet all requirements) then

10 Calculates λr,D(pmin);
11 M = [meet requirements, pmin, λ ];

// Send to parent message M
12 send (M);

else
13 M← does not meet requirements;

// Send to parent
14 send (M);

end
end

end

on its λr,vi,D() function. The function value reflects the ability of a vertex to attend the service

with the requirements constraints and weights defined by D. Then, the chosen vertex will be

that which has the minimum value for the function, that is, the device that presents the lowest

resistance to provide the requested resource.

Figure 17 illustrates the step by step of the protocol to map the vicinity of the Fog

computing devices and also shows the token passing through the network. It must be remembered

that this process will not map the cloud infrastructure; thus, the devices that have some connection

link with some CoT should add a virtual node to represent the resources and constraints of the

CoTs avaliables.

To clarify the steps in the form of an algorithm, they will be organized in two pseudo

codes, one for the device that has the token ownership and another for devices that do not have

it. The first one is showed at Algorithm 1 and explained as follows: at line 2, the device sends

a broadcast message with the requested resource, requirements constraints, and the respective

weights for each constraint. From steps 3 to 14, the device waits for the answers of neighboring

devices for some interval of time (TimeOut).
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Figure 17 – Protocol to discovery G f easible(V,E) ( D-Client device, V1,V2,V3,V4−D Neighbor-
hood devices).

(a) D Broadcast Message (b) V1 answer ∈ G f easible(V,E)

(c) V2 answer /∈ G f easible(V,E) (d) V3 answer ∈ G f easible(V,E)

(e) V4 answer ∈ G f easible(V,E) (f) D send token to V4

Source – Author.
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Particularly, there are two cases to handle the device answer. When the neigh-

bor device cannot meet the requirement constraints, so it is not part of the feasible graph

(G f easible(V < E)), the device with the token ownership does nothing; otherwise, from steps

6 to 12, it registers the neighboring device in a queue and updates its minimum path to D, if

necessary.

The second case is shown at Algorithm 2. In this case, the first step is to receive

the broadcast message and to check if the message is a token (step 1 to 4). Particularly, if the

message is a token, then the device starts to perform Algorithm 1. Otherwise, the device uses

the message content to check if it can provide the requested resource and meet all requirement

constraints. This procedure uses functions Φ(), ω(), and λ () (steps 8 to 19) with the parameters

from the received broadcast message. If the device can meet the constraint requirements and

provide the resource, it sends a P2P message to the token’s owner device, informing its resistivity

of service for restrictions r related with D (λ () function) and also that it is part of the feasible

graph. Otherwise, it also sends the message, but only to inform that is not part of the feasible

graph(G f easible(V,E)).

4.3 Data dissemination in the Fog/Mist environment (RQ2)

A first step to address the Data Persistence Problem in the FMC environment (DPPF)

is to formally model the problem. Therefore, DPPF consists of how to maintain a given D, a data

block of size L, which wants to distribute and make itself available in the FMC environment. F

could be called as the network devices located at the network edge, dynamically composed by n

active devices in a timestamp t, among a total possible of Nt devices. The set F , at moment t,

can be represented by a graph G(V,E), where the set of vertexes V are the n active devices and

the set of edges E are defined as the communication link between them.

The devices that are part of F at timestamp t are not necessarily t +∆t at the same

time because some of them may leave F and new devices can enter at any time. Thus, there is an

output rate of devices (σout) and a renewal rate of devices (σin).

The basic concept of our proposal is to create a mechanism to infer these input and

output rates of devices and to ensure that persistent data stay in the environment despite the

ephemera availability of the devices that composed it. With this in mind, it is assumed that the

data replication rate (the amount of data replicates generated over a specific time interval) is

greater than the number of devices that left the environment in the same time interval that we
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call the output device rate. Additionally, it must be assured that the number of data replicas in

the environment is equal or greater than this rate. Consequently, some nodes of FMC must be

selected to be responsible for the data replication control and measurement of device entry and

exit rates. Thus, the choice of the nodes that will perform these functions will be made according

to the criteria explained as follows.

In this proposal, the residence time of devices, which is the time in which the devices

remain in the FMC environment, will determine the selection of which one will control the data

output rates and data replication in their context. Thus, to implement this strategy, it is necessary

to define a metric that enables to compare two nodes and choose the most stable between them.

Having this in mind, the Fog stability metric (represented by ρ) could be defined as a function of

co-domain between zero and one, whereby zero means that the device shows no availability in

the environment during the period analyzed, and one means total availability of that device under

the same conditions.

The stability function may depend on several factors associated with the device or

Fog environment. However, for this analysis, what matters is how long the device remained

available in the environment for a given a period. Thus, one way to implement this metric is

to make the device itself calculate it by measuring the total time that it was available in the

Fog/Mist environment in a given period, and divide it by the total time under analysis (T ). A

formal definition of Fog stability function (ρ) is in the following subsection.

4.3.1 Definitions

Definition 4.3.1 Given F, the set of all devices in Fog/Mist environment E at moment t, and

{t1, t2, ..., tn}, the set of time intervals that the device p was available in E during a period T

prior to current time t, where p ∈ F and ∑
n
i=1 ti < T , the Fog stability function of p (ρ(p)) is

defined as:

ρ(p) =
∑

n
i=1 ti
T

If the question of the replication and distribution of data d within the network is considered, an

important factor is the number of neighbors in which a device has a direct communication link.

Thus, to model a metric for the number of neighbors, the concept of vertex degree (from graph

theory) will be used as a metric for this issue. Good candidates for data replication control and

distribution devices will be devices that combine these two concepts. Thus, points of maximum



86

local stability will be defined as:

Definition 4.3.2 Given p,N and f , where p is a device ∈ F, N is the set of neighbors of p and

f a function defined from F → R, it can be said that p is a local maximum with respect to the

function f ⇔ f (p)> f (v),∀v ∈ N.

A relevant parameter that must be evaluated by a node (p) that assumes the central

role of control and data distribution is the likelihood of losing the data in its neighborhood, ψ ,

which may be calculated as the likelihood that a node and its neighbors, which contain data,

leave the network at the same time, mathematically:

ψ(p) =
q

∏
i=0

(1−ρ(pi))

Where p0 = p, and q is the number of neighbors from p.

Another important parameter that must be considered for the topology formed by

the devices that compose FMC is the availability of the data within at most one hop from the

node in focus. Therefore, aiming at creating a metric to evaluate this parameter, the availability

of the data for node p of the graph G(V,E) will be defined as the percentage of nodes adjacent

to p that contain data d. Thus, if node d contains the data d, its availability, given d, is one by

definition, or formally defined as:

Definition 4.3.3 Given N, the set of the neighbor of p denoted by

N =
{

n0,n1, ...,nq
}

η(p) =
∑

q
i=1 α(ni)

q

Where α() is defined as:

α(ni) =

0, if ni does not contain data d

1, if ni contains data d

The data availability parameter can be used as a metric to guide the direction of

data replication process within the network. Thus, using the pheromone (DORIGO et al., 2006)

concept of evolutionary computation, the data attractivity parameter can be defined as an inverse

pheromone of the data availability parameter for a node P.
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Definition 4.3.4 Given the device p ∈V with data availability η(p), data attractivity of d (δ ) is

defined as:

δ (p) = 1−η(p)

To ensure good diffusion of data between the devices that make up the ecosystem,

another key point concept is the percentage of coexistence (γ) of devices, formally defined as:

Definition 4.3.5 Given n(t), the number of active devices at time t in the FMC set F, and nT ,

the total number of devices that belong to the set F, γ is defined as:

γ = n(t)/nT

The value of γ is a metric that indicates what percentage of devices are available to

communicate relatively to the total count of devices that make up the environment.

4.3.2 Proposed Model

In this proposal, the DPPF problem is divided into two relatively independent sub-

problems and the premise that the FMC environment can be modeled as a graph is considered,

as described previously.

The first problem consists of identifying the devices that may be candidates for

controllers of the data replication and storage processes. Similarly, the second issue may be

defined as follows: given some controller nodes and considering that they have replicas of the

given data d, what should be the replication rate of d, locally and globally, in order to ensure

that it remains within the environment? As well, there is a second question: which one of the

neighbor’s nodes should receive its data replica?

The approach used in the proposal to address the first problem is to use a modified

distributed leader-election algorithm to identify local leaders, using the stability function as a

metric. Therefore, nodes with higher stability function are expected to be more likely to remain

in the environment at the instant after the time interval at which the analysis was performed. It

is important to realize that the choice of local leaders should also consider a minimum degree

connection restriction to ensure the possibility of distribution of the D data packet within the

network.

The primary condition for a device to consider itself as a local leader is that all

its neighbors have the value of their stability function smaller than its stability function value.
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Additionally, another necessary minimum condition is that the node has at least two neighbors,

i.e., its node degree is greater than two. Thus, considering that all requirements of local leaders

are defined, the IoT devices that compose FMC may classify themselves as one of three types of

nodes within the graph: Local Leaders (LL), Local Leaders’ Neighbors (LLN), and Far away

from Local Leaders (FLL). In this proposal, each type of nodes has a different role:

• Node type LL - these nodes are responsible for controlling the output rate of nodes that

own data copy in their neighborhood and manage the data replication process based on

measured output rate. Also, this kind of node works as a repository of data because its

stability function is a local maximum; so, locally, the node has the best likelihood to

stay inside the network. In fact, the LL nodes replicate the data only when they detect

that they lost some node with data in its neighborhood. This evaluation is made in each

classification cycle of the node type. The process to replicate the data use the roulette wheel

(HOLLAND, 1992)selection method using the nodes attractivity function to define the

areas of sectors. Thus, the nodes with bigger attractivity function have a more significant

likelihood to receive a data copy.

• Node type LLN - this type of node has the main responsibility to direct the copy of the

data it receives for its LL node. Also, it is the function of this type of node to execute

replication commands ordered by its LL or LLN type neighbors. To clarify, assuming that

the LLN node has a copy of the data and receives a data replica from its LL node, since

the node already has the data, the node initiates a roulette wheel selection process with its

neighbors, excluding its LL node, to pass the copy of the data.

• Node type FLL - This type of node has a secondary role within the infrastructure, and its

primary role is to initiate the data replication process when it owns a copy of the data. The

choice of which neighbor to replicate is made using the roulette wheel selection method

described before. In this way, the data must be replicated to a near LL or a region that has

low data availability.

