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RESUMO

Neste trabalho, nós investigamos o problema da síntese de sentenças de primeira-ordem a partir

de amostras de estruturas relacionais classificadas. Em outras palavras, nós consideramos o

seguinte problema: para uma classe de estruturas relacionais fixa, dada uma amostra de estru-

turas classificadas, encontrar uma sentença de primeira-ordem de quantifier rank mínimo que

é consistente com a amostra. Nós contemplamos as seguintes classes de estruturas: estruturas

monádicas, estruturas de equivalência, uniões disjuntas de ordens lineares e strings representadas

por estruturas finitas com uma relação de successor. Nós usamos resultados do jogo Ehrenfeu-

cht–Fraïssé nessas classes de estruturas com a finalidade de projetar um algoritmo para encontrar

tal sentença. Para essas classes de estruturas, o problema de determinar se um dos jogadores

tem uma estratégia vencedora no jogo Ehrenfeucht–Fraïssé é resolvido em tempo polinomial.

Nós também introduzimos sentenças de distinguibilidade que são sentenças que distinguem duas

estruturas dadas. Nós definimos as sentenças de distinguibilidade usando condições necessárias e

suficientes para uma estratégia vencedora no jogo Ehrenfeucht–Fraïssé. Nosso algoritmo retorna

uma combinação Booleana de tais sentenças. Nós também mostramos que qualquer sentença de

primeira-ordem é equivalente à uma combinação Booleana de sentenças de distinguibilidade.

Finalmente, nós também mostramos que o tempo de execução do nosso algoritmo é polino-

mial no tamanho da amostra de entrada. Como, em geral, sentenças de primeira-ordem são

dificeis de ler, nós definimos uma formal normal livre de quantificadores (QNF – do inglês:

quantifier-free normal form) para as classes de estruturas que estamos considerando. Sentenças

QNF são definidas com respeito a um vocabulário mais rico tal que sentenças atômicas são

abreviações de sentenças arbitrárias de primeira-ordem sobre o vocabulário padrão. Dessa forma,

sentenças QNF consistem de combinações Booleanas de tais sentenças atômicas sobre esse

vocabulário não-padrão. Além disso, nós definimos uma forma normal disjuntiva (DNF – do

inglês: disjunctive normal form) para sentenças QNF. Portanto, dada uma amostra de strings

classificadas e o número de cláusulas disjuntivas, nós investigamos o problema de encontrar

uma sentença QNF na DNF que é consistente com a amostra. Nós provamos que esse problema

é NP-completo e mostramos uma solução baseada em uma codificação para o problema da

satisfatibilidade Booleana (SAT). Soluções para o problema de encontrar uma sentença QNF na

DNF tal que apenas o número de cláusulas é limitado podem ter um número grande de literais por

cláusula. Portanto, nós consideramos uma variação desse problema no qual o número máximo

de literais por cláusula também é fornecido como entrada. Isso é essencial pois sentenças com



poucas cláusulas e poucos literais por cláusula são mais compactas e mais fáceis de interpretar.

Novamente, nós mostramos que esse problema é NP-completo e nossa abordagem para resolvê-lo

é baseada na redução para o SAT. Nós também apresentamos extensões desses problemas que são

robustas com respeito a amostras ruidosas. Nesse caso, uma sentença pode não ser consistente

com a amostra da entrada. Nós cobrimos duas abordagens para lidar com amostras com ruídos.

Na primeira abordagem, nós consideramos o problema no qual o objetivo é encontrar uma

sentença que classifica corretamente o maior número de strings. Nós resolvemos essa versão

generalizada através de uma codificação no problema da satisfatibilidade máxima (MaxSAT). Na

nossa segunda abordagem, o objetivo é encontrar uma sentença que não classifica corretamente

no máximo uma quantidade dada de strings. Nós mostramos que esse problema relativo a um

número limitado de erros também é NP-completo. Além disso, nós apresentamos uma solução

baseada no SAT para resolver esse problema. Dentre as classes que estamos considerando, as

strings são mais interessantes pois elas podem ser usadas para modelar dados textuais, padrões

de tonicidade em línguas humanas, sequências biológicas e sequências de dados simbólicos em

geral. Como a lógica de primeira-ordem sobre strings define exatamente a classe das linguagens

locally threshold testable (LTT), nossos resultados podem ser úteis em inferência gramatical

quando o propósito é encontrar uma descrição formal de uma linguagem LTT a partir de uma

amostra de strings. Na área de inferência gramatical, um dos principais problemas estudados é a

tarefa de obter um modelo de linguagem consistente com uma amostra de strings classificadas.

Palavras-chave: Síntese de Fórmulas. Inferência Gramatical. Jogo Ehrenfeucht–Fraïssé.



ABSTRACT

In this work, we investigate the problem of synthesis of first-order sentences from samples of

classified relational structures. In other words, we investigate the following problem: for a fixed

class of relational structures, given a sample of classified structures, find a first-order sentence

of minimum quantifier rank that is consistent with the sample. We consider the following

classes of structures: monadic structures, equivalence structures, disjoint unions of linear orders,

and strings represented by finite structures with a successor relation. We use results of the

Ehrenfeucht–Fraïssé game on these classes of structures in order to design an algorithm to

find such a sentence. For these classes of structures, the problem of determining whether the

Duplicator has a winning strategy in an Ehrenfeucht–Fraïssé game is solved in polynomial time.

We also introduce the distinguishability sentences, which are sentences that distinguish between

two given structures. We define the distinguishability sentences based on necessary and sufficient

conditions for a winning strategy in Ehrenfeucht–Fraïssé games. Our algorithm returns a Boolean

combination of such sentences. We also show that any first-order sentence is equivalent to a

Boolean combination of distinguishability sentences. Finally, we also show that our algorithm’s

running time is polynomial in the size of the input. Since general first-order sentences are hard

to read, we define a quantifier-free normal form (QNF) over the classes of structures we are

considering. QNF sentences are defined over a richer vocabulary such that atomic formulas are

an abbreviation of general first-order sentences over a standard vocabulary. Then, QNF sentences

consist of Boolean combinations of such atomic sentences over this non-standard vocabulary.

Moreover, we define a DNF version for QNF sentences. Then, given a sample of strings and

the number of disjunctive clauses, we investigate the problem of finding a DNF formula that

is consistent with the sample. We show that this problem is NP-complete and we solve it by a

translation into Boolean satisfiability (SAT). We also present an extension of this problem that

is robust concerning noisy samples. We solve this generalized version by a codification into

the maximum satisfiability problem. Solutions to the problem of finding a QNF sentence in

DNF such that the number of clauses is bounded may have a large number of literals per clause.

Therefore, we consider a variation of this problem in which the maximum number of literals

per clause is also given as input. This is essential since sentences with few clauses and few

literals per clause are more compact and easier to interpret. Again, we show that this problem

is NP-complete, and our approach for solving it is based on a reduction to the SAT. We also

present extensions of these problems that are robust concerning noisy samples. In this case, a



sentence may not be consistent with the input sample. We cover two approaches to deal with

noisy samples. In the first approach, we consider a problem in which the goal is to find a sentence

that classifies the maximum number of strings correctly. We solve this generalized version by a

codification into the maximum satisfiability problem (MaxSAT). In our second approach, the

goal is to find a sentence such that it does not correctly classify at most a given number of strings.

We show that this problem concerning a limited number of errors is also NP-complete. Moreover,

we give a SAT-based solution to this problem. Among the classes we are considering, strings are

more appealing since they may be used to model text data, stress patterns in human languages,

biological sequences, and sequences of symbolic data in general. As first-order logic over strings

defines exactly the class of locally threshold testable (LTT) languages, our results can be useful

in grammatical inference when the goal is to find a model of an LTT language from a sample of

strings. In the field of grammatical inference, one of the main problems studied is the task of

finding a language model consistent with a given sample of strings.

Keywords: Formula Synthesis. Grammatical Inference. Ehrenfeucht–Fraïssé Game.
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1 INTRODUCTION

Finite model theory (EBBINGHAUS; FLUM, 1995; LIBKIN, 2004; GRÄDEL

et al., 2005) studies the expressive power of logics on finite structures, and its motivation

comes from several areas of computer science, such as database theory (ABITEBOUL et al.,

1995), computational complexity (IMMERMAN, 1999), and formal languages (ROZENBERG;

SALOMAA, 1997). The expressive power of a logic is measured by its ability to define

properties.

Ehrenfeucht–Fraïssé games (EF games, for short) (EHRENFEUCHT, 1961) is a

fundamental technique of finite model theory to prove the inexpressibility of certain properties

in first-order logic (FO). For instance, consider the problem of checking whether a graph has

even cardinality. One may use EF games to show that first-order logic is unable to define this

property. The EF game is played on two structures by two players, the Spoiler and the Duplicator.

If the Spoiler has a winning strategy for r rounds of the game, it means that the structures can

be distinguished by a first-order sentence ϕ whose quantifier rank is at most r, i.e., ϕ holds in

exactly one of these structures.

Besides providing a tool to measure the expressive power of a logic, EF games allow

one to investigate the similarity between structures (MONTANARI et al., 2005). In a game

played on structures A and B, the similarity between A and B is the minimum number of

rounds such that the Spoiler has a winning strategy. Most results in the literature (FAGIN et

al., 1995; SCHWENTICK, 1996; ARORA; FAGIN, 1997; KEISLER; LOTFALLAH, 2004)

only give sufficient conditions for a winning strategy of the Duplicator. However, the minimum

number of rounds cannot be computed only from sufficient conditions. Then, in order to explore

this notion of similarity, necessary and sufficient conditions for a winning strategy of the Spoiler

must be determined.

Explicit conditions characterizing winning strategies for the players on some standard

classes of finite structures are provided in (KHOUSSAINOV; LIU, 2009). Examples of such

classes are monadic structures (MS) and equivalence structures (ES). Besides, there are well

known necessary and sufficient conditions characterizing the winning strategies on linear orders

(LO) (LIBKIN, 2004). Using these results, the similarity can be computed in polynomial time in

the size of the structures.

In (MONTANARI et al., 2005), multiplicity and scattering of substrings are used

to prove a characterization of winning strategies in EF games on strings represented by finite
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structures with a successor relation and a finite number of pairwise disjoint unary predicates.

Multiplicity and scattering mean the number and distribution of occurrences of substrings,

respectively. Using these conditions, the minimum number of rounds such that the Spoiler has a

winning strategy in a game between two such structures can be computed in polynomial time in

the size of the structures. This result allows one to define a notion of similarity between strings

based on EF games.

An algorithm to deal with the problem of finding a formula of minimum quanti-

fier rank that distinguishes two sets of structures over an arbitrary vocabulary is presented in

(KAISER, 2012). An important part of this algorithm is the use of Hintikka formulas. Given a

structure A and a natural number r, an r-Hintikka formula ϕr
A (HINTIKKA, 1953) is a formula

that describes the properties of A on EF games with r rounds (EBBINGHAUS; FLUM, 1995).

An r-Hintikka formula ϕr
A holds exactly on all structures B such that the Duplicator has a

winning strategy for the EF game with r rounds on A and B. This suggests that the similarity

between A and B is greater than r. Also, ϕr
A has size exponential in r. Besides, any first-order

formula is equivalent to a disjunction of Hintikka formulas.

Although this algorithm in (KAISER, 2012) works for arbitrary finite relational

structures, it runs in exponential time. A general system for learning formulas defining board

game rules uses this algorithm. For instance, one can use this framework to automatically obtain

the winning conditions of board games, such as Tic-Tac-Toe, Breakthrough, and Connect Four.

The formulas are obtained from a set of structures representing winning positions and a set of

structures representing non-winning positions. These results in (KAISER, 2012) are also used in

finding reductions automatically (JORDAN; KAISER, 2013b; JORDAN; KAISER, 2013a) and

learning programs (JORDAN; KAISER, 2013c; JORDAN; KAISER, 2016).

1.1 The Synthesis Problem

In this work, we study a variation of the problem introduced in (KAISER, 2012)

where the class of structures is fixed. For a fixed class of structures C , a sample S = (P,N)

consists of two finite sets P,N ⊆ C such that for each A ∈ P, B ∈ N, A and B are not

isomorphic. For a fixed class of structures C , given a sample S of structures in C , the task is

to find a first-order sentence ϕS of minimum quantifier rank that is consistent with S. In other

words, the sentence holds in all structures in P and does not hold in any structure in N. The size

of the sample is the sum of the sizes of all structures in the sample. We call this problem as the
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synthesis of minimum quantifier rank sentence problem.

We define an algorithm for the synthesis problem on the following classes of struc-

tures: MS, ES, disjoint unions of linear orders (DULO), and strings. We consider MS, ES,

and strings because necessary and sufficient conditions for a winning strategy of the players

in an EF game on these classes are provided in the literature (KHOUSSAINOV; LIU, 2009;

MONTANARI et al., 2005).

Disjoint unions of linear orders are compelling because we may model a state of the

elementary blocks world by using them (COOK; LIU, 2003). In the elementary blocks world,

states consist of a set of cubic blocks, with the same size and color, sitting on a table. A robot can

pick up a block and moves it to another position, either onto the table or on the top of some other

block (GUPTA; NAU, 1992). The blocks world is one of the most famous planning domains

in artificial intelligence. Automated planning is the process of automatically constructing a

sequence of actions that achieve a goal given some initial state (GHALLAB et al., 2004). For

disjoint unions of linear orders, we give conditions for winning strategies.

We use these characterization results on EF games in order to design an algorithm

to find a sentence of minimum quantifier rank which is consistent with the sample. Also, for

MS, ES, DULO, and strings, the notion of similarity based on EF games can be computed in

polynomial time in the size of the sample. Using these results, we show that our algorithm runs

in polynomial time in the size of the sample. Therefore, this result improves the one in (KAISER,

2012) for MS, ES, DULO, and strings.

Differently from (KAISER, 2012), our algorithm does not use Hintikka formulas

since the size of a Hintikka formula is exponential in the quantifier rank. In our case, we define

what we call the distinguishability sentences. They are defined based on conditions characterizing

the winning strategies for the Spoiler. In this way, given two structures A ,B and a natural

number r, we show that the distinguishability sentences hold in A , do not hold in B, and they

have quantifier rank at most r. This result is essential for the definition of our algorithm and

to guarantee its correctness. We define distinguishability sentences for each particular class of

structures we are considering. We also define distinguishability sentences in a way such that they

have polynomial size. This result is essential to ensure that our algorithm runs in polynomial

time in the size of the sample. We also show that any first-order sentence is equivalent to a

boolean combination of distinguishability sentences.

For an example of the synthesis problem, let T be the sample represented in Table 1.
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The first-order sentence ϕT below states that the prefix of a string is stv, and it is consistent with

the sample in Table 1. Variables range over positions in strings, Pa(i) is true if the symbol a of

the alphabet Σ occurs in position i, and S represents the successor relation over positions.

ϕT := ∃x1∃x2∃x3(Ps(x1)∧Pt(x2)∧Pv(x3)∧S(x1,x2)∧S(x2,x3)∧∀x4¬S(x4,x1))

Table 1 – A sample of strings.

String Class
stviil Positive
ktvive Negative
stviie Positive
st piie Negative

Source: Own elaboration

The formula ϕT above illustrates one disadvantage of our first approach for the

synthesis problem. For instance, for strings, first-order formulas over the vocabulary τ =

{S,(Pa)a∈Σ} are hard to read. Furthermore, the problem of checking whether a first-order formula

holds in a structure is PSPACE-complete even when the structure is fixed (STOCKMEYER,

1974; VARDI, 1982; GRÄDEL et al., 2005). Therefore, it is also PSPACE-complete for the

classes of structures we are considering in this work. Then, we define a quantifier-free normal

form (QNF) for MS, ES, DULO, and strings.

Formulas in quantifier-free normal form are easier to read than general first-order

sentences. For example, pref(stv) is an atomic sentence in this quantifier-free normal form, and

it also represents that the prefix of a string is stv. This normal form allows one to explicitly use

predicates for substring properties and constants for strings. Then, one advantage of defining

formulas in this normal form is that they are more succinct than first-order formulas over the

standard vocabulary. This is the case because sentences in quantifier-free normal form are defined

over a richer vocabulary such that atomic sentences are an abbreviation of first-order sentences

over the standard vocabulary.

We also show that every first-order sentence can be converted into an equivalent

formula in QNF and vice versa. We show this by using the results of EF games (MONTANARI

et al., 2005; KHOUSSAINOV; LIU, 2009) in the classes of structures we are considering in this

work. We also use these results to show that one can check in polynomial time whether a formula

in QNF holds in a structure. This is a second advantage of using formulas in quantifier-free

normal form.
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We also define a DNF version of formulas in quantifier-free normal form. Then,

we introduce the problem of synthesis of formulas in quantifier-free disjunctive normal form

(QDNF): given a sample of strings and the number of conjunctive clauses, the goal consists in

finding a formula ϕ in QDNF with bounded number of clauses that holds in all positive structures

and does not hold in any negative structure. In this problem, it is also given a set of atomic QNF

formulas. Then, all atoms occurring in ϕ must be among the ones in the set. Then, we show how

to consider a suitable set of atomic formulas in QNF. We also show that the synthesis problem

for QDNF formulas is NP-complete.

We propose an approach to solve the synthesis problem for QDNF formulas by using

a Boolean satisfiability (SAT) encoding. Then, we use a modern SAT solver to search for a

solution. Therefore, we obtain an algorithm that returns a formula which is consistent with the

sample. We call this method QDNFSAT.

The main disadvantage of the above method is that it may return a QNF sentence

with a large number of literals per clause. Therefore, we also contemplate a problem in which

the number of literals per clause is taken into consideration as well. Sentences with few clauses

and with few literals per clause are more natural to be understood by humans than sentences with

few clauses and hundreds of literals per clause. Then, if a QDNF sentence has at most l literals

per clause, we say that it is a l-QDNF sentence. We define a codification of this variation of the

synthesis problem for l-QDNF sentences into the SAT problem. Then, we call our method for

this variation as l-QDNFSAT. We also show that this version concerning the number of literals

per clause is NP-complete as well.

In real-world applications, it is unreasonable to expect that a sample is noise-free.

For example, errors are introduced by measurement tools, such as sensors. Hence, it is a common

task to deal with samples in which some elements are wrongly classified. In this sense, we also

consider the synthesis problem when samples of structures have noise, i.e., some structures are

wrongly classified. Therefore, this flexible version is a generalization over the synthesis from

noiseless samples.

One should note that, for noisy samples, a structure may be classified as positive and

negative. For example, for the sample in Table 2, the string st piie is classified as positive and

negative.

Regarding noisy samples, a sentence may not correctly classify a structure in the

sample. Therefore, we use a cost associated with a sentence concerning a sample. The cost is the
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Table 2 – A noisy sample of strings.

String Class
stviil Positive
ktvive Negative
stviie Positive
st piie Negative
st piie Positive

Source: Own elaboration

number of structures in the sample classified incorrectly by the sentence. In this noisy case, we

also show how to consider an adequate set of atomic sentences in QDNF. In other words, we

define a set of atomic sentences in QDNF such that there exists a QDNF sentence in which its

atoms are among the ones in this set. Besides, its cost on the input sample is minimum.

We study two approaches to solve the problem with respect to noisy samples. In the

first case, the goal is to find a QDNF formula that classifies the maximum number of structures

correctly. We introduce an approach to solve this first case by a translation to the maximum

satisfiability (MaxSAT) problem. We call this approach QDNFMaxSAT. In our second approach

for handling noisy samples, a limit K to the number of examples not covered is also given as

input. Then, a solution does not correctly classify at most K structures in the input sample.

Therefore, our method is able to determine whether there exists such a sentence. Again, our

approach for solving this second case is based on a reduction to the SAT problem. Since we

consider the number of literals per clause in this case, we call this approach l-QDNFSAT-Noise.

1.2 Application in Grammatical Inference

For the class of strings, the problem we are considering is close to those in gram-

matical inference which investigates the task of finding a language model consistent with a

given sample of strings (HIGUERA, 2010; HEINZ; SEMPERE, 2016; WIECZOREK, 2016).

A language model can be deterministic finite automata (DFA) or context-free grammars, for

example. Since strings may be used to model text data, traces of program executions, stress

patterns in human languages, biological sequences, and sequences of symbolic data in general,

grammatical inference can be applied in linguistics (STROTHER-GARCIA et al., 2017; VU

et al., 2018; CHANDLEE et al., 2019), robotic planning (RAWAL et al., 2011; VU et al.,

2018), and classification of biological sequences (WIECZOREK; UNOLD, 2014; WIECZO-
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REK; UNOLD, 2016; WIECZOREK; UNOLD, 2017; WIECZOREK et al., 2019). For example,

strings in Table 1 represent short segments of proteins. In our framework, first-order sentences

can be seen as language models. Therefore, first-order sentences can also be used in the same

applications as grammatical inference.

One of the most explored problems in grammatical inference is the DFA synthesis

(ONCINA; GARCíA, 1992; HIGUERA, 2005; GARCÍA et al., 2012). The goal of this problem

is to find a DFA with the minimum number of states that is consistent with a given sample of

classified strings. This problem is NP-hard (GOLD, 1978). However, several effective methods

to solve this problem were developed (LUCAS; REYNOLDS, 2003; BUGALHO; OLIVEIRA,

2005; HEULE; VERWER, 2010; ULYANTSEV et al., 2015; ZAKIRZYANOV et al., 2019). The

methods in (LUCAS; REYNOLDS, 2003; BUGALHO; OLIVEIRA, 2005) cannot guarantee that

the DFA obtained is one with the minimum number of states. The method DFASAT introduced

in (HEULE; VERWER, 2010) guarantees to find a minimum-size DFA. These approaches are

based on a series of translations to SAT.

In (ULYANTSEV et al., 2015), the authors also consider the problem of learning

DFA from noisy data. This means that strings in the sample may be wrongly classified. Then, in

this case, given a natural number K, the goal is to find a DFA with a given number of states such

that it does not correctly classify at most K strings. Our second approach that returns QDNF

sentences from noisy samples directly follows from the one in (ULYANTSEV et al., 2015).

It is well known that a formal language is definable by a sentence of first-order logic

over strings if and only if it is locally threshold testable (LTT) (THOMAS, 1982). The class

of LTT languages is a subregular class of languages, i.e., it is included in the class of regular

languages (ROGERS et al., 2013). The problem of learning models of subregular languages is

investigated in several works in grammatical inference (GARCIA; RUIZ, 2004; ROGERS et al.,

2013; HEINZ; ROGERS, 2013; AVCU et al., 2017; STROTHER-GARCIA et al., 2017).

A wide range of stress patterns in human languages may be defined in terms of

subregular languages (HEINZ, 2009; ROGERS et al., 2013; STROTHER-GARCIA et al., 2017).

In phonology, stress is a relative emphasis given to a certain syllable in a word. For example,

the universal constraint that every word has exactly one syllable that receives primary stress

can be defined as an LTT language (LAMBERT; ROGERS, 2019). Furthermore, the stress

patterns of the human language Cambodian can also be defined in first-order logic over strings

(LAMBERT; ROGERS, 2019). Table 3 represents a sample of stress patterns in the human
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language Cambodian (LAMBERT; ROGERS, 2019). Symbols L and H denote light and heavy

syllable weight, respectively. Acute accent denotes primary stress, and grave accent denotes

secondary stress.

Table 3 – Sample of stress patterns in Cambodian.

String Class
H̀L̀H̀Ĺ Positive
H̀LHĹ Negative

H̀LH̀LH́ Positive
H̀LL̀H̀H́ Negative
H̀LH̀L Negative

Source: Own elaboration

A grammatical inference algorithm that returns DFA may return an automaton which

recognizes a language not in LTT. Therefore, our results can be useful when one desires to find a

model of an LTT language from a (possibly noisy) sample of strings. For example, in order to

find a first-order sentence which represents the stress patterns in a human language. As far as we

know, this is the first work on finding a language model for LTT languages from positive and

negative strings.

1.3 Related Work

In connection with this problem of data classification, grammatical inference is

related to machine learning, an important branch of artificial intelligence. Machine learning

includes methods such as deep learning, support vector machines (SVM), and Naive Bayes. These

methods can also be used in the classification of strings (STANISLAWSKI et al., 2013). However,

grammatical inference provides a formal framework that allows us to state the complexity of

patterns in terms of formal languages. For example, in phonological research, patterns in human

languages may be defined in terms of regular languages (HEINZ, 2006; HEINZ, 2007; ROGERS

et al., 2013; STROTHER-GARCIA et al., 2017). Therefore, DFASAT guarantees to find a model

which recognizes a regular language while methods such as deep learning, SVM, and naive

Bayes do not have this guarantee.

Furthermore, the main drawback of methods such as deep learning and SVM is that

human-readable knowledge cannot be extracted directly from the models obtained by these

approaches. For example, deep learning is based on artificial neural networks which are hard
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to understand due to their black-box nature. From the point of view of interpretability, QDNF

sentences are more appealing since they give a reason why a string belongs to a particular class.

Interpretability is essential in fields where human experts need to be able to infer new knowledge

from the model provided by the classification method.

A new logical framework to find a formula given a sample, also with a model-

theoretic approach, can be found in (GROHE; RITZERT, 2017; GROHE et al., 2017; GRIENEN-

BERGER; RITZERT, 2019). In this framework, the input is only one structure, and its elements

are classified as positive or negative. The problem is to find a hypothesis consistent with the

classified elements where this hypothesis is a first-order formula in (GROHE; RITZERT, 2017)

and a monadic second-order formula in (GROHE et al., 2017; GRIENENBERGER; RITZERT,

2019). The input structures considered in (GRIENENBERGER; RITZERT, 2019) are trees.

