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RESUMO

Os métodos de Feature Selection fornecem uma maneira de reduzir o tempo de computação,

melhorar o desempenho da classificação e um melhor entendimento dos dados em aplicações

de aprendizado de máquina ou reconhecimento de padrões. Feature Selection tornou-se o

foco de muita pesquisa em áreas aplicadas. Neste trabalho, usamos esta técnica para detectar

possíveis fraudadores de impostos. A classificação de possíveis fraudadores a partir dos dados

do contribuinte, com indicadores de fraude (features) binária, apresenta vários desafios: em

primeiro lugar, estes dados costumam ter features com baixa correlação linear entre si. Além

disso, as fraudes fiscais podem se originar de esquemas ilícitos intricados, o que, por sua vez,

requer a descoberta de relacionamentos não lineares entre várias features. Finalmente, no

conjunto de features existentes em nossos experimentos, apenas um pequeno número delas

mostra alguma correlação com a classe alvo. A evasão fiscal representa um dos principais

obstáculos enfrentados pelas economias dos países em desenvolvimento. Grandes quantidades de

informações dos contribuintes foram coletadas por agências fiscais, abrindo assim a possibilidade

de criar novas técnicas capazes de combater a evasão fiscal de forma muito mais eficaz do que

as abordagens tradicionais. Neste trabalho propomos ALICIA, um novo método de seleção de

features baseado em regras de associação e lógica proposicional com uma medida de centralidade

para grafos cuidadosamente elaborada que tenta enfrentar os desafios acima e, ao mesmo tempo,

sendo independente de técnicas específicas de classificação. Nosso método, ALICIA, quer

capturar a inter-relação intrínseca entre os recursos na detecção de fraude fiscal. A metodologia

proposta está estruturada em três fases: em primeiro lugar, o ALICIA gera um conjunto de

regras de associação relevantes a partir de um conjunto de indicadores de fraude (features).

Posteriormente, o ALICIA constrói um grafo, onde cada nó representa um subconjunto de

features que resultam nas regras de associação, enquanto as arestas representam relacionamentos

de associação entre subconjuntos de features. Finalmente, o ALICIA determina as features mais

relevantes aplicando uma nova medida de centralidade, a Fraud Feature Topological Importance,

nos vértices do grafo. Realizamos uma extensa avaliação experimental para avaliar a validade de

nossa proposta em quatro diferentes conjuntos de dados do mundo real, onde comparamos nossa

solução com oito outros métodos de seleção de features. Os resultados mostram que o ALICIA

atinge valores de F-measure de até 76,88% e supera consistentemente seus concorrentes.

Palavras-chave: Seleção de Atributos. Atributos de Baixa Correlação. Detecção de Fraude



Fiscal. Regras de Associação. Medida de Centralidade em Grafos. Aprendizagem de Máquina.



ABSTRACT

Feature selection methods provides us a way of reducing computation time, improving prediction

performance, and a better understanding of the data in machine learning or pattern recognition

applications. It has become the focus of much research in areas of application. In this work,

we use feature selection to select the most relevant features in order to improve the binary

classification of potential tax fraudsters. Classify possible fraudsters from taxpayer data, with

binary features, presents several challenges: firstly, taxpayer data typically have features with

low linear correlation between themselves. Also, tax frauds may originate from intricate illicit

schemas, which in turn requires to uncover non-linear relationships between multiple fraud

indicators (features). Finally, in the set of features existing in our experiments, only a small

number of them show some correlation with the targeted class. Tax evasion represents one of

the major obstacles faced by the economies of developing countries. Vast amounts of taxpayer

information has been collected by fiscal agencies, thus opening up the possibility of devising

novel techniques able to tackle fiscal evasion much more effectively than traditional approaches.

In this work we propose ALICIA, a new feature selection method based on association rules and

propositional logic with a carefully crafted graph centrality measure that attempts to tackle the

above challenges while, at the same time, being agnostic to specific classification techniques.

ALICIA wants to capture the intrinsic interrelation between the features in tax fraud detection.

The proposed methodology is structured in three phases: firstly, ALICIA generates a set of

relevant association rules from a set of fraud indicators (features). Subsequently ALICIA builds

a graph, where each node represents a subset of features resulting in the association rules,

while edges represent association relationships between subsets of features. Finally, ALICIA

determines the most relevant features by applying a novel centrality measure, the Feature

Topological Importance, on the vertices of the graph. We perform an extensive experimental

evaluation to assess the validity of our proposal on four different real-world datasets, where we

compare our solution with eight other feature selection methods. The results show that ALICIA

achieves F-measure scores up to 76.88%, and consistently outperforms its competitors.

Keywords: Feature selection. Low Correlated Features. Tax Fraud Detection. Association

Rules. Graph Centrality Measure. Machine Learning.
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1 INTRODUCTION

1.1 Motivation

In Brazil, one of the major problems in tax management is tax evasion 1. The

correct payment of taxes by taxpayers guarantees the State to keep the necessary investments for

society. Without taxes, the state can not guarantee health, education, sanitation, transportation,

infrastructure, among other services essential to the population.

Tax evasion represents one of the major obstacles faced by the economies of devel-

oping countries. In the recent past, several initiatives were undertaken to develop applications

that collect and leverage taxpayer information (NFE, 2019 (Retrieved June 15, 2019); CTE, 2019

(Retrieved June 15, 2019); SPED, 2019 (Retrieved June 15, 2019); MDFE, 2019 (Retrieved

June 15, 2019)) to predict tax fraudsters. The amount of frauds, however, is still very high – for

instance, the level of tax evasion in Brazil proved to be about 90 billions US$ in 2018 2. These

numbers show that the fight against fraud is a crucial aspect of any fiscal system. This scenario

opens possibilities for devising novel algorithms that can be used to tackle fiscal evasion much

more effectively than traditional approaches.

Several Finance Departments are investing in expert systems to aid in decision

making. Among the decisions of a tax administration, one of the most important is undoubtedly

knowing who to inspect or who needs greater tax control. Machine Learning (ML) is currently

an extremely important process for all organizations that have large databases. Government

organizations belong to this context, where increasing computerization makes it possible to use

various ML techniques and tools. Currently, the Finance Departments of the States of Brazil

receive a large volume of data on the operations of companies registered in their registries, as

well as information from other sources, which store their databases.

ML is an area of Artificial Intelligence whose objective is the development of

computational techniques on learning, as well as the construction of systems capable of acquiring

knowledge automatically. A learning system is a computer program that makes decisions

based on accumulated experiences through successful solution of past problems. Within ML

there is inductive learning, which can be understood in three parts: unsupervised learning,
1 Tax evasion is any act that, consciously or unconsciously, legally or illegally, leads to non-payment or less

payment of the tax due.
2 https://ibpt.com.br/noticia/2734/Brasil-deixou-de-arrecadar-R-345-bi-por-sonegacao-de-impostos (retrieved:

June 15, 2019)
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semi-supervised learning, and supervised learning. In this study, we used supervised learning.

Supervised learning is the process of automatically creating a classification model

from a sample base (called a training base) that has an attribute (column) called a class attribute.

There are two aspects to consider in this process: which property should be used to describe

the concept and how to combine these properties. Once the model is created, it can be used to

automatically predict the class of an unclassified set of examples. In chapter 2 we present these

concepts in a formal way.

In this work we consider a real-world case study involving the Treasury Office of the

State of Ceará (SEFAZ-CE, Brazil)3, the agency in charge of supervising more than 300,000

active contributors in the state of Ceará, Brazil. SEFAZ-CE maintains a large dataset containing

vast amounts of information; its enforcement team, however, struggles to perform through

inspections on taxpayers accounts as the inspection process involves the evaluation of countless

fraud indicators, thus requiring burdensome amounts of time and being potentially prone to

human errors.

With the application of ML techniques to these databases, the problem of focusing

on the most relevant information has become very important. Thus, one of the main problems

in ML is the selection of relevant features. There are several reasons for performing attribute

selection. One of these reasons is that most computationally viable ML algorithms do not work

well in the presence of a large number of features, i.e. Feature Selection (FS) can improve the

accuracy of the classifiers generated by these algorithms. Another reason is that the selection

of features improves the human’s ability to understand the data and also, for example, the rules

of induction generated by symbolic ML algorithms. A third reason for the FS is the high cost

to acquire the information, since in many domains the collection of data can be very expensive.

Finally, attribute selection can reduce the processing costs of large amounts of data.

In general terms, FS can be described in terms of a process that selects a subset

of relevant features, among those available, to be subsequently used to build learning models.

Many existing feature selection techniques focus on selecting feature subsets that are strongly

correlated with some class; in the context of tax fraud detection, however, there is a need to find

out and leverage relationships between features, as frauds may originate from complex, illicit

schemes.

As we will see throughout this thesis, classification methods to detect potential
3 http://www.sefaz.ce.gov.br/
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tax fraudsters, without the use of feature selection, did not achieve results better than 58% of

F-measure and the use of traditional FS methods didn’t reach 70% of F-measure. Selecting an

effective and more representative feature set is the subject of this work.

One common practice of filter type methods is to simply select the top-ranked fraud

indicators (features) based on a linear correlation. A deficiency of this simple ranking approach,

is that in tax fraud domain we have low or non correlated features among themselves and only a

small number of these features show some correlation with the targeted class, but these are not

good enough to perform a satisfactory classification. This happens, because some features insert

noise to the classification task decreasing accuracy.

In the next section, we will examine the issues that guide the need for this scientific

research.

1.2 Research Problems

Several data mining techniques have been extensively used to detect financial frauds

(RAVISANKAR et al., 2011; GLANCY; YADAV, 2011; KIRKOS et al., 2007), insurance frauds

(NGAI et al., 2011), credit card frauds (BHATTACHARYYA et al., 2011; SÁNCHEZ et al.,

2009), fraudulent transactions (LI et al., 2012; PHUA et al., 2010), and e-commerce frauds

(ZHANG et al., 2013; KIM et al., 2013; RICHHARIYA et al., 2012); these approaches, however,

do not exploit feature selection to reduce the number of features considered: indeed, considered

the sheer amount of indicators that can be used to characterize fraudsters, feature selection

represents a powerful pre-processing tool that provides the potential to reduce the cost of feature

measurement, speed up the testing process, and increase the efficiency and accuracy of classifiers

(KIRA; RENDELL, 1992b; KOHAVI; JOHN, 1997).

The main goal of this thesis is to introduce a novel Feature Selection method in the

context of tax fraudster detection. In this work we address some challenges not considered in the

available literature:

1. Tax fraud indicators (features) have low or non-linear correlation between themselves. The

ability to capture these relationships can improve the performance of feature selection

methods.

2. Typically, only a small number of these features show some correlation with the targeted

class.

3. All features and Class are binary.
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Accordingly, we focus on the following research question:

• RQ. How do we select the most appropriate subset of binary features, with low or

non-linear correlation between themselves and possibly non informative for the tar-

get class, to improve potential tax fraudsters classification?