It is important to note that from the theoretical point of view it is possible that all

nodes have the same stability function. Thus the node cannot be self-classified. Although this

case is not easy to exist in a real environment an approach to handle this situation would be the

random choice of an LL between the nodes that satisfy the condition of maximum stability.

The second problem is to ensure that the data diffusion to the control nodes (LL)

are spatially distributed within the topology, avoiding, whenever possible, the concentration of
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data in specific regions of the graph. Thus, to reach these goals, an epidemiological data model

based on the Reed-Frost model (ANDERSSON; BRITTON, 2012b) was chosen. In essence, the

main modification proposed by this approach is to define that the probability of infection (data

replication) depends mainly on two factors:

• The stability function of the node to be contaminated, since, considering that the most

stable nodes possess the bigger the probability of itself remaining in the network; and

• Spatial distribution of the data to regions where there is less availability of it.

Aiming at reconciling these two seemingly conflicting objectives to decide the

direction in which the data should be replicated, the Author opted to use ideas of evolutionary

computation, particularly the ones from genetic algorithms which also undergo similar problems

when, in search of the optimal solution, they must avoid local minimums/maximums. Precisely,

in genetic algorithms, the way to solve this issue is to adopt a selection operator called a roulette

wheel. This operator consists of a roulette wheel that is constructed so that the circular sectors

forming it have the area proportional to a fitness function of each option. Thus, the choice of the

option is made by rotating the wheel and selecting an option corresponding to the area where

the selector has stopped. Similarly, applying the concept and the roulette wheel operator to

the described problem will use an evaluating function, which incorporates a metric in order to

achieve the goals described and help to decide to which neighbor the data is to be replicated.

Having this in mind, an evaluating function (φ()) was defined. It combines the stability (ρ(p))

function and data attractivity (δ (p)) of node p, which is defined as:

Definition 4.3.6 Given p,V,ρ(p),δ and β , where p is a IoT device, V is the set of IoT devices

that are part of FMC and ρ(p) and δ (p) are, respectively, its stability function and attractivity

function, and β the weight given for its stability, it was defined as its evaluating function:

φ(p) = ρ(p)β ∗δ (p)(1−β )

4.3.3 Proposed Algorithm

The chosen algorithm will be executed in a decentralized and autonomous way by

each device that composes the FMC, thus not existing any process of global coordination of the

network. Consequently, all interactions between the devices are made locally and with other

devices that are in their vicinity. The idea is that the objectives of disseminating and maintaining

the data in the environment are an emergent behavior of the simple interactions between the
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devices that are part of the network.

In the proposed model, the devices could assume three roles within the infrastructure:

local leaders (LL), local leaders neighbors (LLN) and far away from local leaders (FLL). Hence,

periodically, each device must evaluate what role it should assume among these options, executing

the processes associated with the role.

The self-evaluation process to identify what role the device should take follows the

steps:

1. Initially, the node assumes that is the type far away from local leader node (FLL).

2. Then, the node sends a broadcast message publishing its stability function and receives the

stability function of its neighbors as a return. Consequently, the node can verify if it meets

the definition of a local leader (LL).

3. If it does, it sends a new message to its neighbors stating that they must assume the role of

neighbors to local leaders (LLN).

4. Restart the cycle.

It should be remembered that for nodes to avoid collision of communications messages within

the network an avoidance collisions mechanism (SHIH et al., 2011) has been adopted.

In Figure 18, the state diagram of the self-classification algorithm is shown. In short,

the node running this process collects data from neighbors node and, based on these data, defines

its role inside the infrastructure.

The role that the node takes within the network defines how it will handle the data

to disseminate it. Of course that the node performs some role if it owns a copy of the data.

Otherwise, it does nothing.

Figures 19, 20 and 21 present the state diagrams of data replication process depending

on the node type rule. The node neighbor selection process uses an adaptation of the roulette

wheel selection (HOLLAND, 1992), using our evaluating function φ(p) as the parameter to

define the area of circular sectors of the roulette wheel. This process is executed every time a

node needs to replicate data for its neighbor, except in case of LLN type nodes, when the node

receives the first copy of the data. In that case, the data replication must be directed to its LL

type node.
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Figure 18 – State diagram for self classification node type.

Source – Author.

Figure 19 – State diagram for LL nodes.

Source – Author.
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Figure 20 – State diagram for LLN nodes.

Source – Author.

Figure 21 – State diagram for FLL nodes.

Source – Author.

4.4 Computational Resource Prediction for Fog/Mist environment (RQ3)

The computational resource allocation prediction problem is defined as follows how

an IoT device without previous knowledge of the FMC environment in which it has just entered
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should predict which IoT device in the network it should request a particular computational

resource?

Aiming to address the computational resource allocation prediction problem in the

FMC environment, the proposal of this thesis approaches this problem as a hybrid collaborative

recommendation system combining with temporal availability information of the provider

devices. That information is made available using the mechanism of data dissemination of

the RQ2 proposal. The client device gets the RS parameters and performs predictions of the

recommended device in the network capable of providing a specific computational resource.

The following premises are assumed for all devices that are part of the network:

1. All devices that are part of the FMC infrastructure may be characterized by a vector of

technical hardware and software features and device functionality; and

2. Similar devices tend to rate providers of computing resources in a similar way.

Considering the premise 1, initially, it is known that IoT devices are machines;

therefore, their behaviors are generally deterministic, i.e., they are determined according to

their design requirements that meet technical specifications. It is reasonable to assume that it is

possible to characterize any IoT device by a set of technical characteristics. For example, one

could characterize a smartphone by its CPU processing power, Random Access Memory (RAM),

Flash memory, operating system, manufacturer, type of network interfaces, battery, functionality.

Similarly, by analyzing the second premise, it is also reasonable to assume that

similar devices likewise evaluate a particular service or computational resource with a similar

rating. Thus, for the same reason that devices are machines, they used objective criteria or metric

to evaluate the quality of a computational resource shared by other devices, unlike humans. For

instance, identical twins could rate a movie in a totally different way because the criteria used

depend on their personal taste, the current emotional state and other subjective factors.

Both assumptions are very reasonable and, in the view of this author, applicable in

several IoT environments.

4.4.1 Definitions

Based on the first premise, a device that is part of the FMC environment can be

formally represented as the following definition:

Definition 4.4.1 Given p a device, where p ∈ F, then Ff = { f0, f1, .., fm} is the set of m features

that define the device p and its functionality within the environment F. So, p can be used as a
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vector of dimension m×1 as follow:

p =


f0

f1

...

fm


In the proposal, aiming at taking benefits from premise 2, it is important to define a

similarity metric between the devices. In the literature, there are several metrics of similarity

that should be applied (Cosine similarity, Euclidean distance, Manhattan distance, Pearson

correlation, Spearman correlation, Tanimoto coefficient and Log Likelihood) (GUO et al., 2014).

However, in this work, the metric of cosine similarity is used, since it is the most used metric in

Collaborative Filter systems and have a low computational cost for its calculation. The formal

definition of the cosine similarity metric can be seen in Section 2.2.5 of Chapter 2 of this thesis.

In a collaborative recommendation system, a key factor for good recommendations

is a large amount of data from past ratings. In a conventional and centralized recommendation

system running on a powerful server, there is no problem in storing this information in a database.

However, in this proposal, this system should be performed in a heterogeneous and highly

dynamic environment in which the required information for the recommendation moves despite

the network in P2P architecture. Thus, strategies to minimize the amount of required data should

be designed to provide the recommendations.

Having this in mind, the author decided to store the required information for each

computational resource type in three matrices n×n, where n is the total number of devices in the

FMC environment. The matrices contain information on the mean ratings, the last post rating and

the total number of evaluated ratings for each computational resource. Each matrix is organized

as follows: rows represent the devices of the network when they assume the role of clients of a

particular computational resource and the columns similarly represent the same devices when

they assume the role of computational resource providers. The matrices memory requirement

growths with the square of the number of devices in the FMC environment. Thus, to propose

a solution that allows IoT devices with low memory capacity to use the proposal, the matrices

were distributed in clusters around the LL-type nodes that are also responsible for keeping the

matrices data in the network (RQ2). So, the memory requirements are reduced, because now the

matrices contain information only about the devices that are neighbors to LL-type nodes.
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Definition 4.4.2 Defining Rcr
mean as the matrix of the mean ratings for the computational resource

cr, a matrix n× n, where n is the total number of the device in FMC environment, and each

element row represents a rater device and each column represents a resource provider device,

each element (i, j) contains the average rating of device i about the computational resource cr

when provided by device j. It is important to note that, if there is not any rating available the

value on matrix, Rcr
mean is conventionalized as -1.

Rcr
mean =



r0,0 r0,1 r0,2 . . . r0,n−2 r0,n−1

r1,0 r1,1 r1,2 . . . r1,n−2 r1,n−1

.

.

.

rn−1,0 rn−1,1 rn−1,2 . . . rn−1,n−2 rn−1,n−1




n rows.

n columns︷ ︸︸ ︷

Similarly, the matrix of the latest ratings of devices about computational resource rc

was defined.

Definition 4.4.3 Defining Rcr
rating as the matrix of the mean ratings for the computational re-

source cr, a matrix n×n, where n is the total number of the device in FMC environment, and

each element row represents a rater device and each column represents a resource provider

device, each element (i, j) contains the most recent rating of device i about the computational

resource cr when provided by device j. Moreover, it is important to note that, if there is not any

rating available, the value on matrix Rcr
rating is conventionalized as -1.

Rcr
rating =



r0,0 r0,1 r0,2 . . . r0,n−2 r0,n−1

r1,0 r1,1 r1,2 . . . r1,n−2 r1,n−1

.

.

.

rn−1,0 rn−1,1 rn−1,2 . . . rn−1,n−2 rn−1,n−1




n rows.

n columns︷ ︸︸ ︷

Once more, the matrix of the total number of ratings evaluated by the devices about computational

resource rc was defined.
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Definition 4.4.4 Defining Rcr
total as the matrix of the mean ratings for the computational resource

cr, a matrix n× n, where n is the total number of the device in FMC environment, and each

element row represents a rater device and each column represents a resource provider device,

each element (i, j) contains the total number of rating of device i about the computational

resource cr when provided by device j.