Moreover, only strings are considered as the input structure in (GROHE et al., 2017). Observe

that this problem is different from our problem here, as it deals with only one structure, whereas

a sample consists of (possibly) many strings classified as positive or negative in our approach.

Furthermore, the algorithm in (GROHE; RITZERT, 2017) assumes that the quantifier rank is

fixed while we obtain a sentence of minimum quantifier rank.

A recent logical approach to grammatical inference defined in (STROTHER-GARCIA

et al., 2017) uses a propositional language. In this propositional language, atomic sentences are

substrings which are taken to be true in a string if and only if they occur in that string as infix,

prefix or suffix. Formulas in (STROTHER-GARCIA et al., 2017) are defined by conjunctions

of negative and positive literals (CNPL). In our approach, we also contemplate multiplicity

and scattering of substrings, disjunctions, and length of strings. Furthermore, our approach

uses a language as expressive as full first-order logic over strings. Formulas in CNPL can

also be seen as first-order sentences. However, CNPL is less expressive than first-order logic

over strings. Therefore, our approach is built on a language more expressive than the one in

(STROTHER-GARCIA et al., 2017).

Another logical framework for a similar problem is Inductive Logic Programming

(ILP) (MUGGLETON, 1991; MUGGLETON; RAEDT, 1994; RAEDT, 2008). ILP uses logic

programming as a uniform representation for the sample and hypotheses. Then, the fundamental

difference to our framework is that, in ILP, the sample consists of formulas, while the sample

consists of classified strings in our framework. Due to this difference between the framework of

ILP and our approach, as far as we know, our work has no direct relationship with ILP. Therefore,
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techniques used in ILP cannot easily be applied in our approach.

1.4 Outline

This work is organized as follows. In Chapter 2, we give the general notions of

logics, finite model theory, Ehrenfeucht–Fraïssé games, formal languages, and automata. Then,

in Chapter 3, we present EF games for a fixed class of structures. We consider monadic structures,

equivalence structures, and strings. In Chapter 4, we show the related work on Boolean function

synthesis, DFA synthesis, grammatical inference with finite model theory, and the algorithm in

(KAISER, 2012).

In the rest of this work, we present our contributions. We give necessary and

sufficient conditions characterizing the winning strategies for both players on disjoint union of

linear orders in Chapter 5. In Chapter 6, for each class of structures we are considering, we

introduce the distinguishability sentences and provide some useful properties. Also in Chapter 6,

we propose our algorithm for the synthesis of minimum quantifier rank formulas.

In Chapter 7, we define the quantifier-free normal form for the classes of structures

we are considering in this work. We also define the synthesis of QDNF formulas in Chapter 7.

Furthermore, we also analyze the computational complexity of this problem and show how to

solve it in this chapter. In Chapter 8, we consider the extension of the synthesis problem to

handle noisy samples. Finally, we conclude and give some directions for future research in

Chapter 9.
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2 LOGICS, EF GAMES AND AUTOMATA

In this chapter, we start with a brief introduction to propositional (HUTH; RYAN,

2004; BIERE et al., 2009) and first-order logics (EBBINGHAUS et al., 1994). We also recall

the fundamental notions of finite model theory and Ehrenfeucht–Fraïssé game for first-order

logic. See (EBBINGHAUS; FLUM, 1995) for more details. In addition, we also give the basic

definitions of formal languages and deterministic finite automata (HOPCROFT et al., 2006).

Lastly, we also consider the connection between formal languages and finite model theory. See

(LIBKIN, 2004) for more details.

2.1 Propositional Logic

Propositional logic concentrates on propositions formed by connecting indivisible

units by logical connectives. The propositional language is defined by using a set of propositional

variables Ψ whose elements are usually denoted by p, q, r, and so on. The propositional variables

are the indivisible units. The language of propositional logic consists of formulas defined as a

Boolean combination of variables in Ψ as follows.

Definition 2.1.1 (Propositional Formulas). Let Ψ be a set of propositional variables. Propositio-

nal formulas are those obtained by using the following rules finitely many times:

• If p ∈Ψ, then p is a formula.

• If ψ is a formula, then (¬ψ) is a formula.

• If ψ1 and ψ2 are formulas, then (ψ1 ◦ψ2) is a formula, such that ◦ ∈ {∧,∨,→,↔}.

We define A(ψ) as the set of propositional variables in a formula ψ . The semantics of propo-

sitional logic is defined with respect to valuations, which assign a truth value to each of the

propositional variables of the language. Formally, a valuation is a mapping V : Ψ→{T,F}. Let

V be a valuation and ψ a propositional formula. If ψ is true in V , we also say that V satisfies

ψ , and we write V |= ψ . If ψ is false in V , we write V 6|= ψ .

Definition 2.1.2. Let V be a valuation. We define when V satisfies a propositional formula ψ

inductively in the standard way as follows.

• V |= p iff V (p) = T ;

• V |= (¬ψ) iff V 6|= ψ;

• V |= (ψ1∧ψ2) iff V |= ψ1 and V |= ψ2;
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• V |= (ψ1∨ψ2) iff V |= ψ1 or V |= ψ2.

A literal L is either a variable p ∈Ψ or its negation ¬p. A conjunctive clause C is

a conjunction of literals L1∧ ...∧Lr. A formula is in disjunctive normal form (DNF) if it is a

disjunction of conjunctive clauses C1∨ ...∨Cs. It is well known that any propositional formula

can be expressed in DNF. For details, see (HUTH; RYAN, 2004).

In the SAT problem, the goal is to determine whether a given propositional formula

is satisfiable, i.e., if there exists a valuation such that the propositional formula is true in this

valuation. In this case, we say that the formula is satisfiable. It is well-known that SAT is

NP-complete (COOK, 1971). However, highly optimized modern SAT solvers are able to solve

many real-world instances with millions of variables efficiently (BIERE et al., 2009). Current

SAT methods assume that the propositional formula is in conjunctive normal form (CNF). A CNF

propositional formula is a conjunction of clauses
∧

iCi such that each clause Ci is a disjunction

of literals
∨

j L j. It is also well known that any propositional formula can be converted into an

equivalent propositional formula that is in CNF. For details, see (HUTH; RYAN, 2004).

An optimization version of SAT is the MaxSAT problem which is NP-hard, and it

consists in finding a valuation that maximizes the number of satisfied clauses. In this work, we

consider the version of MaxSAT in which some clauses are declared to be soft clauses. Then, the

input of MaxSAT is a set of soft clauses and a set of hard clauses (Ψso f t ,Ψhard), respectively.

Soft clauses may be falsified, and the goal is finding a valuation that satisfies the maximum

number of soft clauses. Moreover, the valuation must satisfy all the hard clauses. In real-life

scenarios, solutions satisfying all the hard constraints and violating a minimum number of soft

constraints are considered acceptable solutions. MaxSAT is an alternative to handle problems

with hard and soft constraints in a natural and compact way (BIERE et al., 2009).

Example 2.1.1. Let Ψhard = {(¬p1∨ p2),(¬p1∨¬p2)} and Ψso f t = {(p1∨ p2),(p1∨¬p2)}.

Clearly, (p1∨ p2)∧ (¬p1∨ p2)∧ (¬p1∨¬p2)∧ (p1∨¬p2) is unsatisfiable. However, let v be a

valuation such that v 6|= p1 and v |= p2. Then, v satisfies all hard clauses, and it maximizes the

number of satisfied soft clauses.

2.2 First-Order Logic

In order to define a first-order language, we first define the notion of alphabet.
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Definition 2.2.1 (Alphabet). An alphabet of a first-order language consists of the following

symbols:

• An enumerable set of variables VAR: x,y,z,x1,y1,z1,x2, ...;

• Logical symbols: ¬,∧,∨,→,↔,∀,∃;

• The equality symbol: =;

• Punctuation symbols: (,);

• An enumerable set τ of constant symbols, n-ary relation symbols and m-ary function

symbols such that n,m ∈ N.

The only symbols that change over alphabets are the symbols in τ . The symbols in τ

determine the first-order language. We call τ the vocabulary. Then, we represent a vocabulary as

τ = {Rn1
1 ,Rn2

2 , ..., f m1
1 , f m2

2 , ...,c1,c2, ...},

such that each ni and mi, for i ∈ N, is the arity of Ri and fi, respectively. When it is clear from

context, we omit the arity of relation symbols and function symbols.

In the following, we define terms. Terms represent the elements in a domain. Then,

terms are combinations of variables, constants and function symbols in a particular way.

Definition 2.2.2 (Terms). Let τ be a vocabulary. τ-terms are precisely the elements which can

be obtained by finitely applications of the following rules:

• Every variable is a τ-term.

• Every constant symbol in τ is a τ-term.

• If t1, ..., tk are τ-terms and f ∈ τ is a k-ary function symbol, then f (t1, ..., tk) is a τ-term.

When the vocabulary τ is arbitrary or clear from context, we call τ-term just as terms.

Now, we are able to define formulas using the definition of terms.

Definition 2.2.3 (Formulas). Let τ be a vocabulary. τ-formulas are obtained by finitely many

applications of the following rules:

• If t1 and t2 are τ-terms, then t1 = t2 is a τ-formula.

• If t1, ..., tk are τ-terms and Rk ∈ τ is a relational symbol, then R(t1, ..., tk) is a τ-formula.

• If ϕ is a τ-formula, then (¬ϕ) is a τ-formula.

• If ϕ and ψ are τ-formulas, then (ϕ ◦ψ) is a τ-formula, such that ◦ ∈ {∧,∨,→,↔}.

• If ϕ is a τ-formula and x ∈ VAR is a variable, then (∀xϕ) and (∃xϕ) are τ-formulas.
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As in the case of terms, we omit the vocabulary when it is arbitrary or clear from

context. In this case, we simply use formulas instead of τ-formulas.

For the benefit of readability, we often omit parenthesis if they are clear from context.

Furthermore, we use the natural infix notation for common function symbols or relation symbols,

such as ≤. For instance, we write x≤ y instead of ≤ (x,y).

The depth of nesting of the quantifiers in a formula is an essential concept in this

work. This notion is related to rounds in the Ehrenfeucht–Fraïssé game. By the quantifier rank

of a formula, we mean the depth of nesting of its quantifiers as in the following definition.

Definition 2.2.4 (Quantifier Rank). The quantifier rank of a first-order formula ϕ , written qr(ϕ),

is defined as

qr(ϕ) :=



0, if ϕ is atomic

max(qr(ϕ1),qr(ϕ2)), if ϕ = (ϕ1�ϕ2) such that � ∈ {∧,∨,←}

qr(ψ), if ϕ = ¬ψ

qr(ψ)+1, if ϕ = (Qxψ) such that Q ∈ {∃,∀}

A variable x can either occur free in a formula or bound to a quantifier. If the free

variables in a formula ϕ are of interest, we write ϕ(x1...,xn). A formula without free variables is

called a sentence.

In order to determine whether a formula is true or false, we need to define a domain

and a interpretation for the relation symbols, function symbols and constant symbols.

Definition 2.2.5 (Structures). Let τ be a vocabulary. A τ-structure A is a tuple

A = 〈A,RA
1 , ..., f A

1 , ...,cA
1 , ...〉,

such that A is a nonempty set, the domain of A , each RA
i is an ni-ary relation on A such that Rni

i

is a relation symbol in τ , each f A
i is an mi-ary function on A such that f mi

i is a function symbol

in τ and each cA
i is an element of A such that ci ∈ τ .

Observe that a τ-structure gives an interpretation for constant symbols, function

symbols and relation symbols. The interpretation of variables is given by an assignment.

Definition 2.2.6 (Assignment). Let A be a τ-structure. An assignment in A is a mapping of

the set of variables into the domain A, i.e., a function β : VAR→ A.

Now, we define the notion of interpretation in what follows.
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Definition 2.2.7 (Interpretation). An τ-interpretation is a pair (A ,β ) such that A is a τ-

structure and β is an assignment in A .

We shall call simply structures and interpretations when the vocabulary τ is arbitrary

or clear from context. The following definitions are important in order to define the truth-value

of a formula under an interpretation.

Definition 2.2.8. Let β be an assignment in a structure A , a ∈ A and x be a variable. Then, β
a
x

is an assignment that maps x to a and it agrees with β on all variables distinct from x:

β
a
x
(y) :=

 β (y), if y 6= x

a, otherwise

If I = (A ,β ), then I a
x := (A ,β a

x ). Now, we define the interpretation of terms.

Definition 2.2.9 (Interpretation of Terms). Let τ be a vocabulary and I = (A ,β ) be an

interpretation. The interpretation of terms is defined in what follows:

• If x ∈ VAR, then I (x) = β (x);

• If c is a constant symbol in τ , then I (c) = cA ;

• If f is an n-ary function symbol in τ and t1, ..., tn are terms, then I ( f (t1, ..., tn)) =

f A (I (t1), ...,I (tn)).

Now, we define the satisfaction relation that determines when a formula is true under

a given interpretation. We say that an interpretation I satisfies a formula ϕ or ϕ holds in I ,

and we write I |= ϕ .

Definition 2.2.10 (Satisfaction Relation). Let I = (A ,β ) be an interpretation. We define the

satisfaction relation inductively on formulas:

• I |= t1 = t2 iff I (t1) = I (t2);

• I |= R(t1, ..., tk) iff I (t1), ...,I (tk) ∈ RA ;

• I |= (¬ϕ) iff I 6|= ϕ;

• I |= (ϕ ∧ψ) iff I |= ϕ and I |= ψ;

• I |= (ϕ ∨ψ) iff I |= ϕ or I |= ψ;

• I |= (ϕ → ψ) iff if I |= ϕ then I |= ψ);

• I |= (ϕ ↔ ψ) iff (I |= ϕ if and only if I |= ψ;

• I |= (∃xϕ) iff there is an a ∈ A such that I a
x |= ϕ;

• I |= (∀xϕ) iff for all a ∈ A, I a
x |= ϕ .
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Observe that when a formula ϕ is a sentence, the assignment is unimportant. In this

case, we write A |= ϕ without mentioning the assignment.

2.3 Ehrenfeucht–Fraïssé Games

Now, we focus on Ehrenfeucht–Fraïssé games (EHRENFEUCHT, 1961) for first-

order logic and its importance in this work. For details, see (EBBINGHAUS; FLUM, 1995;

GRÄDEL et al., 2005; LIBKIN, 2004). The following definitions and results follow the

description in (EBBINGHAUS; FLUM, 1995). First, we need the following definitions. For

Ehrenfeucht–Fraïssé games, we consider only finite vocabularies without function symbols and

constant symbols and finite structures, i.e., structures whose domain is finite.

Definition 2.3.1 (Isomorphism). Let τ be vocabulary. Let A = 〈A,RA
1 , ...,RA

m 〉 and B =

〈B,RB
1 , ...,RB

m 〉 be τ-structures. A and B are isomorphic, writen A ∼= B, if there is an

isomorphism, i.e., a bijection h : A→ B such that for every n-ary Ri ∈ τ and (a1, ...,an) ∈ An,

(a1, ...,an) ∈ RA
i if and only if (h(a1), ...,h(an)) ∈ RB

i .

Definition 2.3.2 (Substructure). Let A = 〈A,RA
1 , ...,RA

m 〉 and B= 〈B,RB
1 , ...,RB

m 〉 be τ-structures.

A is a substructure of B if

• A⊆ B.

• For every n-ary Ri ∈ τ , RA
i = RB

i ∩An.

Definition 2.3.3 (Induced Substructure). Let τ be a vocabulary. Let A = 〈A,RA
1 , ...,RA

m 〉 be

a τ-structure and {a1, ...,ak} ⊆ A. The substructure of A induced by a1, ...,ak is the structure

A � {a1, ...,ak} such that its domain is D= {a1, ...,ak} and for every n-ary Ri ∈ τ , RA �{a1,...,ak}
i =

RA
i ∩Dn.

Definition 2.3.4 (Ehrenfeucht–Fraïssé Game). Let r be an integer such that r ≥ 0, τ be a

vocabulary, A and B be two τ-structures. The Ehrenfeucht–Fraïssé game (EF game, for short)

Gr(A ,B) is played by two players called the Spoiler and the Duplicator. Each play of the game

has r rounds and, in each round, the Spoiler plays first and picks an element from the domain A

of A , or from the domain B of B. Then, the Duplicator responds by picking an element from the

domain of the other structure. Let ai ∈ A and bi ∈ B be the two elements picked by the Spoiler and

the Duplicator in the ith round. The Duplicator wins the play if the mapping (a1,b1), ...,(ar,br)

is an isomorphism between the substructures induced by a1, ...,ar and b1, ...,br, respectively.

Otherwise, Spoiler wins this play.
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We say that a player has a winning strategy in Gr(A ,B) if it is possible for him/her to win each

play whatever choices are made by the opponent.

Figure 1 – EF game

A B

Source: Own elaboration

Example 2.3.1. Let A and B be the structures in Figure 1. The Spoiler has a winning strategy

in G2(A ,B) by picking two elements in B with no edge between them.

In this work, we always assume that A and B are not isomorphic. Then, note that if r ≥

min{|A|, |B|}, then it follows directly that the Spoiler has a winning strategy. Therefore, we can

assume that r is bounded by min{|A|, |B|}.

Now, for a structure A and a natural number r, we define formulas describing the

properties of A in any EF game with r rounds.

Definition 2.3.5 (Hintikka Formulas). Let A be a structure, a = a1...as ∈ As, and x = x1, ...,xs

a tuple of variables,

ϕ
0
A ,a(x) :=

∧
{ϕ(x) | ϕ is atomic or negated atomic and w |= ϕ[a]},

and, for r > 0,

ϕ
r
A ,a(x) :=

∧
a∈A

∃xs+1ϕ
r−1
A ,aa(x,xs+1)∧∀xs+1(

∨
a∈A

ϕ
r−1
A ,aa(x,xs+1)).

We write ϕr
A whenever s = 0.

Example 2.3.2. Let A = 〈A,RA ,SA 〉 such that A= {1,2}, RA = {(1,1),(1,2)} and SA = {2}.

It follows that ϕ1
A = ∃v1ϕ0

A ,1(v1)∧∃v1ϕ0
A ,2(v1)∧∀v1(ϕ

0
A ,1(v1)∨ϕ0

A ,2(v1)). Then,

ϕ
1
A =

∃v1(R(v1,v1)∧¬S(v1))∧∃v1(¬R(v1,v1)∧S(v1))∧

∀v1((R(v1,v1)∧¬S(v1))∨ (¬R(v1,v1)∧S(v1))).
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Given a structure A and a natural number r, the size of ϕr
A is O(2r|A|r). Therefore, since r is

bounded by |A|, the size of ϕr
A is exponential in the size of A . The following theorems are

important to prove our main results. They are presented in (EBBINGHAUS; FLUM, 1995)

(Theorem 2.2.8 and Theorem 2.2.11).

Theorem 2.3.1 (Ehrenfeucht’s Theorem). (EHRENFEUCHT, 1961) Given structures A and B,

and r ≥ 0, the following are equivalent:

• the Duplicator has a winning strategy in Gr(A ,B).

• if ϕ is a sentence of quantifier rank at most r, then A |= ϕ iff B |= ϕ .

• B |= ϕr
A .

Example 2.3.3. Let ϕ1
A be the Hintikka formula from Example 2.3.2 and B = 〈B,RB,SB〉 be a

structure such that B = {1,2}, RB = {(1,1),(1,2),(2,2)} and SB = {2}. Then, B 6|= ϕ1
A and

the Spoiler has a winning strategy in Gr(A ,B). Now, let C = 〈C,RC ,SC 〉 be a structure such

that C = {1,2,3}, RC = {(1,1),(1,2),(3,2),(3,3)} and SC = {2}. Therefore, C |= ϕ1
A and the

Duplicator has a winning strategy in Gr(A ,C ).

The following result ensures that every first-order sentence is equivalent to a disjunc-

tion of Hintikka formulas.

Theorem 2.3.2. (EBBINGHAUS; FLUM, 1995) Let ϕ be a sentence of quantifier rank at most r.

Then, there exist structures A1, ..., As such that

|= ϕ ↔ (ϕr
A1
∨ ...∨ϕ

r
As
).

EF games provide information about the similarity between structures. If two structures A and

B are not isomorphic, then there is an r such that the Spoiler has a winning strategy in Gr(A ,B).

This notion of similarity is introduced in (MONTANARI et al., 2005).

Definition 2.3.6 (MinRound(A ,B)). Let A and B be two structures. The minimum number of

rounds r such that Spoiler has a winning strategy in Gr(A ,B) is denoted by MinRound(A ,B).

Example 2.3.4. Let A = 〈A,RA 〉 and B = 〈B,RB〉 be structures such that A = {1,2,3}, RA =

{1,2}, B = {1,2,3,4}, RB = {3,4}. Then, MinRound(A ,B) = 2 because the Spoiler chooses

1 6∈ RB and then chooses 2 6∈ RB. Observe that the Spoiler does not have a winning strategy in

less than two rounds.
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If MinRound(A ,B) is large, then the Spoiler needs more rounds in order to ensure a winning

strategy. It follows that A and B are very similar.

EF games are important in our framework because if the Spoiler has a winning

strategy in a game on A and B with r rounds, then there exists a first-order sentence ϕ of

quantifier rank at most r that holds in A and does not hold in B. Also, in this case, the sentence

ϕr
A is an example of such a sentence. However, over arbitrary vocabularies, the problem of

determining whether the Spoiler has a winning strategy in Gr(A ,B) is PSPACE-complete

(PEZZOLI, 1998). Fortunately, it is possible to do better for EF games on strings (MONTANARI

et al., 2005), monadic structures, linear orders, and equivalence structures (KHOUSSAINOV;

LIU, 2009).

2.4 Formal Languages and Finite Automata

We begin this section by giving the basic notations of strings and formal languages.

Then, we give the notion of deterministic finite automata.

In formal language theory, an alphabet Σ is a nonempty, finite set which its elements

are called symbols. A string w = a1a2...an over an alphabet Σ is a finite sequence of symbols

ai ∈ Σ, for i ∈ {1,2, ...,n}. The set of all such finite strings is denoted by Σ∗. A formal language

is a subset of L ⊆ Σ∗. The empty sequence is called the empty string and it is denoted by ε .

The length of w, denoted by |w|, is the number of symbols in w. The set {1, ...,n} is the set of

positions of w. We assume some familiarity with formal languages. See (HOPCROFT et al.,

2006) for details.

For two strings u = a1...an and v = b1...bm, the concatenation of u and v is the string

uv = a1...anb1...bm. For all u, v, w, x ∈ Σ∗, if w = uxv, then x is a substring of w. Moreover,

if u = ε (resp. v = ε), we say that x is a prefix (resp. suffix) of w. We denote the prefix (resp.

suffix) of length k of w by pre fk(w) (resp. su f fk(w)).

A deterministic finite automaton (DFA) is a finite-state machine which accepts or

rejects strings. The following Figure 2 depicts the state diagram of a DFA A1.

DFA A1 has three states, labeled q0, q1 and q2. The start state, q0, is indicated by an

arrow pointing at it from nowhere. The final states, q0 and q1, are the ones with a double circle.

The arrows going from one state to another are called transitions. A1 is deterministic because

for a given state and symbol, its transition goes to exactly one state. Now, we formally define

deterministic finite automata.
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Figure 2 – DFA A1

q0 q1 q2

b

a

b

a a,b

Source: Own elaboration

Definition 2.4.1. (HOPCROFT et al., 2006) A deterministic finite automaton is a 5-tuple A =

(Q,Σ,δ ,q0,F) such that

• Q is a finite set which its elements are called states,

• Σ is an alphabet,

• δ : Q×Σ→ Q is the transition function,

• q0 ∈ Q is the start state, and

• F ⊆ Q is the set of final states.

Example 2.4.1. We describe A1 formally by A1 = (Q,Σ,δ ,q0,F) such that

• Q = {q0,q1,q2},

• Σ = {a,b},

• δ is described as

a b
q0 q0 q1
q1 q0 q2
q2 q2 q2

• q0 is the start state, and

• F = {q0,q1}.

A computation of a DFA A on some string w = a1...an ∈ Σ∗ is a sequence q1, ...,qn

such that qi ∈ Q for i ∈ {1, ...,n}, q1 is the start state, δ (qi,ai) = qi+1 for i ∈ {1, ...,n−1}. We

write q1→w qn to represent the computation. For example, the computation of A1 on aabab is

the sequence q0,q0,q0,q1,q0,q1. Then, we write q0→aabab q1.

A string w is accepted by A if q1→ qn is the computation of A on w and qn ∈ F . In

this case, we say that A accepts w. If a DFA A does not accept a string w, we say that A rejects w.

For example, A1 accepts aabab, and it rejects aababba.
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The language recognized by A is the set L(A) = {w ∈ Σ∗ | q1→w q,q ∈ F}. We also

say that A recognizes a language L′ if L(A) = L′. For example, A1 recognizes the set of all strings

over {a,b}∗ that do not have consecutive b’s. A language L′ is called regular if there exists a

DFA A such that L(A) = L′. Then, the language L = {w ∈ {a,b}∗ | w has no consecutive b′s} is

regular.

2.5 Formal Languages and Finite Model Theory

In finite model theory, we view a string w = a1...an over Σ as a logical structure Aw

over the vocabulary τ = {S,(Pa)a∈Σ} with domain A = {1, ...,n}, that is, the elements of A are

positions of w. The predicate S is the successor relation and each Pa is a unary predicate for

positions labeled with a. Figure 3 represents the string stvill as a logical structure.

Figure 3 – String stviil as a logical structure Astviil
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Source: Own elaboration

In order to make the presentation simpler, we use the following notation. Then, we remove the

successor relation and we use the actual symbol in Σ as the unary predicate.