In the next section, we discuss the main contribution of this thesis based on the

challenges and question presented.
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1.3 Thesis Contribution

The main contributions of this thesis, aligned to our research question, are the

following:

• We analyze the behavioral pattern of fraud indicators, including the existence of correlation

between them, as well as which are the most relevant fraud indicators and how can we

measure the risk of a taxpayer committing a fraud. We proposed a method for classifying

taxpayers in order to help detecting potential fraudsters and analyzed the feasibility of

dimensionality reduction techniques as a way to create a scale of risk for frauds. The

results were published in (MATOS et al., 2015).

• We proposed a new method to determine the risk that taxpayers have to commit tax frauds.

The method extends and improves (MATOS et al., 2015) in that it uses a new technique to

discover key indicators of frauds by resorting to the centrality measure over a graph of

indicators: this implicitly captures relationships between key fraud indicators. The results

were published in (MATOS et al., 2017).

• In this thesis we propose a novel feature selection ranking method, ALICIA. The key

idea behind ALICIA is to combine association rules and propositional logic with graph

centrality measure to capture the hidden relationship between tax fraud features. In

other words, ALICIA wants to leverage association rules, with a carefully crafted graph

centrality measure, to identify the most relevant features for tax fraudsters classification.

To achieve this, ALICIA is structured in three phases: in the first phase the approach

generates a set of relevant fraud association rules from tax fraud data, where contributors

are associated with a set of feature indicators. Still in this phase, we introduce an axiomatic

description of dependency structures in association rules, based on propositional logic

to improve the number of edges to second phase. Subsequently ALICIA builds a graph,

where nodes represent subsets of features present in the association rules, while edges

represent association relationships between the subsets. Finally, ALICIA evaluates the

importance associated with the nodes of the graph according to a novel graph centrality

measure, and returns a relevance ranking of the features.

To assess the quality of our proposal we conduct a performance comparison with

eight, well-established feature selection methods, i.e., Information Gain (IG), Gain Ratio (GR),

Correlation-based Feature Selection (CFS), Feature Selection via Eigenvector Centrality(ECFS),

Relief-F, Fisher, Gradient boosted feature selection (GBFS) and XGBoost Feature Importance
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(XGB-FI). We use three different real-world tax-payer datasets provided by SEFAZ-CE covering

a period of time comprised between 2009 and 2011. The results show that ALICIA, coupled with

an SVM-based classifier, achieves F-measure scores up to 76.88%, consistently outperforming

its competitors, thus producing consistent results over time. A fourth dataset is used to analyze

how well our strategy is able to generalize in fraud domain. ALICIA, in this case, using an

XGB classifier also proved to be the best feature selection strategy when comparing with its

competitors.
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1.4 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 provides some

background on the key topics underlying this work, i.e., feature selection, association rule

learning, and centrality measure. Chapter 3 presents our proposal, ALICIA. Chapters 4 and 5

present, respectively, the experimental setting and the experimental evaluation. Finally, Chapter

6 draws the final conclusions.
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2 RELATED WORK AND BACKGROUND

With the aim to respond to our Research Question RQ (Section 1.2), this chapter

presents the works related to this thesis and a background knowledge that supports our solution.

First, we present works concerning on feature selection methods applied to fraud detection

in Section 2.1. Then, we give basic foundations in Feature Selection in Section 2.3. This is

important to understand how to select the most appropriate subset of features. Then, in order

to understand how to capture the non-linear correlation between features, Section 2.4 provides

an overview on Association Rule Learning, while Section 2.5 provides an overview on Node

Centrality measures.

2.1 Feature selection methods applied to fraud detection

Fawcett e Provost (1997) present a technique to detect frauds involving cellular

cloning. In their work the authors employs a single layer perceptron network coupled with a

feature selection technique, called sequential forward selection process (KITTLER, 1986). In

the experimental evaluation the authors show that their feature selection method allows to reduce

the number of features from 198 to 11, while allowing the network to achieve 92% of accuracy;

the authors finally report non-negligible misclassification costs.

Yang e Hwang (2006) propose an approach to detect frauds perpetrated in the health-

care domain. The approach works by building a detection model from clinical pathways, where

features are based on frequent control-flow patterns inferred from two datasets – one containing

fraudulent instances while the other one containing regular instances. They then use a probability

framework based on the Markov blanket filter to perform feature selection, which allows to

reduce the number of features from 30,701 to 3,120. The experimental evaluation shows that their

approach is capable of identifying several fraudulent cases that cannot be detected by manually

constructed detection models, and that the use of feature selection increases the accuracy from

40% to 69%.

Similarly, Li et al. (2008) provides a comprehensive survey of statistical methods

used to detect frauds perpetrated in health-care. Here, the authors point out how feature selection

plays a very important role in this domain, yet most of the literature omit discussing the details

behind the engineering of the features due to legal and privacy concerns.

Kotsiantis et al. (2006) explore the ability of machine learning techniques to detect
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firms issuing fraudulent financial statements. In this work the authors employ a feature selection

method that ranks the relevance of features according to a statistical measure called ReliefF.

ReliefF operates by determining the relevance of each feature according to its ability in disam-

biguating similar samples, where the similarity is defined in terms of proximity within the feature

space. In the experimental evaluation the authors show how ReliefF is able to reduce the set of

considered features from 25 to 8 features. Also, the authors compare several machine learning

techniques, i.e., C.45, RBF, Bayesian Networks, KNN, and SVM, and show that C4.5 achieves

the best results by classifying correctly the 85.2% of fraud cases, the 93.3% of non-fraud cases,

and the 91.2% of cases in the validation sets.

Belhadji et al. (2000) propose an approach to choose fraud features that are deemed

the most significant in predicting the probability that a claim is fraudulent. The approach is

structured in three phases: first, their approach takes in input a set of fraud features that are

provided by selected domain experts. Secondly, for each feature the approach calculates the

associated conditional probability. Finally, the approach leverages the Probit regression to

determine the most significant features.

Table 1 presents a summary of the feature selection methods used in the references

presented in this section, as well as data domain, number of features, metrics and results obtained.

The following section analyzes the behavioral dynamics of tax evasion, using social

networks e centrality measures.

2.2 Social networks and centrality measures applied to the Behavioral dynamics of tax

evasion

Andrei et al. (2014) develop a model to show that the network structure determines

in which way tax behavior is transmitted in a society. The model utilizes their rules for taxpayer

behavior and apprehension of tax evaders in order to test the effects of network topologies in

the propagation of evasive behavior. They use centrality metrics for measuring and analyzing

networks.

Hashimzade et al. (2015) investigate the behavioural and social aspects of tax

FS methods Classification algorithm Domain # features # reduced features Metric Classification result
FAWCETT; PROVOST, 1997 Neural network cellular cloning 198 11 Accuracy 92%
YANG; HWANG, 2006 Markov blanket filter health-care 30,701 3,12 Accuracy 69%
LI et al., 2008 Survey health-care
KOTSIANTIS et al., 2006 C4.5 financial fraud 25 8 F-measure 88.79%
BELHADJI et al., 2000 Probit model insurance fraud 54 23 Accuracy 80%

Table 1 – Feature selection methods applied to fraud detection.
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compliance. in this work the authors show that specific attitudes and beliefs are also endogenously

formed via the structure of the agents’ social networks which are used to communicate auditing

and compliance information.

Borgatti et al. (2009) explains that networks, cliques and communities of taxpayers

are the relevant categories for social interaction of taxpayers because they describe how groups

of otherwise isolated individuals may be formed.

The study of Korobow et al. (2007) illustrates that especially group effects are

important for an individual’s decision whether to evade or not. They find that the existence of

social networks diminishes compliance.

A deficiency of these techniques is that they do not consider that features could be

correlated among themselves in a non-linear way.

In the following section the theoretical foundations necessary for the development of

the following chapters are discussed.

2.3 Feature selection

When considering the problem of detecting tax frauds, using a high number of

features does not necessarily translate into a high classification accuracy and may require too

many computational resources. To this end, feature selection methods can be used as a pre-

processing tool to select features that are relevant for the problem considered – this reduces

the number of irrelevant features while maintaining a good classification accuracy. We note

that feature selection methods are different than feature extraction algorithms (DEVIJVER;

KITTLER, 1982), in that the latter create new features originating from the combination or

transformation of the initial features.

Two qualities that characterize features are considered by feature selection meth-

ods, regardless of the specificities of individual approaches: relevance and redundancy (YU;

LIU, 2004). A feature is said to be relevant if it cannot be removed from the set to which it

belongs without affecting its original conditional class distribution. A feature is considered to

be redundant if it is highly correlated with other features. We note that features that may be

considered irrelevant when taken individually may be extremely relevant when picked up in

combination with other features. In general, using a good feature selection method can increase

the classification accuracy with respect to other strategies (KIRA; RENDELL, 1992b; KOHAVI;

JOHN, 1997). Determining an optimal subset of relevant features is challenging, since there is
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always a trade-off between subset minimality, i.e., a subset with the smallest possible amount

of features, and subset suitability, i.e., a subset that guarantees the highest possible accuracy.

In general, a proper trade-off is domain-dependent. In light of the above considerations, we

introduce the following problem statement.

Definition 2.3.1 Given a feature set F, we define the problem of feature selection as the problem

of finding out a near optimal subset of features M ✓ F among the competing 2|F | candidate

subsets.

The definition of optimality may vary according to the specificities of the scenario considered.

Also, using naïve (brute-force) approaches is unfeasible with most of the datasets, hence feature

selection methods try to exploit some kind of heuristic to effectively reduce the search space

(DASH; LIU, 1997; RUIZ et al., 2005) and find near-optimal solutions.

Existing feature selection methods fall under three categories (GUYON; ELISSEEFF,

2003), i.e., filter, wrapper and embedded, where the categorization stems from the different

strategies used to measure the optimality of subsets of features.

2.3.1 Filter methods

Filter methods use statistical properties characterizing features to score and rank

subsets of features, independently of specific learning algorithms used (CHANDRASHEKAR;

SAHIN, 2014; LIU; MOTODA, 2007). We note that some filter methods – for instance, those

based on mutual information criteria – provide a generic approach to select features, hence they

may be not suitable for some machine learning methods. Filtering methods can be employed as

a preprocessing tool too, to reduce space dimensionality and avoid overfitting. Filter methods

typically use all the training data to look for relevant subsets of features.

Entropy represents a commonly used measure that quantifies the information content

of a source, and constitutes the foundation of many filter methods. To evaluate entropy, in

this work we consider the following measures: Information Gain (IG) (LIU; MOTODA, 2012),

Gain Ratio (GR) (LIU; MOTODA, 2012; KAREGOWDA et al., 2010) and Correlation Feature

Selection (CFS) (HALL, 1999).