Rcr
total =



r0,0 r0,1 r0,2 . . . r0,n−2 r0,n−1

r1,0 r1,1 r1,2 . . . r1,n−2 r1,n−1

.

.

.

rn−1,0 rn−1,1 rn−1,2 . . . rn−1,n−2 rn−1,n−1




n rows.

n columns︷ ︸︸ ︷

The matrices of the definitions 4.4.2, 4.4.3, and 4.4.4 show a view of the ratings

of the system as a whole that will be very useful for the devices that wish to predict one

computational resource provider available. Nevertheless, each evaluator device individually

only holds information on the evaluations performed by itself. In this way, the mean, the last,

and the total matrices of the individual rating matrices of the mean, last, and total device as a

matrix r timen will similarly be defined, where r is the number of computational resource types

available in the FMC environment and n is the total number of devices in the FMC environment.

The formal definitions of matrices are the following:

Definition 4.4.5 Defining Rdevice
mean as the matrix of the mean ratings for the computational re-

sources in environment FMC (F), a matrix r×n, where r is the total number of computational

resources types (Processing power, storage, network, multimedia, etc) available in F, and n is

the total number of the device in F, and each element row represents the computational resource

type and each column represents a resource provider device, each element (i, j) contains the

average rating of computational resource i about the device provider j. It is important to note

that, if there is not any rating available, the value on matrix Rdevice
mean is conventionalized as -1.
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Rdevice
mean =



r0,0 r0,1 r0,2 . . . r0,n−2 r0,n−1

r1,0 r1,1 r1,2 . . . r1,n−2 r1,n−1

.

.

.

rr−1,0 rr−1,1 rr−1,2 . . . rr−1,n−2 rr−1,n−1




r rows.

n columns︷ ︸︸ ︷

Definition 4.4.6 Defining Rdevice
rating as the matrix of the last ratings for the computational resources

in environment FMC (F), a matrix r×n, where r is the total number of computational resources

types (Processing power, storage, network, multimedia, etc) available in F, and n is the total

number of the device in F, and each element row represents the computational resource type and

each column represents a resource provider device, each element (i, j) contains the most recent

rating of computational resource i about the device provider j.

Rdevice
rating =



r0,0 r0,1 r0,2 . . . r0,n−2 r0,n−1

r1,0 r1,1 r1,2 . . . r1,n−2 r1,n−1

.

.

.

rr−1,0 rr−1,1 rr−1,2 . . . rr−1,n−2 rr−1,n−1




r rows.

n columns︷ ︸︸ ︷

Definition 4.4.7 Defining Rdevice
total as the matrix of the total number of ratings for the compu-

tational resources in environment FMC (F), a matrix r× n, where r is the total number of

computational resources types (Processing power, storage, network, multimedia, etc) available

in F, and n is the total number of the device in F, and each element row represents the computa-

tional resource type and each column represents a resource provider device, each element (i, j)

contains the total number rating of computational resource i about the device provider j.
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Rdevice
last =



r0,0 r0,1 r0,2 . . . r0,n−2 r0,n−1

r1,0 r1,1 r1,2 . . . r1,n−2 r1,n−1

.

.

.

rr−1,0 rr−1,1 rr−1,2 . . . rr−1,n−2 rr−1,n−1




r rows.

n columns︷ ︸︸ ︷

In real FMC environment, it is common that the matrices Rcr
mean, Rcr

rating, Rcr
total , Rdevice

mean ,

Rdevice
rating , and Rdevice

total are sparse matrices. Therefore, they can be stored in a list of list format to

save storage space.

Equally, an important point to be addressed in the computational resource allocation

problem is the temporal availability of the devices in the FMC environment being studied.

In the present proposal, each device knows when it is inside the FMC environment.

Therefore, the device can create an average time profile of its permanence in the network. This

profile can be created based on a frequency histogram of the device within the time interval under

analysis. Considering the example shown in Figure 22 the availability of a smartwatch from an

employee of a company that comes in at 8:00 am and usually leaves the company around 6:00

p.m., in order to save storage space, it is possible to approximate the histogram by a Gaussian

curve and then store only the mean value and the standard deviation of the curve. It is important

to highlight that if the device has the profile of attending the environment routinely in several

different periods within the time period under analysis, it is necessary to approximate its behavior

by more than a Gaussian curve, where each one represents one of the periods of the permanence

of the device in the network environment.

It is important to note that the histogram also serves as an evaluation tool to identify

the way the device frequents the network environment. To put it in another way, if the visiting

frequency is sparse to the network environment, the device should not be considered in the

Recommendation System as a provider of computational resources because, in this case, it is

practically impossible to predict when it will be within the network environment.
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Figure 22 – Example of device temporal availability.

Source – Author.

Definition 4.4.8 The equation 4.1 represents probability function of the normal distribution that

models the temporal probability of the device in the network environment.

Ψ(x|µ,σ2) =
1√

2πσ2
e
−(x−µ)2

2σ2 (4.1)

Another way to model the probability of permanence of the device in the FMC

environment is to consider the probability function as is a trapezoidal curve, where zero means

that the device is not in the network and the value one when the device remains in the environment.

In this approach, the curve starts to climb in the shortest recorded time of network entrance

(Min−) and stabilizes at the value one, at the instant of maximum recorded time (Min+) from

the input of the device in that network. Similarly, the function starts the descent in the shortest

recorded time of exit (Max−) and ends the drop arriving at the value zero in the maximum

registered time (Max+) of disconnection of the network. Figure 23 presents one example of a

trapezoidal curve to model temporal availability of the device in the network.



100

Figure 23 – Trapezoidal temporal model function of device availability.

Source – Author.

In order to optimize the computation time in the client device, some matrices and sets

that will be used in calculating the prediction of the rating of a device for a given computational

resource cr will be defined.

Definition 4.4.9 Defining the set Fcr as the set of raters of cr. Fcr is the subset of F, in which its

elements at some past point have already evaluated the computational resource cr, it could be

represented formally as:

Fcr =
{

d1,d2, ...,dp
}
|Fcr ⊂ F and ∀di ∈ Fcr already rating the computational resource cr

Definition 4.4.10 Defining the set Pcr as the set of providers of cr in which the devices can

provide the computational resource cr from among the total device set devices (F), it could be

represented formally as:

Pcr =
{

p1, p2, ..., pq
}
|Fcr ⊂ F and ∀pi ∈ Pcr | pi could provide the computational resource cr

Definition 4.4.11 Defining the similarity matrix (Sdevices) as the matrix n× n, where n is the

total number of devices that are part of the set F, the elements (i, j) of this matrix are the cosine

similarity between device i and device j. Formally:
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Sdevices =



s0,0 s0,1 s0,2 . . . s0,n−2 s0,n−1

s1,0 s1,1 s1,2 . . . s1,n−2 s1,n−1

.

.

.

sn−1,0 sn−1,1 sn−1,2 . . . sn−1,n−2 sn−1,n−1




n rows.

n columns︷ ︸︸ ︷

where,
#»

di,
#»

d j are devices and each element of matrix is calculated according the equation 4.2.

s(
#»

di,
#»

d j) =

#»

di ·
#»

d j

| #»di||
#»

d j|
(4.2)

4.4.2 Proposed Model

The proposed solution to the computational resource allocation prediction problem

reuses the architecture proposed in RQ2, which creates a dynamic structure of the nodes that

are part of the FMC, in which they could assume different roles in topology. The node role

depends on its average time inside network (stability function) and its role should be as Leader

Local (LL), Local Leader Neighbor (LLN), and Far away from Local Leaders (FLL). However,

in the new proposal, the LL nodes also assume the role of aggregating the rating information

(Rcr
meanl , Rcr

rating, and Rcr
total) and time availability information from its neighbor nodes. In addition,

it is also the responsibility of the LL nodes to distribute the data parameters of the prediction

algorithm to the clients using the dissemination algorithm proposed in RQ2. Figure 24 illustrates

the process of clustering the distribution of the recommendation parameters that are concentrated

in the LL nodes.
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Figure 24 – Diagram to show the clustering spatial distribution of recommender system parame-
ters.

Source – Author.

To calculate the prediction for the best computer resource node provider available,

the client node must perform the following steps:

1. To request from the closest LL node the set of raters of cr (Fcr,de f inition4.4.9);

2. To request from the closest LL node the set of providers of cr (Pcr, definition4.4.10);

3. To request from the closest LL node the matrix devices similarity (Sdevices, definition

4.4.11), and the matrices related to computational re mean rating cr (Rcr
mean, definition

4.4.2),last rating (Rcr
rating, definition 4.4.3), and number of ratings (Rcr

total , definition 4.4.4);

4. Given Fcr, Pcr, and Sdevices to predict the rating of a provider pi ∈ Pcr, it is necessary that

for each element pi, one must found K devices of the set Fcr that had already rated pi or at

least the K more similar devices from set Pcr when compared with pi;

5. To request from the closest LL node the list of Ψdevice(x|µ,σ2) (definition 4.4.8) for the K

provider devices;

6. Once you find the K similar devices raters and providers, the predict rating for computa-

tional resource cr for provider pi, j can be calculated using the equation 4.3,

pi, j = (r̄i +
∑

K
l=1 Sdevices(i, l)∗ (ratingmean(i, l)− r̄l)

∑
k
l=1 Sdevices(i, l)

)∗Ψdevicei(x|µ,σ2) (4.3)
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where r̄i and r̄l are the average rating of device i and l for all the provider devices rated by

device i and l respectively, Ψdevicei(x|µ,σ2) is the probability density of device i remain

on network at time t, and ratingmean(i, l) is calculated using the equation 4.4 and α is the

weight given for the last rating value.

ratingmean = α ∗Rcr
rating− (1−α)∗Rcr

mean(i, l) (4.4)

7. After calculating the predicted rating for all elements of the set Pcr, it was sorted in

descending order and select the device corresponding to the first element as the prediction

to be the best available to provide the computational resource cr.

Figure 25 illustrates the rating prediction process exemplifying the case of an activity

tracker monitor who wishes to predict the rating of a refrigerator. Initially, there is a search for

similar K devices; in this case, K is equal to 2. The two most similar devices to activity tracker

are two smartwatches being found. To estimate the rating that the active tracker monitor would

have about refrigerator will be the ponderate average of the ratings of similar IoT devices that

have previously rated the refrigerator multiplied by a factor between zero and one that indicates

the probability of the refrigerator is available at that time. The weight of the rating of each

similar device will be the degree of similarity of the device to the client device.