Figure 4 – Simpler presentation for Astviil
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Source: Own elaboration

Given a first-order sentence ϕ over strings, the formal language defined by ϕ is

simply L(ϕ) := {w ∈ Σ∗ |Aw |= ϕ}. As an example, if ϕ = ∃xPa(x), then L(ϕ) = Σ∗aΣ∗. Then,

we can understand some classes of languages using concepts from finite model theory and

first-order logic. In general, we do not distinguish between such structures and strings. Therefore,

we use the notation w |= ϕ instead of Aw |= ϕ .

A language is locally threshold testable (LTT) if it is a boolean combination of

languages of the form {w | u is prefix of w}, for some u ∈ Σ∗, {w | u is suffix of w}, for some
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u ∈ Σ∗, and {w | w has u as infix at least d times }, for some u ∈ Σ∗ and d ∈ N (ZEITOUN et al.,

2014). Therefore, membership of a string can be tested by inspecting its prefixes, suffixes and

infixes up to some length, and counting infixes up to some threshold.

LTT languages can be defined in terms of first-order logic. A language is definable

by a sentence of first-order logic (FO) over strings if and only if it is LTT (THOMAS, 1982).

Fragments of first-order logic define other classes of languages such as locally testable (LT) and

strictly local (SL).

Let w = a1...an be a string. We define first-order sentences

φw := ∃x1, ...∃xn(
∧

1≤i≤n−1

S(xi,xi+1)∧
∧

1≤i≤n

Pai(xi)).

φ
pre f
w := ∃x1, ...∃xn(

∧
1≤i≤n−1

S(xi,xi+1)∧
∧

1≤i≤n

Pai(xi)∧∀z¬S(z,x1)).

φ
su f f
w := ∃x1, ...∃xn(

∧
1≤i≤n−1

S(xi,xi+1)∧
∧

1≤i≤n

Pai(xi)∧∀z¬S(xn,z)).

Lemma 2.5.1. Let w and v be strings. Then,

• v is a substring of w iff w |= φv;

• v is a prefix of w iff w |= φ
pre f
v ;

• v is a suffix of w iff w |= φ
su f f
v .

For example, for φab = ∃x1∃x2S(x1,x2)∧Pa(x1)∧Pb(x2), it follows that abb |= φab.

Now, we give some results on formal languages and finite model theory for LT and

SL. A first-order sentence φ is called propositional if it is a Boolean combination of formulas of

the forms φw, φ
pre f
w and φ

su f f
w . Then, the class of LT languages is exactly the set of languages

defined by propositional first-order sentences (ROZENBERG; SALOMAA, 1997).

In order to obtain the class of SL languages, we need to restrict the set of propositional

first-order sentences further. We call literal formulas of the forms φw, φ
pre f
w , and φ

su f f
w or their

negations ¬φw, ¬φ
pre f
w , and ¬φ

su f f
w . A conjunction of negative literals (CNL) is a propositional

first-order sentence of the form φ =
∧n

i=1 φi such that each φi is a negative literal. A language is

SL if and only if it is defined by a CNL sentence (ROGERS et al., 2013).

We finish this section with Figure 5 that shows a hierarchy of classes of languages

defined by logics. The class of regular languages is exactly the class of languages definable in

monadic second-order logic (MSO) (BÜCHI, 1960). Monadic second-order logic is an extension

of first-order logic in which quantification over subsets of the domain is allowed.
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Figure 5 – A Hierarchy of classes of languages defined by logics over strings with the successor
relation.
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Source: Own elaboration

In the next chapter, we review the results on EF games for monadic structures,

equivalence structures, and strings.
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3 EF GAMES FOR A FIXED CLASS OF STRUCTURES

In Chapter 2, we showed the basic definitions and results on EF games over an

arbitrary vocabulary. However, over arbitrary vocabularies, the problem of determining whether

the Spoiler has a winning strategy in Gr(A ,B) is PSPACE-complete (PEZZOLI, 1998). In this

chapter, we show results on EF games over a particular class of structures. We focus on monadic

structures (MS), equivalence structures (ES), and strings. We consider these classes because one

can check in polynomial time in the size of the given structures A and B whether the Spoiler

has a winning strategy in Gr(A ,B). All three cases can be found in the literature. For details

of this result on MS and ES, see (KHOUSSAINOV; LIU, 2009). For the case of strings, see

(MONTANARI et al., 2005).

3.1 Monadic Structures

A monadic structure is a structure M = 〈M,PM
1 , ...,PM

k 〉 such that each Pi is mona-

dic and PM
1 , ...,PM

k are pairwise disjoint. We set Pk+1 = ¬(P1∪ ...∪Pk).

Example 3.1.1. Let M1 = {a1,a2,a3,a4} and PM1
1 = {a1,a2}. M1 = 〈M1,P

M1
1 〉 is a monadic

structure. Then, PM1
2 = {a3,a3}. Figure 6 represents M1.

Figure 6 – Monadic structure M1
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a3

a4

PM1
1 PM1

2

Source: Own elaboration

Theorem 3.1.1 (EF Games on MS). (KHOUSSAINOV; LIU, 2009) Let M1 and M2 be monadic

structures. The Spoiler has a winning strategy in Gr(M1,M2) iff there exists i ∈ {1, ...,k+1}

such that (|PM1
i |< r or |PM2

i |< r) and |PM1
i | 6= |PM2

i |.
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Proof. (⇒) Suppose that for all i ∈ {1, ...,k+ 1}, |PM1
i | ≥ r and |PM2

i | ≥ r or |PM1
i | = |PM2

i |.

If the Spoiler chooses an element a ∈ PM1
i , then the Duplicator chooses b ∈ PM2

i , for i ∈

{1, ...,k+1}. Analogously, if the Spoiler chooses an element b ∈ PM2
i . This strategy is clearly

winning for the Duplicator.

(⇐) Suppose that there exists i ∈ {1, ...,s+ 1} such that |PW1
i | < r or |PM2

i | < r and |PM1
i | 6=

|PM2
i |. Assume that |PM1

i |< |PM2
i |. The winning strategy for the Spoiler is to choose all elements

from PM2
i .

Given the result in Theorem 3.1.1, now we show how to compute MinRound(M1,M2). The

Spoiler has a winning strategy in Gr(M1,M2) if and only if there exists i ∈ {1, ...,k+1} such

that (|PM1
i |< r or |PM2

i |< r) and |PM1
i | 6= |PM2

i |. Recall we always assume that the structures

are not isomorphic. Then, the minimum number of rounds such that the Spoiler has a winning

strategy in Gr(M1,M2) is

MinRound(M1,M2) = min{min(|PM1
i |, |PM2

i |) | |PM1
i | 6= |PM2

i |,1≤ i≤ k+1}+1.

Since M1 and M2 are not isomorphic, such a number MinRound(M1,M2) always exists.

Moreover, it is clear that one can compute MinRound(M1,M2) in polynomial time in the size

of M1 and M2. Specifically, in time O(|M1|+ |M2|).

Example 3.1.2. Let M1 and M2 be the monadic structures in Figure 6 and Figure 7, respectively.

Clearly, the Duplicator has a winning strategy in G2(M1,M2). By the proof of Theorem 3.1.1,

the Spoiler has a winning strategy in G3(M1,M2). Therefore, MinRound(M1,M2) = 3.

3.2 Equivalence Structures

An equivalence structure is a structure of the form E = 〈A,EE 〉 such that EE is an

equivalence relation on A. Let qE
t be the number of equivalence classes in E of size t. Let qE

≥t be

the number of equivalence classes in E of size at least t.

Example 3.2.1. Let E1 be the equivalence structure in Figure 8. Then, qE1
1 = 1, qE1

2 = 3, and

qE1
3 = 0. Furthermore, qE1

≥1 = 4, qE1
≥2 = 3, qE1

≥3 = 0.

Definition 3.2.1 (Small Disparity). Let r be a natural number, E1 and E2 be equivalence structu-

res. We say that Gr(E1,E2) has a small disparity if there exists a t < r such that qE1
t 6= qE2

t and

r ≥ min{qE1
t ,qE2

t }+ t +1
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Figure 7 – Monadic structure M2
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Source: Own elaboration

Figure 8 – Equivalence structure E1

Source: Own elaboration

Example 3.2.2. Let E1 and E2 be the equivalence structure in Figure 8 and Figure 9, respectively.

Then, G3(E1,E2) has a small disparity because there exists t = 1 such that t < 3, qE1
t 6= qE2

t , and

3≥ min{2,1}+ t +1.

Figure 9 – Equivalence structure E2

Source: Own elaboration

Observe that the Spoiler has a winning strategy in G3(E1,E2). First, the Spoiler selects elements
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b1,b2 from distinct equivalence classes of size 1 in E2. In the first round, the Duplicator must

choose an element a1 also in an equivalence class of size 1. Clearly, in the second round, the

Duplicator must choose an element a2 in an equivalence class of size different from 1. Then, the

Spoiler wins by choosing an element a3 such that there is an edge between a3 and a2.

Definition 3.2.2 (Large Disparity). Let r be a natural number, E1 and E2 be equivalence structu-

res. We say that Gr(E1,E2) has a large disparity if there exists a t ≤ r such that qE1
≥t 6= qE2

≥t and

r ≥ min{qE1
≥t ,q

E2
≥t}+ t.

Example 3.2.3. Let E1 and E2 be the equivalence structures in Figure 10. Then, G3(E1,E2) has a

large disparity as there exists t = 2 such that qE1
≥2 = 2, qE2

≥2 = 1, qE1
≥2 6= qE2

≥2, and r≥min{2,1}+2.

It is important to note that the Spoiler has a winning strategy in G3(E1,E2). He/She chooses

elements a1,a2 from distinct equivalence classes of size at least 2 in E1. Clearly, the Duplicator

must choose an element b1 from an equivalence class of size at least 2 and an element b2 from

an equivalence class of size 1 in E2, respectively. The Spoiler selects an element a3 in E1 from

the equivalence class of a2. Thus, the Spoiler wins the game.

Figure 10 – Large Disparity

E1 E2

Source: Own elaboration

Lemma 3.2.1. (KHOUSSAINOV; LIU, 2009) Let r be a natural number, E1 and E2 be two

equivalence structures. If Gr(E1,E2) has a small or large disparity, then the Spoiler has a

winning strategy.

Proof. First, assume that qE1
t > qE2

t and r ≥ qE2
t + t + 1. The Spoiler’s winning strategy is

to select distinct elements a1, ..., a
qE2

t
from distinct equivalence classes of size t in E1. The
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Duplicator must select b1, ..., b
qE2

t
from distinct equivalence classes of size t in E2. Otherwise,

the Duplicator loses the game. Then, the Spoiler chooses distinct elements a
qE2

t +1
, ..., a

qE2
t +t

from an equivalence class of size t not chosen before in E1. Therefore, the Duplicator must

choose b
qE2

t +1
, ..., b

qE2
t +t

from an equivalence class B of size greater than t. Then, the Spoiler

wins the game by choosing b
qE2

t +t+1
in B.

For the second part, assume that qE1
≥t > qE2

≥t and r ≥ qE2
≥t + t. The Spoiler’s winning

strategy is the following. The Spoiler chooses distinct elements a1, ..., a
qE2
≥t

from distinct

equivalence classes of size greater or equal to t in E1. If the Duplicator chooses a bi from an

equivalence class of size smaller than t in E2, then the Spoiler wins by selecting t elements in the

equivalence class of ai. Therefore, the Duplicator chooses b1, ..., b
qE2
≥t

from distinct equivalence

classes of size greater or equal to t in E2. Then, the Spoiler chooses t− 1 distinct elements

a
qE2
≥t+1

, ..., a
qE2
≥t+t−1

from an equivalence class B of size greater or equal to t not chosen before in

E1. Clearly, the Duplicator must choose b
qE2
≥t+1

, ..., b
qE2
≥ +t−1

from an equivalence class of size

smaller than t. Therefore, the Spoiler wins by selecting a
qE2

t +t
from B.

Theorem 3.2.1 (EF Games on ES). (KHOUSSAINOV; LIU, 2009) Let r be a natural number, and

E1,E2 be equivalence structures. The Spoiler has a winning strategy in Gr(E1,E2) iff Gr(E1,E2)

has a small or large disparity.

By Theorem 3.2.1, the minimum number of rounds such that the Spoiler has a winning strategy

can be computed in the following way. As we assume that E1 and E2 are not isomorphic, such a

minimum number exists.

MinRound(E1,E2) :=
min(min{min(qE1

t ,qE2
t )+ t | qE1

t 6= qE2
t }+1,

min{min(qE1
≥t ,q

E2
≥t)+ t | qE1

≥t 6= qE2
≥t}).

Note that computing all equivalence classes of E1 and E2 takes time O((|E1|+ |E2|)2). Then, it

takes quadratic time to compute qE1
t , qE2

t , qE1
≥t , qE2

≥t , for t ∈ {1, ...,r}. Clearly, it is takes linear

time to compute MinRound(E1,E2) from qE1
t , qE2

t , qE1
≥t , qE2

≥t , for t ∈ {1, ...,r}. Therefore, the

overall procedure to determine MinRound(E1,E2) takes time O((|E1|+ |E2|)2).

3.3 Strings

We consider strings over a given alphabet Σ. We denote the prefix (resp. suffix) of

length k of a string w by pre fk(w) (resp. su f fk(w)). Let i and j be positions in a string. The

distance between i and j, denoted by d(i, j), is |i− j|.
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First, we consider EF games Gr(u,v) such that only one symbol occurs in u and v,

i.e., u = am, v = an, and a ∈ Σ. Then, it is not necessary to take into account the unary predicates.

Therefore, the following result depends only on the successor relation. Furthermore, even when

u and v are arbitrary strings such that |u| 6= |v|, the Spoiler has a winning strategy based on the

lengths of u and v for a small number of rounds relative to the length of the strings.

Lemma 3.3.1. (MONTANARI et al., 2005) Let r be a positive integer, u and v be strings. If

|u| 6= |v| and |u|< 2r−2 or |v|< 2r−2), then the Spoiler has a winning strategy in Gr(u,v).

Example 3.3.1. Let r = 3, u = aaaaa, and v = aaaaaaaaa be the strings in Figure 11. Observe

that |u|< 2r−2. The Spoiler has the following winning strategy. First, the Spoiler chooses 5 in

v. The best option for the Duplicator is to choose 3 in u. Then, the Spoiler selects 7 in v. The

Duplicator must choose 5 in u. Now, the Spoiler wins by choosing 8 in v.

Figure 11 – EF Game G3(aaaaa,aaaaaaaaa)
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Source: Own elaboration

Now, we deal with the unary predicates. In order for the Duplicator to be able to

reply to a move made by the Spoiler, the Duplicator must choose an element in a region such

that the substrings in corresponding regions must be the same. First, we consider prefixes and

suffixes.

Lemma 3.3.2. Let r be a positive integer, u and v be strings. If pre f2r−2(u) 6= pre f2r−2(v) or

su f f2r−2(u) 6= su f f2r−2(v), then the Spoiler has a winning strategy in Gr(u,v).

Example 3.3.2. Let u = aabbbb and v = aaabbb be the strings in Figure 12. Note that |u|= |v|.

Then, Lemma 3.3.1 can not be used. Let r = 3. Therefore, pref2r−2(u) 6= pref2r−2(v). Moreover,

pref3(u) 6= pref3(v). Now, we describe the Spoiler’s winning strategy. First, the Spoiler chooses

position 3 from u. The Duplicator must choose position 4 from v. Then, the Spoiler chooses

position 2 from v. The Duplicator must select position 1 from u. Now, the Spoiler wins by

choosing position 1 from v.
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Figure 12 – EF Game G3(aabbbb,aaabbb)
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Source: Own elaboration

Now, we consider infixes. Intuitively, in order to guarantee a winning strategy for the Duplicator,

not only must u and v have the same substrings of suitable length, but there must be enough

substrings distributed in a similar way in both u and v.

First, we need the following definitions. Let α,w be strings. The set of starting

positions of the occurrences of α in w is Γ(α,w) = {i | wi...wi+|α|−1 = α}. The multiplicity of

α in w, denoted by γ(α,w), is the number of occurrences of α in w, i.e., |Γ(α,w)|.

Example 3.3.3. Let α = aba and w = aaababababbabaababaaa be strings. The set of starting

positions of the occurrences of α in w is

Γ(α,w) = {3,5,7,12,15,17}.

The multiplicity of α in w is

γ(α,w) = |Γ(α,w)|= 6.

Let A⊆N. A partition of A is a collection of subsets X of A such that each element of

A is included in exactly one subset. An l-segmentation of A is a partition of A with the minimum

number of subsets such that for all i, j in the same partition, d(i, j)≤ l and if i, j are in the same

partition X and i≤ h≤ j, then h ∈ X . Each partition X in the segmentation is called a segment.

We use segmentations to define the scattering of a substring in a string. The scattering of α

in w, denoted by σ(α,w), is the number of segments in a (|α|+ 1)-segmentation of Γ(α,w).

Therefore, the scattering represents a distribution of occurrences of α in w. In the following, we

give an example of scattering.

Example 3.3.4. Let α = aba and w = aaababababbabaababaaa be the strings from Exam-

ple 3.3.3. A 4-segmentation of Γ(α,w) consists of the following partitions:

{3,5,7},{12,15} and {17}.
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The scattering of α in w is σ(α,w) = 3. Observe that σ(α,w) 6= γ(α,w).

In what follows, we consider only substrings α over Σ∗ such that |α| = 2qα − 1, for qα > 0.

One should observe that the Spoiler needs at most qα rounds to distinguish α from any other

substring β such that |β |= |α| and α 6= β . For example, let abc be a substring which occurs in

a string w. First, the Spoiler chooses the posision in which b occurs. Then, depending on the

choice of the Duplicator, the Spoiler chooses the position in which a occurs or the position in

which c occurs.

Lemma 3.3.3. Let u and v be strings. Let α be a string such that |α|= 2qα −1 and γ(α,u) 6=

γ(α,v) or σ(α,u) 6= σ(α,v). Then, for r = qα +min(σ(α,A ),σ(α,B)), the Spoiler has a

winning strategy in Gr(A ,B).

Lemma 3.3.4. Let r be a natural number, u and v be strings. If there exists α such that

|α|= 2qα −1, for some qα > 0, σ(α,u)+qα ≤ r or σ(α,v)+qα ≤ r, and σ(α,u) 6= σ(α,v)

or γ(α,u) 6= γ(α,v), then the Spoiler has a winning strategy in Gr(u,v).

Theorem 3.3.1. (MONTANARI et al., 2005) Let r be a natural number, u and v be strings. The

Spoiler has a winning strategy in Gr(u,v) if and only if at least one of following conditions holds:

1. |u| 6= |v| and (|u|< 2r−2 or |v|< 2r−2);

2. pref2r−2(u) 6= pref2r−2(v);

3. suff2r−2(u) 6= suff2r−2(v);

4. there exists α such that |α|= 2qα−1 for some qα > 0 and (σ(α,u) 6=σ(α,v) or γ(α,u) 6=

γ(α,v)) such that σ(α,u)+qα ≤ r or σ(α,v)+qα ≤ r.

In (MONTANARI et al., 2005), Theorem 3.3.1 is also used to define a notion of similarity

between strings. This notion is based on the minimum number of rounds r such that the Spoiler

has a winning strategy in the game Gr(u,v). First, assume that u 6= v. Then, MinRound(u,v) can
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be computed in polynomial time in the length of the strings in the following way.

MinRound(u,v) :=
min{MinLength(u,v),MinPre f (u,v),

MinSu f f (u,v),MinSub(u,v)}, such that

MinLength(u,v) := dlog2(min(|u|, |v|)−1)e,

MinPre f (u,v) := min{dlog2(k)e | pre fk(u) 6= pre fk(v)},

MinSu f f (u,v) := min{dlog2(k)e | su f fk(u) 6= su f fk(v)},

MinSub(u,v) :=
min{qα +min(σ(α,u),σ(α,v)) | γ(α,u) 6= γ(α,v)

or σ(α,u) 6= σ(α,v)}.

Given two strings u and v, MinRound(u,v) can be computed in O((|u|+ |v|)2log(|u|+ |v|)), that

is, it can be computed in polynomial time (MONTANARI et al., 2005).

In the following chapter, we review the related work on synthesis of propositional

formulas, first-order formulas and deterministic finite automata.
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4 SYNTHESIS OF FORMULAS AND AUTOMATA

In this chapter, we present the related work concerning synthesis of formulas from a

logic and synthesis of deterministic finite automata.

4.1 Boolean Function Synthesis Problem

The Boolean Function Synthesis (BFS) problem (TRIANTAPHYLLOU, 2010) is the

task to find a propositional formula in disjunctive normal form (DNF) with the minimum number

of conjunctive clauses that is consistent with a given sample of valuations. The valuations are

described by the presence or absence of certain features and are divided into two groups: positive

and negative. Table 4 represents an instance of the problem. This sample contains information

concerning credit approval for individuals. Each valuation represents an individual, and it is

defined by three features: has children (c), married (m), and graduated (g). The column Group

encodes whether credit was approved for an individual.

Table 4 – A sample of examples.

c m g Group
True False True Positive
False False True Negative
True False False Positive
True True True Negative
False True True Positive

Source: Own elaboration

Observe that the formula (¬c∧m)∨ (c∧¬m) holds in all positive valuations while

it is false in all negative ones. Then, this formula is a solution to the instance presented in

Table 4. There are many reasons why one may be interested in a formula in DNF with the

minimum number of clauses. One may be interested in obtaining a compact set of rules which

satisfy the requirements of valuations. A solution is a formula that expresses separations among

groups, and it is intended to represent logical relations connecting features with groups. For

example, solutions to this problem and its variations are used in finance, industrial and medical

applications (KNIJNENBURG et al., 2016; LEJEUNE et al., 2018).

Observe that, in this work, we consider a variation of the BFS problem where

positive and negative valuations are finite relational structures. In addition, we consider first-
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order sentences instead of propositional logic.

Now, we formally define the BFS problem. A sample of valuations E = (E+,E−)

consists of two disjoint, finite sets E+ = {V +
1 , ...,V +

s }, E− = {V −1 , ...,V −t } of valuations. The

positive examples are the valuations in E+, and the negative examples are the valuations in E−.

The BFS problem is defined formally in the following way:

Definition 4.1.1 (BFS Problem). Given a set of propositional variables Ψ and a sample E of

valuations over Ψ, the goal is to find a propositional formula ψ in DNF with the minimum

number of conjunctive clauses such that V + |= ϕ , for all V + ∈ E+, V − 6|= ϕ , for all V − ∈ E−,

and A(ψ)⊆Ψ.

We also use BFS for the decision version of the problem where the goal is to find a

propositional DNF formula ϕ with m clauses such that ϕ is consistent with S. Although the BFS

problem is NP-complete (UMANS et al., 2006), there are many solutions effective in practice

to the BFS problem and its variations (KAMATH et al., 1992; FELICI; TRUEMPER, 2005;

KNIJNENBURG et al., 2016; IGNATIEV et al., 2018; LEJEUNE et al., 2018; MALIOUTOV;

MEEL, 2018; GHOSH; MEEL, 2019). An effective solution in practice is to translate it into the

satisfiability (SAT) problem of propositional logic (KAMATH et al., 1992; IGNATIEV et al.,

2018).

Our approach to solve the synthesis problem for quantifier-free normal form sen-

tences by using a Boolean satisfiability (SAT) encoding is based on a method to solve the BFS

problem. Also, we show that the synthesis problem for QDNF sentences is NP-complete by a

reduction from the BFS problem. Recall that the difference is that we consider classified finite

relational structures, whereas BFS deals with positive and negative valuations. Also, our goal is

to find a first-order sentence, while the goal in BFS is to find a propositional formula.

4.2 Distinguishing Relational Structures

In this section, we show the framework defined in (KAISER, 2012). In this fra-

mework, for a fixed logic L , given two sets of structures P and N, the goal is to find a sentence

of L with minimum quantifier rank which distinguishes P from N. Then, this sentence must

hold in all structures belonging to P, and it must be false in all structures belonging to N. We

formally define the problem below.
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Definition 4.2.1 (Distinguishability Problem). Let L be a logic. Given two disjoint, finite sets

P = {A1, ...,Ak} and N = {B1, ...,Bl} of structures such that A and B are not isomorphic,

for all A ∈ P, B ∈ N, the Distinguishability problem is to find a sentence ϕ of L with minimum

quantifier rank such that A |= ϕ , for all A ∈ P and, B 6|= ϕ , for all B ∈ N.

Observe that, in the above definition, A and B are not isomorphic, for all A ∈ P, B ∈ N.

Otherwise, no first-order sentence distinguishes P from N. In the following, we give an example

of an instance of the problem.

Example 4.2.1. Let P = {A1,A2} and N = {B1,B2} be two sets of structures pictured in

Figure 13. The first-order sentence ∀x1E(x1,x1) is a solution to the Distinguishability problem.

Figure 13 – Example of P and N.

A1
A2 B1

B2

Source: Own elaboration

Kaiser used this framework in the problem of learning winning conditions for both players in

board games such as Connect4, Breakthrough, and Tic-Tac-Toe. First, one may represent states

of board games as relational structures. For example, Figure 14 represents a state of Tic-Tac-Toe

as a relational structure.

Figure 14 – Tic-Tac-Toe as a relational structure.
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Source: Own elaboration
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In Figure 15, we give another example with 2 positive structures in P and 2 negative structures in

N. Each positive structure represents a winning state of Tic-Tac-Toe, while a negative structure

corresponds to a not winning state.