Let us suppose that Y represents the discrete random variable modeling the occur-
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rences of the classes in S. Then, the entropy of Y is defined as:

H(Y ) =�Â
y2Y

p(y)log(p(y)) (2.1)

where P(y) denotes the probability associated with the class y. Intuitively, the lower

the entropy, the more the information in S is “predictable” – this, in turn, occurs whenever S

contains samples whose classes have a low or high probability to occur.

Let us now suppose that the values of Y are partitioned according to the values that

some feature can assume – we describe the occurrences of such feature by means of a discrete

random variable X : if the conditional entropy of Y with respect to X , that is, the amount of

information needed to describe the outcome of Y given that the value of X is known, is less than

the entropy of Y , then there exists some relationship between Y and X . Such measure is denoted

by H(Y |X) and is defined as:

H(Y |X) =�Â
x2X

p(x) Â
y2Y

p(y|x)log(p(y|x)) (2.2)

where P(y|x) represents the posterior probability of Y = y given the evidence of X = x. In the

following we provide a brief overview on the measures considered in this work.

2.3.1.1 Information Gain

Information gain (IG) (LIU; MOTODA, 2012) measures the decrease in entropy

when classes are partitioned according to the values some feature can assume, the higher the IG

associated with X , the more the associated feature provides useful information about the classes.

Let us consider a dataset S = {s1, · · · ,sm}, where a generic sample s2 S has the form

s = (x(1), · · · ,x(n),y), with x( j) representing the value assumed by the j-th feature in the sample

and y representing the label associated with the sample. In this context we also assume that any

label y can assume only a finite number of values (classes), i.e., y 2C, with C representing the

set of classes. As such, IG is defined as follows:

IG(Y,X) = H(Y )�H(Y |X). (2.3)

When applied to feature selection, features that achieve high IG are deemed to be the most

relevant.
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Finally, we report that IG’s main weakness lies in its bias towards features featuring

large numbers of distinct values.

2.3.1.2 Gain Ratio

The Gain Ratio (GR) represents a measure that leverages IG while attempting to

tackle its bias limitation (LIU; MOTODA, 2012; KAREGOWDA et al., 2010). It is defined as

follows:

GR(Y,X) =
IG(Y,X)

H(X)
(2.4)

From Eq.2.4, we see that GR attempts to predict the class Y by dividing IG with the

entropy of X . The values produced by GR always fall in the range [0,1]. A value of GR = 1

indicates that the knowledge of X completely predicts Y , and GR = 0 means that there is no

relation between Y and X . In opposition to Information Gain, the Gain Ratio favors feature with

fewer values.

2.3.1.3 Correlation-based Feature Selection (CFS)

The Correlation-based Feature Selection (CFS) measure (HALL, 1999) uses a

correlation-based heuristic to rank subsets of features.

More precisely, CFS evaluates subsets of features X according to the following

hypothesis: good feature subsets contain features that are highly correlated with some class Y ,

yet uncorrelated with each other. To achieve this, CFS uses a best-first-search heuristic: first,

it calculates a matrix of feature-class and feature-feature correlations from the training data;

subsequently, it scores a subset V of k features in the following way:

MeritVk(S,Y ) =
krc fp

k+ k(k�1)r f f
(2.5)

Here, rc f is the average feature-class correlation, while r f f is the average feature-

feature intercorrelation.

Symmetrical uncertainties (SU) are used in CFS to estimate the degree of association

between discrete features or between features and classes. More specifically, it measures the

intercorrelation between two features, or the correlation between a feature X and a class Y with
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binary labels. SU can be defined as follows:

SU(S,Y ) = 2.0⇤


GR(S,Y )
H(Xi)+H(Y )

�
, (2.6)

The subset yielding the highest merit is finally selected.

2.3.1.4 RELIEF and RELIEF-F

Similarly to the case of CFS, in (KIRA; RENDELL, 1992a) the authors observe that

feature selection conducted by means of information gain or gain ratio assumes that attributes

are independent to each other, thus ignoring possible relationships between features. To address

this limitation, the authors propose an algorithm called RELIEF.

RELIEF revolves around the idea that “good” features should have the same value

among instances belonging to the same class, while they should possess different values between

instances having different class. More formally, let W [ f ] be the score associated with some

feature f ; then, W [ f ] is computed as follows:

W [ f ] =P(different value of f | nearest instance with different class) �

P(different value of f | nearest instance with same class),

where P denotes the probability associated with an event. Here we note that the closer to one the

score of a feature, the better the feature.

To compute the aforementioned probabilities, RELIEF operates as follows: first, the

algorithm randomly extracts m instances from the dataset, where m is smaller or equal than the

number of total instances – we note that the greater m, the more exact the scores associated with

the features. Subsequently, for each of instance RELIEF finds out (i) the nearest instance having

different class and (ii) the nearest instance having the same class; such instances are found out

via a suitable distance function. We note that this serves the purpose of taking into account

possible relationships between features. Once the two nearest instances are found, RELIEF

proceeds to update the score of each feature, using again appropriate distance functions.

Several improvements were proposed over time with respect to the original algorithm.

In this work we consider RELIEF-F (KONONENKO, 1994): among the various improvements,

we report that this variant is able to cope with noisy or missing data, and is able to process

multi-class datasets.
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2.3.1.5 Fisher Score

The key idea of Fisher score (GU et al., 2012) is to find a subset of features, such

that in the data space spanned by the selected features, the distances between data points in

different classes are as large as possible, while the distances between data points in the same

class are as small as possible. It computes a score for each feature independently. In other word,

it only considers x j 2 R1⇥n. In this case, there are only
�F

1
�
= F candidates. Let ni denote the

number of data points in class i. Let µ j
i and s j

i be the mean and standard deviation of ith class,

corresponding to the jth feature. Let µ j and s j denote the mean and standard deviation of

the whole data set corresponding to the jth feature. Then the Fisher Score of the jth feature is

computed as follows,

F(x j) =
Âc

i=1 ni(µ j
i �µ j)2

Âc
i=1 ni(s j

i )
2

(2.7)

After computing the Fisher score for each feature, it selects the top-m ranked features

with large scores. Because the score of each feature is computed independently, the features

selected by the heuristic algorithm is suboptimal. The heuristic algorithm fails to select those

features which have relatively low individual scores but a very high score when they are combined

together as a whole.

2.3.1.6 Feature selection via eigenvector centrality (ECFS)

Feature selection via eigenvector centrality (ECFS) (ROFFO; MELZI, 2016), pro-

poses a graph-based feature selection algorithm that ranks features according to the graph

eigenvector centrality measure (BONACICH, 1987). The underlying idea is to map the problem

to an affinity graph (where features are the nodes), and to model pairwise relationships among

feature distributions by weighting the edges connecting them. It assigns a score of “importance”

to each feature by taking into account all the other features mapped as nodes on the graph. The

graph is weighted according Fisher criterion (equation 2.7) and mutual information (ZAFFALON;

HUTTER, 2002):

mi = Â
y2Y

Â
z2xi

p(z,y)log(
p(z,y)

p(z)p(y)
), (2.8)
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Where Y is the set of class labels, and p(·, ·) is the joint probability distribution. Note

that each feature distribution xi is normalized so as to sum to 1. A kernel k is then obtained by

the matrix product

k = (F ·m>),

Where F (equation 2.7) and m (equation 2.8) are n⇥1 column vectors normalized

in the range 0 to 1, and k results in a n⇥n matrix.

In order to capture the amount of variation or dispersion of features from average,

they use a second feature-evaluation metric based on standard deviation:

S(i, j) = max(s (i),s ( j)),

where s being the standard deviation over the samples of X , and S turns out to be a

n⇥n matrix with values 2 [0,1].

Finally, the adjacency matrix A of the graph G is given by:

A = ak+(1�a)S,

where a is a loading coefficient 2 [0,1]. The generic entry ai j accounts for how

much discriminative are the feature i and j when they are jointly considered; at the same time,

ai j can be considered as a weight of the edge connecting the vertices i and j of a graph, where

the ith vertex models the ith feature distribution.

After generating the adjacency matrix A of the graph G, this method uses Eigenvec-

tor Centrality (EC) to identifying the most important nodes within a graph (e.g., the relative

importance of nodes). The basic idea behind the EC is to calculate v0 the eigenvector of A

associated to the largest eigenvalue. Its values are representative of how strongly each node is

connected to the other nodes.

2.3.2 Wrapper methods

Wrapper methods explore the whole set of features, by means of a predictive model,

to score feature subsets; these methods usually provide the best feature subsets, since they allow
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higher predictive performance than filter methods. Wrapper methods offer a simple yet powerful

way to address the problem of feature selection, regardless of the choice of a specific machine

learning approach – indeed, in this context any machine learning approach can be seen as a black

box.

In its most general formulation, a wrapper method consists in using the prediction

performance of a given machine learning algorithm to assess the relative usefulness of subsets of

features.

In practice, one needs to define (i) how to search the space of all the possible subsets

of features, (ii) how to assess the prediction performance of a machine learning algorithm to

guide the search and halt it, and (iii) which predictor to use.

An exhaustive search can conceivably be performed if the number of features is not

too large. However, the problem is known to be NP-hard (AMALDI; KANN, 1998), thus the

search becomes computationally intractable as the amount of features gets larger.

As such, wrapper methods are often criticized because they tend to require massive

amounts of computation – indeed, these methods are often considered brute force methods.

However, efficient search strategies can be exploited to reduce their computational

cost and do not necessarily imply losses in prediction performance. All in all, whenever we use

a machine learning algorithm as a black box wrapper methods prove to be remarkably universal,

simple, and useful; unfortunately, they tend to be slow, since the induction algorithm is usually

called repeatedly.

2.3.3 Embedded methods

Embedded methods perform feature selection during the training process and are

usually tied to specific machine learning algorithms. For instance, decision trees such as CART

(BREIMAN et al., 1984) have a built-in mechanism to perform feature selection; other embedded

methods guide their search by estimating changes in the objective function value that results

when making moves in the feature subset space. All in all, embedded methods may be more

efficient in several aspects than the methods reported above, i.e., they make better use of the data

available by not splitting the training data into training and validation sets, and tend to reach a

solution faster by avoiding to retrain a predictor from scratch each time a new feature subset is

considered.
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2.4 Association rule learning

The goal of association rule learning is to identify associations between data records

(items) that are related. To achieve this, the key idea is to find subsets of items whose presence is

correlated with the presence of some other item in the same transaction. Apriori (AGRAWAL;

SRIKANT, 1994) represents an association rule technique that is widely used in market basket

analysis, cross marketing and customer buying pattern. Association rule techniques represent

promising tools in the context of fraud detection (SÁNCHEZ et al., 2009; PHUA et al., 2010;

KIM et al., 2013), since they can be used to discover hidden relationships among various fraud

features.

2.4.1 Association rule

Let us suppose that I = {i1, . . . , im} represents a set of items. Then, an association

rule represents an implication of the form X ) Y , where X ,Y ✓ I and X \Y = /0.