Figure 25 – Example of prediction process flow.

Source – Author.

An important issue in choosing the K devices that will contribute to the recom-

mendation information is the similarity, however, in some cases, only this information may

not be sufficient. For example, consider the case where the device is very similar to the client
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device, but this device has few recommendations about the other device providers of a particular

computational resource. Thus, another important parameter is the percentage of evaluations that

this device has about other resource providers defined formally as follow:

Definition 4.4.12 Let n be the total number of devices providing a computational resource with

nr the number of providers that the evaluating device r has previously evaluated. The percentage

of evaluations of r providers (ηr) is defined as:

ηr =
nr

n
(4.5)

The choice of which K devices that will contribute to the calculation of the predictor

must commit with these two parameters, similarity, and percentage of evaluation on other

providers simultaneously.

The solution found to combine these two essential parameters was to generate two

lists sorted in decreasing order respectively by the similarity and percentage of evaluations of the

providers. Then for each provider device calculates a new metric called score. The score metric

is defined as the sum of the positions in both lists. Hence, a low score is an indicator that the

devices are well placed on both lists, so it must be the commitment with both parameters. On the

other hand, a high score may mean that in at least one of the lists, or in both, the device is not

well positioned, thus indicating that it is not compromised with at least one, or both, parameters.

Therefore, the devices chosen are the K ones which they having the lowest score metric.

4.4.3 Proposed Algorithm

The proposed algorithm consists basically of three major processes described as

follows:

• Consolidation of recommendation data;

• Dissemination of recommendation data; and

• Calculation of recommendation.

In the proposal, it was used the same adaptive hierarchical structure proposed in Section 4.3.2 of

the data dissemination problem to execute the recommendations system processes.
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Figure 26 – Sequence diagram of recommendation data consolidation protocol.

Source – Author.

The process of consolidating the recommendations data consists of the following

steps:

1. The LL nodes periodically announce through a broadcast message that they are ready to

receive information;

2. Devices in the vicinity of the LL node receive the message and uses a Carrier-Sense

Multiple Access with Collision Avoidance (CSMA/CA) method to access the network;

3. The device that takes the access sends its features and awaits confirmation of receipt by

the LL node;

4. The LL node receives the feature device data and then updates its list of provider devices

and computes the similarity matrix with the already registered devices;

5. Then, the device sends its residence probability density information and again waits for

the confirmation of the LL node;

6. The node LL receives the information and then updates the residence probability density

information associated with the sending device;

7. The device sends its rating matrices by resource type (Rdevice
mean , Rdevice

rating , and Rdevice
total ) and

awaits confirmation of receipt;
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8. The LL node uses the device x resource matrices to update the device x device matrix for

each type of computational resource; and

9. The LL node packages the similarity matrix (Sdevices), list of devices and their probability

density of residence, matrices of rating by computational resource ( Rcr
mean and Rcr

rating and

Rcr
total)and disseminates this data.

Figure 27 – The state diagram of LL node implements the recommendation data consolidation
protocol.

Source – Author.

Figure 26 illustrates the protocol of the data consolidation process of recommen-

dation according to the previously described descriptive process. In particular, to facilitate the

understanding of the process, it is also shown in Figure 27 the state diagram that the LL node

must execute to implement the protocol described in Figure 26.

After consolidating the data required for the recommendation system, the LL node

performs the algorithms and protocols described in Section 4.3 to disseminate this data within

the network environment located at the edge. An important point to note in this process is that,

after consolidating a package with the recommendation information, the LL node creates a new

version of that data packet, then stops distributing the previous version on the network.

Finally, the last process happens in the client device that wants to find a certain

computational resource (network or computational processing or storage or other). It is the

precondition of this process that the client device has received the consolidated data packet with
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the recommendation information.

The client device must perform the following steps to receive the recommendation

of which device is the best candidate device to provide a particular computational resource:

1. The client device queries the similarity matrix of the devices creating a descending sorted

list of similarities with itself.

2. The client device removes from the sorted similarity list all devices that are unable to

provide the desired resource cr.

3. The client device selects the K top devices in this list.

4. The device selects the device x device rating matrices ( Rcr
mean and Rcr

rating and Rcr
total) per

computational resource associated with the selected computational resource cr, verifying

that all of the chosen K devices have evaluation data in that matrix. In the case that one of

the K devices does not have any evaluation in the matrix, that device is eliminated from

the list of the chosen ones by choosing the subsequent device from the ordered list.

5. Step 4 should be repeated until the similar K devices have been chosen with evaluations

on the computational resource cr.

6. Using Equation 4.3, the client device calculates the prediction of each device in the list of

K similar and chooses the one with the highest rating.

Similarly to what happens in the process of consolidating the recommendation

information, the device can also receive a new version of this package. In this case, the device

discards the previous information and begins to consider in its calculation the most updated

recommendation information package.

In a real environment, these three processes execute in parallel, and only in the first

execution of the process the sequence is necessary.

4.5 Summary

In this chapter, the proposal of an algorithm and protocol for the problem of allocation

of resource in FMC environment related to RQ1 was presented, which also suggests the better

network infrastructure to be used, namely Fog, Mist, or Cloud computing. Moreover, the concept

of feasible Fog was introduced, which allows to avoid the growing of the execution time of

algorithm even in networks with several devices.

Also in Section 4.3.2, it was presented the challenges related to RQ2 and one proposal

to address the challenge of how to keep data in FMC with a dynamic topology. The proposed
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algorithm borrows some bio-inspired computing concepts that utilizes a self-adaptative hierarchic

structure of devices to control the data dissemination process in the network.

Concluding the chapter, the proposal of a collaborative hybrid recommendation

system was presented to handle RQ3 issues. It is based on previous evaluations of the device

about computational resources afforded by provider devices and temporal availability statistics

of these devices, enabling to make predictions about the best device available in the network, the

one which is able to provide a specified computational resource.

The next chapter presents the details and results of the assessment of the proposals

discussed in this chapter. This evaluation was focused on validating the effectiveness of the

proposals as well as generating evidence to validate or refute the hypothesis of this thesis.
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5 EVALUATION

This chapter presents the simulation experiments to evaluate the effectiveness of the

thesis proposals discussed in Chapter 4 and their results.

This chapter is then organized as follows: Section 5.2 presents the results of the

evaluation of the network infrastructure selection algorithm and protocols related to RQ1; Section

5.3 describes the experiment performed to assess the data dissemination in Fog/Mist Computing

(FMC) environment algorithm related to RQ2; Section 5.4 discusses the experiments related to

the validation of the algorithm and protocols involved in the prediction model of computational

resources available in the FMC environment related to RQ3; and, finally, Section 5.6 concludes

this chapter.

5.1 Overview

The Contiki operating system (DUNKELS et al., 2004) is selected as the test environ-

ment to evaluate the proposals, given that it has good acceptance in academia and industry and is

often used in Wireless Sensor Network (WSN) and Internet of Things (IoT). It is also important

to remind that the Contiki operating system brings a simulation tool (Cooja) (DUNKELS et al.,

2004), which facilitates the analysis and tests of the experiment with different setting parameters

and network topologies. The Cooja simulator emulates different types of hardware platforms

through objects called motes; the emulated code is the same used in real hardware. In particular,

the proposed algorithm and protocol in the C language were implemented and simulated using

motes of type Sky (TI MSP430 CPU/8MHz, 48 KB ROM, 10KB RAM, 250kbps 2.4GHz IEEE

802.15.4), available in the Cooja Simulator of Contiki version 2.7 for Linux.

It is clear that one hardly a simulation environment captures all nuances and param-

eters of an actual FMC environment. However, to evaluate the proposals, the most relevant

parameters in proposal context were chosen and previously loaded in the motes that will be part

of the simulation. Thus, these parameters are considered as inputs for evaluation experiments.

They are examples of these parameters are available storage capacity, latency between devices,

bandwidth of communication links, processing capacity among others.
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5.2 Network Infrastructure Selection (RQ1)

5.2.1 Experiment definition

Each test scenario was executed thirty times in order to check the consistency

of answers. Additionally, all message traffic between the motes was also monitored by the

Cooja tool and it was verified by the author whether they were in accordance with the protocol

specifications.

The functioning of the algorithm was evaluated into two phases as follows.

In the first phase, two experiments sought to validate the correctness of the choice of

the algorithm were performed. For that, two distinct hypothetical topologies, in which each set of

constraints was designed for suggesting a known infrastructure option to use the computational

resource, were used and compared with the result obtained by the algorithm.

Figure 28 – Scenario used in Experiment 1 - First phase.

Source – Author.

The first experiment aimed to compare the choice made by the algorithm with a

configuration where it was possible to infer the choice according to the constraints imposed.

Thus, a scenario was constructed based on a client device D in a network where 29 nodes
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belonging to the Mist (9), Fog (15), and Cloud (5) types were randomly distributed in circular

areas in a uniform distribution. The nodes of each type were characterized based on three

parameters: latency (L), processing power (C), and storage capacity (S). The latency for each

node was defined as proportional at the received signal strength indication from the client node

combined with a multiplicative factor that depended on the node type (Mist = 1, Fog = 2, and

Cloud = 6). The multiplicative factors comprising 1, 2, and 6 were selected so the latency values

for Fog were slightly higher than those for Mist, and those for Cloud were well above those

for Mist. It is important to note that the Mist type nodes were distributed inside the first ring

and the remaining nodes outside the ring, as shown in Figure 28. The configuration in terms

of the processing power and storage capacity for each node was set according to the following

rules. Depending on their type, the nodes received a random value for their processing power

and storage capacity according to Table 81, which shows that Cloud nodes had high processing

power, storage capacity, and latency. By contrast, the Mist nodes had low processing power,

storage, and storage capacity. Finally, the Fog nodes had intermediate processing power and

storage capacities, where the values were between those for the Mist and Cloud nodes.

Table 8 – Node configuration range for storage capability (S) and processing power (C) in
Experiment 1.

Node type
Storage(S) Processing Power(C)
Min Max Min Max

Mist 10 50 3 10
Fog 100 120 50 70
Cloud 500 550 300 350

Source – Author.