Figure 15 – 2 winning states for the player “O” and 2 not winning.
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Source: Own elaboration

Example 4.2.2. Let P and N be the sets of structures defined in Figure 15. Therefore, the

first-order sentence

∃x1∃x2∃x3(O(x1)∧O(x2)∧O(x3)∧ ((R(x1,x2)∧R(x2,x3))∨ (C(x1,x2)∧C(x2,x3))))

holds in all positive structures, and does not hold in all negative ones. This first-order sentence

specifies winning conditions for the player “O” in Tic-Tac-Toe. Observe that this sentence

describes the winning conditions of placing the mark “O” in a row or column of the board.

Unfortunately, in terms of complexity, already for first-order logic and singleton sets P and N,

the problem is hard. The decision version, where the quantifier rank is also given, is PSPACE-

complete (PEZZOLI, 1998). In Chapter 6, we show that this problem is solved in polynomial time

for first-order logic over some fixed classes of structures such as monadic structures, equivalence

structures, disjoint unions of linear orders, and strings.

The formula returned by the procedure defined in (KAISER, 2012) uses the minimum

number of variables k and has minimum quantifier rank among k-variable formulas distinguishing

P from N. Furthermore, it belongs to the guarded fragment if possible, and is existential if

possible. These fragments are used because they have good algorithmic properties (GRÄDEL,

1999). As the returned formula uses the minimum number of variables, the procedure in

(KAISER, 2012) adopts Hintikka formulas for the k-variable fragments of first-order logic.

Since, in this work, we are not worried about the number of variables, we present

an adapted version of the procedure in (KAISER, 2012) which uses Hintikka formulas for full

first-order logic. Also, as we do not consider the fragments of first-order logic used in (KAISER,



46

2012), the version presented in this work uses only full first-order logic. In what follows, we

present this setting for the algorithm that returns a formula ϕ that holds in all positive structures

and on none of the negative ones.

We start with a procedure that receives as input the quantifier rank r, the set of

positive structures P, and the set of negative structures N. The algorithm computes the set P of

r-Hintikka formulas of all structures in P. Then, for every structure B in N, it checks whether

ϕr
B ∈P . If there exists B such that ϕr

B ∈P , then it is not possible to distinguish P from N

with a first-order sentence with quantifier rank r. Otherwise, the algorithm returns the sentence

ϕ =
∨

P which have quantifier rank r. Then, clearly, ϕ hold in each structure in P. Moreover,

ϕ does not hold in any structure in N, otherwise, ϕr
B ∈P , for some B ∈ N. The procedure is

described in Algorithm 1.

Algorithm 1: Distinguish(P, N, r)
1: N ←{ϕr

B |B ∈ N}
2: P ←{ϕr

A |A ∈ P}
3: if P ∩N 6= /0 then
4: return False
5: end if
6: return

∨
P

Algorithm 1 is used iteratively, starting from the smallest r. The overall procedure is

described in Algorithm 2.

Algorithm 2: MinDistinguish(P,N)
1: r← 1
2: while True do
3: ϕ ← Distinguish(P,N,r)
4: if ϕ 6= False then
5: return ϕ

6: end if
7: r← r+1
8: end while

Algorithm 2 finds first-order sentences distinguishing P from N with minimum

quantifier rank. However, as Algorithm 2 returns a disjunction of Hintikka formulas, it returns

very long sentences which seem hard to read. Then, the algorithm in (KAISER, 2012) greedily

remove literals that are not necessary to distinguish P from N.
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4.3 Grammatical Inference and DFA Synthesis

Grammatical inference is the scientific area that investigates the task of finding a

language model consistent with a given sample of strings (WIECZOREK, 2016). For instance, a

language model can be deterministic finite automata (DFA) or context-free grammars. Grammati-

cal inference can be applied in linguistics (STROTHER-GARCIA et al., 2017), robotic planning

(RAWAL et al., 2011), and classification of biological sequences (WIECZOREK; UNOLD,

2014; WIECZOREK; UNOLD, 2016). For example, strings in Table 1, repeated below for

convenience, represent short segments of proteins.

Table 1 – A sample of strings.

String Class
stviil Positive
ktvive Negative
stviie Positive
st piie Negative

Source: Own elaboration

One of the most explored problems in grammatical inference is the DFA synthesis

(HIGUERA, 2005). The goal of this problem is to find a DFA with the minimum number of

states that is consistent with a given sample of classified strings.

In the DFA synthesis, the task is to find a DFA with the minimum number of states

that is consistent with a given sample of classified strings. A sample S over an alphabet Σ is

a pair S = (S+,S−) such that S+ and S− are finite subsets of Σ∗ and S+∩ S− = /0. Intuitively,

S+ contains positively classified strings, while S− contains negatively classified strings. An

automaton A is consistent with a sample S if and only if S+ ⊆ L(A) and S−∩L(A) = /0. Then, A

is consistent with S when A accepts all strings in S+ and rejects all strings in S−. Now, we can

formally define the DFA synthesis task.

Definition 4.3.1. Given a sample S = (S+,S−) over an alphabet Σ and a positive integer k, the

DFA synthesis task consists in finding a deterministic finite automaton A with k states such A is

consistent with S.

Example 4.3.1. Let k = 2 and S = (S+,S−) such that S+ = {a,aa,ba} and S− = {ε,ab}. The

deterministic finite automaton A1 in Figure 16 is consistent with S. Moreover, it is a minimal

consistent DFA since every DFA with just one state accepts either all strings or none.
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Figure 16 – DFA A1

q0 q1

a

b

b a

Source: Own elaboration

Unfortunately, Gold (GOLD, 1978) showed that the corresponding decision problem

is hard, namely NP-complete. Intuitively, the reason is that the behavior of a consistent DFA

on words not belonging to S+ and S− can be arbitrary. Then, an algorithm must choose this

behavior carefully in order to find a DFA with the minimum number of states.

Theorem 4.3.1. (GOLD, 1978) Let S be a sample and k a positive integer. Determining whether

there is an automaton with k states and consistent with S is NP-complete.

However, several methods to solve this problem or a relaxed version were developed

(LUCAS; REYNOLDS, 2003; BUGALHO; OLIVEIRA, 2005; HEULE; VERWER, 2010). The

methods in (LUCAS; REYNOLDS, 2003; BUGALHO; OLIVEIRA, 2005) cannot guarantee

that the found DFA is one with the minimum number of states. The method DFASAT introduced

in (HEULE; VERWER, 2010) is guaranteed to find a minimum-size DFA. This approach is

based on a series of translations to SAT. The motivation of this approach is that SAT solvers offer

a feasible manner for finding solutions. In the following subsection, we describe the method

DFASAT (HEULE; VERWER, 2010)

4.3.1 SAT-Based DFA Synthesis

The main part of the method in (HEULE; VERWER, 2010) is to encode the DFA

synthesis problem into a propositional CNF formula. This translation is inspired by an encoding

of the graph coloring problem into SAT. Given a sample S and a positive integer n, the first

step is to construct a propositional formula ϕS
n . This formula ϕS

n is satisfiable if and only if

there exists a DFA with n states and consistent with S. Furthermore, it is possible to derive a

consistent DFA with n states from a valuation that satisfies ϕS
n . Given the positive integer n, we

set Q = {q1, ...,qn}. Given S and n, the propositional formula ϕS
n consists of the following types

of propositional variables:

• xu,q, for u ∈ Pre f (S+∪S−) and q ∈ Q;
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• fq, for q ∈ Q;

• tp,a,q, for a ∈ Σ and p,q ∈ Q.

If xu,q is assigned to true, then the corresponding DFA reaches state q after processing string u.

If fq is set to true, then q is a final state. Moreover, if the propositional variable tp,a,q is assigned

to true, then the corresponding DFA contains the transition δ (p,a) = q. The constraints of these

variables are as follows. For each string u ∈ Pre f (S+∪S−), the DFA must reach exactly one

state.

∧
u∈Pre f (S+∪S−)

∨
q∈Q

xu,q

∧
u∈Pre f (S+∪S−)

∧
q,p∈Q,q 6=p

¬xu,q∨¬xu,p

(4.1)

We also have to ensure that the variables tp,a,q encode a deterministic function. We

use the following constraints.

∧
p∈Q

∧
a∈Σ

∨
q∈Q

tp,a,q

∧
p∈Q

∧
a∈Σ

∧
q,q′∈Q,q6=q′

¬tp,a,q∨¬xp,a,q′

(4.2)

Additionally, the following constraints guarantee that variables xu,q and tp,a,q are

consistent, i.e., if the DFA reaches p after reading string u and δ (p,a,q), then xua,q must be set

to true. We also add a constraint ensuring that if the DFA reaches p after reading string u, and it

reaches q after reading ua, then tp,a,q has to be set to true.

∧
ua∈Pre f (S+∪S−)

∧
q,p∈Q

¬xu,p∨¬tp,a,q∨ xua,q

∧
ua∈Pre f (S+∪S−)

∧
q,p∈Q

¬xu,p∨ tp,a,q∨¬xua,q

(4.3)

Finally, the corresponding DFA must be consistent with S.

∧
u∈S+

∧
q∈Q

¬xu,q∨ fq

∧
v∈S−

∧
q∈Q

¬xu,q∨¬ fq

(4.4)
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Let ϕS
n be the conjunction of formulas in Equations 4.1-4.4. Then, ϕS

n consists of

O(n3|Σ|+ |Pre f (S+ ∪ S−)|n2) clauses and O(n2|Σ|+ |Pre f (S+ ∪ S−)|n) variables. To find a

DFA with the minimum number of states, one can use a SAT solver in an iterative way. To show

that the minimum number of states is n, ϕS
n must be satisfiable and ϕS

n−1 unsatisfiable. Then, one

alternative is set n to 1 and then successively increase n by one until ϕS
n is satisfiable.

4.3.2 SAT-Based DFA Synthesis from Noisy Samples

The method described in the previous subsection handles DFA synthesis from

noiseless samples. In this subsection, we explain the constraints defined in (ULYANTSEV

et al., 2015) to solve the problem of learning DFA from noisy samples. We will call this method

DFASAT-Noise. The method presented in (ULYANTSEV et al., 2015) also introduces constraints

to reduce SAT search space by enforcing an enumeration of the states in breadth-first search

order. However, we do not present this technique in order to keep the presentation as simple as

possible.

For the noiseless case, Equation 4.4 imposes that a DFA must be consistent with

the sample S. In (ULYANTSEV et al., 2015), the authors adapt these constraints to deal with

noisy samples. The idea is to assume that not more than K strings of the sample were erroneous

classified. For each string w in the sample, we use a variable ew such that ew is set to true if

the class of string w can (but does not have to) be incorrect. The formulas in Equations 4.5-4.6

below express that if a string w is in the correct class, then the target DFA must cover w.

∧
u∈S+

∧
q∈Q

¬eu→ (¬xu,q∨ fq). (4.5)

∧
u∈S−

∧
q∈Q

¬ev→ (¬xu,q∨¬ fq). (4.6)

Now, we need to limit the number of strings that can be in the wrong class. We use variables ri,w,

for 1≤ i≤ K and w ∈ S+∪S−, such that ri,w is set to true if w is the ith string that can be in the

wrong class. Equation 4.7 imposes that the class of w can be incorrect iff w is the ith string that

can be in the wrong class, for some i ∈ {1, ...,K}.

∧
w∈S+∪S−

ew↔ (
K∨

i=1

ri,w). (4.7)
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Clearly, there exists exactly one ith string that can be in the wrong class, for i ∈ {1, ...,K}. Let

S+∪S− = {w1, ...,w|S+∪S−|}. Then, we need to enforce that exactly one of the variables ri,w1 ,

..., ri,w|S+∪S−|
is true, for each i ∈ {1, ...,K}. We use the encoding defined in (BARAHONA et

al., 2014) since it is the same considered in (ULYANTSEV et al., 2015). This encoding uses

auxiliary order variables oi,w, for i ∈ {1, ...,K} and w ∈ S+∪ S−. We also need to assume an

order on S+∪S− = {w1, ...,w|S+∪S−|}. We assume an arbitrary order w1 ≺ w2 ≺ . . .≺ w|S+∪S−|.

Then, to specify that w j is the ith string in the order, the first j variables oi,w1 , ..., oi,w j are set to

true and the remaining |S+∪S−|− j variables oi,w j+1 , ..., oi,w|P∪N| are assigned to false. This can

be defined by the formula in Equation 4.8.

∧
1≤i≤K

∧
1≤ j<|S+∪S−|

oi,w j+1 → oi,w j . (4.8)

Furthermore, in order to avoid permutations of the strings that can be in the incorrect class, the

formula in Equation 4.9 enforces that if w is the ith string in the order, then the (i+1)th string

w′ in the order is such that w≺ w′.

∧
1≤i<K

∧
1≤ j<|S+∪S−|

oi,w j → oi+1,w j+1. (4.9)

Finally, we need the formulas in Equations 4.10-4.11 to impose that exactly one ri,w is true, for

i ∈ {1, ...,K}. Variables oi,w enforce this in variables ri,w.

∧
1≤i≤K

∧
1≤ j<|S+∪S−|

ri,w j ↔ oi,w j ∧¬oi,w j+1. (4.10)

oK,w|P∪N| ↔ rK,w|S+∪S−|
. (4.11)

Formulas in Equations 4.5-4.11 can easily be translated to CNF. Let ϕS
n,K be the conjunction of

formulas in Equations 4.1-4.11 in CNF. Then, ϕS
n,K has O(n2|Σ|+ |Pre f (S+∪S−)|n+K×|S+∪

S−|) variables, and it consists of O(n3|Σ|+ |Pre f (S+∪S−)|n2 + |S+∪S−|×K) clauses.
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4.4 Grammatical Inference and Finite Model Theory

A recent logical approach to grammatical inference defined in (STROTHER-GARCIA

et al., 2017) uses a propositional language in which the atomic sentences represent substrings

which are taken to be true for a string if and only if they occur in that string as infix, prefix

or suffix. Formulas in (STROTHER-GARCIA et al., 2017) are defined by conjunctions of

negative and positive literals (CNPL). In our approach, we also contemplate multiplicity and

scattering of substrings, disjunctions, and length of strings. Then, the main difference is that

our framework deals with the expressive power of full first-order logic, while the approach in

(STROTHER-GARCIA et al., 2017) uses a less fragment less expressive.

In our work, we represent strings as logical structures with a successor order relation

such that symbols are represented by unary relations. Clearly, not all structures under this

vocabulary may be seen as strings. For example, in the alphabet Σ = {a,b}, the structure

A = 〈{1,2,3}PA
a = {1,3},PA

b = {3}〉 can not be seen as a string in Σ∗. It is clear that in order

to be seen as a string, each position in a structure must belong to exactly one unary relation.

The work in (STROTHER-GARCIA et al., 2017) consider strings as logical structu-

res that do not assume each position in a string belongs to exactly one unary predicate. They

argue that this non-standard string model can be considered in some fields where a flexible model

is required. For example, in biology, sequences of symbols in {a,c,g, t} are used to represent

sequences of nucleotides in DNA structures. However, a and t are complementary while a and g

are considered independent. This feature can be represented in the richer model by positions

which are true for both Pa and Pt .

For a structure A , we define substructsk(A ) as the set of all substructures B of A

such that S is the successor order relation and |B| ≤ k. Furthermore, we let allsubstructs(k) be

the set of all substructures of all structures A such that S is the successor order relation and

|A| ≤ k. It is clear that, for a standard string model Aw, not all substructures of Aw are standard

string models. For example, the structure in Astv in Figure 17 has as substructure the structure in

Figure 18.

Figure 17 – String stv as a logical structure Astv

Ps PtS

Source: Own elaboration
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Figure 18 – A substructure of Astv

Ps S

Source: Own elaboration

Clearly, the structure in Figure 18 is a non-standard string structure. Let A be a

non-standard string structure. We define first-order sentences

φA := ∃x1...∃x|A|(
∧

1≤i≤|A|−1

S(xi,xi+1)∧
∧

1≤i≤k, j∈Pai

Pai(x j)).

For example, for the structure B in Figure 18, φB = ∃x1∃x2(S(x1,x2)∧Ps(x1)).

When B represents some string w, we use the notation φw. Then, φw is similar to the formula

defined in Section 2.5. Similarly, we use the notions of propositional sentences, literals and

conjunction of negative literals for first-order logic over non-standard string structures.

Lemma 4.4.1. Let w be a string and B a non-standard string structure. B is a substructure of

Aw iff w |= φB.

For example, stv |= φB for B in Figure 18. It follows that a string u is a substring

of a string w iff w |= φu. A propositional first-order sentence is a k-sentence if it is a Boolean

combination of formulas of the form φw such that the longest string w has length at most k. Now,

we present an example from phonology in order to show the advantage of using a non-standard

string model.

In phonology, stress is a relative emphasis given to a certain syllable in a word.

Usually, there are two syllable weights: light (L) and heavy (H). We use the acute accent

to denote stress. Then, H́ represents a heavy stressed syllable. We consider the alphabet

Σ = {L,H, Ĺ, H́}. Then, we are interested in languages over Σ∗ which represent stress patterns in

natural languages.

For example, in the Cambodian language, there are no consecutive light syllables

(LAMBERT; ROGERS, 2019). Moreover, a universal constraint across languages is that each

word has at least one syllable with stress. The following sentence defines these constraints.

φ1 = ¬φLL∧¬φLĹ∧¬φĹL∧¬φĹĹ∧ (φĹ∨φH́).

Clearly, φ1 is a propositional first-order 2-sentence that defines a LT language.

Furthermore, φ1 is a CNF sentence which has a clause with two literals. Now, we show that
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using non-standard string structures, we can define an equivalent formula such that all clauses

have only one literal.

First, we consider a class of languages defined by conjunctions of negative and

positive literals (CNPL). Then, CNPL sentences are CNF formulas such that each clause contains

exactly one literal. Then, the class of languages defined by CNPL is between LT and SL.

Now, we consider a non-standard string model for stress patterns. Then, we use the

following unary predicates Plight , Pheavy and Pstress. Therefore, for a string w = w1...wn such that

position wi = Ĺ, it follows that i ∈ Plight and i ∈ Pstress.

We use a shorthand for structures in this non-standard string model. A position i

in a structure such that i 6∈ Plight ∪Pheavy∪Pstress is represented by ∗. A position i in a structure

such that i 6∈ Plight ∪Pheavy and i ∈ Pstress is represented by ∗́. H and L represent heavy and light

positions that are unspecified for stress. A position i ∈ Pstress∩Pheavy is represented by H́. It is

analogous for Ĺ. Figure 19 pictures a structures represented by LĹ. The substructure of LĹ in

Figure 20 is represented by L∗́

Figure 19 – Structure represented by LĹ

Plight Plight Pstress

Source: Own elaboration

Figure 20 – Structure represented by L∗́

Plight Pstress

Source: Own elaboration

Observe that L∗́ is a substructure of LĹ and LH́. Now, the following CNPL 2-sentence

φ2 is equivalent to φ1.

φ2 = ¬φLL∧¬φLĹ∧¬φĹL∧¬φĹĹ∧φ∗́.

The sentence φ2 shows an advantage of using the non-standard string model. Formu-

las can be simplified by using this model. As another example, let φ3 = ¬φLL∧¬φLĹ∧¬φLH ∧

¬φLH́ be a CNL 2-sentence. Clearly, ¬φL∗ is equivalent to φ3.



55

Now, we show how stress patterns can be obtained from positive data using non-

standard string structures. In the following, we show an algorithm that, given a sample of positive

strings P and a positive integer k, returns a CNPL k-sentence consistent with P.

The algorithm finds a CNPL sentence by building a set of permissible structures

Gper and a set of required structures Greq. The set Greq consists of substructures of size k that

are common to all strings in P. Then, all strings which have these substructures are required in

the language. Gper is the set of all substructures of size k of all strings in P. Therefore, structures

in Gper = allsubstructs(k)−Gper may be seen as forbidden substructures. The idea of learning

forbidden substructures from permissible ones was also presented in (HEINZ, 2010) and (HEINZ

et al., 2012). The overall procedure is defined in Algorithm 3. We finish this section by giving

an example to illustrate a run of Algorithm 3.

Algorithm 3:
Input: Sample P, length k
Gper←

⋃
w∈P substructsk(Aw)

Greq←
⋂

w∈P substructsk(Aw)
Gper← allsubstructs(k)−Gper
φ ←

∧
A ∈Greq

φA ∧
∧

B∈Gper
¬φB

return φ

Example 4.4.1. Let P = {ĹH́Ĺ, Ĺ, H́H́} and k = 2. Then,

substructs2(Ĺ) = {Ĺ,∗, ∗́};

substructs2(ĹH́Ĺ) = {ĹH́, ĹH, Ĺ∗, Ĺ∗́,LH́,LH,L∗,L∗́,∗H́,∗H,∗∗,∗∗́, ∗́H́, ∗́H, ∗́∗, ∗́∗́,

H́Ĺ, H́L, H́∗́, H́∗,HĹ,HL,H∗́,H∗, ∗́Ĺ, ∗́L,∗Ĺ,∗L,L,H, Ĺ, H́,∗, ∗́};

substructs2(H́H́) = {H́H́, H́H, H́∗, H́∗́,HH́,HH,H∗,H∗́,∗H́,∗H,∗∗,∗∗́, ∗́H́, ∗́H, ∗́∗, ∗́∗́,

H, H́,∗, ∗́}.

Clearly, Greq = {∗, ∗́}. Also, Gper = {LL,LĹ, ĹL, ĹĹ}. Therefore, given P and k, Algorithm 3

returns

φ = ¬φLL∧¬φLĹ∧¬φĹL∧¬φĹĹ∧φ∗∧φ∗́

which is equivalent to φ2.

In the following chapter, we present our first contribution in this work. We show

results on EF games for disjoint unions of linear orders.
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5 EF GAMES FOR DISJOINT UNIONS OF LINEAR ORDERS

In this chapter, we show conditions characterizing the winning strategies for both

players on disjoint unions of linear orders (DULO). DULO are appealing because they may be

used to model states of the elementary blocks world.A state of the elementary blocks world con-

sists of cubic blocks, with the same size and color, sitting on a table. Our result on characterizing

the winning strategies on DULO follows that of EF games on equivalence structures. First, we

turn to linear orders since they are a particular case of DULO. The results in this chapter were

published in (ROCHA et al., 2019).

5.1 EF Games for Linear Orders

A linear order is a structure L = 〈L,<L 〉 such that <L is a linear order on L. In

what follows, for a linear order L , let qL be the number of elements in the domain of L .

Also, let minL and maxL be the least element and the greatest element in L , respectively. For

linear orders L1 and L2, we assume that the elements in L1 and L2 are a1, ...,an and b1, ...,bm,

respectively. Also, we assume that ai < a j and bi < b j, for i < j. The results in this section are

well known in the literature (GRÄDEL et al., 2005).

If the Duplicator has a winning strategy in Gr(L1,L2), then (s)he has a winning

strategy in which (s)he responds to the least element of one linear order by the least element of

the other linear order. This also holds for the greatest element. For example, suppose that the

Spoiler chooses minL1 in L1. If this is the last round, then the Duplicator can select minL2 . If

there is at least one round left and the Duplicator chooses b in L2 such that minL2 < b, then the

Spoiler selects minL2 and wins the game.

Example 5.1.1. Let L1 and L2 be the linear orders below.

L1 : a1 < a2 < a3 < a4 < a5 < a6

L2 : b1 < b2 < b3 < b4 < b5 < b6 < b7

Let r = 3. The Spoiler has a winning strategy in Gr(L1,L2). Observe that qL1 6= qL2

and qL1 < 2r−1. The Spoiler’s first move is to choose b4 in L2. If the Duplicator chooses an

element distinct from a3 and a4 in L1, (s)he clearly loses in the last round. Then, the Duplicator

chooses a3 or a4 in L1. Both cases are analogous. Then, assume that the Duplicator chooses a3

in L1. Now, the Spoiler chooses b2 in L2. Then, the Duplicator must choose a1 or a2 in L1. If



57

the Duplicator chooses a1 in L1, then the Spoiler wins by selecting b1 in L2. If the Duplicator

chooses a2 in L1, then the Spoiler chooses b3 in L2 and wins the game. Figure 21 shows the

Spoiler’s winning strategy in G3(L1,L2).

Figure 21 – The Spoiler’s winning strategy in G3(L1,L2)

b4

b5

b6

a6

b6

b7b5

a5 a6

b2

b3b1

a2 a2

b3

b2

a1

a2 a3 a4 a5

Source: Own elaboration

By the symmetry in Figure 21, a EF game on linear orders may be seen as a

composition of simpler games. For an element a, we define L >a (L <a) as a substructure of L

such that {b ∈ L | b > a} ({b ∈ L | b < a}) is the domain of L >a (L <a).

Lemma 5.1.1. Let k be a positive integer, and L1, L2 be two linear orders. The Duplicator has

a winning strategy in Gk+1(L1,L2) if and only if the following two conditions hold:

• For every a ∈L1, there exists b ∈L2 such that the Duplicator has a winning strategy in

Gk(L
>a

1 ,L >b
2 ) and Gk(L

<a
1 ,L <b

2 );

• For every b ∈L2, there exists a ∈L1 such that the Duplicator has a winning strategy in

Gk(L
>a

1 ,L >b
2 ) and Gk(L

<a
1 ,L <b

2 ).

Proof. (⇒) Assume that the Duplicator has a winning strategy in Gk+1(L1,L2). By defini-

tion, for every a ∈L1, there is a b ∈L2 such that the Duplicator has a winning strategy in

Gk((L1,a),(L2,b)) and for every b ∈L2, there is an a ∈L1 such that the Duplicator has a win-

ning strategy in Gk((L1,a),(L2,b)). Then, the Duplicator can use the same winning strategies

in the simpler games Gk(L
>a

1 ,L >b
2 ), Gk(L

<a
1 ,L <b

2 ), Gk(L
>a

1 ,L >b
2 ) and Gk(L

<a
1 ,L <b

2 ).