Association rules are incrementally derived from a set of transactions, D; their

strength is measured in terms of support and confidence (AGRAWAL; SRIKANT, 1994). More

specifically, let us suppose that s(Z) represents the support of an itemset, i.e., the number

of transactions where the itemset Z appears, while N = |D| represents the overall number of

transactions in D. Then, support of an association rule is defined as:

supp(X ) Y ) =
s(X [Y )

N
(2.9)

The other important measure is the confidence of a rule, which determines how

frequently the item(s) in Y appear(s) in instances that contain X :

con f (X ) Y ) =
s(X [Y )

s(X)
(2.10)

Finally, the lift of a rule represents a correlation measure between itemsets that can

be used to augment the support-confidence framework (HAN; KAMBER, 2006):

li f t(X ) Y ) =
s(X [Y )

s(X) ·s(Y )
(2.11)

In general, li f t(X)Y )< 1 indicates that the occurrence of X is negatively correlated

with the occurrence of Y , i.e., the lower the lift, the more the occurrence of X implies the

occurrence of Y . li f t(X ) Y ) > 1 represents the symmetric case. Finally, li f t(X ) Y ) = 1

indicates the absence of correlation between X and Y , i.e., the two itemsets are independent.



35

2.5 Node centrality measures

The main goal of node centrality measures is to capture the importance that individual

nodes have within a graph (FREEMAN, 1977). In general, central nodes are interesting since

they have three characteristics that distinguish them from regular nodes: they possess more edges

(relationships), their average distance with other nodes is lower than regular nodes, and they

possess a major role in regulating the flow between nodes of the graph.

Considering the ubiquity of graphs, the concept of centrality is investigated in a

relevant amount of domains (OPSAHL; PANZARASA, 2009; BARRAT et al., 2004; DOREIAN

et al., 2005), including feature selection (MORADI; ROSTAMI, 2015; BONEV et al., 2013;

ZHANG et al., 2011). Indeed, feature selection has been used in the past to rank single features.

However, in most datasets features are not independent and combining them provides much

more information than considering them individually. As such, feature subset selection can be

conducted by exploiting some graph centrality measure to capture relationships between the

nodes of the graph.

In the context of this work, we consider three different measures of centrality

(FREEMAN, 1978): degree centrality, closeness centrality, and betweenness centrality.

2.5.1 Degree centrality

Let us suppose we have a graph G = (V,E), where V represents the set of vertices

and E represents the set of edges. Then, we define the degree centrality of a node v 2V , D(v),

as the number of nodes with which v is connected:

D(v) = deg(v) (2.12)

Intuitively, a node with high degree centrality may indicate that the node has a crucial

role in a graph. This measure has a major limitation in that it does not take into account other

properties of the graph. For instance, even if a node possesses a very high degree centrality, its

average distance with respect to its neighbors may be very high; this, in turn, may represent an

important factor to consider when we consider scenarios where some kind of resource must be

retrieved as quickly as possible.

The measure of closeness centrality (SABIDUSSI, 1966) tries to overcome the

aforementioned limitation by taking into account the distance.
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2.5.2 Closeness centrality

Given a directed graph G = (V,E), a vertex v 2V , and some distance function d, we

define the closeness centrality of v as:

CC(v) =
1

Â
u2V,u6=v

d(v,u)
, (2.13)

where d(v,u) represents the distance between v and some u 2V .

One of the main drawbacks of closeness centrality is the lack of applicability when

considering networks that have disconnected components. Indeed, two nodes that belong to

different components have infinite distance. The betweenness centrality measure (WIKIPEDIA,

2017) attempts to overcome this limitation. The underlying idea is to determine the amount of

shortest paths that pass through a given node – as such, it measures the ability of a node to funnel

flows within the network.

2.5.3 Betweenness centrality

Given a directed graph G = (V,E) and a vertex v 2 V , we define the betweenness

centrality of v as:

BC(v) = Â
s,t2V,s 6=t 6=v

ss,t(v)
ss,t

, (2.14)

where ss,t represents the total number of shortest paths between some node s 2V to some node

t 2V , while ss,t(v) represents the number of shortest paths between s and t that pass through v.
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3 LEVERAGING FEATURE SELECTION TO DETECT POTENTIAL TAX FRAUD-

STERS

In this section we introduce ALICIA, a new feature selection method that attempts to

answer the research question introduced in Chapter 1: How do we select the most appropriate

subset of binary features, with low or non-linear correlation between themselves and possi-

bly non informative for the target class, to improve potential tax fraudsters classification?

The key idea behind ALICIA is to combine association rules and propositional

logic with graph centrality measure to capture the hidden relationship – non-linear correlation –

between tax fraud features. In other words, ALICIA wants to leverage association rules, with a

carefully crafted graph centrality measure, to identify the most relevant features for tax fraudsters

classification. Our method is structured in three phases – (Algorithm 1) provides the pseudocode.

In the first phase, GENERATERULES (line 2), ALICIA takes in input a data matrix S,

i.e., a matrix where each row refers to a single taxpayer while each column is associated with a

specific tax fraud feature, to generate the set of relevant fraud association rules, rules. In the

second phase, GENERATEGRAPH (line 3), ALICIA builds from rules the graph of association

rules G, where each node represents a subset of tax fraud features present in any of the associative

rules in rules, and each edge represents a specific association rule between a pair of subsets of

features. In the third final phase, RANKFEATURES (line 4), ALICIA concludes by producing

the relevance ranking (in descending order) of the nodes of G – to this end we leverage a novel

centrality measure called Feature Topological Importance (FTI).

In the following we provide the details behind each phase.

3.1 Phase I – Generating the set of relevant fraud association rules

The goal of this phase is to produce a set of association rules that can be subsequently

used to determine the final set of relevant features. Algorithm 2 reports its pseudocode.

GENERATERULES takes in input a data matrix S, where a generic element si, j 2 S

indicates whether the i-th taxpayer is associated (1) or not (0) with the j-th tax fraud feature.

The algorithm takes also in input the values used by the Apriori algorithm to determine the

association rules, i.e., support (supp) and confidence (conf ). Input variable dependency is a

boolean used to choose the use of dependency structures (subsection 3.1.1) to add more rules.

GENERATERULES first computes from S the set of association rules, APR, by means of the

Apriori algorithm (line 3). Finally, it returns the subset of rules RARS ✓ APR whose Lift is
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Algoritmo 1: ALICIA
Input :

• S, the data matrix.
• supp, the support threshold to be used with Apriori.
• con f , the confidence threshold to be used with Apriori.
• li f t, the lift threshold to be used with Apriori.
• n, the n-reachability threshold used when ranking the features.
• maxFeatsVertex, maximum number of features associated with a vertex.
• dependency, boolean to indicate the use of dependency in rules generation

1 begin
2 rules GENERATERULES(S,supp,con f , li f t,dependency) // Phase I
3 G GENERATEGRAPH(rules) // Phase II
4 KeyFeatures RANKFEATURES(G,n,maxNumFeatVertex) // Phase III
5 return KeyFeatures

above the lift threshold (lines 4–5) and if choose by user, it increases the number of rules using

dependency structures (line 6).

Technically, association refers to any relationship between two variables, whereas

correlation is often used to refer only to a linear relationship between two variables.

3.1.1 Phase I.a – Dependency structures of association rules

In this phase, we introduce an axiomatic description of dependency structures in

association rules. The axioms specify those families of dependencies "A determines B" which

can hold for some association rule in RARS.

These dependencies allow our method ALICIA to create new rules, increasing the

number of edges in the graph (subsection 3.2), in order to modify the value of the centrality of

the nodes in the graph (subsection 3.3).

If a is a set of attributes, an ordered pair (A,B) with A✓ a , B✓ a will be referred

to as a dependency. j = {(A,B) | A✓ a,B✓ a} is the set of all dependencies over a .

Algoritmo 2: GENERATERULES
Input :

• S, the data matrix.
• supp, the support threshold.
• con f , the confidence threshold.
• li f t, the lift threshold.
• dependency, boolean to indicate the use of dependency

1 begin
2 RARS /0
3 APR Apriori(S,supp,con f )
4 foreach ap 2 APR do
5 if (Li f t(ap)� li f t) then RARS RARS[{ap}
6 if (dependency = true) then RARS RARS[{SetO f Dependencies}
7 return RARS
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If AR is an association rule, we say that the dependency structure of AR is the family:

tAR = {(A,B) | A✓ a,B✓ a,A!AR B} (3.1)

Using propositional logic (HEGEL, 2014; KRAJICEK et al., 1995; FAGIN, 1977),

we propose the following axioms:

3.1.1.1 Axiom of reflexivity

If A is a set of items and B is a subset of A, then A determines B.

if B✓ A , then A! B (3.2)

3.1.1.2 Axiom of composition

If A determines B and A determines C, then A determines BC1.

if A! B and A!C , then A! BC (3.3)

3.1.1.3 Axiom of transitivity

If A determines B and B determines C, then A determines C.

if A! B and B!C , then A!C (3.4)

Let t be a subset of j , and let! be defined by A! B iff (A,B) 2 t . Then t will be

called a full family of dependencies over a if:

1. (t1) if E! F and F ! G then E! G (transitivity);

2. (t2) if E! F and E! G then E! FG (composition);

3. (t3) if E! F,G then E! F and E! G (reflexivity, transitivity);

This phase is not mandatory and the dependency structure axioms (t1) to (t3) are

not intended to be an optimal choice, however they do provide a try to change the importance

ranking of the features (subsection 3.3) in some datasets, as demonstrated in Chapter 5.
1 Let BC represent a compound item, the union of items B and C.
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3.2 Phase II – Building the graph of association rules

In this phase ALICIA builds the graph of association rules G from the set of relevant

association rules rules – the idea is to subsequently use G to rank the features. Algorithm 3

reports the pseudocode.

The algorithm begins by initializing the graph G, setting V and E to /0 (line 2).

Subsequently, each association rule (X ! Y ) 2 rules is used to update G; more specifically,

for each rule in rules the algorithm creates (if not already present) two nodes, representing

respectively the subsets of features X and Y , and an edge (X ,Y ) that represents the association

rule between the two. GENERATEGRAPH terminates by returning G.

3.3 Phase III – Feature ranking

The goal of this phase is to rank the original features starting from the information

in G. To this end, we first need to introduce the new centrality measure used by ALICIA, i.e.,

the Feature Topological Importance (FTI) measure. It is a new method to asses the strength of

indirect interactions between features, quantifying longer pathways to help determining which

features have more direct or indirect effects on others.

Let G = (V,E) a directed graph, and i 2V some vertex in G: a node v 2V is said

to be n-reachable from i if the number of edges (hereinafter denoted by number of steps for

simplicity) of the shortest path connecting i to v is less or equal than n. Let us also define

an(G, i,v) as the influence of i on any node v 2 V that is n-reachable from i: the value of

an(G, i,v) is determined as:

an(G, i,v) = 1/Dn(G, i), (3.5)

where Dn(G, i) represents the overall number of vertices that are n-reachable from i.