For each experiment, the configuration of the client device requirements was defined

into priorities for latency, processing power, and storage capacity. Then, the twenty-nine nodes

were distributed and configured according to the defined rules, and executed the algorithm that,

at its conclusion, selected one of the twenty-nine nodes to be the provider of the computational

resource taking into account the defined requirements and priorities. The experiment was

performed thirty times with six configurations that suggest the selection of a Cloud node,

seventeen configurations that suggest the selection of a Fog node, and seven configurations that

suggest a Mist node. The results are shown in Table 10.

The second experiment was designed for its topological distribution of the com-
1 The values shown lack units, because they are relative values.
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putational resources aiming at making it easy to identify the device that meets the constraint

requirements. This topology is generated randomly. However, the resource distribution follows

predefined rules. For example, considering that the constraint is network latency, the test config-

uration may be a topology in which the nodes are distributed between concentric circles, where

the radius of a circle is a multiple of its immediate inner circle’s radius and the center of all

circles is the device D. Also considering that the latency between each node and D is defined

as a multiple of latency of the nodes in the most inner circle, if a node has its distance from

the center of two and a half radius, its latency will be three times the latency of devices inside

the first circle. In this experiment, this rule for latency and a similar one for storage were used,

where the capability of storage of the node is proportional to the ring of which it is a part. Thus,

it is easy to infer the choice of the node to provide the resource based on constraint of latency,

processing power and storage.

Figure 29 – Scenario used in Experiment 2 - First phase.

Source – Author.

In the second experiment of the first phase, the previously described configuration
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showed at Figure 29 was used by distributing different numbers of device configurations (10,

20, 30, 40, and 50 devices) in concentric rings in a random manner. At the same time, the

constraints of the client device placed in the center of the rings were varied by relaxing the

latency requirement and requiring storage features. As in the proposed distribution, the latency

between the nodes and the client device increases according to the distance from the center; in a

similar way, the storage resource is also allocated. It is expected that, as the extent to which the

latency restriction is relaxed, the node associated with the device that will provide the resource

become more distant itself from the client device (see Table 9).

Table 9 – Device latency by Area Experiment 2 - Phase 1.
Area 1 2 3 4 5 6 7
Latency(ms) 10 50 100 150 200 250 300

Source – Author.

In the second phase, a growth analysis of the runtime of the algorithm was performed

with the number of devices on the network. Again, parameterized scenarios were created in order

to allow reaching all devices within a maximum range of 10 hops of the device D. Each scenario

is executed thirty times, and the time between the start of the simulation and the time to reach the

stop condition are measured. Then, a graph was created in order to analyze the behavior of the

average runtime of the algorithm of discovery of the node to provide resources by the number of

devices in the environment.

In the second phase of the experiment, the growth of the runtime was studied along

with the number of vertexes in the vicinity of the client device. In this scenario, the latency

restriction for the application was set exclusively to a maximum of 30 ms. All of the neighborhood

vertexes are Mist Computing resources, and the latency between each vertex of the graph has

been defined as fixed 10 ms. Two network topologies were studied; in the first, the vertexes

were distributed randomly with no restriction to the degree of the vicinity of devices and their

neighbors; in the second, vertexes are distributed in a rectangular grid and positioned so that

each vertex has a maximum of four neighbors. Each simulation was performed thirty times and

recorded the average duration of execution in the Cooja Simulator.

5.2.2 Simulation results

The first experiment of the first phase was performed thirty times with six config-

urations that suggest the selection of a Cloud node, seventeen configurations that suggest the
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selection of a Fog node, and seven configurations that suggest a Mist node. The results are shown

in Table 10. All algorithm simulation results matched with the expected scenario configuration.

Table 10 – Experiment 1 - First phase: Client priority configuration and simulation results.
Weights (%) Output Weights (%) Output
L C S Node Type L C S Node Type
3 15 82 4 Cloud 12 52 36 2 Fog
5 10 85 22 Cloud 10 53 37 3 Fog
2 6 92 4 Cloud 19 51 30 2 Fog
3 7 90 4 Cloud 17 57 26 2 Fog
0 11 89 4 Cloud 15 46 39 10 Fog
1 20 79 6 Cloud 10 55 35 2 Fog
15 40 45 10 Fog 13 46 41 3 Fog
18 44 38 2 Fog 14 45 41 3 Fog
10 50 40 2 Fog 89 7 4 30 Mist
14 41 45 10 Fog 90 4 6 9 Mist
14 49 37 2 Fog 94 1 5 25 Mist
17 48 35 3 Fog 86 9 5 5 Mist
13 52 35 8 Fog 85 9 6 19 Mist
11 55 34 17 Fog 95 2 3 5 Mist
16 42 42 10 Fog 96 2 2 18 Mist

Source – Author.

In the second experiment of the first phase the requirement priority was defined as

100% for latency. The maximum acceptable latency requirement is modified using the values 60,

150 and 320 ms for each device configuration with different device numbers. The latencies of

the devices distributed in the rings areas are assigned according to the ring in which it is located,

following the values at Table 9 and topology according to Figure 29. The simulation results of

the second experiment, first phase, are showed in Table 11.

The results of the second phase experiments on the average time of execution are

shown in the graphs in Figures 30 and 31. The absolute values of times measured in the

simulations are not relevant, because the version used was deliberately set with slow time

constants and generation of debug messages in order to allow observation of the behavior of the

algorithm. Thus, the unit of time must be considered relatively, because in a real environment

the time will be much smaller than the values measured in the simulations
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Table 11 – Experiment 2 - First phase simulation results.
Maximum
Latency(ms)

Number
of Nodes

Runtime(min) Choosen
Area1 2 3 4 5

60

10 0.51 0.52 0.50 0.52 0.54

2
20 0.59 1.00 1.01 1.10 1.03
30 1.30 1.35 1.29 1.34 1.32
40 2.20 2.26 2.15 2.26 2.21
50 2.40 2.45 2.36 2.41 2.40

150

10 0,59 0,58 0,58 0,57 1,00

4
20 1.20 1.15 1.11 1.05 1.09
30 1.25 1.34 1.39 1.37 1.43
40 2.41 2.40 2.39 2.40 2.43
50 2.48 2.59 3.01 2.55 2.51

320

10 1.03 1.10 1.05 1,00 1,02

7
20 1.14 1.10 1.07 1.19 1.23
30 1.37 1.35 1.32 1.35 1.33
40 2.43 2.45 2.59 2.43 3.16
50 2.59 3.10 3.07 3.05 3.00

Source – Author.

Figure 30 – Grid distributed Vertexes experiment.

Source – Author.

5.2.3 Discussion

Aiming at evaluating the correctness and the growth of the execution time of the

algorithm, the results of the experiments were analyzed and suggested consistency in the selection

and the execution time applicable in IoT environments.

The results suggest that the selection obtained by the algorithm is consistent with the

constraints and yields according to the expected values for the configurations used.
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Figure 31 – Random distributed Vertexes experiment.

Source: Author

Although at first glance the algorithm has a complexity of order O(n2), due to the

feasible Fog concept, it limits the growth of the runtime of the algorithm, as we can see in the

results shown in Figures 30 and 31. The runtime grows in a smaller rate and stabilizes after a

certain amount of vertexes. This effect is due to the fact that, as the algorithm deepens in the

neighborhood graph, it is expected that many of the new vertexes discovered cannot meet the

requirements of latency, soon finalizing the search algorithm from that vertex to avoid the growth

of the runtime of the algorithm.

5.3 Data dissemination in Fog/Mist environment (RQ2)

5.3.1 Experiment definition

Aiming at validating the feasibility of the proposal, again the Cooja simulation

environment and Contiki operating system have been chosen. The procedures and type of

motes used were also the same as those used in the experiments of the Section 5.2 The detailed

algorithm and implementation of all experiments are available on GitHub 2.

Considering that in the FMC environment, there are often the entrance and exit of the

devices in the network, an experiment was elaborated to evaluate the robustness of the proposal

in keeping the data in the environment by varying some model parameters as the coexistence of

devices in the infrastructure, the minimum staying time in the network, and the total number of

the device in the network, for the purpose of systematically evaluating the quality of the results
2 Avaliable source code in the address <https://github.com/vald3nir/contiki>

https://github.com/vald3nir/contiki
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Figure 32 – Presence of devices during simulation.

Source – Author.

Figure 33 – Data availability x Percentage coexistence (Experiment 1).

Source – Author.

generated by the algorithm.

5.3.2 Metrics

The following metrics were chosen: Data presence (which is an indicator that

assumes 100% value if there is data in the network; otherwise, 0% value), Data availability in

the network (which is the percentage of LL nodes of the network that owns the data at the end

of the simulation), and Data hops distribution (which is the percentage of nodes for a specified

number of hops, e.g., (0,1,2,..) from data to nodes in the network).
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Figure 34 – Data distribution x Device density (Experiment 2).

Source – Author.

Figure 35 – Minimum Permanence Time Influence (Experiment 3).

Source – Author.

5.3.3 Simulation results

The first experiment aims at testing the robustness against topology dynamicity;

therefore, the behavior of the algorithm will be studied when the percentage of coexistence of the

devices (PCD) is varied in the environment. Thus, the total number of devices (20 devices) and

the minimum permanence time (MPT) (120 s) is maintained constant throughout the simulation

for each value of the PCD parameter. Given that, in each simulation, the devices are randomly

positioned following a normally distribution in a fixed area and, similarly, the value of their
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stability function is also randomly generated. The presence of the devices in the environment are

also randomly generated, following a pattern similar to the graph shown in Figure 32. Of course,

to guarantee the fixed coexistence rate, the permanence function of the devices is constructed,

ensuring that the number of devices in the environment is always the number established by the

coexistence percentage, even if the distribution of these devices is random. It is important to note

that according to how the experiment is built, none of the devices remains in the environment

during full simulation time.

Hence, at the end of each simulation, the described metrics are calculated and the

simulation is repeated 30 times. Finally, the mean value of the metrics and their standard

deviation (STD) obtained will be used for analysis.

In Figure 33, the results of the simulations of the first experiment are shown. The

simulations were generated by varying the PCD from 10% to 90%.