(⇐) Now, we need to show that the Duplicator has a winning strategy in Gk+1(L1,L2). If the

Spoiler chooses a in L <a
1 , then the Duplicator uses his/her winning strategy in Gk(L

<a
1 ,L <b

2 ).
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There is such a b by hypothesis. If the Spoiler chooses a ∈L >a
1 , then the Duplicator uses his/her

winning strategy in Gk(L
>a

1 ,L >b
2 ). The case such that the Spoiler picks an element in L2 is

analogous.

Before presenting the main theorem, we give another example.

Example 5.1.2. Let L1 and L2 be the linear orders below.

L1 : a1 < a2 < a3 < a4 < a5 < a6 < a7

L2 : b1 < b2 < b3 < b4 < b5 < b6 < b7 < b8

Different from Example 5.1.1, qL1 6= qL2 , qL1 ≥ 2r−1, and qL2 ≥ 2r−1, for r = 3.

The Duplicator has a winning strategy in G3(L1,L2). If the Spoiler chooses b4 in L2, then the

Duplicator chooses a4 in L1. If the Spoiler chooses b6 in L2, then the Duplicator selects a6 in

L1. Clearly, there is one more round left, and the Duplicator wins this run of the game.

Theorem 5.1.1 (EF Games on LO). Let r be a natural number, L1 and L2 be linear orders.

The Spoiler has a winning strategy in Gr(L1,L2) if and only if qL1 6= qL2 and (qL1 < 2r−1 or

qL2 < 2r−1).

Proof. (⇒) By contrapositive, assume that qL1 = qL2 or (qL1 ≥ 2r−1 and qL2 ≥ 2r−1). If

qL1 = qL2 , then, the Duplicator’s winning strategy is the following. If the Spoiler chooses an

element ai in L1, then the Duplicator chooses bi in L2. The case such that the Spoiler chooses

bi in L2 is analogous.

For the other case, suppose that qL1 ≥ 2r− 1 and qL2 ≥ 2r− 1. We proceed by

induction on r. If r = 1, then qL1 ≥ 1,qL2 ≥ 1. It is trivial to see that the Duplicator has a

winning strategy.

As inductive hypothesis, we assume that if qL1 ≥ 2r − 1 and n ≥ 2r − 1, then

the Duplicator has a winning strategy in Gr(L1,L2). Now, assume that qL1 ≥ 2r+1− 1 and

n≥ 2r+1−1. Suppose that the Spoiler chooses a in L1. We need to show that the there exists

b in L2 such that the Duplicator has a winning strategy in Gr((L1,a),(L2,b)). We have three

cases to consider.

• Assume that qL <a
1 < 2r−1. Let b be an element in L2 such that d(minL1,a)= d(minL2,b).

Then, the Duplicator has a winning strategy in Gr(L
<a

1 ,L <b
2 ). Since qL <a

1 = qL <b
2 <
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2r−1, then qL >a
1 ≥ 2r−1 and qL >b

2 ≥ 2r−1. Then, by inductive hypothesis, the Dupli-

cator has a winning strategy in Gr(L
>a

1 ,L >b
2 ).

• The case such that qL >a
1 < 2r−1 is analogous.

• Suppose that qL <a
1 ≥ 2r−1 and qL >a

1 ≥ 2r−1. Since qL2 ≥ 2r+1−1, there exists b in

L2 such that qL <b
2 ≥ 2r−1 and qL >b

2 ≥ 2r−1. By inductive hypothesis, the Duplicator

has a winning strategy in Gr(L
>a

1 ,L >b
2 ) and Gr(L

<a
1 ,L <b

2 ).

The case such that the Spoiler chooses an element b in L2 is analogous. In order to conclude,

it holds that for every a ∈L1, there is b ∈L2 such that the Duplicator has a winning strategy

in Gr(L
>a

1 ,L >b
2 ) and Gr(L

<a
1 ,L <b

2 ). Also, it holds that for every b in L2, there is an a in

L1 such that the Duplicator has a winning strategy in Gr(L
>a

1 ,L >b
2 ) and Gr(L

<a
1 ,L <b

2 ). By

Lemma 5.1.1, it follows that the Duplicator has a winning strategy in Gr+1(L1,L2).

(⇐) Conversely, assume that qL1 6= qL2 and (qL1 < 2r−1 or qL2 < 2r−1). We show that the

Spoiler has a winning strategy in Gr(L1,L2) by induction on r. If r = 1, then qL1 = qL2 = 0. It

follows that the implication holds by vacuity.

As inductive step, we assume that qL1 6= qL2 and (qL1 < 2r+1−1 or qL2 < 2r+1−1).

Also, we assume, without loss of generality, that qL1 > qL2 . The Spoiler chooses a = a
d qL1

2 e

in L1. Then, the Duplicator selects an element b in L2. Then, qL >b
2 < 2r − 1 or qL <b

2 <

2r−1. Also, if d(minL1,a) = d(minL2,b), then d(a,maxL1) 6= d(b,maxL2) and qL >b
2 < 2r−1.

Similarly, if d(a,maxL1) = d(b,maxL2). Then, without loss of generality, we assume that

d(minL1,a) 6= d(minL2 ,b) and qL <b
2 < 2r − 1. By inductive hypothesis, the Spoiler has a

winning strategy in Gr(L
<a

1 ,L <b
2 ). Then, there exists a in L1 such that for every b in L2, the

Spoiler has a winning strategy in Gr(L
<a

1 ,L <b
2 ). Then, by Lemma 5.1.1, the Spoiler has a

winning strategy in Gr+1(L1,L2).

One should note that, in Theorem 5.1.1, the Spoiler’s winning strategy consists of

choosing, in his/her first round, an element from the linear order with more elements.

5.2 Disjoint Unions of Linear Orders and EF Games

Now, we define disjoint unions of linear orders. Assume that L1 and L2 are linear

orders such that L1∩L2 = /0. Then, L1]L2, the disjoint union of L1 and L2, is the structure

with domain L1∪L2 and <L1]L2=<L1 ∪<L2 . We represent a disjoint union of linear orders

W = 〈W,<W 〉 by disjoint unions (...(L1]L2)] ...]Ll). An example of disjoint unions of
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linear orders is given in Figure 22.

Figure 22 – A disjoint union of linear orders W

Source: Own elaboration

In (COOK; LIU, 2003), disjoint unions of linear orders model states of the elementary

blocks world. A state of the elementary blocks world consists of a set of cubic blocks, with the

same size and color, sitting on a table. The elementary blocks world is a simple and well-known

version of the blocks world. The blocks world is one of the most famous planning domains in

artificial intelligence. In artificial intelligence, automated planning is the process of automatically

constructing a sequence of actions that achieve a goal given some initial state (GHALLAB et

al., 2004). In the elementary blocks world domain, a robot can pick up a block and moves it to

another position, either onto the table or on the top of some other block (GUPTA; NAU, 1992).

In Figure 23, a state of the elementary blocks world is represented as disjoint unions of linear

orders.

Figure 23 – Elementary Blocks World

Table

Source: Own elaboration

Equivalence structures also can be seen as disjoint unions of structures. Our results

on DULO are inspired by the case of EF games on equivalence structures. In what follows,

for a disjoint union of linear orders W , let qW
t be the number of linear orders L in W such

that qL = t. Also, let qW
≥t be the number of linear orders L in W such that qL ≥ t. Given an
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element a in W1, L (a) denotes the linear order in W1 such that a is in the domain of L (a).

Given a disjoint union of linear orders W , let W (a1, ...,ak) be the disjoint union of linear orders

obtained by removing L (a1), ..., L (ak) from W .

Definition 5.2.1 (Disparity). Let r be a natural number, W1 and W2 be disjoint unions of linear

orders. We say that

• Gr(W1,W2) has a small disparity if there exists t such that 1≤ t < 2r−2, qW1
t 6= qW2

t , and

r ≥ min{qW1
t ,qW2

t }+ blog(d t+1
2 e)c+2.

• Gr(W1,W2) has a large disparity if there exists t such that 1≤ t ≤ 2r−1, qW1
≥t 6= qW2

≥t , and

r ≥ min{qW1
≥t ,q

W2
≥t }+ blog(t)c+1.

Lemma 5.2.1. Let r be a natural number, W1 and W2 be two disjoint unions of linear orders. If

Gr(W1,W2) has a small or large disparity, then the Spoiler has a winning strategy.

Proof. Suppose that qW1
t > qW2

t , and r ≥ qW2
t + blog(d t+1

2 e)c+2. The Spoiler has the following

winning strategy: first, she chooses elements a1,a2, ...,aqW2
t

from distinct linear orders of size

t in W1. The Duplicator must choose elements b1, ...,bqW2
t

in W2 from distinct linear orders

of size t. Next, the Spoiler chooses an element a from a distinct linear order L (a) of size t

in W1 such that qL (a)>a
< 2r−1−1 and qL (a)<a

< 2r−1−1. Then, the Duplicator must select

an element b from a linear order L (b) such that qL (b) 6= t. Then, the Spoiler has a winning

strategy in Gblog(d t+1
2 e)c+1(L (a)<a,L (b)<b) by Theorem 5.1.1. Furthermore, the Spoiler has a

winning strategy in Gblog(d t+1
2 e)c+2(L (a),L (b)). Therefore, the Spoiler has a winning strategy

in Gr(W1,W2).

Now, suppose that qW1
≥t > qW2

≥t , and r ≥ qW2
≥t + blog(t)c+ 1. The Spoiler has the

following winning strategy: first, she chooses elements a1,a2, ...,aqW2
≥t

from distinct linear orders

of size at least t in W1. The Duplicator must choose elements b1, ...,bqW2
≥t

in W2 from distinct

linear orders of size at least t. Next, by Theorem 5.1.1, the Spoiler uses her winning strategy in

Gblog(t)c+1(L1,L2) such that L is a linear order in W1, qL1 ≥ t, qL2 < t. Then, the Spoiler has

a winning strategy in Gr(W1,W2).

Example 5.2.1. Let W1 and W2 be disjoint unions of linear orders such that W1 =L1]L2]L3,

W2 = L2]L3, qL1 = 1, qL2 = 2, and qL3 = 3. Figure 24 shows W1 and W2. Then, G2(W1,W2)

has a small disparity because, for t = 1, 1 ≤ t < 2r− 2, qW1
t = 1, qW2

t = 0, qW1
t 6= qW2

t , and

r ≥ 0+ blog2(0)c+2. Figures 25 and 26 depict the Spoiler’s winning strategy.
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Figure 24 – EF game G2(W1,W2)

W1 W2

Source: Own elaboration

Figure 25 – First round of G2(W1,W2)

W1 W2

W1 W2

Source: Own elaboration

Figure 26 – Second round of G2(W1,W2)

W1 W1

Source: Own elaboration

Example 5.2.2. Let W1 =L1]L2 and W2 =L1]L1 such that qL1 = 2 and qL2 = 3. Figure 27

represents W1 and W2. Then, G2(W1,W2) has a large disparity because, for t = 3, t ≤ 8, qW1
≥t = 1

e qW2
≥t = 0, and r ≥ 0+ blog(t)c+1. Figures 28 and 29 depict the Spoiler’s winning strategy.



63

Figure 27 – EF game G2(W1,W2)

W1 W1

Source: Own elaboration

Figure 28 – First round of G2(W1,W2)

W1 W2

W1 W2

Source: Own elaboration

Figure 29 – Second round of G2(W1,W2)

W1 W2

Source: Own elaboration

In Lemma 5.2.1, different from the proof of Theorem 5.1.1, the Spoiler has a winning strategy

which consists of choosing an element from a linear order with fewer elements. Then, first, we

need the following lemma in order to guarantee a winning strategy for the Duplicator.

Lemma 5.2.2. Let r be a natural number, L1 and L2 be linear orders.
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• If qL1 ≥ 2r−1 and the Spoiler chooses an element from L1 in her first round, then the

Duplicator has a winning strategy in Gr(L1,L2) if qL2 ≥ 2r−1.

• If qL1 = 2r−2 and the Spoiler chooses an element from L1 in her first round, then the

Duplicator has a winning strategy in Gr(L1,L2) if qL2 ≥ 2r−2.

• If qL1 < 2r−2 and the Spoiler chooses an element from L1 in her first round, then the

Duplicator has a winning strategy in Gr(L1,L2) if qL2 = qL1 .

Proof. For the first and third part of the lemma, the Duplicator has a winning strategy as in

Theorem 5.1.1. To prove the second part of the lemma, assume that qL2 ≥ 2r−2. Let a ∈ L1

be the element chosen by the Spoiler. Then, qL >a
1 ≥ 2r−1−1 or L <a

1 ≥ 2r−1−1. Assume that

qL >a
1 ≥ 2r−1− 1. The Duplicator chooses an element b ∈ L2 such that qL >b

2 ≥ 2r−1− 1 and

qL <b
2 = qL <a

2 . Then, the Duplicator has a winning strategy in Gr−1(L
>a

1 ,L >b
2 ). Therefore, the

Duplicator has a winning strategy in r rounds.

Theorem 5.2.1 (EF Games on DULO). Let r be a natural number, W1 and W2 be disjoint unions

of linear orders. The Spoiler has a winning strategy in Gr(W1,W2) iff Gr(W1,W2) has a small or

large disparity.

Proof. One direction is Lemma 5.2.1. Conversely, assume that Gr(W1,W2) has neither small nor

large disparity. Let (a1,b1), ...,(ak,bk) be such that ai ∈W1, bi ∈W2 for i ∈ {1, ...,k}, and if the

Spoiler has chosen ai (bi), then the Duplicator has selected bi (ai). We show that the Duplicator

has a winning strategy by induction on k. Let W ′
1 = W1(a1, ...,ak) and W ′

2 = W2(b1, ...,bk). The

following are our inductive hypotheses:

(i) For all i, j ≤ k, ai < a j iff bi < b j.

(ii) For all i≤ k, qL (ai) ≥ 2r−i−1, then qL (bi) ≥ 2r−i−1.

(iii) For all i≤ k, qL (ai) = 2r−i−2, then qL (bi) ≥ 2r−i−2.

(iv) For all i≤ k, qL (ai) < 2r−i−2, then qL (bi) = qL (ai).

(v) Gr−k(W
′

1 ,W
′

2 ) has neither small nor large disparity.

If the Spoiler chooses an element ak+1 ∈W1 such that ai < ak+1, then the Duplicator

responds by bk+1 such that bi < bk+1. The case where ak+1 < ai is analogous. Note that, by

inductive hypotheses (ii), (iii), (iv), the Duplicator can select such an element. Now, assume

ak+1 ∈W1 is in a linear order L (ak+1) different from L (ai), for i ≤ k. Suppose qL (ak+1) ≥

2r−k−1. By contradiction, assume that any linear order L in W ′
2 is such that |L| < 2r−k−1.

Then, Gr−k(W
′

1 ,W
′

2 ) would have a large disparity as witnessed by t = 2r−k−1. Therefore, the
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Duplicator can choose bk+1 in W2 such that L (bk+1) is different from L (bi), for i ≤ k, and

qL (bk+1) ≥ 2r−k−1. Now, assume that qL (ak+1) = 2r−k−2. We assume, for the sake of reaching

a contradiction, that any linear order L in W ′
2 is such that |L|< 2r−k−2. Then, Gr−k(W

′
1 ,W

′
2 )

would have a large disparity as witnessed by t = 2r−k−2. Therefore, there exists bk+1 in W2 such

that L (bk+1) is different from L (bi), for i≤ k, and qL (bk+1) ≥ 2r−k−2. Duplicator chooses

bk+1. Finally, suppose that qL (ak+1) < 2r−k−2. Then, bk+1 must exist in W2 such that L (bk+1)

is different from L (bi), for i ≤ k, and qL (bk+1) = qL (ak+1). Otherwise Gr−k(W
′

1 ,W
′

2 ) would

have a small disparity as witnessed by t = qL (ak+1). Then, the Duplicator chooses bk+1. The

cases where the Spoiler chooses an element from W2 are analogous.

Now, we check each of the inductive hypotheses on (a1,b1), ...,(ak+1,bk+1). Clearly,

inductive hypothesis (i) holds. Now, assume that qL (ak+1) ≥ 2r−k−1−1. If qL (ak+1) ≥ 2r−k−1,

then the strategy we describe ensures that qL (bk+1) ≥ 2r−k− 1. If qL (ak+1) = 2r−k− 2, then

the strategy ensures that qL (bk+1) ≥ 2r−k−2. Finally, if qL (ak+1) < 2r−k−2, then qL (bk+1) =

qL (ak+1). Clearly, in all cases qL (bk+1) ≥ 2r−k−1−1. Now, assume that qL (ak+1) = 2r−k−1−2.

Obviously, qL (ak+1) < 2r−k−2. Then, qL (bk+1) = qL (ak+1), and qL (bk+1) ≥ 2r−k−1−2. At last,

assume qL (ak+1) < 2r−k−1−2. Then, qL (ak+1) < 2r−k−2 and qL (bk+1) = qL (ak+1). Therefore,

qL (bk+1) < 2r−k−1−2.

Now, it remains to prove that (v) holds. Consider W ′′
1 = W1(a1, ...,ak+1) and W ′′

2 =

W2(b1, ...,bk+1). By contradiction, assume that Gr−k−1(W
′′

1 ,W ′′
2 ) has a small disparity. Assume

t < 2r−k−1−2 such that qW ′′
1

t > qW ′′
2

t and r− k−1≥ min{qW ′′
1

t ,qW ′′
2

t }+ blog(d t+1
2 e)c+2. Then,

t < 2r−k−2. If qW ′
1

t = qW ′
2

t , then qL (bk) = t and, as t < 2r−k−2, qL (ak) = t. Therefore, qW ′
1

t 6=

qW ′
2

t . Thus, there exists t < 2r−k such that qW ′
1

t 6= qW ′
2

t , and r−k≥min{qW ′
1

t ,qW ′
2

t }blog(d t+1
2 e)c+

2 because min{qW ′
1

t ,qW ′
2

t } ≤ min{qW ′′
1

t ,qW ′′
2

t }+1. Then, Gr−k−1(W
′′

1 ,W ′′
2 ) do not have a small

disparity. By an analogous way, Gr−k−1(W
′′

1 ,W ′′
2 ) do not have a large disparity. Finally, the

Duplicator has a winning strategy because (i) holds at each round.

Given disjoint unions of linear orders W1 and W2, by Theorem 5.2.1, the minimum number of

rounds such that the Spoiler has a winning strategy can be found as follows.

MinRound(W1,W2) =
min(min{min(qW1

t ,qW2
t )+ blog(d t+1

2 e)c+2 | qE1
t 6= qE2

t },

min{min(qE1
≥t ,q

E2
≥t)+ blog(t)c+1 | qE1

≥t 6= qE2
≥t}).

As in the case of equivalence structures, it takes time O((|W1|+ |W2|)2) to compute qW1
t , qW2

t ,

qW1
≥t , qW2

≥t , for t ∈ {1, ...,2r−1}. The rest of the computation of MinRound(W1,W2) takes linear

time. Therefore, the overall computation of MinRound(W1,W2) takes time O((|W1|+ |W2|)2).
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In the following chapter, we use the above results to solve the problem of synthesis

of minimum quantifier rank sentences for disjoint unions of linear orders. We also show results

on the synthesis problem for the other classes of structures we are considering in this work.
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6 SYNTHESIS OF MINIMUM QUANTIFIER RANK SENTENCES

An algorithm to deal with the problem of finding a first-order sentence of minimum

quantifier rank that distinguishes two sets of structures over an arbitrary vocabulary is presented

in (KAISER, 2012). In this chapter, we study a variation of the problem introduced in (KAISER,

2012) when the class of structures is fixed. We call this problem the Synthesis Problem. We

consider the following classes of structures: monadic structures, equivalence structures, disjoint

unions of linear orders, and strings represented by finite structures with a built-in successor

relation and a finite number of pairwise disjoint unary predicates. First, we introduce distin-

guishability sentences based on necessary and sufficient conditions for a winning strategy in an

Ehrenfeucht–Fraïssé game. We also show that any first-order sentence is equivalent to a Boolean

combination of distinguishability sentences. Using these results, we define a polynomial time

algorithm for the Synthesis Problem. The results in this chapter were published in (ROCHA et

al., 2019) and (ROCHA et al., 2018a).

6.1 Synthesis for a Fixed Class of Structures

For a fixed class of structures C , a sample S = (P,N) consists of two finite sets

P,N ⊆ C such that for each A ∈ P, B ∈ N, A and B are not isomorphic. Intuitively, P contains

positively classified structures and N contains negatively classified structures. A sentence ϕ is

consistent with a sample S = (P,N) if P⊆MOD(ϕ) and N∩MOD(ϕ) = /0. Therefore, ϕ holds

in all structures in P and does not hold in any structure in N. The size of the sample is the sum

of the sizes of all structures in the sample. In what follows, we formally define the synthesis

problem.

Definition 6.1.1 (Synthesis Problem). Let C be a fixed class of structures. Given a sample S, the

problem consists of finding a first-order sentence ϕ of minimum quantifier rank that is consistent

with S.

When the class of structures is not fixed, the decision version of the synthesis problem, i.e., given

r, determining whether there exists a first-order sentence of quantifier rank r and consistent with

the sample, is hard. This problem is PSPACE-complete even when P and N are singleton sets

(PEZZOLI, 1998).

It is well known that every finite relational structure can be characterized in first-
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order logic up to isomorphism. In other words, for every finite structure A , there is a first-order

sentence ϕA such that for all structures B we have B |= ϕA if and only if A and B are

isomorphic (Proposition 2.1.1 from (EBBINGHAUS; FLUM, 1995)). Since we are considering

a fixed vocabulary and samples are finite sets of finite relational structures, one can easily build

in polynomial time a first-order sentence consistent with a given sample. For example, let

τ = {P,R} be a fixed vocabulary such that P has arity one, and R has arity two. Clearly, the size

of ϕA is O(n2). Also, it takes polynomial time to check whether A |= ψ when ψ is atomic.

Therefore, we build ϕA in polynomial time. Unfortunately, the quantifier rank of ϕA is the

number of elements in the domain of A plus one. Therefore, we can not use these formulas in a

solution to the synthesis problem.

It is easy to build a minimum quantifier rank first-order sentence that consists of a

disjunction of Hintikka formulas and that is consistent with a given sample. Let P = {M1}, N =

{M2,M3}, r = max{MinRound(M1,M2),MinRound(M1,M3)}, and S = (P,N), for example.

For the classes of structures we are considering, r can be found in polynomial time in the size of

the sample. Then, the sentence ϕr
M1

is a first-order sentence of minimum quantifier rank that is

consistent with S. Unfortunately, the size of ϕr
M1

is exponential in the size of S. Therefore, ϕr
M1

can not be built in polynomial time in the size of the sample. This motivates the introduction of

the distinguishability sentences in what follows.

6.2 Distinguishability Sentences

In this section, we define the distinguishability sentences for structures A , B in a

class of structures C , and a natural number r. The distinguishability sentences hold in A , do

not hold in B, and they have quantifier rank at most r. We define the set of distinguishability

sentences Φr
A ,B in a way such that the Spoiler has a winning strategy in Gr(A ,B) if and only

if there exists ϕ ∈Φr
A ,B. This result follows from Theorem 2.3.1. The first step is to show that

the conditions characterizing winning strategies for the Spoiler can be expressed by first-order

sentences of size polynomial in the size of the structures. This result is important to guarantee

that our algorithm runs in polynomial time.
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6.2.1 Distinguishability Sentences for MS

First, we define |Pi| ≥ n, for i ∈ {1, ...,k + 1}, as a sentence describing that the

number of elements in Pi is at least n:

|Pi| ≥ n := ∃x1...∃xn(
n∧

l 6= j

xl 6= x j∧
n∧

l=1

Pi(xl)).

Clearly, qr(|Pi| ≥ n) = n, the size of |Pi| ≥ n is O(n2), and A |= |Pi| ≥ n iff |PA
i | ≥ n.

We also define abbreviations |Pi| ≤ n := ¬|Pi| ≥ n+1 and |Pi|= n := |Pi| ≥ n∧ |Pi| ≤ n. Now,

we can define the distinguishability sentences for monadic structures.

Definition 6.2.1 (Distinguishability Sentences for MS). Let M1, M2 be monadic structures. Let

r be a natural number.

Φ
r
M1,M2

:=
{|Pi|< m | 1≤ i≤ k+1, |PM1

i |< |P
M2
i |, |P

M1
i |+1≤ m≤ min(r, |PM2

i |)}∪

{|Pi| ≥ m | 1≤ i≤ k+1, |PM1
i |> |P

M2
i |, |P

M2
i |+1≤ m≤ min(r, |PM1

i |)}.

Given M1, M2, and r, the size of a sentence ϕ ∈Φr
M1,M2

is O((|M1|+ |M2|)2), and |Φr
M1,M2

| is

O(k(|M1|+ |M2|)). Now, we give an example of the distinguishability sentences for MS. Then,

we show results ensuring adequate properties of the distinguishability sentences.

Example 6.2.1. Let M1 = 〈M1,P
M1
1 〉 and M2 = 〈M2,P

M2
1 〉 such that |PM1

1 | = 2, |PM1
2 | = 3,

|PM2
1 | = 2, |PM1

2 | = 2, and r = 4. Then, |P2| ≥ 3 ∈ Φr
M1,M2

because |PM1
2 | > |PM2

2 | and, for

m = 3, |PM2
2 |+1≤ m≤ min(r, |PM1

2 |). Also, observe that |P2| ≥ 4 6∈Φr
M1,M2

since, for m = 4,

m > min(r, |PM1
2 |). Finally, |P1| ≥ 2 6∈Φr

M1,M2
because |PM1

1 |= |PM2
1 |.