Algoritmo 3: GENERATEGRAPH
Input : rules, the set of relevant associative rules.

1 begin
2 V  /0, E /0
3 foreach (X ! Y ) 2 rules do
4 if X 62V then V  V [{X}
5 if Y 62V then V  V [{Y}
6 if (X ,Y ) 62 E then E E [ (X ,Y )

7 return G = (V,E)
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Example: a4(G, i,v) = 1/8 implies that (i) i has D4(G, i) = 8 vertices that are 4-reachable from it

and that (ii) any node v2V that is 4-reachable from i is subjected to i’s a4(G, i,v)= 1/8 influence.

Finally, let us define sn(G, i) as the total n-step influence of i as the sum of its influence on every

node that is n-reachable from it. More formally:

sn(G, i) = Â
v2V

an(G, i,v) (3.6)

At this point we can define the Feature Topological Importance (FTI) centrality

measure.

Definition 3.3.1 (Feature Topological Importance) Let G=(V,E) be the graph of association

rules and n� 1 be an n-reachability threshold: then, given a vertex v2V , v’s Feature Topological

Importance score is computed as follows:

FT I(G,n,v) = Ân
m=1 sm(G,v)

max(1,n�1)
. (3.7)

The intuition behind FT I is to measure the importance of a node v by examining how “well” it

is connected to other nodes in the graph, i.e., the more the nodes that are n-reachable from v, the

more the importance attributed to v.

We now introduce the algorithm in charge of ranking the set of features, RANKFEA-

TURES (Algorithm 4). RANKFEATURES takes in input the graph of association rules G = (V,E),

the variable n that represents the n-reachability criterion, and the variable maxFeatsVertex – the

latter represents the maximum number of features a vertex may have associated in order to be con-

sidered during this phase. First, RANKFEATURES initializes RankFeatures to an empty set (line

Algoritmo 4: RANKFEATURES
Input:

• G = (V,E), the graph of association rules.
• n, the n-reachability threshold.
• maxFeatsVertex, the maximum number of features admitted in a vertex.

Output: The ranking of the features, RankFeatures
1 begin
2 RankFeatures /0
3 V 0  getVertices(V,maxFeatsVertex)
4 foreach v 2V 0 do
5 SetFeaturesVertex getFeaturesVertex(v)
6 score FT I(G,n,v)

|SetFeaturesVertex|
7 foreach f 2 SetFeaturesVertex do RankFeatures update(RankFeatures,( f ,score))

8 Sort features in RankFeatures according to the associated scores
9 return RankFeatures
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2) and extracts from V the subset of vertices that are associated with up to maxNumFeatVertex

features (line 3) – we denote such subset by V 0. Subsequently, for each vertex v 2 V 0 (line

4) RANKFEATURES determines the associated FT I score and distributes it evenly across its

features: more precisely, the algorithm first determines the subset of features associated with v

(line 5), then computes the FT I score divided by the number of features associated with v (line

6), and finally updates the score of each feature associated with v (line 7). The algorithm finally

concludes by producing the final ranking, by sorting the pairs ( f eature,score) in RankFeatures

according to their score (line 8).

We note that the variable maxFeatsVertex allows the user to choose a proper trade-

off between the amount of information considered from the graph and the execution time that

results from the complexity of the cycle at line 7.
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4 EXPERIMENTAL SETTING

In this section we provide the experimental setting; more specifically, Section 4.1

introduces the dataset as well as the related data preparation. Section 4.2 provides the competitors,

while Section 4.3 introduces the experimental methodology. Finally, Section 4.4 provides the

parameters used at run-time with the various competitors.

4.1 Dataset and data preparation

In this work we consider two different kind of dataset:

• Historical audit data covering an interval of time comprised between 2009 and 2011. The

data is provided by the Treasury Office of the State of Ceará (SEFAZ-CE - Brazil). From

now on, let’s name these datasets TFM-2009, TFM-2010 and TFM-2011

• Anonymized credit card transactions labeled as fraudulent or genuine. The datasets

contains transactions made by credit cards in September 2013 by european cardholders.

From here, we’ll name this dataset DS-CreditCard

About historical audit data, for each year covered we focus on specific subsets of

fraud features (hereinafter denoted for brevity by features), among those available, according to

the recommendations provided by expert tax auditors. More precisely, for data covering 2009

and 2010 we focus on a set of 14 features, while for data covering 2011 we focus on 16 features –

in this context we note that features frequently change over the years, as fraudsters tend to evolve

their strategies. Finally, we report that features and taxpayer identities are anonymized.

Accordingly, we arrange the data in three different tax fraud matrices – Table 2

reports their main characteristics. In the matrices, each row refers to a single taxpayer while each

column is associated with a specific fraud feature. As such, if mi, j represents a generic element

of the matrices, we have that mi, j = 1 if the i-th taxpayer committed the j-th fraud, mi, j = 0

otherwise.

Taxpayers who did not present any evidence of fraud were excluded, as they are

considered outliers. After having preprocessed the data, the total of each feature for each taxpayer

Dataset Year covered # features (columns) # taxpayers (rows) # records Class 1
TFM-2009 2009 14 11,386 3,632 (31%)
TFM-2010 2010 14 12,424 3,987 (32%)
TFM-2011 2011 16 10,627 3,675 (34%)

Table 2 – Characteristics of the tax fraud matrices considered in the experimental evaluation.
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Figure 1 – Class distribution for TFM-2009, TFM-2010, and TFM-2011 datasets.

is summed up (aggregated).

4.1.1 Exploratory Data Analysis

In Table 2 we can see the class distribution, represented by the number of records of

the class Fraud (column # records Class 1). We can see this distribution represented graphically

in Figure 1. From this information we can say that we are working with balanced classes.

Feature correlation is another important analysis: between each other and between

a feature and the output class. Assuming as high correlation values � 0.8, we used Pearson

correlation (COHEN et al., 2014) for this purpose. This analysis is presented in Figure 2, for

TFM-2009, which doesn’t have high correlation between features. This assumption is true for

TFM-2010 (Figure 3) and TFM-2011 (Figure 4). This analysis led us to an important finding

about the data we are working on, being one of the great reasons for the need to create the

new method proposed in this research. We see this translated in the Research Question, in the

highlighted section below in bold:

• How do we select the most appropriate subset of binary features, with low or non-linear

correlation between themselves and between them and the targeted class, such that

the tax fraudsters binary classifiers achieve the best performance against state of art

competitors?

As a way to test the generalization of our method in other datasets, we used credit
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Figure 2 – Feature correlation for TFM-2009, using Pearson correlation.

Figure 3 – Feature correlation for TFM-2010, using Pearson correlation.

card dataset (DS-CreditCard), provided by Kaggle 1. Although it is not the same domain of our

problem, it has some characteristics, such as low correlation between the features, that serve

to test our algorithm. This dataset presents transactions that occurred in two days, where we
1 https://www.kaggle.com/mlg-ulb/creditcardfraud/home (retrieved: 23 June 2018).
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Figure 4 – Feature correlation for TFM-2011, using Pearson correlation.

have 492 frauds out of 284,807 transactions. The dataset is highly unbalanced, the positive class

(frauds) account for 0.172% of all transactions.

It contains only numerical input variables which are the result of a PCA transforma-

tion (POZZOLO et al., 2015). Unfortunately, due to confidentiality issues, they do not provide

the original features and more background information about the data. Features V1, V2, ...

V28 are the principal components obtained with PCA, the only features which have not been

transformed with PCA are ’Time’ and ’Amount’. Feature ’Time’ contains the seconds elapsed

between each transaction and the first transaction in the dataset. The feature ’Amount’ is the

transaction Amount, this feature can be used for example-dependant cost-sensitive learning.

Feature ’Class’ is the response variable and it takes value 1 in case of fraud and 0 otherwise.

Feature distribution, in DS-CreditCard, is presented in Figure 5.

In Figure 6 we can see DS-CreditCard doesn’t have high correlation between features.

These results reinforce the need to adopt a feature selection method to increase the classification

for these datasets.

4.2 Competitors

We compare ALICIA with the feature selection methods presented in Section 2.3,

i.e., Information Gain (IG), Gain Ratio (GR), Correlation-based Feature Selection (CFS), Feature
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Figure 5 – Features Distribution for DS-CreditCard.

Figure 6 – Feature correlation for DS-CreditCard, using Pearson correlation.
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Selection via Eigenvector Centrality (ECFS), Relief-F, Fisher, and Gradient boosted feature

selection (GBFS).

The research in this paper use the Feature Selection Code Library (FSLib) (ROFFO

et al., 2017), for: ECFS, Relief-F and Fisher. In order to analyze IG, GR and CFS we use R

package FSelector (ROMANSKI, 2016). We use GBFS code from author, available in (XU,

2018 (Retrieved April 19, 2018)).

For DS-CreditCard analysis, we used Python and the best classification algorithm

for this task was XGBoost. This algorithm has a native feature selection method: XGBoost

feature importance (XGB-FI). Therefore, we also include this method in the comparison. We

provide source code on GitHub 2.

4.3 Methodology

To assess the feature selection quality of the various competitors in TFM-2009,

TFM-2010 and TFM-2011, we employ the SVM-based classifier offered by the SVM package

of R (KARATZOGLOU et al., 2004). For DS-CreditCard we use XGBoost offered by Python

(REFERENCE, 2018 (Retrieved June 23, 2018)).

The classifier is used to determine the recall, precision and F-Measure associated

with the results obtained by means of the features selected by the competitors. We also report the

use of the 10-fold cross-validation (KOHAVI et al., 1995), as it guarantees less biased estimations

of accuracy.

4.4 Run-time parameters

By default ALICIA uses the following parameters to generate association rules:

supp = 0.3, con f = 0.4 and li f t = 1.3 – we report that these values were chosen according

to an extensive experimental evaluation (such evaluation is presented in Section 5). For what

concerns the other parameters, ALICIA sets by default the n-reachability threshold to 10 and

maxFeaturesVertex to 1.

For what concerns the SVM-based classifier, it employs a Radial Basis (Gaussian)

kernel, with g varied in the [10�6, 10�1] range and t varied in the [10�4, 10�1] range.

For XGBoost classifier, we conducted a cross validation varying parameters in theses
2 https://github.com/rtales/kaggle-credit-card
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ranges: learning_rate= [0.05,0.1],max_depth= [6,7,8],min_child_weight = [1,10],n_estimators=

[400,500]. For reproducibility, we used a fixed seed 100.
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5 EXPERIMENTAL EVALUATION

In the following we describe the results of the experimental evaluation: Section

5.1 presents an analysis that concerns the generation of association rules from the considered

datasets. Section 5.2 presents an analysis on the run-time performance of ALICIA. Finally,

Section 5.3 presents a study that compares the quality of the feature selection performed by the

various competitors.