The second experiment aims at evaluating the influence of density of devices in the

network; therefore, the parameters are kept constant, both the PCD and the MPT. Then, the

configuration is varied, changing the total number of devices in the area from 16 to 60, with PCD

of 25% for each simulation and fixed MPT of 120 seconds. Finally, for each configuration, thirty

simulations were performed, thus providing the mean value of defined metrics. In Figure 34, the

results of this experiment are presented.

Similarly, in the third experiment, the configuration is varied, changing the MPT

from 120 s to 45 s, with variations nearly of 30 s for each simulation set and keeping the other

parameters constant. This experiment aims at identifying the minimum time for the algorithm to

work and its results are shown in Figure 35.

5.3.4 Discussion

In experiment 1, it can be observed that, even with meager coexistence rates, the

algorithm enables data availability in the FMC environment. Another fact is that, as it can be

seen in the experiments, the data is distributed more homogeneously in the network when the

PCD is increased. This fact can be verified by observing two indicators: 1) decreasing the

percentage of nodes that are more than one hop away from data (More1Hop); 2) increasing the

percentages of nodes with data (0Hop) and/or a Hop distance (1Hop). All values are showed in

Figure 33. In all graphs, the mean values and variance (STD) were presented as centered circles

at the mean value and color-coded the variance according to the range (Variance(%) Legend:
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Green [0−5]/Yellow(5−10]/Red (10,20]).

In the second experiment, the main influence of the number of devices in the FMC

environment is related to the distribution of the data in the network topology. It is observed

through the indicators of 0Hop and 1Hop that the increase in the number of devices favored the

better distribution of the data within the topology, this effect can be observed in the graph of

Figure 34.

In the last experiment, the results show that, when the MPT of the devices in the

environment is significantly reduced, the algorithm stops functioning, causing the loss of the data

in the network. It is believed that the reason for that is that if the device doesn’t remain in the

network enough time to run the classification and replication cycle, the process stops working.

5.4 Computational Resource Prediction for Fog/Mist environment (RQ3)

5.4.1 Experiment definition

The model presented in the 4.4 section to perform the prediction of available compu-

tational resources is a recommendation system that uses machine learning techniques. Thus, two

conditions are necessary for its operation:

1. It is expected that, in a partial or total way, the devices that compose the environment in

which the experiment will be performed should have a pattern of temporal behavior with

routines in their availability within the network. This premise is relevant because only

the existence of temporal behavior patterns allows the algorithms to "learn" what the best

computational resource will be available at any given time.

2. It is necessary to have a considerable amount of data on the previous rating of allocations

of computational resources in the environment;

So the first condition can be guaranteed by designing experiments in which a per-

centage of the devices by design follow a routine with little variations in these routines. On the

other hand, the other devices have a totally random character in a uniform distribution.

To guarantee the second condition, an initial phase of the experiments was created,

called the data capture phase. This phase aims at generating a database that can feed the proposed

algorithm. Given a scenario of study, there will be devices capable of providing computational

resources and client devices of these resources. During the simulation, the devices that need a

computational resource seeks this resource, rating the quality of the resource provided after using
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it. This assessment was defined by criteria that depend on the involved devices types, available

resource capacity, the provider and the amount of the requested resource.

In this phase, a method of searching and selecting available computational resources

must be used. In the proposed study scenario, it was decided to adopt a rather simple process.

The method chosen is to send a broadcast message when a client device needs the computational

resource; then, the first device capable of answering the request that responds will be selected as

the provider of the desired computational resource.

In the experiment, after using the computational resource, the device must evaluate

the provider using the defined criterion. In addition, the evaluation should register a timestamp,

a client device ID, a provider device ID, the computational resource and the rating.

For each study scenario defined in a fixed area, it was considered that all devices can

act both as clients and providers. Then, the following input parameters were defined: number of

devices (ndevices), the percentage of devices with routines (proutine), the percentage of variation

within the routine (pvariation), the number of cycles of simulated routines (ncycles) and the number

of evaluations of computational resources per device (nrating).

Defined the parameters of the simulation, for each device that follows routines, a

pattern of time permanence and a random position were generated within the scenario. The

pattern of time permanence is repeated with small variations in each routine cycle. Thus, the

variations happen in the times of entry, exit, and permanence having been added aiming at

simulating IoT environments more realistically. On the other hand, the position of the device

varies at each routine cycle. The device is positioned at a random position according to a uniform

distribution.

Figure 36 illustrates a time permanence pattern of a device during a simulation

scenario. In this case, the dwell time in varied between two consecutive cycles.

In the data capture phase, the test scenario was performed with different percentage

of device configurations with routines (20%, 40%, 60%, 80%, and 100%). It is important to note

that, for each different configuration, different rating databases are generated, which, in turn,

Figure 36 – Pattern of time permanence in simulation cycles.

Source – Author.
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generate different parameters for the RS of computational resource prediction.

The data capture phase generates a database consisting of a log of transactions of the

allocation of computational resources with their respective rating, and recording of the inputs

and outputs of the provider’s devices within the network. This data is the basis for generating the

average rating matrices and estimators of the temporal availability of the provider devices. In

this experiment the estimator used will be a set of trapezoidal estimators similar to that shown in

Figure 23 for each provider device.

After the data capture phase, the data collected by each device were combined and

the general RS parameters were generated. This process in the proposed protocol is executed on

LL-type nodes. However, in order to have better control of the process and to simplify the test

procedures, it was opted for the external execution of this process in the Cooja simulator. Thus,

finalized the generation of the parameters of the predictor,theses parameters were loaded on all

nodes that will participate in the next phase of the experiment.

The next phase of the experiment consists in evaluating the efficacy of the predictor

by testing it in the same environment used to train it. At this stage, the client device does not

execute any search process to find the computational resource provider. Instead, it uses the

predictor to find out which device to use for the desired resource. For each prediction, the device

verifies whether the predicted device is actually available for having its resource used and gives

an evaluation of it. If the device is not available, the failure of the predicted algorithm is also

recorded.

Finally, the last phase of the experiment is using metrics, defined in the next sub-

section, to analyze the results generated by the predictor. It is important to remember that the

same analysis will be performed for the database generated by first answer method for choosing

Figure 37 – Test flow for each scenario configuration.

Source – Author.
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the computational resource. Figure 37 presents a diagram illustrating the general flow of the

evaluation process.

5.4.2 Metrics

To evaluate the performance of the predictor, three metrics are chosen and described

as follows:

Definition 5.4.1 The robustness (γ) is defined as the ratio of the number of recommendations in

which it was possible for the client device to successfully access the recommended device(nsuccess

and the total number of recommendations generated by the predictor (ntotal).

γ =
nsuccess

ntotal
(5.1)

Definition 5.4.2 The mean efficiency of the predictor (ε) is defined as the average of the rela-

tionship between the rating of the device proposed by the algorithm and the maximum rating

among the devices available in the environment at that time.

ε =
1

nsuccess
∗

nsuccess

∑
n=1

ratingpredictor

ratingmax
(5.2)

Definition 5.4.3 The perfect match (ϕ) is defined as the ratio of the number of success rec-

ommendations with maximum possible score in which it was possible for the client device to

successfully access the recommended device(nmaximum and the total number of recommendations

generated by the predictor (ntotal).

ϕ =
nmaximum

ntotal
(5.3)

The first metric is an indicator of the effectiveness of the algorithm by measuring the

percentage of times that the prediction algorithm proposed consistent recommendations.

On the other hand, the second metric aims at measuring the degree of efficiency of

the algorithm in capturing information about the best computational resource provider device

available at a given time point within the study environment. It is important to emphasize that

the calculation of this metric is only possible in controlled environments in which the rating of

the best device available to provide a particular computational resource at any time during the

simulation is known previously.
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The third metric is a measure of excellence indicating the percentage of predictions

that, besides being correct, are evaluated with the maximum score possible at that moment within

the FMC environment.

In the case of this study, it was possible to gather this information during the whole

period of the simulation. Once having defined the device and computational resource, the

researcher could identify, within the set of devices that have a routine, which of them has the

best capacity to provide the specified computational resource and which should be the rating of

it considering the evaluation of the device that requested the resource.

Figure 38 illustrates an example in which three different devices A, B, and C assume

the role of the best provider for a computational resource c during the simulation period. Thus,

the maximum possible rating of a device D for the computational resource cr in the environment

is respectively 8.0, 6.5, and 9.0, corresponding respectively to the evaluations of devices A, B

and C.

Figure 38 – Example of maximum rating device available.

Source – Author.

5.4.3 Simulation results

In order to validate the effectiveness and robustness of the proposal, the experiment

described as follows was elaborated:

In a controlled environment, 20 devices will share the computing resource stor-

age during at least ten routine cycles. In the experiment, the devices have different storage

capacities distributed according to the histogram shown in Figure 39, six devices with few
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computational storage resources, eight with medium computational storage resources and six

with high computational storage capabilities.

Each simulation allows you to define the portion of devices that will follow a pattern

of inputs and outputs within the network with little variation in that pattern. This parameter will

be called the percentage of devices with routine.

During simulation, each device should act as a provider or client of the computational

resource. In each routine cycle, random allocations request will be performed. So, at end of

simulation, it is generated a log of evaluations transactions of allocations of the computational

resource storage. The choice of which devices will be the client and provider is also randomly

made again in a uniform distribution. Each evaluation transaction contains the timestamp in

which it occurred, the identity of the client device and the provider device, the type of service,

and the evaluation value made by the client after the transaction.

The client device evaluates the provider by ranking it with a score between 0 and 10

calculated according to the following rule.

Figure 39 – Storage distribution of experiment devices (20).

Source – Author.

The device compares its storage capacity with the provider capacity, with three

possible cases:

1. Provider and client storage capacity are equal then the evaluation rating is 5.0;

2. Provider storage capacity is bigger than client storage capacity, so the rating is given by

equation 5.4

rating = minimum(10.0;(
(Storageprovide−Storageclient)

Storageclient
)∗5.0+5.0) (5.4)
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3. Provider storage capacity is lower than the client storage capacity; then, the rating is given

by equation 5.5.

rating = maximum(0;(
(Storageprovide

Storageclient
)∗5.0) (5.5)

Aiming at generating a data volume that allows calculating the mean rating matrices

for each configuration, the simulation environment is executed within enough time that the

matrix of the means of evaluations has been filled with at least 90 % to avoid cold start problem.