Lemma 6.2.1. Let M1, M2 be structures in MS, and r be a natural number. Let ϕ ∈Φr
M1,M2

.

Then, M1 |= ϕ and M2 6|= ϕ .

Proof. Suppose ϕ = |Pi| < m. Then, |PM1
i | < |PM2

i | and |PM1
i |+1 ≤ m ≤ min(r, |PM2

i |). The-

refore, M1 |= ϕ because |PM1
i | < m. Clearly, m ≤ |PM2

i |. Then, M1 6|= ϕ . The case in which

ϕ = |Pi| ≥ m is similar.

Lemma 6.2.2. Let M1, M2 be structures in MS, and r be a natural number. Let ϕ ∈Φr
M1,M2

.

Then, qr(ϕ)≤ r.

Proof. Let ϕ = |Pi|E m where E ∈ {<,≥}. Hence, qr(ϕ) = m. As m≤ r, then qr(ϕ)≤ r.

Now, we show that, over MS, any first-order sentence is equivalent to a Boolean combination of

distinguishability sentences. First, we define formulas equivalent to Hintikka formulas over MS.
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Lemma 6.2.3. |= ϕr
M ↔

∧k+1
i=1 ϕ

r,i
M such that

ϕ
r,i
M :=

 |Pi|= |PM
i |, if |PM

i |< r

|Pi| ≥ r, otherwise.

Proof. Let M ′ |= ϕr
M . Therefore, the Duplicator has a winning strategy in Gr(M ,M ′). Then,

for all i, |PM
i |= |PM ′

i | or (|PM
i | ≥ r and |PM ′

i | ≥ r). Let i such that |PM
i |< r. Then, |PM

i |=

|PM ′
i |. Therefore, M ′ |= ϕ

r,i
M . Let i such that |PM

i | ≥ r. Then, |PM ′
i | ≥ r. Therefore, M ′ |= ϕ

r,i
M .

Finally, M ′ |=
∧k+1

i=1 ϕ
r,i
M . Conversely, let M ′ |=

∧k+1
i=1 ϕ

r,i
M . Then, M ′ |= ϕ

r,i
M , for all i. If

ϕ
r,i
M = (|Pi| = |PM

i |), then |PM
i | = |PM ′

i |. If ϕ
r,i
M = |Pi| ≥ r, then (|PM

i | ≥ r and |PM ′
i | ≥ r).

Then, for all i, |PM
i |= |PM ′

i | or (|PM
i | ≥ r and |PM ′

i | ≥ r). Therefore, M ′ |= ϕr
M .

Now, we need the following lemmas.

Lemma 6.2.4. Let r be a natural number and M be a structure in MS. There exists a set of

monadic structures Vi such that ϕ
r,i
M is equivalent to a Boolean combination of sentences in⋃

M ′∈Vi
Φr

M ,M ′ .

Proof. If ϕ
r,i
M = |Pi| ≥ r, then |PM

i | ≥ r. Let Vi = {M ′} such that |PM ′
i | = r− 1. Then,

|Pi| ≥ r ∈Φr
M ,M ′ because |PM

i |> |PM ′
i | and m = r. If ϕ

r,i
M = (|Pi|= |PM

i |), then |PM
i |< r. Let

Vi = {M1,M2} such that |PM1
i |= |PM

i |−1 and |PM2
i |= |PM

i |+1. Then, |Pi| ≥ |PM
i | ∈Φr

M ,M1

because |PM
i |> |P

M1
i | and m = |PM

i |. Also, |Pi|< |PM
i |+1 ∈Φr

M ,M2
because |PM

i |< |P
M2
i |

and m = |PM
i |+1. Therefore, ϕ

r,i
M is equivalent to |Pi| ≥ |PM

i |∧ |Pi|< |PM
i |+1.

Lemma 6.2.5. Let r be a natural number and M be a structure in MS. There exists a set of

monadic structures V such that ϕr
M is a Boolean combination of sentences in

⋃
M ′∈V Φr

M ,M ′ .

Proof. By Lemma 6.2.3, |= ϕr
M ↔

∧k+1
i=1 ϕ

r,i
W . Let V =

⋃k+1
i=1 Vi such that Vi is as in Lemma 6.2.4.

It follows that, ϕr
M is equivalent to a Boolean combination of sentences in

⋃
M ′∈V Φr

M ,M ′ .

By Theorem 2.3.2, any first-order sentence is a disjunction of Hintikka formulas. Thus, the fol-

lowing result states that, over MS, any first-order sentence is equivalent to a Boolean combination

of distinguishability sentences.

Theorem 6.2.1. Let ϕ be a first-order sentence over MS. Then, there exists two sets U , V

of monadic structures such that ϕ is equivalent to a Boolean combination of sentences in⋃
M∈U,M ′∈V Φr

M ,M ′ .
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Proof. Let r such that qr(ϕ) = r. From Theorem 2.3.2 it follows that |= ϕ ↔ ϕr
M1
∨ ...ϕr

Ms
.

Let U = {M1, ...,Ms}. In accord to Lemma 6.2.5, let Vj be such that ϕr
M j

is equivalent

to a Boolean combination of sentences in
⋃

M ′∈V j
Φr

M j,M ′ . Therefore, ϕ is equivalent to a

Boolean combination of sentences in
⋃s

j=1(
⋃

M ′∈V j
Φr

M j,M ′) and
⋃s

j=1(
⋃

M ′∈V j
Φr

M j,M ′) ⊆⋃
M∈U,M ′∈V Φr

M ,M ′ .

6.2.2 Distinguishability Sentences for ES

Now, we deal with the distinguishability sentences for equivalence structures. First, we define

the following formulas:

ϕq≥t≥p = ∃x1...∃xp(
∧
l 6= j

¬E(xl,x j)∧
p∧

k=1

∃y2...∃yt(
t∧

j=2

y j 6= xk∧
∧
l< j

yl 6= y j∧
t∧

j=2

E(y j,xk))).

ϕqt≥p :=
∃x1...∃xp(

∧
l< j¬E(xl,x j)∧

∧p
k=1∃y2...∃yt(

∧t
j=2 y j 6= xk∧

∧
l 6= j yl 6= y j∧∧t

i=2 E(yi,xk)∧∀z(E(z,xk)→ (z = xk∨
∨t

j=2 z = y j)))).

Sentences of the form ϕq≥t≥p hold on equivalence structures such that the number

of equivalence classes of size at least t is at least p. Each variable xk represents an element

in a distinct equivalence class. Variables yi guarantee that a class has at least t elements.

Formulas ϕqt≥p are true when the number of equivalence classes of size t is at least p. Variable

z forces that any element from an equivalence class represented by an element xk is xk or

one of yi for i ∈ {2, ..., t}. We also define ϕqt<p := ¬ϕqt≥p and ϕq≥t<p := ¬ϕq≥t≥p. Clearly,

qr(ϕq≥t≥p) = t + p−1 and qr(ϕqt≥p) = t + p. Also, the size of ϕq≥t≥p and ϕqt≥p is O((p+ t)3).

Next, we define the distinguishability sentences for equivalence structures.

Definition 6.2.2 (Distinguishability Sentences for ES). Let E1, E2 be equivalence structures and

r be a natural number.

Φ
r
E1,E2

:=

{ϕqt<m | 1≤ t ≤ r,qE1
t < qE2

t ,qE1
t +1≤ m≤ min(r− t,qE2

t )}∪

{ϕqt≥m | 1≤ t ≤ r,qE1
t > qE2

t ,qE2
t +1≤ m≤ min(r− t,qE1

t )}∪

{ϕq≥t<m | 1≤ t ≤ r,qE1
≥t < qE2

≥t ,q
E1
≥t +1≤ m≤ min(r− t +1,qE2

≥t)}∪

{ϕ≥qt≥m | 1≤ t ≤ r,qE1
≥t > qE2

≥t ,q
E2
≥t +1≤ m≤ min(r− t +1,qE1

≥t)}.

For equivalence structures E1, E2, and a natural number r, the size of a sentence ϕ ∈Φr
E1,E2

is

O((|E1|+ |E2|)3). Furthermore, |Φr
E1,E2
| is O((|E1|+ |E2|)2). In what follows, we give examples

of the distinguishability sentences for equivalence structures.
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Example 6.2.2. Let E1 and E2 be equivalence structures such that qE1
2 = 3 and qE2

2 = 2, and

r = 5. Then, ϕq2≥3 ∈Φr
E1,E2

because qE1
2 > qE2

2 and, for m = 3, qE2
2 +1≤ m≤ min(r−2,qE1

2 ).

Now, we show results ensuring that the distinguishability sentences for equivalence structures

hold in the adequate equivalence structures and have quantifier rank at most r.

Lemma 6.2.6. Let E1,E2 be equivalence structures, and r be a natural number. Let ϕ ∈Φr
E1,E1

.

Then, E1 |= ϕ and E2 6|= ϕ .

Proof. Suppose ϕ = ϕqt<m. Then, qE1
t < qE2

t and qE1
t +1≤ m≤ min(r− t,qE2

t ). Then, E1 |= ϕ

because qE1
t < m. Also, as m≤ qE2

t , E2 6|= ϕ . The other cases are analogous.

Lemma 6.2.7. Let E1,E2 be equivalence structures, and r be a natural number. Let ϕ ∈Φr
E1,E2

.

Then, qr(ϕ)≤ r.

Proof. If ϕ =ϕqt.m where .∈{<,≥}, then qr(ϕ)= t+m. As m≤ r−t, then qr(ϕ)≤ t+r−t =

r. If ϕ = ϕq≥t.m, then qr(ϕ) = t+m−1. Therefore, as m≤ r− t+1, qr(ϕ)≤ t+r− t+1−1 =

r.

Now, we show that, over ES, any first-order sentence is equivalent to a Boolean combination of

distinguishability sentences. First, we need the following lemmas.

Lemma 6.2.8. |= ϕr
E ↔ (

∧r
t=1 ϕ

r,qt
E ∧

∧r
t=1 ϕ

r,q≥t
E ) such that

ϕ
r,qt
E :=

 ϕqt=qE
t
, if qE

t + t +1≤ r

ϕqt>r−t−1, otherwise.

ϕ
r,q≥t
E :=

 ϕq≥t=qE
≥t
, if qE

≥t + t ≤ r

ϕq≥t>r−t , otherwise.

Proof. Let E ′ |= ϕr
E . Then, the Duplicator has a winning strategy in Gr(E ,E ′). Then, for all t,

qE
t = qE ′

t or r < min{qE
t ,q

E ′
t }+ t +1, and for all t, qE

≥t = qE ′
≥t or r < min{qE

≥t ,q
E ′
≥t}+ t. First, let

t such that r < qE
t + t +1. Then, r < qE ′

t + t +1 because qE
t = qE ′

t or r < min{qE
t ,q

E ′
t }+ t +1.

Besides, ϕ
r,qt
E = ϕqt>r−t−1. Therefore, E ′ |= ϕ

r,qt
E . If r ≥ qE

t + t +1, then qE
t = qE ′

t . Therefore,

E ′ |= ϕqt=qE
t

. The case for qE
≥t is analogous. Then, E ′ |= (

∧r
t=1 ϕ

r,qt
E ∧

∧r
t=1 ϕ

r,q≥t
E ). Conversely,

suppose that E ′ |= (
∧r

t=1 ϕ
r,qt
E ∧

∧r
t=1 ϕ

r,q≥t
E ). Let t such that ϕ

r,qt
E = ϕqt>r−t−1. Then, r < qE

t +t+

1 and r < qE ′
t +t+1. Therefore, r < min{qE

t ,q
E ′
t }+t+1. Let t such that ϕ

r,qt
E = ϕqt=qE

t
. Clearly,

qE
t = qE ′

t . The case for ϕ
r,q≥t
E is analogous. Then, for all t, qE

t = qE ′
t or r < min{qE

t ,q
E ′
t }+ t +1,

and for all t, qE
≥t = qE ′

≥t or r < min{qE
≥t ,q

E ′
≥t}+ t. Therefore, E ′ |= ϕr

E .
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Lemma 6.2.9. Let r be a natural number, and E be an equivalence structure. There exists sets

of equivalence structures Vt , V≥t such that ϕ
r,qt
E , ϕ

r,q≥t
E are equivalent to a Boolean combination

of sentences in
⋃

E ′∈Vt
Φr

E ,E ′ and
⋃

E ′∈V≥t
Φr

E ,E ′ , respectively.

Proof. If ϕ
r,qt
E = ϕqt>r−t−1, then qE

t ≥ r− t. Let Vt = {E ′} such that qE ′
t = r− t − 1. Then,

ϕqt≥r−t ∈Φr
E ,E ′ because r− t−1+1≤ r− t ≤min(r− t,qE

t ). If ϕ
r,qt
E = ϕqt=qE

t
, then qE

t < r− t.

Vt = {E1,E2} such that qE1
t = qE

t − 1 and qE2
t = qE

t + 1. Then, ϕqt≥qE
t
∈ Φr

E ,E1
because, for

m = qE
t , qE1

t ≤ m≤ min(r− t,qE
t ) and qE

t < r− t. Also, ϕqt<qE
t +1 ∈Φr

E ,E2
as long as qE

t +1≤

min(r− t,qB
t ) and qE

t +1≥ r− t. For ϕ
r,q≥t
E , we define V≥t in an analogous way.

Lemma 6.2.10. Let r be a natural number, and E be an equivalence structure. There exists a set

of equivalence structures V such that ϕr
E is a Boolean combination of sentences in

⋃
E ′∈V Φr

E ,E ′ .

Proof. This proof can be directly adapted from Lemma 6.2.5.

The following result states that, over equivalence structures, any first-order sentence is equivalent

to a Boolean combination of distinguishability sentences.

Theorem 6.2.2. Let ϕ be a first-order sentence over ES. Then, there exists a natural number r,

and two sets U, V of equivalence structures such that ϕ is equivalent to a Boolean combination

of sentences in
⋃

E∈U,E ′∈V Φr
E ,E ′ .

Proof. This proof can be directly adapted from Theorem 6.2.1.

6.2.3 Distinguishability Sentences for DULO

Now, we define the distinguishability sentences for disjoint unions of linear orders.

First, we define the following formulas:

ϕ
<x,>y
≥n =


∃z(z = z), se n = 0

∃z(z < x∧ y < z), se n = 1

∃z(z < x∧ y < z∧ϕ
<z,>y
≥b n−1

2 c
∧ϕ

<x,>z
≥b n

2c
), c.c.

ϕ
<x
≥n =


∃y(y = y), se n = 0

∃y(y < x), se n = 1

∃y(y < x∧ϕ
<y
≥b n−1

2 c
∧ϕ

<x,>y
≥b n

2 c
), c.c.



74

ϕ
>x
≥n =


∃y(y = y), se n = 0

∃y(x < y), se n = 1

∃y(y > x∧ϕ
>y
≥b n−1

2 c
∧ϕ

<y,>x
≥b n

2c
), c.c.

ϕqt≥p := ∃x1...∃xp(
∧
l 6= j

(xl 6= x j∧¬(xl < x j)∧¬(xl > x j))∧
p∧

k=1

(ϕ<xk
=b t−1

2 c
∧ϕ

>xk
=b t

2 c
)).

ϕq≥t≥p = ∃x1...∃xp(
∧
l 6= j

(xl 6= x j∧¬(xl < x j)∧¬(xl > x j))∧
p∧

k=1

(ϕ<xk
≥b t−1

2 c
∧ϕ

>xk
≥b t

2c
)).

Formulas of the form ϕ?x
≥n such that ? ∈ {<,>} and ϕ

<x,>y
≥n are used in the definition

of ϕqt≥p and ϕq≥t≥p. We also define abbreviations ϕ∗x<n := ¬ϕ∗x≥n, ϕ∗x≤n := ¬ϕ∗x≥n+1, and ϕ∗x=n :=

ϕ≥n∧ϕ≤n, for ∗ ∈ {<,>}. These formulas are defined recursively in order to obtain the adequate

quantifier rank. The recursive definitions can all be simplified to direct definitions with higher

quantifier ranks, but, in this case, we can not guarantee that the quantifier rank is minimum.

Note that qr(ϕ∗x≥n) = blog2(n)c+ 1. Sentences of the form ϕqt≥p express that the number qt

of linear orders of size t is at least p. Each variable xk represents an element in a linear order.

Analogously, ϕq≥t≥p holds in disjoint unions of linear orders such that the number q≥t of linear

orders of size at least t is at least p. We also define ϕqt<p := ¬ϕqt≥p, ϕq≥t<p := ¬ϕq≥t≥p. Finally,

regarding the quantifier rank, qr(ϕqt≥p) = p+blog2(b t
2 +1c)c+1 = p+blog2(d t+1

2 e)c+1, and

qr(ϕq≥t≥p) = p+blog2(t)c. Furthermore, the size of ϕqt≥p and ϕq≥t≥p is O((p+n)2). Now, we

define the distinguishability sentences for disjoint unions of linear orders.

Definition 6.2.3 (Distinguishability Sentences for DULO). Let W1, W2 be disjoint unions of

linear orders and r be a natural number.

Φ
r
W1,W2

:=

{ϕqt<p | t < 2r−2,qW1
t < qW2

t ,qW1
t +1≤ p≤ min(qW2

t ,r−blog2(d t+1
2 e)c−1)}∪

{ϕqt≥p | t < 2r−2,qW2
t < qW1

t ,qW2
t +1≤ p≤ min(qW1

t ,r−blog2(d t+1
2 e)c−1)}∪

{ϕq≥t<p | t ≤ 2r−1,qW1
≥t < qW2

≥t ,q
W1
t +1≤ p≤ min(qW2

t ,r−blog2(t)c)}∪

{ϕq≥t≥p | t ≤ 2r−1,qW2
≥t < qW1

≥t ,q
W2
t +1≤ p≤ min(qW1

t ,r−blog2(t)c)}.

Given W1, W2, and r, the size of a sentence ϕ ∈ Φr
W1,W2

is O((|W1|+ |W2|)2). Since t, p ≤

|W1|+ |W2|, |Φr
W1,W2

| is O((|W1|+ |W2|)2). Now, we show results ensuring adequate properties

of the distinguishability sentences for disjoint unions of linear orders. These results can be

directly adapted from Lemma 6.2.6 and Lemma 6.2.7.
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Lemma 6.2.11. Let ϕ ∈Φr
W1,W2

. Then, W1 |= ϕ and W2 6|= ϕ .

Lemma 6.2.12. Let ϕ ∈Φr
W1,W2

. Then, qr(ϕ)≤ r.

Now we show that, over DULO, any first-order sentence is equivalent to a Boolean combination

of distinguishability sentences. The following results can be directly adapted from Lemma 6.2.8,

Lemma 6.2.9, Lemma 6.2.10, and Theorem 6.2.2.

Lemma 6.2.13. |= ϕr
W ↔ (

∧2r−3
t=1 ϕ

r,qt
W ∧

∧2r−1
t=1 ϕ

r,q≥t
W ) such that

ϕ
r,qt
W :=

 ϕqt=qW
t
, if qW

t +clog2(d t+1
2 e)c+2≤ r

ϕqt>r−clog2(d t+1
2 e)c−2, otherwise.

ϕ
r,q≥t
W :=

 ϕq≥t=qW
≥t
, if qW

≥t + blog(t)c+1≤ r

ϕq≥t>r−blog(t)c−1, otherwise.

Theorem 6.2.3. Let ϕ be a first-order sentence over disjoint unions of linear orders. Then,

there exists sets V,U of disjoint unions of linear orders such that ϕ is equivalent to a Boolean

combination of sentences in
⋃

W ∈V,W ′∈U Φr
W ,W ′ .

6.2.4 Distinguishability Sentences for Strings

Now, we define distinguishability sentences for strings u, v and a natural number

r. Distinguishability sentences are formulas that hold on u, do not hold on v and they have

quantifier rank at most r. The first step is to show that the conditions of Theorem 3.3.1 can be

expressed by first-order formulas. These formulas are defined recursively in order to reduce the

quantifier rank. The recursive definitions can all be simplified to direct definitions with higher

quantifier ranks but, in this case, we can not guarantee that the quantifier rank is adequate.

First, we introduce ϕ
d(t1,t2)
≤n . It describes that the distance between terms t1 and t2 is

at most n. This can be used to represent condition 1 of Theorem 3.3.1.

ϕ
d(t1,t2)
≤n :=

 t1 = t2∨S(t1, t2), if n = 1

∃y(ϕd(t1,y)
≤b n

2c
∧ϕ

d(y,t2)
≤d n

2e
), otherwise.

We also set ϕ
d(t1,t2)
>n := ¬ϕ

d(t1,t2)
≤n , ϕ

d(t1,t2)
≥n := ϕ

d(t1,t2)
>n−1 , ϕ

d(t1,t2)
<n := ¬ϕ

d(t1,t2)
≥n , and ϕ

d(t1,t2)
=n :=

ϕ
d(t1,t2)
≤n ∧ϕ

d(t1,t2)
≥n . Clearly, w |= ϕ

d(t1,t2)
Bn iff d(t1, t2) B n, for B ∈ {<,>,≤,≥,=}. Also, the

size of ϕ
d(t1,t2)
Bn is O(n). Furthermore, qr(ϕd(t1,t2)

≤n ) = qr(ϕd(t1,t2)
>n ) = dlog2(n)e and qr(ϕd(t1,t2)

≥n ) =

qr(ϕd(t1,t2)
≤n−1 ) = dlog2(n−1)e.
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We also define the following formulas:

ϕ
<x
≥n =


∃y(y = y), if n = 0

∃yS(y,x), if n = 1

∃y(ϕ<y
≥b n

2c
∧ϕ

d(y,x)
≥d n

2 e
), otherwise

ϕ
>x
≥n =


∃y(y = y), if n = 0

∃yS(x,y), if n = 1

∃y(ϕ>y
≥b n

2 c
∧ϕ

d(x,y)
≥d n

2e
), otherwise

Observe that qr(ϕ<x
≥n) = qr(ϕ>x

≥n) = dlog(n+1)e, and the size of ϕ
<x
≥n (and of ϕ

>x
≥n) is O(n). Now,

we can define sentences ϕ≥n which describes that a string has length at least n.

ϕ≥n =

 ∃y(y = y), if n ∈ {0,1}

∃y(ϕ>y
≥b n

2 c
∧ϕ

<y
≥b n−1

2 c
), otherwise

It is important to note that qr(ϕ≥n) = dlog(n+1)e, and the size of ϕ≥n is O(n). We also define

ϕ≤n := ¬ϕ≥n+1 and ϕ=n := ϕ≥n∧ϕ≤n. Then, qr(ϕ=n) = dlog(n+2)e.

We give an example to show that sentences ϕ≥n represent condition 1 of Theo-

rem 3.3.1. Let r = 3 and u, v be strings such that |u| = 5 and |v| = 9. Then, u 6|= ϕ≥2r−2,

v |= ϕ≥2r−2, and qr(ϕ≥6) = 3. Then, |u| 6= |v| and |u| < 2r− 2. Therefore, the Spoiler has a

winning strategy for G3(u,v).

Now, we turn to the cases in which substrings are important. These cases are

conditions 2-4 from Theorem 3.3.1. Formulas ϕt1a1...akt2 hold in a string w when the string

between t1 and t2 is a1...ak. Formulas ϕta1...ak and ϕa1...akt express that a string a1...ak occurs

immediately on the right and immediately on the left of a term t, respectively.

ϕt1a1...akt2 :=


∃z(Pa1(z)∧S(t1,z)∧S(z, t2)), if k = 1

∃z(Pa1(z)∧S(t1,z)∧ϕza2t2), if k = 2

∃z(Pad k
2 e
(z)∧ϕt1a1...ad k

2 e−1
z∧ϕzad k

2 e+1
...akt2), otherwise.

ϕta1...ak :=


∃y(S(t,y)∧Pa1(y)), if k = 1

∃y(Pa1(y)∧S(t,y)∧ϕya2), if k = 2

∃y(Pad k
2 e
(y)∧ϕta1...ad k

2 e−1
y∧ϕyad k

2 e+1
...ak), otherwise.
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ϕa1...akt :=


∃y(S(y, t)∧Pa1(y)), if k = 1

∃y(Pa1(y)∧ϕya2t), if k = 2

∃y(Pad k
2 e
(y)∧ϕa1...ad k

2 e−1
y∧ϕyad k

2 e+1
...akt), otherwise.

Concerning the quantifier rank, we have qr(ϕt1a1...akt2) = qr(ϕta1...ak) = qr(ϕa1...akt) = dlog2(k+

1)e. Furthermore, the size of these formulas is O(k). Now, we define sentences to handle the

prefix and suffix of strings. These sentences express that the prefix of length k is a1...ak and the

suffix of length k is a1...ak, respectively.

ϕpre fk=a1...ak :=



∃x(Pa1(x)∧∀y¬S(y,x)), if k = 1

∃x(Pa1(x)∧∀y¬S(y,x)∧ϕxa2...ak), if k ∈ {2,3}

∃x1(Pa1(x1)∧∀y¬S(y,x1)∧

∃x2(Pad k+1
2 e

(x2)∧ϕx1a2...ad k+1
2 e−1

x2 ∧ϕx2ad k+1
2 e+1

...ak)), otherwise.

ϕsu f fk=a1...ak :=



∃x(Pa1(x)∧∀y¬S(x,y)), if k = 1

∃x(Pa1(x)∧∀y¬S(x,y)∧ϕa1...ak−1x), if k ∈ {2,3}

∃x1(Pa1(x1)∧∀y¬S(x1,y)∧

∃x2(Pab k
2 c
(x2)∧ϕa1...ab k

2 c−1
x2 ∧ϕx2ab k

2 c+1
...ak−1x1)), otherwise.