5.1 Analysis on the generation of association rules.

The quality of the results returned by association rule learning algorithms depends on

the properties of input data and on the choice of proper support, confidence, and lift thresholds.

The first parameter on which we focus our attention is support, and study how its distribution

varies among the association rules generated from the datasets considered. In general, using high

support thresholds yields the generation of relevant association rules, yet potentially interesting

rules involving infrequent features may be discarded. Conversely, low support thresholds

allow to overcome the above issue at the expense of generating possibly many irrelevant rules.

Consequently, studying the support distribution may give insights about a proper trade-off.

In the batch of experiments that follows we vary the support threshold in the [0.1,1.0]

range and report the number of rules generated from the TFM-2009 dataset. Figure 7, left plot,

presents the results.

From the Figure we observe that TFM-2009 exhibits a skewed support distribution,

in that the majority of association rules have low support while the remaining ones have high

support. From the same plot we also observe a clear distinction in the number of rules generated

Figure 7 – Analysis on the distributions of support and confidence related to the association rules
generated from the TFM-2009 dataset. Left plot: Distribution of support. Right plot:
distribution of confidence (support is set to 0.3).
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when the support threshold is greater or equal than 0.3, indicating that lower values yield the

generation of many irrelevant rules – we report that similar results are obtained when considering

the TFM-2010 and TFM-2011 datasets (results are omitted for brevity). Finally, we report that

using a support threshold less or equal than 0.3 allows to generate association rules involving all

the features present in the datasets.

In the next batch of experiments we study how varying the confidence affects the

generation of association rules. To this end, we fix support = 0.3 and variate the confidence in

the [0.1,1.0] range. The dataset considered is, again, TFM-2009. Figure 7, right plot, presents

the results.

From the Figure we observe that variations in confidence have minor effects on the

number of generated rules. We also report that using a confidence value less or equal than 0.6

allows to produce association rules that involve all the features present in the dataset. Finally, we

report that similar results are found when considering the TFM-2010 and TFM-2011 datasets

(results are omitted for brevity).

In the final batch of experiments we study how varying the lift parameter affects

the generation of association rules. To this end, we fix support to 0.3, confidence to 0.6, and

variate the lift in the [1.0,6.0] range. The datasets considered are TFM-2009, TFM-2010, and

TFM-2011. Figure 8 presents the results.

From the plots we see that increasing lift has the effect of reducing the number of

generated rules, focusing on those that have high correlation between pairs of features – this

trend holds for all the three datasets considered. Finally, we report that using a lift value less or

equal than 1.3 allows to involve all the features in the generation of association rules.

In light of the experimental findings, in the batches of experiments that follow we

always set support to 0.3, con f idence to 0.6, and li f t to 1.3.

5.2 Analysis on ALICIA’s run-time performance

In this study we analyze the run-time performance of ALICIA. We focus on phase III

(Section 3.3, Algorithm 4), as the temporal complexity of phase I is dictated by the characteristics

of the Apriori algorithm – to this end we refer the reader to (AGRAWAL; SRIKANT, 1994) –

while the running time of phase II is negligible. During the third phase there are two parameters

that affect the performance of ALICIA: the threshold on the maximum number of features

associated with a vertex, maxFeatsVertex, and the n-reachability threshold.
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Figure 8 – Distribution of lift, association rules generated from the (a) TFM-2009, (b) TFM-2010,
and (c) TFM-2011 datasets. support is fixed to 0.3, con f idence is fixed to 0.6. Y-axis
is associated with the number association rules generated, while X-axis is associated
with li f t parameter variation.

Figure 9 – ALICIA’s phase III execution time when varying the maxFeatsVertex parameter. The
datasets considered are TFM-2009, TFM-2010, and TFM-2011.

In the first batch of experiments we focus on maxFeatsVertex and vary it in the

[1,14] range when considering the TFM-2009 and TFM-2010 datasets, while we use the [1,16]

range when considering the TFM-2011 dataset. All the other parameters are kept fixed to their

respective defaults (Section 4.4). Figure 9 reports the results.



53

Figure 10 – ALICIA’s phase III execution time when varying the n-reachability threshold. Y-axis
is associated with the execution time (sec.), while X-axis is associated with n. The
datasets considered are TFM-2009, TFM-2010, and TFM-2011.

From the results, we observe that maxFeatsVertex has a noticeable impact on ALI-

CIA’s execution time, with increasing running times as maxFeatsVertex becomes larger. We also

report, however, that the F-measure scores achieved by the SVM-based classifier do not change

between maxFeatsVertex = 1 and maxFeatsVertex = 6, thus indicating that the execution time

can be safely reduced by using proper values for maxFeatsVertex (according to the characteris-

tics of the dataset considered). We finally note that the maximum value maxFeatsVertex could

assume during the experiments is 6 as this represents the longest length of the rules produced

during phase I.

In the second batch of experiments we focus on the n-reachability threshold. To this

end, we vary this parameter in the [1,50] range, while keeping the other parameters fixed to their

respective defaults (Section 4.4). We use again all the three datasets considered for the purposes

of the experimental evaluation. Figure 10 reports the results.

5.3 Analysis on the quality of feature selection

In this Section we assess the quality of the results produced by ALICIA and perform

a comparison with its competitors. To this end, we perform two different studies: in the first study

we analyze how variations in the n-reachability threshold affect the feature selection quality of

ALICIA, while in the second study we perform a thorough comparison among the competitors.
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Figure 11 – Analysis on the quality of results when varying the n-reachability within the FT I
measure. Y-axis is associated with F-Measure, while X-axis is associated with n.
The datasets considered are TFM-2009, TFM-2010, and TFM-2011.

5.3.1 Varying the n-reachability parameter

In the first batch of experiments we study how the choice of the n-reachability

parameter used with the FT I centrality measure affects the quality of the results returned by

ALICIA. To this end we consider all the three datasets and vary n in the [1,50] range; for each

value assigned to n we consider the ranking produced by FT I and incrementally include the

features, starting from the most relevant ones: the subset of features yielding the best F-Measure

determines the F-Measure shown in the plots. For what concerns support, confidence, and lift,

we set them to their defaults (Section 4.4). Figure 11 present the results.

From the plots we observe how increasing n improves the F-Measure achieved by

ALICIA until n 10, while using greater values do not yield further performance gains. This

indicates that n = 10 represents the best trade-off between the quality that can be achieved and

the amount of computations required by FT I. As such, in the batches of experiments that follow

we set n = 10.

5.3.2 Competitors comparison

In the batch of experiments that follows we compare the quality of the results between

ALICIA and its competitors. To this end, we consider all the datasets previously introduced, i.e.,
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TFM-2009, TFM-2010, and TFM-2011. We also set n = 10 and support, confidence, and lift to

their respective defaults (see also Section 4.4). The quality of the results is assessed by means of

the F-Measure achieved by the SVM classifier.

5.3.3 Competitors comparison - centrality measure algorithms

In this section, we analyze the results obtained by creating a ranking of the importance

of features from the most traditional centrality algorithms compared to our new centrality strategy

(FT I) proposed in this thesis. We compare degree centrality, closeness centrality and betweenness

centrality against FT I.

From the analysis of the figure 12, it is clear that the ranking of features formed by

the FT I strategy obtained the best results when compared to the other centrality strategies.

We can see that betweenness centrality presents the worst results for all datasets. We

can also observe that the results have a similar behavior since the values of F-Measure increase

or decrease in a similar way for all the metrics according to the number of features used for the

calculation. For example, the values decreases for all methods in TFM-2009 when we reduce

from five to four features. We can also observe that, for TFM-2010, while all other measures of

Figure 12 – Competitor comparison: centrality measure algorithms used to rank features. Y-axis
is associated with F-Measure, while X-axis is associated with the number of features
used to calculate F-measure. The datasets considered are TFM-2009, TFM-2010,
and TFM-2011.
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centrality present a reduction of the F-Measure from seven features, our method continues to

improve until the reduction to five features (when the best result is obtained).

5.3.4 Competitors comparison - feature selection algorithms

The features considered by the various competitors are chosen according to the

ranking produced by FT I – more precisely, features are incrementally included starting from the

most relevant ones. Tables 3, 4, and 5 report the results.

From the tables 3, 4 and 5, we observe that ALICIA almost always outperforms its

competitors; more precisely, ALICIA achieves the best results with TFM-2009 when the number

of considered features is equal to 5 (the resulting F-Measure is equal to 72%). Similarly, ALICIA

achieves the best results with TFM-2010 and TFM-2011 when the number of considered features

is, respectively, equal to 5 and 6, with the resulting F-Measure scores equal to 73% and 77%.

It should be also noted, from the results of Tables 3, 4 and 5, that GR and CFS

methods do not achieve the best results in any of the datasets, for any number of features. IG

method does not present any case of better result for the TFM-2009 and TFM-2010 datasets and

presents only one better result for TFM-2011 - when thirteen features are used - even so, this

value is 10% lower than the best result obtained with our method.

When we analyze the results obtained by the ECFS, RELIEF-F and FISHER

methods, we can see that they only achieve better results in one of the three datasets used in the

experiments - TFM-2009, TFM-2010 and TFM-2009 respectively. None of them achieve better

results when applied to dataset TFM-2011.

top feats IG GR CFS ECFS RELIEF-F FISHER GBFS ALICIA
14 0.5838 0.5838 0.5838 0.5838 0.5838 0.5838 0.5838 0.5838
13 0.5965 0.5519 0.5937 0.5419 0.5762 0.5647 0.5826 0.6068
12 0.6113 0.5766 0.5878 0.6278 0.5015 0.5314 0.5581 0.6171
11 0.6027 0.5885 0.5582 0.6422 0.5552 0.5895 0.6418 0.6363
10 0.5885 0.4737 0.5497 0.4372 0.5381 0.6243 0.6546 0.6508
9 0.5458 0.5769 0.5026 0.4401 0.5663 0.6512 0.6398 0.6449
8 0.5671 0.5924 0.5364 0.4698 0.5332 0.6785 0.6581 0.6632
7 0.5671 0.5956 0.6088 0.5942 0.4707 0.6213 0.6006 0.6723
6 0.5856 0.6130 0.5322 0.5176 0.5645 0.5819 0.5675 0.6956
5 0.6374 0.6001 0.5508 0.5044 0.5476 0.5512 0.6247 0.7172
4 0.5261 0.6022 0.4918 0.4873 0.4879 0.5416 0.5051 0.6975
3 0.6251 0.4904 0.5875 0.4691 0.4261 0.5318 0.6001 0.6661
2 0.5844 0.4114 0.5456 0.4182 0.4368 0.5115 0.5786 0.5938
1 0.4717 0.4047 0.4426 0.4102 0.4061 0.4811 0.4623 0.4966