Another important aspect to be highlighted is that, in the temporal modeling of the permanence

of the provider’s devices, it will be used a trapezoidal temporal model with a maximum of five

inputs/outputs in the network in a routine cycle.

It is equally important to note that, for each configuration of the percentage of devices

that performs routine, it is expected to have a corresponds database of generation of the matrices

of means and temporal statistics.

The second phase of the experiment consists in loading these matrices together with

all the parameters necessary for the predictor in three different client devices: one with low

storage capability, one with medium storage capability, and one with high storage capability.

Then five simulations were executed for each type of client device (low, medium and high storage

capability). One simulation for each configuration of the percentage of routine devices within the

environment (20%, 40%, 60%, 80%, and 100%), thus totaling fifteen simulations to evaluate the

predictor results. During this simulation, the client device does not perform any search process;

they only use the predictor to indicate where it should look for the computational resource.

Afterward, the client device verifies that the prediction was successful in sending a request to the

predicted provider device. Then, the client device waits for an answer from the provider device

and registers in its log the result of the prediction, the device provider ID, the rating of service,

and the timestamp.

In order to analyze the influence of the robustness of the proposal on the tolerance to

modifications of the environment, the experiments with different percentages of devices that do

not follow any pattern of routines within the simulation environment were repeated.

Finally, the experiment is concluded by calculating the metrics described in subsec-

tion 5.4.2 for each type of simulated configuration. The results of this experiment are shown

in detail from Figures 40, 41, 42, 43, 44, and 45. Figure 46 summarizes the predictor results

showing the metrics in different configurations of the percentage of device that follows routines
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in FMC environment. The simulations were done using parameters generated from the database

of the provider resource produced using provider selection methods randomly selected.

Figure 40 – Time availability of devices by routine percentage settings (client device low storage
capability).

(a) Configuration of 20% of device with routine (b) Configuration of 40% of device with routine

(c) Configuration of 60% of device with routine (d) Configuration of 80% of device with routine

(e) Configuration of 100% of device with routine

Source – Author.

Figures 41(a), 41(b), 41(c), 41(d), and 41(e) show the temporal availability of devices

that have routines within the network in each percentage configuration of devices with routines

respectively for the cases of 20%, 40%, 60%, 80%, and 100% in the experiment where the client
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Figure 41 – Predictions of low capability device compared with maximum available score (client
device low storage capability). (Green dot = success | Orange cross = Fail | red curve
= maximum score available)

(a) Prediction for percentage of routine equal 20% (b) Prediction for percentage of routine equal 40%

(c) Prediction for percentage of routine equal 60% (d) Prediction for percentage of routine equal 80%

(e) Prediction for percentage of routine equal 100%

Source – Author.
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Figure 42 – Time availability of devices by routine percentage settings (client device medium
storage capability).

(a) Configuration of 20% of device with routine (b) Configuration of 40% of device with routine

(c) Configuration of 60% of device with routine (d) Configuration of 80% of device with routine

(e) Configuration of 100% of device with routine

Source – Author.
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Figure 43 – Predictions of medium capability device compared with maximum available score
(client device low storage capability). (Green dot = success | Orange cross = Fail |
red curve = maximum score available)

(a) Prediction for percentage of routine equal 20% (b) Prediction for percentage of routine equal 40%

(c) Prediction for percentage of routine equal 60% (d) Prediction for percentage of routine equal 80%

(e) Prediction for percentage of routine equal 100%

Source – Author.
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Figure 44 – Time availability of devices by routine percentage settings (client device high storage
capability).

(a) Configuration of 20% of device with routine (b) Configuration of 40% of device with routine

(c) Configuration of 60% of device with routine (d) Configuration of 80% of device with routine

(e) Configuration of 100% of device with routine

Source – Author.
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Figure 45 – Predictions of medium capability device compared with maximum available score
(client device high storage capability). (Green dot = success | Orange cross = Fail |
red curve = maximum score available)

(a) Prediction for percentage of routine equal 20% (b) Prediction for percentage of routine equal 40%

(c) Prediction for percentage of routine equal 60% (d) Prediction for percentage of routine equal 80%

(e) Prediction for percentage of routine equal 100%

Source – Author.
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Figure 46 – Metrics results for client devices with low, medium, and high capability storage.

(a) Metric for low storage capability client device.

(b) Metric for medium storage capability client device.

(c) Metric for high storage capability client device.

Source – Author.
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has low storage capacity.

Figures 42(a), 42(b), 42(c), 42(d), and 42(e) show maximum possible score in the

red curve and overlapping realized predictions over the period of a routine cycle. Each Figure

shows the result for each different percentage configuration of devices with routines respectively

for the cases of 20%, 40%, 60%, 80%, and 100% in the experiment where the client has low

storage capacity. In the graph, the green dots indicate predictions successfully and orange crosses

represent predictions fail, in cases where the predicted provider device was not on the network at

that time. The perfect match metric is calculated based on green dots that are overlapping the red

curve of maximum possible score.

Similarly, Figures 43(a), 43(b), 43(c), 43(d), and 43(e) show the temporal availability

of devices that have routines within the network in each percentage configuration of devices with

routines respectively for the cases of 20%, 40%, 60%, 80%, and 100% in the experiment where

the client has medium storage capacity, and Figures 45(a), 45(b), 45(c), 45(d), and 45(e) show

the temporal availability of devices that have routines within the network in each percentage

configuration of devices with routines respectively for the cases of 20%, 40%, 60%, 80%, and

100% in the experiment where the client has high storage capacity.

Again, Figures 44(a), 44(b), 44(c), 44(d), and 44(e) show maximum possible score

in the red curve and overlapping realized predictions over the period of a routine cycle for each

different percentage configuration of devices with routines respectively for the cases of 20%,

40%, 60%, 80%, and 100% in the experiment where the client has medium storage capacity, and

Figures 46(a), 46(b), 46(c), 46(d), and 46(e) show maximum possible score in the red curve and

overlapping realized predictions over the period of a routine cycle for each different percentage

configuration of devices with routines respectively for the cases of 20%, 40%, 60%, 80%, and

100% in the experiment where the client has high storage capacity.

The results of the simulations and source codes used in the data capture phase and

the predictor evaluation phase are available at the address <https://github.com/vald3nir/contiki>.

The data capture phase simulations were performed with Sky-type motes within an area of

50×50 using a cycle time of 120 seconds. On the other hand, the predictor evaluation phase the

simulations needed to use for client devices the mote of type Z1 that has more internal memory

to store the RS parameters, the cycle time and device distribution area were the same of data

capture phase 120 seconds, and 50×50 , respectively.

https://github.com/vald3nir/contiki
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5.5 Discussion

Analyzing the results of the predictions shown in the graphs of Figures 41, 43, and

45, it can be verified that the device suggested by the predictor in general for all types of client

devices (low, medium, and high storage resources) is a useful suggestion or, in many cases, the

best one available in the environment at that instant of time. This fact can also be verified by

looking at the metric graphs 46, in which the perfect match metric is, in most cases, higher than

60%, and the efficiency metric exceeds 90% in all tested cases.

Another fact observed in the experiments is that the type of device (low, medium

or high capacity) had slight or no influence on the efficiency of the recommendations. Only in

the case of the client device with high computational resources was observed a small drop in

efficiency, probably due to the chosen evaluation criterion 5.4, in which devices with considerable

resources tend to evaluate well only devices with more resources than themselves.

An interesting phenomenon also observed in the experiments was that the perfect

match metric in all cases is higher when the percentage of devices that follow a routine in the

environment is low; putting it in other words, when the network is more dynamic. Although

this may seem strange, this fact can be explained by the ability of the collaborative filter to

capture information from the best provider devices in the environment. So, if fewer devices

follow a routine and one of them is the best computational resource provider in that instant, then

the probability of the predictor hitting this provider increases because the number of available

provider devices in the network is smaller than in cases with a higher percentage of devices

following a routine, thus explaining the result obtained in the metric of the perfect match.

On the other hand, the experiment also suggests, through the analysis of robustness

metrics, that the modeling of the temporal availability of the predictor needs improvement

because, if we observed the mean value of this metric during the experiments, the hit rate is of

the order of 60%, a slightly higher than an estimate of the expected value for a purely random

selection, which would be around 50%.

In summary, the results obtained with the experiments suggest that the predictor was

able to successfully capture information from the best provider devices over time, even in a

highly dynamic topology environment. The efficiency of the prediction remained high and had

little variation even with relatively significant changes in the percentage of devices following

routines within the network.
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5.6 Summary

In this Chapter, simulation experiments were presented allowing the evaluation of

the validity of the proposals submitted regarding the three research questions raised in this thesis.

In Section 5.2, the focus was on evaluating the distributed algorithm to select

the best computational resource available between the options Fog/Mist/Cloud computing

infrastructure (RQ1), considering the imposed constraints on the client device. The results

of these experiments suggest that the proposed feasible Fog concept reduces the search space

avoiding, thus, exponential growth at the execution time of the algorithm in large networks. In

general, the computing resource chosen by the algorithm was coherent within the scenarios

analyzed.

In Section 5.3, the focus was on evaluating the Data dissemination on Fog/Mist

environment (RQ2). The results presented in this Chapter suggest that the approach of a network

with self-classifying nodes dynamically, assuming roles within the infrastructure of combined

bio-inspired techniques of epidemic models, indicates the ability of the algorithm to maintain

the availability and distribution of data packets in the environment FMC, even under severe

conditions.

In Section 5.4, the smart shadow prediction mechanism (RQ3) was evaluated and

results from the simulation experiments suggest that even in environments with high topology

dynamics, the algorithm was able to propose good recommendations. Thus, the algorithm

was able to capture the knowledge of the devices with satisfying capacity to provide a specific

computational resource.

The next chapter concludes this thesis by revisiting the research hypothesis and

summarizing the results and publications during the thesis work period. Furthermore, it describes

the perspectives of future work related to the contributions presented in Chapter 4.
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6 CONCLUSION

This chapter concludes this thesis work, which proposes solutions for predictive

computing resources allocation for smart devices in the FMC environment, called Smart Shadow,

and it is organized as follows. Section 6.1 depicts the overall goals of this thesis and summarizes

its main results. Section 6.2 discusses the hypothesis investigated and compares Smart Shadow

with related work. Section 6.3 introduces the limitations of this work. Finally, Section 6.4

presents insights for future work.