We also set abbreviations ϕpre fk 6=a1...ak :=¬ϕpre fk=a1...ak and ϕsu f fk 6=a1...ak :=¬ϕsu f fk=a1...ak . The-

refore, qr(ϕpre fkIa1...ak) = dlog2(k+2)e and w |= ϕpre fkIa1...ak iff pre fk(w)I a1...ak, where I

∈ {=, 6=}. Also, the size of ϕpre fk=a1...ak is O(k). Analogously, for ϕsu f fkIa1...ak .

We use these formulas to express conditions 2 and 3 from Theorem 3.3.1. To see

why, let r = 2, u = baabb and v = bbabb. Thus, u |= ϕpre f2r−2 6=bb and v 6|= ϕpre f2r−2 6=bb. Then,

pre f2r−2(u) 6= pre f2r−2(v) and, from condition 2 of Theorem 3.3.1, it follows that the Spoiler

has a winning strategy in G2(u,v).

Now, we need sentences regarding multiplicity and scattering. Let α = a1...ak be a

string such that each ai ∈ Σ, and k = 2qα −1 for qα > 0 as in condition 4 from Theorem 3.3.1.

Now, we set the formula ϕa1...ak(x) describing that a string a1...ak occurs centered on position x.

Then, we give an example of a formula ϕα(x).

ϕa1...ak(x) :=

 Pa1(x), if k = 1

Pad k
2 e
(x)∧ϕa1...ad k

2 e−1
x∧ϕxad k

2 e+1
...ak , if k = 2qα −1,qα > 1.
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Example 6.2.3. Let α = abc. Then,

ϕα(x) = Pb(x)∧∃y1(S(y1,x)∧Pa(y1))∧∃y1(Pc(y1)∧S(x,y1)).

Note that qr(ϕα(x)) = qα −1 and the size of ϕα(x) is O(|α|). Now, we can use formulas ϕα(x)

to define ϕγ(α)≥n expressing that α has at least n occurrences. Then, we need to use n pairwise

different variables.

ϕγ(α)≥n := ∃x1∃x2...∃xn(
∧

1≤i< j≤n xi 6= x j∧
∧n

i=1 ϕα(xi)).

Now, we need to deal with formulas ϕσ(α)≥n expressing that the scattering of α is at least n.

First, in the following, we define auxiliary formulas in order to make the presentation simpler.

The first formula below indicates that α occurs centered on a position on the left of x and at

least 2qα−1 distant from x. The second formula expresses that α occurs centered on a position

between x1 and x2, on the right of x1, at a distance greater than 2qα−1, on the left of x2, and at

least 2qα−1 distant from x2. These formulas are important in ensuring a proper distance from

other occurrences of α , i.e, greater than 2qα .

ϕ
d(α,x)≥2qα−1

:= ∃y(ϕα(y)∧ϕ
d(y,x)
≥2qα−1).

ϕ
d(x1,α)>2qα−1

d(α,x2)≥2qα−1 := ∃y(ϕα(y)∧ϕ
d(x1,y)
>2qα−1 ∧ϕ

d(y,x2)

≥2qα−1).

Observe that, with respect to the quantifier rank, qr(ϕd(α,x)≥2qα−1

α ) = qr(ϕd(x1,α)>2qα−1

d(α,x2)≥2qα−1 ) = qα .

Furthermore, the size of ϕd(α,x)≥2qα−1
(and of ϕ

d(x1,α)>2qα−1

d(α,x2)≥2qα−1 ) is O(|α|). Now, we can define the

sentence ϕσ(α)≥n. After that, we give an example of ϕγ(α)≥n and ϕσ(α)≥n.

ϕσ(α)≥n :=


ϕγ(α)≥1, if n = 1

∃x1(ϕ
d(α,x1)≥2qα−1 ∧∃x2(ϕ

d(x1,α)>2qα−1

d(α,x2)≥2qα−1 ∧ ...∧

∃xn−1(ϕ
d(xn−2,α)>2qα−1

d(α,xn−1)≥2qα−1 ∧∃xn(ϕ
d(xn−1,xn)

>2qα−1 ∧ϕα(xn)))...)), if n > 1.

Example 6.2.4. Let α = abc and n = 2. Then, qα = 2. Thus,

ϕγ(α)≥n = ∃x1∃x2(x1 6= x2∧ϕabc(x1)∧ϕabc(x2)).

ϕσ(α)≥n = ∃x1(ϕ
d(abc,x1)≥2∧∃x2(ϕ

d(x1,x2)
>2 ∧ϕabc(x2))).

We also define the following abbreviations: ϕγ(α)<n := ¬ϕγ(α)≥n and ϕγ(α)=n := ϕγ(α)≥n ∧

ϕγ(α)<n+1. Then, qr(ϕγ(α)En) = qα +n−1 and w |= ϕγ(α)En iff γ(α,w) E n, for E ∈ {≥,<}.

It is analogous for ϕσ(α)En. Besides, the size of ϕγ(α)En (and of ϕσ(α)En) is O((n+ |α|)2).
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The formulas ϕσ(α)≥n and ϕγ(α)≥n defined above are not sufficient for the case where

there exists α such that |α|= 2qα −1, for some qα > 0, σ(α,u) = σ(α,v), (σ(α,u)+qα ≤ r,

and γ(α,u) 6= γ(α,v). In this case, we may have γ(α,u),γ(α,v)+ qα > r. Then, formulas

ϕγ(α)≥n are not adequate since qr(ϕγ(α)≥γ(α,v)+1) > r. Therefore, we now define formulas

to represent the neighborhood of the segments in (|α|+ 1)-segmentations. First, we use the

following definitions.

Definition 6.2.4 (r-sphere). Let w = w1...wn, i be a position of w, and r be a positive integer.

The r-sphere of i in w, denoted by S (i,w,r), is defined as follows:

S (i,w,r) = { j ∈ {1, ...,n} | i≤ j,d(i, j)≤ r}.

Definition 6.2.5 (r-neighbourhood). Let w = w1...wn, i be a position of w, and r be a positive

integer. The r-neighbourhood N (i,w,r) of i in w is the substring induced by S (i,w,r).

We associate a substring β of w with each segment S of a (|al pha|+1)-segmentation

of Γ(α,w). We formalize this notion in the following definition.

Definition 6.2.6 (Neighbourhood of Segments). Let w and α be strings. Let σ(α,w) = m. Let

S1, ...,Sm be the segments in a (|α|+1)-segmentation of Γ(α,w). We define N (α,w) as follows:

N (α,w) = {N (i,w,2×|α|) | i = min(Sl), l ∈ {1, ...,m}}.

Observe that N (α,w) may be a multiset of strings. We give an example below.

Example 6.2.5. Let α = aba and w = aaababababbabaababaaa. Then, the neighborhood of the

segments in a (|al pha|+1)-segmentation of Γ(α,w) is N (α,w) = {abababa,abaabab,abaaa}.

In the following, we define formulas ϕN (α,w) to represent the neighbourhood of segments.

First, let α , β1, ...., βm be strings. Let {β1, ...,βm} the multiset which consists of strings β1, ....,

βm. Then, it is possible that, for some i, j ∈ {1, ...,m} such that i 6= j, βi = β j. We define the

following abbreviation.

ϕN (α,{β1,...,βm}) = ∃x1(ϕβ1(x1)∧∃x2(ϕ
d(x1,x2)
>2qα ∧ϕβ2(x2)∧ ...∃xm(ϕ

d(xm−1,xm)
>2qα ∧ϕβm(xm))...)).

Note that qr(ϕN (α,{β1,...,βm})) = qα +m. Let w and α be strings. Let σ(α,w) = m. Let S1, ...,Sm

be the segments in a (|α|+1)-segmentation of Γ(α,w). Let Sl = {il1, ..., illk}, for l ∈ {1, ...,m}, be
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the positions of segment Sl . Let βl = uil1
uil1+1...uil2

...uillk
uillk

+1...uil1+2×|α|. We define the formula

ϕN (α,w) as ϕN (α,N (α,w)). In other words, ϕN (α,w) is defined as follows:

ϕN (α,w) = ∃x1(ϕβ1(x1)∧∃x2(ϕ
d(x1,x2)
>2qα ∧ϕβ2(x2)∧ ...∃xm(ϕ

d(xm−1,xm)
>2qα ∧ϕβm(xm))...)).

Note that qr(ϕN (α,w)) = qα + σ(α,u) and the size of ϕN (α,w) is O(|w|). Moreover, w |=

ϕN (α,u) iff N (α,u)⊆N (α,w). Since N (α,u) and N (α,w) are multisets, for β ∈N (α,u),

the number of occurrences of β in N (α,w) must be at least the number of occurrences of β in

N (α,u).

Example 6.2.6. Let α = aba and w = aaababababbabaababaaa. Then,

ϕN (α,w) = ∃x1(ϕabababa(x1)∧∃x2(ϕ
d(x1,x2)
>4 ∧ϕabaabab(x2)∧∃x3(ϕ

d(x2,x3)
>4 ∧ϕabaaa(x3)))).

Now, we can define the distinguishability sentences for strings. Distinguishability

sentences are defined from a pair of strings u, v and a quantifier rank r. These formulas have

quantifier rank at most r, and they hold in u and do not hold in v. In what follows, α is a substring

of u or v.

Definition 6.2.7 (Distinguishability Sentences for Strings). Let u, v be strings over some alphabet

Σ and r be a natural number. The set of distinguishability formulas from u, v and r is

Φ
r
u,v := Φ

r,length
u,v ∪Φ

r,pre f
u,v ∪Φ

r,su f f
u,v ∪Φ

r,sub
u,v

such that

Φ
r,length
u,v :=

{ϕ≤n | |u|< |v|, |u| ≤ n≤ min(2r−2, |v|−1)}∪

{ϕ≥n | |u|> |v|, |v|+1≤ n≤ min(2r−1, |u|)}

Φ
r,pre f
u,v :=

{ϕpre fk=pre fk(u) | pre fk(u) 6= pre fk(v),k ≤ min(2r−2, |u|, |v|)}∪

{ϕpre fk 6=pre fk(v) | pre fk(u) 6= pre fk(v),k ≤ min(2r−2, |u|, |v|)}

Φ
r,su f f
u,v :=

{ϕsuffk=suffk(u) | suffk(u) 6= suffk(v),k ≤ min(2r−2, |u|, |v|)}∪

{ϕsuffk 6=suffk(v) | suffk(u) 6= suffk(v),k ≤ min(2r−2, |u|, |v|)}

Φ
r,sub
u,v :=

{ϕσ(α)≥n | σ(α,u)> σ(α,v),σ(α,v)< n≤ min(r−qα +1,σ(α,u))}∪

{ϕσ(α)<n | σ(α,u)< σ(α,v),σ(α,u)< n≤ min(r−qα +1,σ(α,v))}∪

{ϕγ(α)≥n | γ(α,u)> γ(α,v),γ(α,v)< n≤ min(r−qα +1,γ(α,u))}∪

{ϕγ(α)<n | γ(α,u)< γ(α,v),γ(α,u)< n≤ min(r−qα +1,γ(α,v))}∪

{ϕN (α,u) | σ(α,u)+qα ≤ r,σ(α,u) = σ(α,v),γ(α,u)> γ(α,v)}∪

{¬ϕN (α,v) | σ(α,u)+qα ≤ r,σ(α,u) = σ(α,v),γ(α,u)< γ(α,v)}.
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Observe that, given u, v, and r, the size of a formula ϕ ∈Φr
u,v is O((|u|+ |v|)2), and the number

of elements |Φr
u,v| in Φr

u,v is O((|u|+ |v|)3). This is crucial in order to guarantee that our

algorithm runs in polynomial time. Also, by the definition of distinguishability sentences and

Theorem 2.3.1, it follows that the Spoiler has a winning strategy in Gr(u,v) if and only if there

exists ϕ ∈Φr
u,v. In what follows, we give examples of distinguishability sentences.

Example 6.2.7. Let u = acbbb, v = aabbbb, and r = 2. Therefore, ϕpre f2=ac, ϕpre f2 6=aa ∈

Φr
u,v. Furthermore, ϕsuff2=bbb,ϕsuff2 6=bbb 6∈ Φr

u,v because suff2(u) = suff2(v). Also, ϕγ(c)≥1 ∈

Φr
u,v because γ(c,u) > γ(c,v) and γ(c,v) < 1 ≤ min(2,1). Besides, ϕγ(bbb)<1 ∈ Φr

u,v because

γ(bbb,u)< γ(bbb,v) and γ(bbb,u)< 1≤min(1,1). Regarding the length, Φ
r,length
u,v = /0 because

|u|> min(2,5).

Example 6.2.8. Now, let u = bbaaaaaaaabb, v = bbaaaaaabb, and r = 4. Then, ϕσ(aaa)≥2 ∈

Φr
u,v since σ(aaa,u) = 2, σ(aaa,v) = 1, and σ(aaa,v)< n≤ min(3,2). Besides, ϕ≥12 ∈ Φr

u,v

because |u|> |v| and 11≤ 12≤ min(15,12).

Now, we show results ensuring adequate properties of distinguishability sentences.

Lemma 6.2.14. Let u,v be strings and r be a natural number. Let ϕ ∈Φr
u,v. Then, u |= ϕ and

v 6|= ϕ .

Proof. First, suppose ϕ = ϕ≤n. Then, |u|< |v| and |u| ≤ n≤ min(2r−2, |v|−1). Since |u| ≤ n,

u |= ϕ . Clearly, n≤ |v|−1, since n≤ min(2r−2, |v|−1). Therefore, v 6|= ϕ . The case in which

ϕ = ϕ≥n is similar.

Now, let ϕ = ϕpre fk=pre fk(u). Then, pre fk(u) 6= pre fk(v). It also holds that k ≤

min(2r−2, |u|, |v|). As k ≤ |u|, k ≤ |v|, and pre fk(u) 6= pre fk(v), then u |= ϕ and v 6|= ϕ . The

cases in which ϕ = ϕpre fk 6=pre fk(v), ϕ = ϕsu f fk=su f fk(v), and ϕ = ϕsu f fk 6=su f fk(v) are similar.

Next, let ϕ = ϕγ(α)≥n. Thus, γ(α,v) < γ(α,u) and γ(α,v) < n ≤ min(r− qα +

1,γ(α,u)). Therefore, γ(α,v) < n ≤ γ(α,u). Then, u |= ϕ and v 6|= ϕ . The cases in which

ϕ = ϕγ(α)<n, ϕ = ϕσ(α)≥n, and ϕ = ϕσ(α)<n are analogous.

Finally, assume that ϕ = ϕN (α,u). Clearly, u |= ϕ . Furthermore, σ(α,u) = σ(α,v)

and γ(α,u)> γ(α,v). Therefore, v 6|= ϕ . It is analogous when ϕ = ¬ϕN (α,v).

Lemma 6.2.15. Let u,v be strings and r be a natural number. Let ϕ ∈Φr
u,v. Then, the minimum

number of rounds is MinRound(u,v)≤ qr(ϕ)≤ r.
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Proof. From Lemma 6.2.14, it follows that MinRound(u,v) ≤ qr(ϕ). Now, we need to show

that qr(ϕ)≤ r.

If ϕ = ϕ≥n, then n ≤ 2r− 1. Hence, qr(ϕ) = dlog2(2r− 1+ 1)e. It follows that

qr(ϕ)≤ dlog2(2r)e= r. It is analogous for ϕ = ϕ≤n.

Let ϕ ∈ {ϕpre fkIw,ϕsu f fkIw} where I ∈ {=, 6=}. Then, k ≤ 2r − 2. Therefore,

qr(ϕ) = dlog2(k+2)e ≤ r.

If ϕ ∈ {ϕγ(α)Bn,ϕσ(α)Bn} where B ∈ {<,≥}, then n≤ r−qα +1. Thus, qr(ϕ) =

qα +n−1≤ r.

Finally, let ϕ = ϕN (α,u) or ϕ = ¬ϕN (α,v). Then, σ(α,u)+ qα ≤ r. Therefore,

qr(ϕ)≤ r.

Distinguishability formulas are also representative for the set of first-order sentences over

strings. For example, let ϕ = ∃x(Pa(x)∧∀y(x 6= y→¬Pa(y))). Also let u = bbabb, v1 = bbbbb,

v2 = bbabbabb, and r = 2. Therefore, ϕγ(a)≥1 ∈ Φr
u,v1

and ϕγ(a)<2 ∈ Φr
u,v2

. Clearly, ϕ is

equivalent to ϕγ(a)≥1∧ϕγ(a)<2. By this example, it seems that a first-order sentences consists of

Boolean combination of sentences ϕ≥n, ϕpre fk=a1...ak , ϕsu f fk=a1...ak , ϕγ(α)≥n, ϕσ(α)≥n, and ϕα,u.

Now, we will show that this holds for any first-order sentence over strings in our setting. First,

we define formulas equivalent to Hintikka formulas.

ϕ
r,length
w :=

 ϕ=|w|, if |w|< 2r−2

ϕ≥2r−2, otherwise.

ϕ
r,pre f
w := ϕpre f2r=pre f2r (w)

ϕ
r,su f f
w := ϕsu f f2r=su f f2r (w)

ϕ
r,α
w :=

 ϕσ(α)=σ(α,w)∧ϕγ(α)=γ(α,w), if qα +σ(α,w)≤ r

ϕσ(α)≥r−qα+1, otherwise.

ϕ
r,sub
w :=

∧
{ϕr,α

w | |α|= 2q−1,q > 0}.

Lemma 6.2.16. |= ϕr
w↔ (ϕr,length

w ∧ϕ
r,pre f
w ∧ϕ

r,suff
w ∧ϕ

r,sub
w ).

Proof. Let u |= ϕr
w. Then, the Duplicator has a winning strategy in Gr(w,u). Then, |w|= |u| or

|w| ≥ 2r−2 and |u| ≥ 2r−2. We have two cases depending on the length of w:

1. |w|< 2r−2. Then, |w|= |u|, and it follows that u |= ϕ
r,length
w .

2. |w| ≥ 2r−2. Then, |w| ≥ 2r−2 and |u| ≥ 2r−2. Therefore, u |= ϕ
r,length
w .
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From Theorem 3.3.1, it also holds that pre f2r−2(w)= pre f2r−2(u) and su f f2r−2(w)= su f f2r−2(u).

Then, u |= ϕ
r,pre f
w ∧ϕ

r,su f f
w .

From Theorem 3.3.1, it holds that σ(α,w)+qα > r and σ(α,u)+qα > r for all α such that

|α| = 2qα −1 and σ(α,w) 6= σ(α,u) or γ(α,w) 6= γ(α,u). Let α such that |α| = 2q−1. We

have two cases:

1. q+σ(α,w)≤ r. Then, σ(α,w) = σ(α,u) or γ(α,w) = γ(α,u). Therefore, u |= ϕ
r,α
w .

2. q + σ(α,w) > r. If σ(α,u) + q ≤ r, then σ(α,w) 6= σ(α,u). Then, it follows that

σ(α,u)+q > r. Hence, u |= ϕ
r,α
w . Finally, u |= ϕ

r,sub
w .

Conversely, let u |= ϕ
r,length
w ∧ϕ

r,pre f
w ∧ϕ

r,su f f
w ∧ϕ

r,sub
w . We have that pre f2r−2(w) = pre f2r−2(u)

and su f f2r(w) = su f f2r(u) because u |= ϕ
r,pre f
w ∧ϕ

r,su f f
w . We also have that u |= ϕ

r,length
w . We

have two cases:

1. |w|< 2r−2. Then, |w|= |u|.

2. |w| ≥ 2r−2. Then, |u| ≥ 2r−2.

It also holds that u |= ϕ
r,sub
w . Let α such that |α|= 2q−1 and σ(α,w) 6= σ(α,u) or γ(α,w) 6=

γ(α,u). Then, u |= ϕ
r,α
w . We have that σ(α,w)+ q > r, otherwise, σ(α,w) = σ(α,u) and

γ(α,w) = γ(α,u). Therefore, σ(α,u) + q > r. Then, for all α such that |α| = 2q− 1 and

σ(α,w) 6= σ(α,u) or γ(α,w) 6= γ(α,u), we have that σ(α,w)+q > r and σ(α,u)+q > r. By

Theorem 3.3.1, the Duplicator has a winning strategy in Gr(w,u). It follows that u |= ϕr
w.

Now, we need the following lemmas.

Lemma 6.2.17. Let r be a natural number and w a string. There is a set of strings Vlength such

that ϕ
r,length
w is equivalent to a Boolean combination of sentences in

⋃
v∈Vlength

Φr
w,v.

Proof. If ϕ
r,length
w = ϕ≥2r−2, then let Vlength = {v} such that |v|= 2r−3. Observe that ϕ≥2r−2 ∈

Φr
w,v because |w| > |v| and |v|+ 1 ≤ 2r − 2 ≤ min(2r − 1, |w|). If ϕ

r,length
w = ϕ=|w|, then let

Vlength = {v1,v2} such that |v1|= |w|−1 and |v2|= |w|+1. It follows that ϕ≥|w| ∈ Φr
w,v1

. We

also have that ϕ≤|w| ∈Φr
w,v2

. Obviously, ϕ
r,length
w is equivalent to ϕ≥|w|∧ϕ≤|w|.

Lemma 6.2.18. Let r be a natural number and w a string. There is a set of strings Vpre f suff such

that ϕ
r,pre f
w ∧ϕ

r,suff
w is equivalent to a Boolean combination of sentences in

⋃
v∈Vpre f suff

Φr
w,v.

Proof. If |w| ≤ 2r−2, then |= ϕpre f2r−2=pre f2r−2(w)↔ ϕpre f|w|=w. Let v1 such that |v1|= |w| and

v1 6=w. Hence, ϕpre f|w|=w ∈Φr
w,v1

. If w= a1...a2r−3a2r−2u such that ai ∈ Σ, for i∈ {1, ...,2r−2},
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u ∈ Σ∗, and u 6= ε . Then, ϕpre f2r−2=pre f2r−2(w) ∈ Φr
w,v1

. Obviously, the case for ϕsu f f2r=su f f2r (w)

is analogous. Let v2 such that ϕsu f f2r=su f f2r (w) ∈Φr
w,v2

. Therefore, Vpre f su f f = {v1,v2}.

Lemma 6.2.19. Let r be a natural number and w,α strings. There is a set of strings Vα such

that ϕ
r,α
w is equivalent to a Boolean combination of sentences in

⋃
v∈Vα

Φr′
w,v, for some r′.

Proof. If ϕ
r,α
w = ϕσ(α)≥r−qα+1, then σ(α,w)≥ r−qα +1. Let Vα = {v} such that σ(α,w)>

σ(α,v) and σ(α,v) < r− qα + 1. Thus, ϕσ(α)≥r−qα+1 ∈ Φr
w,v. If ϕ

r,α
w = ϕσ(α)=σ(α,w) ∧

ϕγ(α)=γ(α,w), then σ(α,w) ≤ r− qα . For ϕσ(α)=σ(α,w), let v1 such that σ(α,w) > σ(α,v1).

Then, ϕσ(α)≥σ(α,w) ∈ Φr
w,v1

. Let v2 such that σ(α,v2) > σ(α,w). Note that σ(α,w) <

σ(α,w)+1 ≤ min(r−qα +1,σ(α,v2)). Then, ϕσ(α)<σ(α,w)+1 ∈ Φr
w,v1

. Clearly, the case for

ϕγ(α)=γ(α,w) is analogous and the only difference is that we use r′ = qα +γ(α,w)+1. Let v3 and

v4 such that ϕγ(α)≥γ(α,w) ∈Φr′
u,v3

and ϕγ(α)<γ(α,w)+1 ∈Φr′
u,v4

. Therefore Vα = {v1,v2,v3,v4}.

Lemma 6.2.20. Let r be a natural number and w a string. There is a set of strings V such that

ϕr
w is a Boolean combination of sentences in

⋃
v∈V Φr′

w,v, for some r′.

Proof. By Lemma 6.2.16, |= ϕr
w ↔ (ϕr,length

w ∧ ϕ
r,pre f
w ∧ ϕ

r,su f f
w ∧ ϕ

r,sub
w ). Let V = Vlength∪⋃

{α||α|=2q−1,q>0} Vα ∪ Vpre f su f f as in Lemma 6.2.17, Lemma 6.2.18, and Lemma 6.2.19.

From these lemmas, it follows that, ϕr
w is equivalent to a Boolean combination of sentences in⋃

v∈V Φr′
w,v, for some r′.

The following result is connected to Theorem 2.3.2. It suggests that our approach

is likely to find any first-order sentence given a suitable sample of strings. Recall that, by

Theorem 2.3.2, any first-order sentence is equivalent to a disjunction of Hintikka formulas. Thus,

we have the following result.

Theorem 6.2.4. Let ϕ be a first-order sentence over strings. Then, ϕ is equivalent to a Boolean

combination of distinguishability formulas.

Proof. Let r such that qr(ϕ) = r. From Theorem 2.3.2 it follows that |= ϕ ↔ ϕr
u1
∨ ...ϕr

us
. Let

U = {u1, ...,us}. In accord to Lemma 6.2.20, let Vi be such that ϕr
ui

is equivalent to a Boolean

combination of sentences in
⋃

v∈Vi
Φr

ui,v. Therefore, the sentence ϕ is equivalent to a Boolean

combination of sentences in
⋃s

i=1(
⋃

v∈Vi
Φr

ui,v).
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6.3 A Polynomial Time Algorithm

In this section, we define an algorithm for finding a first-order sentence ϕS from a

sample of structures S. Subformulas of ϕS are distinguishability sentences from sets of the form

Φr
A ,B such that A ∈ P and B ∈ N. We also give an example of how the algorithm works. We

guarantee that our algorithm runs in polynomial time in the size of the input sample S. The

size of the sample S is the sum of the sizes of all the structures it includes. We also show that

ϕS returned by our algorithm is consistent with S. Furthermore, we also prove that ϕS is a

sentence of minimum quantifier rank consistent with S. The pseudocode of our algorithm is in

Algorithm 4.