Table 3 – Analysis on the quality of feature selection, TFM-2009 dataset. The column top
feats illustrates the number of top features selected from the ranking produced by the
various feature selection algorithms. Each figure within the other columns represents
the F-measure achieved by the SVM-based classifier when using the ranking produced
by the associated feature selection method. Winners are highlighted in bold.
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top feats IG GR CFS ECFS RELIEF-F Fisher GBFS ALICIA
14 0.5868 0.5868 0.5868 0.5868 0.5868 0.5868 0.5868 0.5868
13 0.6468 0.6359 0.6189 0.4245 0.5584 0.5803 0.6515 0.6485
12 0.6355 0.6429 0.6220 0.5916 0.5848 0.6092 0.6496 0.6434
11 0.6277 0.6236 0.6273 0.5515 0.6512 0.5483 0.6292 0.6342
10 0.6253 0.6164 0.6148 0.4749 0.6348 0.5715 0.6108 0.6297
9 0.6514 0.6513 0.6427 0.4563 0.4302 0.6424 0.6371 0.6599
8 0.6548 0.6607 0.6406 0.5202 0.4743 0.6281 0.6316 0.6784
7 0.6592 0.6512 0.6414 0.5422 0.4621 0.6103 0.6295 0.6961
6 0.6362 0.6560 0.6396 0.5214 0.5139 0.6202 0.6201 0.7006
5 0.5828 0.6499 0.6545 0.4573 0.6018 0.6099 0.5915 0.7291
4 0.5736 0.5919 0.5816 0.4084 0.4456 0.5893 0.5730 0.7044
3 0.5963 0.5906 0.5803 0.4150 0.4650 0.5708 0.5879 0.7029
2 0.6081 0.5912 0.5831 0.4288 0.4078 0.5691 0.5718 0.6956
1 0.5301 0.5228 0.5159 0.4824 0.5049 0.5681 0.5477 0.5915

Table 4 – Analysis on the quality of feature selection, TFM-2010 dataset.

top feats IG GR CFS ECFS RELIEF-F Fisher GBFS ALICIA
16 0.5534 0.5534 0.5534 0.5534 0.5534 0.5534 0.5534 0.5534
15 0.5893 0.5579 0.5452 0.5854 0.5493 0.5667 0.5957 0.5905
14 0.5765 0.5982 0.528 0.6105 0.5431 0.5265 0.6614 0.6501
13 0.6481 0.6086 0.5961 0.6201 0.6210 0.5542 0.6221 0.6199
12 0.5945 0.5572 0.5519 0.5389 0.5637 0.5422 0.6016 0.5824
11 0.6084 0.6683 0.5486 0.5482 0.6000 0.5406 0.6227 0.6937
10 0.5805 0.6315 0.5258 0.6088 0.5457 0.5217 0.5929 0.6724
9 0.6523 0.6591 0.5915 0.5783 0.6099 0.5328 0.6212 0.6877
8 0.6264 0.6832 0.5702 0.5345 0.5231 0.5638 0.5913 0.6948
7 0.6671 0.6004 0.6025 0.5227 0.5239 0.5656 0.6418 0.7023
6 0.6608 0.6706 0.6111 0.6339 0.5428 0.5115 0.6463 0.7688
5 0.6433 0.6634 0.6119 0.5436 0.6273 0.5583 0.6235 0.7534
4 0.6709 0.6976 0.5937 0.6284 0.5819 0.5124 0.6451 0.7468
3 0.6002 0.5752 0.5491 0.6015 0.5986 0.5244 0.5833 0.7260
2 0.6046 0.6089 0.5588 0.6068 0.5250 0.5576 0.5798 0.7211
1 0.4987 0.4915 0.4611 0.5157 0.6091 0.5144 0.5055 0.5421

Table 5 – Analysis on the quality of feature selection, TFM-2011 dataset.

In this way, we can see that only ALICIA achieves better results in all datasets. In

this way, we can observe that among the filtering methods, only ALICIA achieves better results

in all datasets. In addition, only ALICIA maintains the best results in all datasets when the

number of features is reduced by less than half. Considering that the best results were obtained

when we have less than half of the features used, our method is the best option among the others

filtering methods.

We also compared our strategy against the GBFS algorithm, because although it is a

wrapper method it is considered the state of the art in feature selection. In order to obtain the

best result with GBFS, we tested it with several combinations of parameters: learningrate =

[0.01,0.05,0.1], depth = [4,5,6], ntrees = [100,200,300,400].

Although GBFS achieved some better result in all datasets, in none of them did it

get the best overall result and in none of them was it better when there was a reduction of at least

half of the features.

The best result for GBFS was obtained with the following parameters: learningrate=

0.05, depth = 5, ntrees = 200.
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top feats IG GR XGB-FI CFS ECFS RELIEF-F Fisher GBFS ALICIA
30 0.8696 0.8696 0.8696 0.8696 0.8696 0.8696 0.8696 0.8696 0.8696
29 0.8663 0.8663 0.8663 0.8649 0.8696 0.8710 0.8663 0.8649 0.8743
28 0.8710 0.8710 0.8865 0.8268 0.8649 0.8710 0.8710 0.8757 0.8865
27 0.8466 0.8617 0.8770 0.8161 0.8649 0.8710 0.8617 0.8757 0.8865
26 0.8571 0.8617 0.8663 0.8315 0.8541 0.8710 0.8602 0.8804 0.8865
25 0.8571 0.8617 0.8663 0.8202 0.8710 0.8710 0.8602 0.8663 0.8913
24 0.8511 0.8617 0.8723 0.8268 0.8462 0.8757 0.8663 0.8511 0.8427
23 0.8723 0.8466 0.8663 0.8268 0.8444 0.8757 0.8602 0.8710 0.8315
22 0.8723 0.8757 0.8617 0.8380 0.8444 0.8617 0.8757 0.8696 0.8380
21 0.8723 0.8710 0.8723 0.8444 0.8444 0.8617 0.8852 0.8710 0.8492
20 0.8632 0.8617 0.8571 0.8427 0.8444 0.8511 0.8696 0.8587 0.8380
19 0.8663 0.8663 0.8360 0.8398 0.8462 0.8466 0.8830 0.8757 0.8398
18 0.8617 0.8663 0.8360 0.8242 0.8444 0.8617 0.8770 0.8770 0.8539
17 0.8511 0.8602 0.8404 0.8398 0.8539 0.8387 0.8770 0.8617 0.8603
16 0.8449 0.8649 0.8387 0.8370 0.8427 0.8324 0.8617 0.8649 0.8619
15 0.8387 0.8817 0.8298 0.8495 0.8475 0.8541 0.8541 0.8602 0.8539
14 0.8280 0.8757 0.8404 0.8495 0.8475 0.8541 0.8602 0.8663 0.8588
13 0.8404 0.8791 0.8360 0.8649 0.8475 0.8541 0.8710 0.8723 0.8603
12 0.8556 0.8602 0.8449 0.8352 0.8475 0.8541 0.8587 0.8663 0.8556
11 0.8602 0.8511 0.8449 0.8333 0.8588 0.8602 0.8587 0.8602 0.8619
10 0.8415 0.8415 0.8495 0.8380 0.8556 0.8696 0.8398 0.8495 0.8556
9 0.8478 0.8462 0.8556 0.8333 0.8352 0.8541 0.8404 0.8495 0.8462
8 0.8432 0.8587 0.8602 0.8023 0.8045 0.8743 0.8478 0.8525 0.8398
7 0.8197 0.8148 0.8634 0.8023 0.8043 0.8696 0.8432 0.8619 0.8508
6 0.8202 0.7568 0.8541 0.7126 0.7778 0.8478 0.8370 0.8360 0.8045
5 0.8085 0.7708 0.8462 0.6857 0.7869 0.8387 0.8387 0.8085 0.8045
4 0.8085 0.7813 0.8132 0.6826 0.5867 0.8235 0.7979 0.8085 0.8156
3 0.7937 0.7857 0.8415 0.0594 0.5503 0.8415 0.7514 0.7937 0.8068
2 0.7486 0.7449 0.7351 0.0000 0.2414 0.7351 0.6429 0.7486 0.7174
1 0.6882 0.6882 0.6023 0.0000 0.0000 0.6023 0.6000 0.6882 0.6000

Table 6 – Analysis on the quality of feature selection, DS-CreditCard dataset. The column top
feats illustrates the number of top features selected from the ranking produced by the
various feature selection algorithms. Each figure within the other columns represents
the F-measure achieved by the XGB classifier when using the ranking produced by the
associated feature selection method. Winners are highlighted in bold.

In order to analyze how much our method generalizes to other dataset types, we

apply our method and compare it with the competitors in a unbalanced dataset: DS-CreditCard.

In this analysis, we have included an over-comparison method XGBoost Feature Importance

(XGB-FI). This was necessary because here we apply Python XGBoost and this method is native

to this classifier.

The results obtained with each method, using the DS-CreditCard, is presented in

Table 6, where we observe that ALICIA achieves the best classification result when the number

of considered features is equal to 25 (the resulting F-Measure is equal to 89.13%). This result

outperforms all the competitors.

5.3.5 Related work comparison - feature selection algorithms

In this section we used the methods described in section 2.1 to perform classification

in our datasets TFM-2009, TFM-2010 and TFM-2011, in order to compare with the results using
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FS methods Classification algorithm Dataset # features # reduced features Metric Classification result

FAWCETT; PROVOST, 1997 Neural network
TFM-2009 14 8

F-measure

59%
TFM-2010 14 8 62%
TFM-2011 16 11 60%

YANG; HWANG, 2006 Markov blanket filter
TFM-2009 14 11 58%
TFM-2010 14 10 60%
TFM-2011 16 12 59%

KOTSIANTIS et al., 2006 C4.5
TFM-2009 14 8 58%
TFM-2010 14 9 60%
TFM-2011 16 11 59%

BELHADJI et al., 2000 Probit model
TFM-2009 14 9 49%
TFM-2010 14 9 52%
TFM-2011 16 13 51%

ALICIA SVM
TFM-2009 14 9 72%
TFM-2010 14 9 73%
TFM-2011 16 13 77%

Table 7 – Analysis on the quality of Feature selection methods, presented in Related work
section, applied to our dataset.

our method. The results are presented in Table 7.

From the results, it should be noted that in all methods, the best result could only be

achieved with more than half of the existing features and all of them obtained results significantly

lower than those obtained with our method, as we observed in the previous section.

In conclusion, we can assume that our centrality measure FT I is more successful in

mapping the relationship between features and our feature selection method ALICIA surpass

all the compared competitors. In this way, we recommend using our method especially in

the following situations: (i) when the dataset has binary independent variables or that can be

transformed into binary, (ii) when the correlation between the independent variables is not high,

and (iii) when the dependent variable is binary (binary class).

As explained, the results presented were obtained with an SVM classifier. However,

other classifiers were also tested: Random Forest, Decision Tree and XGBoost. Of these,

XGBoost was the one that most approached the results obtained with the SVM. The following is

an analysis to check if the results presented by SVM and XGBoost are statistically significant or

not.