6.1 Achieved Goals and Results

In general, the FMC environment brings advantages related to latency and communi-

cation bandwidth throughput compared to Cloud Computing. However, due to the dynamicity of

its topology and heterogeneity of its devices, the task of choosing the device provider for a given

computational resource is very challenging.

Thus, aiming at addressing this gap, the goal of this research was to develop mech-

anisms that allow the discovery, the selection, and the prediction of the availability over the

time of computational resources within the FMC environment, considering the dynamics of the

topology and the heterogeneity of the devices. These proposed mechanisms were presented in

Chapter 4 and evaluated in Chapter 5.

The main result of this thesis can be then highlight as the mechanism of prediction of

temporal availability of computational resources in network FMC with a decentralized adaptive

architecture based on collaborative filters. It is important to note that devices or part of them

are considered to follow a routine within a period T in the FMC environment and that analyzed

temporal availability is related with the routine period mentioned.

Moreover, during this research, in order to achieve the main goal of this work,

secondary results were also reached and they are summarized as follows:

• Mathematical models to address the problem of infrastructure selection, to keep data

in a dynamic topology, and to predict computing resource availability in the Fog/Mist

computing environment;

• A systematic mechanism for discovering computational resources in the FMC environment

that meets constraints imposed on these computational resources;

• The feasible Fog concept, based on latency constraints, which reduces the search space by
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allowing searching in decentralized environments even with a large number of devices;

and

• A bio-inspired adaptive mechanism of data dissemination within FMC networks with high

dynamicity in the topology.

Table 12 – Publications from this thesis work
Paper Event/Journal Note
Vasconcelos, D.R; Andrade, R.M.C;
Souza, J.N. - ”Smart Shadow - An
autonomous availability computation re-
source allocation platform for Internet
of Things in the Fog computing environ-
ment”, DCOSS 2015 - International Con-
ference on Distributed Computing in Sen-
sor System, Fortaleza, 2015.

IEEE DCOSS-2015. -
The 11th International
Conference on Dis-
tributed Computing in
Sensor Systems.

Paper presented at
the PhD Forum.

Vasconcelos, D.R; Pimentel, F.L.R; An-
drade, R.M.C; Souza,J.N. - ”Mathematical
model for a Collaborative Indoor Position
System (IPS) and movement detection of
devices within IoT environment” - 32nd
ACM SIGAPP Symposium On Applied
Computing, Marrakech, Morocco,April 4-
6, 2017.

SAC 2015. - 32nd ACM
SIGAPP Symposium on
Applied Computing.

Paper presented
at the congress in
Marrocos.

VASCONCELOS, D.R; ANDRADE,
R.M.C.; SEVERINO, V.; MAIA, M.E.F.;
SOUZA, J.N. - ”Bio-inspired model
for data distribution in Fog and Mist
computing” - Compsac 2018 - 42nd IEEE
Computer Society Signature Conference
on Computers, Software and Applications.

Compsac 2018 - 42nd
IEEE Computer Soci-
ety Signature Conference
on Computers, Software
and Applications.

Paper presented
at the congress
(results related to
RQ2 of this thesis).

VASCONCELOS,D.R; ANDRADE,
R.M.C.; SEVERINO, V.; SOUZA, J.N.
- ”Cloud, Fog or Mist in IoT, that is the
question”- ACM Transactions of Internet
Technology (TOIT) - Special Issue ”Fog,
Edge, and Cloud Integration for Smart
Environments”.

Journal ACM Transac-
tions of Internet Tech-
nology (TOIT) - Spe-
cial Issue on ”Fog, Edge,
and Cloud Integration for
Smart Environments”.

Accepted with Ma-
jor revision and
awaiting the result
of the second revi-
sion (One result of
RQ1 of this thesis).

Source – Author.

Furthermore, three papers were published in conferences and another one is under

review in a journal from the research performed in this work. Also, the author intends to write

another article containing the proposal and results on the predictor (RQ3) to be submitted to a

well-evaluated scientific journal. Table 12 presents the references of these papers.

The first paper (VASCONCELOS et al., 2015) presents the ideas at the conceptual
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level of the proposal of this thesis and it was presented at a doctoral symposium. The next

paper (VASCONCELOS et al., 2017) is not directly related to the questions of this thesis, but

it was the result of the research carried out to define the theme of this thesis. The third article

(VASCONCELOS et al., 2018) was presented at the COMPSAC-2018 workshop in Tokyo-

Japan, which was a direct result of RQ2 of this thesis. The last paper has not been accepted for

publication yet; however, the modified article has been sent with all the suggestions presented by

the reviewers to major revision. The current status is awaiting the result of the second review for

publication in the ACM TOIT magazine.

6.2 Revisiting Research Questions and Hypothesis

By analyzing works related to the research questions of this thesis, gaps were identi-

fied for all three questions, especially when considering characteristics such as the dynamism of

the topology of the network environment of this thesis. In the literature, just a few papers that

address Mist computing are identified, thus, showing another evidence of research gap on this

issue.

On the work related to RQ1, one can clearly identify an absence of proposals that

are decentralized and using resources from Fog itself or Mist computing. It can be also observed

that the great majority of the works focuses on a specific type of restriction, such as latency, and

propose a mechanism to optimize the allocation of computational resources, with few proposals

such as that of this thesis that addresses the problem considering multiple constraints. So, Table

13 presents the main characteristics of this thesis proposal related to RQ1.

Table 13 – Thesis proposal for RQ1.
Author Proposal Processing

type
Optimized Parameters

This
thesis

Mathematical Model for computer resource al-
location in Fog, Mist or Cloud computing

Distributed Multicriteria (Latency,
cost, Bandwidth, ...)

Source – Author.

In the same way, considering works related to RQ2, it is possible to identify only

few works that address the problem of the dynamism of the topology, and none of them proposes

solutions that consider the temporal availability of devices within a pattern of routines of

use. Moreover, it can be observed that few proposals offer solutions that are executed in the

environment of Fog / Mist within a decentralized architecture. In short, Table 14 presents the
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main characteristics of this thesis proposal related to RQ2.

Table 14 – Thesis proposal for RQ2.
Author Proposal Architecture Pre-defined

rules for nodes
Network
context

This
thesis

A distributed algorithm using ideas
from evolutionary computation and
epidemic model for data availability
and dissemination

Decentralized No Fog and Mist

Source – Author.

On the other hand, when RQ3 is considered, it is possible to find works (Forestiero

(2017), Nizamkari (2017), and Asiri e Miri (2016)) similar to the proposal of this thesis. However,

when the works are deeply analyzed, issues that are not addressed by these works are identified,

but they are addressed in the proposal of this thesis. Among them, the adaptability of the

dynamism of the proposed structure can be highlighted - in which the nodes play a dynamic

role by self-classifying and adapting to changes in network topology, considering the prediction

rating and the temporal availability of the device. The other works generally have a centralized

architecture, using the devices only as data entry point and user interface of the system. The

recommendation system runs in a central architecture that processes the data and generates a

recommendation to the users. Therefore, they do not use computational resources available at

the edge of the network for the processing of the recommendation. Table 15 presents the main

characteristics of the proposal of this thesis related to RQ3.

Table 15 – Thesis proposal for RQ3.

Author Proposal A
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This
thesis

Hybrid collaborative recommendation system
distributed with nodes that assumes role dy-
namically according to their time in the envi-
ronment

Dist Yes Yes A Yes F/M Thing

Source – Author.

The research hypothesis, which guided this thesis work and is presented in Chapter

1, is now analyzed (accept or reject) based on the proposals presented in Chapter 4 and the
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evaluations described in Chapter 5 as follows:

Research Hypothesis: It is possible to make a predictive discovery and allocation of

the computational resources to smart devices in the context of Fog and Mist Computing using

data locally stored, in an efficient and robust manner.

Accepted. Based on the evaluations presented in Chapter 5, in particular, Section

5.3, it was possible to gather evidence that even in a network with high dynamics of topology, it

is possible to maintain data locally in this environment. These results support the excerpt from

the hypothesis that mentions ” using data locally stored”. Furthermore, it was also possible

to observe, based on the results shown in Section 5.4, that the approach using collaborative

filters combined with predictive models of the temporal availability of the devices in FMC

environments, proposed in Chapter 4, Section 4.4, presented good results in predicting the best

devices available to offer a particular computational resource. This second part of the results

provides evidence to support the excerpt from the hypothesis that mentions ”efficient and robust

manner”.

Thus, the proposed theory model, the simulations results, and the empirical evidence

obtained support the acceptance of the hypothesis proposed in this thesis.

6.3 Limitations

The proposal presented in this thesis has the following limitations:

• It was not possible to test algorithms and protocol with a large number of devices due

to the simulator performance limitations for environments with more than one hundred

nodes;

• The LL-type devices must have sufficient memory to store the matrices used by the

predictor. Note that the dimension of the matrices are n×n, where n is the total number of

devices in their neighborhood. This limitation becomes relevant in environments with a

high density of devices and compounds with storage limitations; and

• The test environment used with simulation did not consider external interferences and

adverse environmental conditions such as obstacles, metal areas, reflections, ans so on,

that in some cases can happen in wireless networks.
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6.4 Future Work

With the aim of solving some of the limitations presented in the previous section

as well as evolving the proposals presented in this thesis, it is suggested the following research

proposals as future work:

• To address the cold start problem in the predictor model, which occurs when there is a

small number of ratings performed by the devices. Thus, the recommendations should be

made only after the system has a considerable data mass for it to be effective. In other

words, to create mechanisms that allow the predictor to generate good recommendations

even if there is not a large amount of data from previous recommendations available;

• To optimize the energy consumption used in the devices involved in the protocols using,

for example, distributed optimization techniques;

• In the proposal, all devices involved are considered trusted and important security-related

issues such as authenticity, integrity, and privacy of information were not considered.

Thus, it is important to analyze security-related issues such as malicious device attacks by

incorporating authentication, trust, and privacy mechanisms into the proposal algorithms

and protocols;

• To validate the proposals of this thesis in a real environment, evaluating the effectiveness

in different contexts of the IoT environments;

• Improve the temporal availability estimator of the devices in FMC networks using neural

networks; and

• To study the merging and division of FMC environments and the resulting behavior of the

algorithm after these operations.
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