5.3.6 Statistical Comparison of Classifiers

In this section we performed a Statistical evaluation of our results comparing SVM

and XGBoost classifiers on each dataset used in this thesis. We have experimental results from

two different algorithms (SVM and XGBoost) for each dataset. Each algorithm has been trialed

multiple times on the test dataset and a skill score has been collected. We are left with two

populations of skill scores for each dataset.

We know that the data represents an error score on a test dataset and that minimizing
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Figure 13 – Classification error. Y-axis is associated with classification error, while X-axis is
associated with classification algorithm. The datasets considered are TFM-2009,
TFM-2010, and TFM-2011.

the score is the goal.

We can see in table 8 that on average SVM was better than XGBoost in TFM-2009,

TFM-2010 and TFM-2011. We can also see the same story in the median (50th percentile).

Looking at the standard deviations, we can also see that it appears both distributions have a

similar (identical) spread (Figure 13).

2009 2010 2011
SVM XGBoost SVM XGBoost SVM XGBoost

COUNT 100.0 100.0 100.0 100.0 100.0 100.0
MEAN 35.30 36.76 34.58 36.76 34.46 36.91

STD 2.64 2.66 2.82 2.94 4.27 4.41
MIN 28.28 29.67 27.09 28.94 23.12 25.19
25% 33.30 34.73 32.44 34.52 31.22 33.56
50% 35.31 36.77 34.59 36.77 34.47 36.92
75% 37.01 38.49 36.41 38.66 37.22 39.77
MAX 41.62 43.13 41.32 43.79 44.66 47.45

Table 8 – Descriptive statistics that summarize the central tendency, dispersion and shape of all
datasets’ distribution, excluding NaN values.
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5.3.6.1 Normaly test

The determination of distribution type is necessary to determine the critical value

and test to be chosen to validate any hypothesis. We can use a statistical test to confirm that the

results drawn from distributions are Gaussian (also called the normal distribution).

(H0) null hypothesis of the test:

The null hypothesis of the test (H0), or the default expectation, is that the statistic

describes a normal distribution. We fail to reject this hypothesis if the p-value is greater than 0.05.

We reject this hypothesis if the p-value  0.05. In this case, we would believe the distribution is

not normal with 95% confidence.

The benefit of using p-value is that it calculates a probability estimate, we can test at

any desired level of significance by comparing this probability directly with the significance level.

Our test tests the null hypothesis that a sample comes from a normal distribution. It is based on

D’Agostino and Pearson’s (D’AGOSTINO, 1971; D’AGOSTINO; PEARSON, 1973) test that

combines skew and kurtosis to produce an omnibus test of normality. We can see in Table 9,

that fail to reject H0 and that distribution for error in TFM-2009, TFM-2010 and TFM-2011 is

normal for both SVM and XGBoost. An histogram with these distribution, can be seen in Figure

14.

In other words, sets of results are Gaussian and have the same variance; this means

we can use the Student t-test to see if the difference between the means of the two distributions

is statistically significant or not.

5.3.6.2 Compare Means for Gaussian Results

A t-test is used to compare the mean of two given samples. It assumes a normal

distribution of the sample.

(H0) null hypothesis of the test:

The null hypothesis of the test (H0) or the default expectation is that both samples

SVM XGBoost
p-value p-value

TFM-2009 0.9502 0.9502
TFM-2010 0.9502 0.9502
TFM-2011 0.9502 0.9502

Table 9 – Distribution analysis for classification error, using P-value and confidence.
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Figure 14 – Error distribution histogram. Y-axis is associated with distribution bins, while X-
axis is associated with classification error. The datasets considered are TFM-2009,
TFM-2010, and TFM-2011.

p-value T-statistic
TFM-2009 0.0202631351804 -2.34031207733
TFM-2010 2.5650898687e-07 -5.3376797832
TFM-2011 9.31733001998e-05 -3.98947926541

Table 10 – Difference between the means of SVM and XGBoost, using P-value and T-test.

were drawn from the same population. If we fail to reject this hypothesis, it means that there is

no significant difference between the means.

If we get a p-value of  0.05, it means that we can reject the null hypothesis and that

the means are significantly different with a 95% confidence.

Running the example prints the statistic and the p-value. We can see that the p-value

is much lower than 0.05. In fact, it is so small that we have a near certainty that the difference

between the means is statistically significant. We can reject H0, since samples are likely drawn

from different distributions.

The closer the distributions are, the larger the sample that is required to tell them

apart. We can demonstrate this by calculating the statistical test on different sized sub-samples

of each set of results and plotting the p-values against the sample size.

We would expect the p-value to get smaller with the increase sample size. In Figure
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Figure 15 – At what point the sample size is large enough to indicate these two populations are
significantly different. Y-axis is associated with classification error, while X-axis
is associated with sample size. The datasets considered are TFM-2009, TFM-2010,
and TFM-2011.

15 we can also draw a line at the 95% level (0.05) and show at what point the sample size is

large enough to indicate these two populations are significantly different. In this way, we suggest

the use of an SVM-based classifier.

5.3.6.3 Precision-Recall and ROC Curves Analysis

Receiver Operator Characteristic curves (ROC) and Precision-Recall curves (PR) are

commonly used to present results for binary decision problems in machine Learning (PROVOST

et al., 1998). For TFM-2009, TFM-2010, and TFM-2011 where the class distribution is close to

be uniform, ROC curves have many desirable properties. However, when dealing with a highly

skewed dataset as DS-CreditCard, PR curves give a more accurate picture of an algorithm’s

performance (SAITO; REHMSMEIER, 2015). In other words, The Precision-Recall Plot Is More

Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets.

An important difference between ROC space and PR space is the visual representation

of the curves. The goal in ROC space is to be in the upper-left-hand corner and goal in PR space
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is to be in the upper-right-hand corner.

The ROC curve shows the tradeoff between specificity and sensitivity (FAWCETT,

2006). It is model-wide because it shows pairs of specificity and sensitivity values calculated

at all possible threshold scores. In ROC curves, classifiers with random performance show a

straight diagonal line from (0, 0) to (1, 1) (FAWCETT, 2006), and this line can be defined as the

baseline of ROC. A ROC curve provides a single performance measure called the Area under

the ROC curve (AUC) score. AUC is 0.5 for random and 1.0 for perfect classifiers (HANLEY;

MCNEIL, 1982).

In binary classification, data is divided into two different classes, positives (P) and

negatives (N). The binary classifier then classifies all data instances as either positive or negative.

This classification produces four types of outcome—two types of correct (or true) classification,

True Positives (TP) and True Negatives (TN), and two types of incorrect (or false) classification,

False Positives (FP) and False Negatives (FN). A 2x2 table formulated with these four outcomes

is called a confusion matrix. All the basic evaluation measures of binary classification are derived

from the confusion matrix.

The PR curve shows the relationship between precision and sensitivity, and its

baseline moves with class distribution. The PR shows precision values for corresponding

sensitivity (recall) values. Similar to the ROC curve, the PR curve provides a model-wide

evaluation.

While the baseline is fixed with ROC, the baseline of PR is determined by the ratio

of positives (P) and negatives (N) as y = P/(P+N). Because of this moving baseline, AUC (PR)

also changes with the P:N ratio. For instance, the AUC (PR) of random classifiers is 0.5 only for

balanced class distributions, whereas it is P/(P+N) for the general case, including balanced

and imbalanced distributions. In fact, AUC (PR) is identical to the y-position of the PR baseline.

The visual interpretability of ROC plots in the context of imbalanced datasets can be

deceptive with respect to conclusions about the reliability of classification performance, owing

to an intuitive but wrong interpretation of specificity. PR plots, on the other hand, can provide

the viewer with an accurate prediction of future classification performance due to the fact that

they evaluate the fraction of true positives among positive predictions. Let us consider Credit

Card fraud detection, using DS-CreditCard dataset. When we one looks at the ROC curve in

Figure 19 it appears to be fairly close to optimal (AUC = 0.95), and the PR curve shows that

there is still room for improvement (AP = 0.83).
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Figure 16 – The same curve shown in both ROC and PR space, for TFM-2009 dataset.

Figure 17 – The same curve shown in both ROC and PR space, for TFM-2010 dataset.
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Figure 18 – The same curve shown in both ROC and PR space, for TFM-2011 dataset.

Figure 19 – The same curve shown in both ROC and PR space, for DS-CreditCard dataset.
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6 CONCLUSION

In this work we propose a feature selection method, ALICIA, that leverages associa-

tion rules and propositional logic with a novel graph centrality measure, FT I, to improve the

detection of potential tax fraudsters. In order to assess the quality of the results we conduct an

extensive experimental evaluation, where we compare ALICIA with eight other well-established

methods, namely, information gain, gain ratio, correlation-based feature selection, feature Selec-

tion via eigenvector centrality, RELIEF-F, Fisher, and Gradient boosted feature selection (GBFS).

The evaluation is conducted by considering three real-world datasets provided by the treasury

office of the state of Ceará (SEFAZ-CE), and an SVM-based classifier. From the results we

first observe that ALICIA consistently outperforms its competitor, achieving best F-Measure

scores for TFM-2009 (71.71%), TFM-2010 (72.91%), TFM-2011 (76.88%) and DS-creditcard

(89.13%).Thus proving its superiority in providing the most appropriate subset of binary features,

with low or non-linear correlation between themselves and possibly non informative for the

target class, to improve potential tax fraudsters classification.

We also demonstrate how well our strategy is able to generalize in fraud domain

using credit card dataset provided by Kaggle with an XGB classifier, achieving F-measure scores

up to 89.13%, supplanting its competitors.

While the literature has shown no clear superiority of any particular feature selection

method, some feature selection methods are more suitable than other according to the charac-

teristics of the dataset. Correlation is a well-known similarity measure between two random

variables. If two random variables are linearly dependent, then their correlation coefficient is ±1.

From the correlation measure between the random variables in section 4.1.1 we demonstrate that

random variables are not linearly dependent, in all dataset TFM-2009, TFM-2010, TFM-2011 and

DS-creditcard. For this reason, our method surpasses the traditional feature selection methods - it

captures non linear correlation between features in a binary dataset for tax fraudster classification

problem.

As a future line of further research, we plan to analyze how our method performs

with different propositional logic argument forms, as: conjunction, addition and simplification.

We also plan to analyze how does the association patterns change over time, what are the factors

that drive the associations, and how is the association between two nodes affected by other nodes.

The problem we want to tackle here is to predict the likelihood of a future association between

two nodes, knowing that there is no association between the nodes in the current state of the
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graph. This problem is commonly known as the Link Prediction problem (LIBEN-NOWELL;

KLEINBERG, 2007).

Finally, we also plan to work on a distributed version of ALICIA, as centrality

measures can be implemented by means of the Map Reduce paradigm (KANG et al., 2011;

LERMAN et al., 2010).
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