Algorithm 4:
Input: Sample S = (P,N)
r← max{MinRound(A ,B) |A ∈ P, B ∈ N}
ϕS←

∨
A ∈P

∧
B∈N choose ϕ ∈Φr

A ,B
return ϕS

First, the algorithm finds the minimum value r such that there exists a sentence of

quantifier rank r that is consistent with the input sample S. After that, the algorithm builds ϕS.

For each pair of structures A ∈ P, B ∈ N, it chooses ϕ ∈Φr
A ,B. Any choice of a sentence in

Φr
A ,B leads to a formula consistent with S. In what follows, we show examples of how this

algorithm works on simple instances.

Figure 30 – A sample of DULO

W1 W2 W3 W4

Source: Own elaboration

Example 6.3.1. Let P = {W1,W2}, and N = {W3,W4} as described in Figure 30. Then,

max{MinRound(A ,B) |A ∈P, B ∈N}= 2. Also, ϕq1≥1 ∈Φ2
W1,W3

, ϕq≥2<1 ∈Φ2
W1,W4

, ϕq≥2<1 ∈

Φ2
W2,W3

, ϕq≥3<1 ∈Φ2
W2,W4

. Therefore, Algorithm 4 returns

ϕS = (ϕq1≥1∧ϕq≥2<1)∨ (ϕq≥2<1∧ϕq≥3<1).
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Now, we show an example in which the sample consists of strings.

Table 1 – A sample of strings.

String Class
stviil Positive
ktvive Negative
stviie Positive
st piie Negative

Source: Own elaboration

Example 6.3.2. Let S be the sample in Table 1 repeated above for convenience. Note that

max{MinRound(u,v) | u ∈ P, v ∈ N}= 1. Clearly, ϕγ(s)≥1 ∈ Φ1
stviil,ktvive, ϕγ(e)<1 ∈ Φ1

stviil,st piie,

ϕγ(k)<1 ∈ Φ1
stviie,ktvive, and ϕσ(p)<1 ∈ Φ1

stviie,st piie. Therefore, Algorithm 4 returns ϕS below.

Observe that ϕS is consistent with S and qr(ϕS) = 1.

ϕS = (ϕγ(s)≥1∧ϕγ(e)<1)∨ (ϕγ(k)<1∧ϕσ(p)<1).

In what follows, we illustrate a run of Algorithm 4 on a sample of monadic structures.

Figure 31 describes a sample of MS over the vocabulary τ = {P1} and P2 = P1. Axis |P1|

represents the cardinality of P1 for all monadic structures in the given sample. Axis |P2| is

analogous. In Figure 31, blue squares represent positive structures, while red triangles represent

negative structures.

Example 6.3.3. Let S be the sample defined in Figure 31, and let r = 14. There exists a sequence

of choices of first-order sentences in Algorithm 4 such that

ϕS = (ϕ|P1|≥11∧ϕ|P2|≥6)∨ (ϕ|P1|<11∧ϕ|P2|<6).

Finally, we consider a run of Algorithm 4 on a sample of equivalence structures.

Example 6.3.4. Let S be the sample of equivalence structures in Figure 32, i.e., P = {E1} and

N = {E2,E3}. Let r = 6. Then, ϕq1 < 1 ∈Φr
E1,E2

and ϕq≥4 < 1 ∈Φr
E1,E3

. Therefore, Algorithm 4

may return the following sentence:

ϕS = ϕq1<1∧ϕq≥4<1.

In what follows, we prove some properties of our algorithm. First, we show that it returns a

sentence that is consistent with the sample. After that, we show that it returns a sentence of
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Figure 31 – A sample of monadic structures

5 10 15 20 25 30

5

10

15

|P1|

|P
2|

Source: Own elaboration

Figure 32 – A sample of equivalence structures

E1 E2 E3

Source: Own elaboration

minimum quantifier rank. Then, we prove that the running time of our algorithm is polynomial

in the size of the input sample.

Theorem 6.3.1. Let S be a sample and ϕS returned by Algorithm 4. Then, ϕS is consistent with

S.

Proof. Let ϕS =
∨

A ∈P
∧

B∈N ϕr
A ,B such that r = max{MinRound(A ,B) | A ∈ P,B ∈ N},

and ϕr
A ,B is the sentence chosen from Φr

A ,B. Let A ′ ∈ P. In this way, A ′ |=
∧

B∈N ϕr
A ′,B, and

then A ′ |= ϕS. Now, let B′ ∈ N and assume that B′ |= ϕS, i.e, B′ |=
∧

B∈N ϕr
A ′,B, for some

A ′ ∈ P. Therefore, B′ |= ϕr
A ′,B′ . This is an absurd because, from Lemma 6.2.14, it follows that
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B′ 6|= ϕr
A ′,B′ .

Theorem 6.3.2. The sentence ϕS returned by Algorithm 4 is a first-order sentence of minimum

quantifier rank that is consistent with S.

Proof. Suppose a first-order sentence ψ consistent with S such that qr(ψ)< qr(ϕS) and qr(ϕS)=

max{MinRound(A ,B) | A ∈ P,B ∈ N}. Let A ′ ∈ P and B′ ∈ N be structures such that

MinRound(A ′,B′) = max{MinRound(A ,B) |A ∈ P,B ∈ N}. Then, A ′ and B′ are satisfied

by the same first-order sentences of quantifier rank q such that q < MinRound(A ′,B′). Then,

A ′ |= ψ iff B′ |= ψ . Therefore, ψ is not consistent with S. This is a contradiction.

Theorem 6.3.3. Given a sample S, Algorithm 4 returns ϕS in polynomial time in the size of S.

Proof. First, the algorithm computes max{MinRound(A ,B) |A ∈ P,B ∈ N} in order to use

a suitable quantifier rank. This takes polynomial time because, for a given A ∈ P,B ∈ N, to

compute MinRound(A ,B) takes polynomial time in the classes of structures we are considering

in this work. Then, our algorithm loops over structures in the sample and, in each loop, it chooses

a formula ϕ ∈Φr
A ,B. As the size of each ϕ ∈Φr

A ,B is polynomial in the size of A and B, and

|Φr
A ,B| is polynomial in the size of S, the overall complexity of Algorithm 4 is polynomial time

in the size of S.

6.4 Concluding Remarks and Comparisons

Our algorithm is an improvement, with respect to computational complexity, over

the work in (KAISER, 2012), for this particular problem on the classes of structures we are

considering, i.e., MS, ES, DULO, and strings. We defined an algorithm that takes polynomial

time in the size of the input sample. Furthermore, our algorithm returns a sentence of size

polynomial in the size of the sample.

Regarding CNPL (STROTHER-GARCIA et al., 2017), our work deals with the full

expressive power of first-order logic over strings, whereas CNPL is less expressive than full

first-order logic. Also, our methods find a first-order sentence from positive and negative strings,

while the input of the method in (STROTHER-GARCIA et al., 2017) is only a set of positive

strings.

However, observe that the sentence returned by Algorithm 4 is a disjunction of |P|

conjunctions of distinguishability sentences. Then, our algorithm may return large sentences.
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The algorithm in (KAISER, 2012) also returns formulas which are long and hard to read. Then,

they greedily remove subformulas that are not necessary to distinguish P from N. Moreover, the

method in (STROTHER-GARCIA et al., 2017) also returns CNPL sentences which contain a

large number of conjunctions. In Chapter 7, we show how to overcome this disadvantage of our

method. We consider an approach in which the number of conjunctive clauses is also given.

Furthermore, since our algorithm and the one in (KAISER, 2012) return first-order

sentences, some sentences are hard to read. For example, the sentence ϕS = (ϕq1≥1∧ϕq≥2<1)∨

(ϕq≥2<1∧ϕq≥3<1) returned by Algorithm 4 in Example 6.3.1 is an abbreviation for

ϕS =(∃x1(¬∃y1(y1 < x1)∧¬∃y2(x1 < y2))∧¬∃x1∃y1(x1 < y1))∨

(¬∃x1∃y1(x1 < y1)∧¬∃x1(∃y1(x1 < y1)∧∃y2(y2 < x1))).

Moreover, the problem of deciding, given a structure A and a sentence ϕ , whether

A |= ϕ is PSPACE-complete (STOCKMEYER, 1974; VARDI, 1982; GRÄDEL et al., 2005).

This problem is PSPACE-complete even when the structure A is fixed. Then, it is also PSPACE-

complete for the classes of structures we are considering. In the following chapter, we define

a quantifier-free disjunctive normal form for each class of structures we are considering. This

normal form seems to be easier to read than general first-order sentences. Besides, we show

that determining whether A |= ϕ takes polynomial time when ϕ is in this quantifier-free normal

form.
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7 SYNTHESIS OF QUANTIFIER-FREE SENTENCES IN DNF

In this chapter, we define a quantifier-free normal form (QNF) for first-order senten-

ces over strings. The process is similar for the other classes of structures we are considering, i.e.,

MS, ES, and DULO. Recall that the standard vocabulary for strings is τ = {S,(Pa)a∈Σ}. QNF

sentences are defined over a richer vocabulary such that atomic sentences are an abbreviation of

distinguishability sentences over the vocabulary τ .

We also define a synthesis problem for QDNF sentences, i.e., QNF sentences in

disjunctive normal form. We solve this problem by a translation to the SAT problem. Furthermore,

we show that the synthesis of QDNF sentences is an NP-complete problem. These results

presented in this chapter were published in (ROCHA et al., 2018b) and submitted to (ROCHA et

al., 2020). In a first round of review, our paper (ROCHA et al., 2020) received overall positive

feedback.

We also contemplate a synthesis problem for l-QDNF sentences, i.e., QDNF sen-

tences such that the number of literals per clause is at most l. Therefore, we define a synthesis

problem in which the maximum number of literals per clause is given as input as well. We also

use a SAT encoding to solve this problem. Moreover, we show that the synthesis of l-QDNF

sentence is NP-complete as well. These results were accepted for publication in (ROCHA;

MARTINS, 2019).

7.1 Quantifier-Free Normal Forms

In this section, we define a normal form for first-order logic over strings that considers

the multiplicity and scattering of substrings, the occurrence of substrings as prefix or suffix,

and the length of strings. We call this normal form as quantifier-free normal form (QNF). We

define the atomic QNF sentences inspired by the distinguishability sentences of Chapter 6. This

is important in order to show that every first-order sentence over strings can be converted into

an equivalent QNF sentence. Sentences in QNF are first-order sentences over the vocabulary

τQNF = {lgeq, pre f ,su f f ,N ,≥,γ,σ ,(w)w∈Σ∗,(n)n∈N∗} such that lgeq, pre f and su f f are built-

in unary predicates, N is a built-in binary predicate, ≥ is the built-in linear order relation, γ and

σ are built-in unary functions, each w ∈ Σ∗ is a built-in constant, and each n ∈ N∗ is a built-in

constant. In what follows, we define the syntax and semantics of QNF sentences.

Definition 7.1.1 (Quantifier-Free Normal Form (QNF)). Let u,v1, ...,vk ∈ Σ∗ be strings over an
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alphabet Σ such that |vi| ≤ 2|w|+1, for i ∈ {1, ...,k}, and n ∈ N. The normal form is defined in

BNF in the following way:

ϕ :=
pref(u) | suff(u) | γ(u)≥ n | σ(u)≥ n |N (u,{v1, ...,vk}) | lgeq(n) |

(¬ϕ) | (ϕ ∧ϕ) | (ϕ ∨ϕ).

Parentheses are omitted whenever possible. Then, we allow sentences such as

(pref (ab)∨¬γ(ba)≥ 2)∧σ(abb)≥ 1∧ lgeq(4).

The semantics of QNF sentences is obtained from a string as in the definition below.

Definition 7.1.2 (QNF Semantics). Let Σ be a vocabulary, w,u,v1, ...,vk ∈ Σ∗, and n ∈ N. We

define when a string w satisfies QNF sentence ϕ , written w |= ϕ , as:

w |= pref(u) iff pref|u|(w) = u;

w |= suff(u) iff suff|u|(w) = u;

w |= lgeq(n) iff |w| ≥ n;

w |= γ(u)≥ n iff γ(u,w)≥ n;

w |= σ(u)≥ n iff σ(u,w)≥ n;

w |= N (u,{v1, ...,vk}) iff {v1, ...,vk} ⊆N (u,w);

w |= ¬ϕ iff w 6|= ϕ;

w |= ϕ1∧ϕ2 iff w |= ϕ1 and w |= ϕ2;

w |= ϕ1∨ϕ2 iff w |= ϕ1 or w |= ϕ2.

Based on this semantics, we can talk about the truth value of a QNF sentence such as ϕ =

(pre f (ab)∨¬su f f (bb))∧σ(c)≥ 2 in a given string w. For instance, abcaacbb |= ϕ . Then, as

in the case of first-order formulas over strings, QNF sentences also define formal languages. We

use the notation L(ϕ) to represent the language defined by the QNF sentence ϕ . The following

result is another advantage of QNF sentences over general first-order sentences.

Lemma 7.1.1. Given a string w and a QNF sentence ϕ , one can check if w |= ϕ in polynomial

time.

Proof. We need to show that, given a string w and an atomic QNF sentence ϕ , one can check

if w |= ϕ in polynomial time. From that, it follows directly that it also holds for any Boolean

combination of such formulas. First, let ϕ = lgeq(n). It is possible to check in linear time in the
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length of w whether |w| ≥ n. Next, let ϕ = pref (u). Clearly, it is also possible to check in linear

time in the length of w whether pref|u|(w) = u. The case in which ϕ = suf f (u) is analogous.

Now, let ϕ = γ(u) ≥ n. At each position of w, it is necessary to check if u occurs

starting on that position. This takes quadratic time in the length of w. Let ϕ = σ(u)≥ n. First, it

is necessary to compute a (|u|+1)-segmentation of the set of starting positions of the occurrences

of u in w. This is accomplished by checking if u occurs at each position. The processed positions

are added to a given segment as long as their distance from the least position of the segment is

less than or equal to |u|+1. A new segment is started when a position that does not meet such

condition is found. Thus, this also takes quadratic time in |w|.

Finally, let ϕ = N (u,{v1, ...,vk}). The procedure is similar to the one for ϕ =

σ(u) ≥ n. After computing the segments of a (|u|+1)-segmentation of Γ(u,w), we compute

N (u,w). It takes linear time time to compute N (u,w) from the segments. Therefore, since

it takes quadratic time to compute the segmentations, it also takes quadratic time to determine

N (u,w). Next, we check whether {v1, ...,vk} ⊆ N (u,w). Observe that |vi| ≤ |w|, for i ∈

{1, ...,k}, otherwise it is certain that w 6|= ϕ . As {v1, ...,vk} and N (u,w) are multisets, for each

β ∈ {v1, ...,vk}, we examine whether the number of occurrences of β in N (u,w) is at least the

number of occurrences of β in {v1, ...,vk}. This task takes quadratic time. Therefore, the task

to check whether w |= N (u,{v1, ...,vk}) has complexity O(|w|)2). Therefore, if ϕ is a Boolean

combination of atomic QNF sentences, then the overall complexity is O((|ϕ|+ |w|)3).

Now, we define the notion of QNF rank of QNF sentences. In the following definition, observe

that the QNF rank of a QNF sentence is equal to the quantifier rank of the equivalent first-order

sentence. The goal of this definition is to use the results of the Ehrenfeucht–Fraïssé game on

strings with QNF sentences.

Definition 7.1.3 (QNF Rank). Let ϕ be a QNF sentence. The QNF rank of ϕ , written qnfr(ϕ),

is defined as

qnfr(ϕ) :=



dlog(n+2)e, if ϕ = lgeq(n)

dlog(|w|+2)e, if ϕ ∈ {pref(w),suff(w)}

dlog(|w|+1)e+n−1, if ϕ ∈ {σ(w)≥ n,γ(w)≥ n}

dlog(|w|+1)e+ k, if ϕ = N (w,{v1, ...,vk})

max{qnfr(ψ) | ψ ∈ A(ϕ)}, otherwise.

For example, qnf r(pref (ab)∨¬γ(ba)≥ 2) = max{dlog(4)e,dlog(3)e+1}= 3. Now, we show

a result connecting the QNF rank of QNF sentences and the number of rounds in Ehrenfeu-
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cht–Fraïssé games. First, we show that, over strings, for each QNF sentence, there exists an

equivalent first-order sentence.

Lemma 7.1.2. Let ϕ be a formula in QNF such that qnfr(ϕ) ≤ r. Then, ϕ is equivalent to

first-order sentence over strings ψ such that qr(ψ)≤ r.

Proof. First, observe that atomic QNF sentences are equivalent to the following abbreviations

defined in Subsection 6.2.4.

lgeq(n) is equivalent to ϕ≥n,

pref (a1...ak) is equivalent to ϕpre fk=a1...ak ,

suf f (a1...ak) is equivalent to ϕsu f fk=a1...ak ,

N (u,{v1, ...,vk}) is equivalent to ϕN (u,{v1,...,vk}),

γ(u)≥ n is equivalent to ϕγ(u)≥n,

σ(u)≥ n is equivalent to ϕσ(u)≥n.

Moreover, for each atomic QNF sentence ϕ above, the equivalent first-order sentence

ϕ ′ is such that qnf r(ϕ) = qr(ϕ ′). We have shown first-order sentences equivalent to each atomic

QNF sentence. As first-order logic is closed under Boolean connectives, and by the definition of

quantifier rank, the lemma holds.

Theorem 7.1.1. The Spoiler has a winning strategy in Gr(u,v) iff there exists a QNF sentence ϕ

such that qnfr(ϕ)≤ r, u |= ϕ and v 6|= ϕ .

Proof. Suppose that there exists a QNF sentence ϕ such that qnf r(ϕ)≤ r, u |= ϕ and v 6|= ϕ . By

Theorem 7.1.2, there exists a first-order sentence ϕ ′ equivalent to ϕ such that qr(ϕ ′)≤ r. Then,

u |= ϕ ′ and v 6|= ϕ ′. From Theorem 2.3.1, it follows that the Spoiler has a winning strategy in

Gr(u,v).

Now, assume that the Spoiler has a winning strategy in Gr(u,v). Then, one condition

of Theorem 3.3.1 does not hold. First, assume that |u| 6= |v| and, without loss of generality,

|u|< 2r−2. Suppose that |u|< |v|. Then, ϕ =¬lgeq(|u|+1). Clearly, qn f r(ϕ) = |u|+3. Since

|u| ≤ 2r− 3, then qn f r(ϕ) ≤ r. Now, suppose that |v| < |u|. Then, we set ϕ = lgeq(|v|+ 1).

Since |v|< |u|< 2r−2, it follows that qn f r(ϕ)≤ r. In either case, u |= ϕ and v 6|= ϕ .

Now, suppose that pre f2r−2(u) 6= pre f2r−2(v). Clearly, u |= ϕ and v 6|= ϕ , for ϕ =

pre f (pre f2r−2(u)). Moreover, qn f r(pre f (pre f2r−2(u)))≤ r. The case such that su f f2r−2(u) 6=

su f f2r−2(v) is analogous.
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Without loss of generality, assume that σ(α,u) + qα ≤ r for some α such that

|α| = 2qα − 1 and σ(α,u) < σ(α,v). Therefore, we set ϕ = ¬(σ(α) ≥ σ(α,u) + 1). As

σ(α,u)+ qα ≤ r, then qn f r(ϕ) ≤ r. Now, suppose that σ(α,u) > σ(α,v). In this case, we

set ϕ = σ(α) ≥ σ(α,v)+ 1. Since σ(α,u) > σ(α,v) and σ(α,u)+ qα ≤ r, it follows that

σ(α,v)+qα ≤ r. Therefore, qn f r(ϕ)≤ r. Clearly, in either case, u |= ϕ and v 6|= ϕ .

Finally, assume that σ(α,u)+ qα ≤ r, σ(α,u) = σ(α,v), and γ(α,u) 6= γ(α,v).

We consider two cases. First, assume that γ(α,u)+qα ,γ(α,v)+qα ≤ r. In this case, we set

ϕ = ¬(γ(α) ≥ γ(α,u) + 1) or ϕ = γ(α) ≥ γ(α,v) + 1 analogously to the paragraph above.

Otherwise, first assume that γ(α,u) > γ(α,v). We set ϕ = N (α,N (α,u)). Clearly, u |= ϕ .

Moreover, v 6|= ϕ since σ(α,u) = σ(α,v) and γ(α,u)> γ(α,v). In the second case assume that

γ(α,u) < γ(α,v). Then, we set ϕ = ¬N (α,N (α,v)). Clearly, v |= ¬ϕ and then v 6|= ϕ . As

σ(α,u) = σ(α,v) and γ(α,u) < γ(α,v), u 6|= ¬ϕ . Therefore, u |= ϕ . Moreover, in all cases,

qn f r(ϕ)≤ r.

Now we show that every sentence in first-order logic over strings is equivalent to a QNF sentence.

The idea is analogous to the proof of Theorem 6.2.4. First, we define the following abbreviations.

leq(n) := lgeq(n)∧¬lgeq(n+1),

γ(u) = n := γ(u)≥ n∧¬(γ(u)≥ n+1),

σ(u) = n := σ(u)≥ n∧¬(σ(u)≥ n+1).

Now, we define formulas in QNF sentences equivalent to Hintikka formulas. As in

condition 4 of Theorem 3.3.1, we only use strings α such that |α|= 2qα −1, for qα > 0.

ϕ
r,length
w :=

 leq(|w|), if |w|< 2r−2

lgeq(2r−2), otherwise.

ϕ
r,pre f
w := pre f (pre f2r−2(w))

ϕ
r,su f f
w := su f f (su f f2r−2(w))

ϕ
r,α
w :=

 (σ(α) = σ(α,w))∧ (γ(α) = γ(α,w)), if qα +σ(α,w)≤ r

σ(α)≥ r−qα +1, otherwise.

ϕ
r,sub
w :=

∧
{ϕr,α

w | |α|= 2q−1,q > 0}.

Lemma 7.1.3. |= ϕr
w↔ (ϕr,length

w ∧ϕ
r,pref
w ∧ϕ

r,suff
w ∧ϕ

r,sub
w ).
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The proof of the lemma above is the same as the proof of Theorem 6.2.16. Observe that

qr(ϕr
w)≤ qr(ϕr,length

w ∧ϕ
r,pre f
w ∧ϕ

r,su f f
w ∧ϕ

r,sub
w ) since we do not use QNF formulas of the form

N (u,{v1, ...,vk}). However, this detail is not important because, in the following lemma, we

are only interested in the equivalence. Then, we show that every first-order sentence over strings

is equivalent to a QNF sentence.

Lemma 7.1.4. Let ϕ be first-order sentence over strings. Then, ϕ is equivalent to a QNF

sentence.

Proof. Let qr(ϕ)= r. From Theorem 2.3.2, it follows that |=ϕ↔ϕr
u1
∨...∨ϕr

us
. By Lemma 7.1.3,

each ϕr
ui

is equivalent to a QNF sentence. Thus, ϕ is also equivalent to a QNF sentence.

By Lemma 7.1.2 and Lemma 7.1.4, every first-order sentence over strings is equivalent to a QNF

sentence and vice versa. We use QNF sentences in this work because they represent properties

of strings in a more succinct way. As first-order logic over strings defines the class of LTT

languages, we conclude this section with the following corollary.

Corollary 7.1.1. The class of languages defined by QNF sentences is exactly the class LTT.

7.2 Synthesis of QDNF Sentences

Now, we formally define the problem we are interested in. We also show that this

problem is hard, and we define an algorithm to solve it. First, a disjunctive normal form is

defined for QNF sentences (QDNF) in the same way as classical propositional logic. Then, a

literal is an atomic QNF sentence or the negation of an atomic QNF sentence. A literal is positive

if it is an atomic QNF sentence. A literal is negative if it is the negation of an atomic QNF

sentence. Moreover, a conjunctive clause is a conjunction of literals. Then, a QDNF sentence is

a disjunction of conjunctive clauses. For example, (pre f (ab)∧¬su f f (ba))∨¬γ(ab)≥ 1 is a

QNF sentence with 2 conjunctive clauses. Then, pre f (ab) is a positive literal and ¬su f f (ba) is

a negative literal.

For a QNF sentence ϕ , we also define A(ϕ) as the set of atomic sentences occurring

in ϕ . For example, for ϕ = (pre f (ab)∨¬γ(ba)≥ 2)∧σ(abb)≥ 1, A(ϕ) = {pre f (ab),γ(ba)≥

2,σ(abb)≥ 1}.

A sample of strings S = (P,N) is a finite number of classified strings consisting of

two disjoint, finite sets P,N ⊆ Σ∗ of strings over an alphabet Σ. Intuitively, P contains positively
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classified strings, and N contains negatively classified strings. A QNF sentence ϕ covers a

positive string u ∈ P if u |= ϕ . A QNF sentence ϕ covers a negative string v ∈ N if v 6|= ϕ . A

QNF sentence ϕ is consistent with a sample S if P ⊆ L(ϕ) and N ∩L(ϕ) = /0. Therefore, a

sentence is consistent with a sample if it holds in all strings in P and does not hold in any string

in N.

Definition 7.2.1 (QDNF Synthesis (QDNFS)). Given a sample of strings S, a set Φ of atomic

QNF sentences, and a positive integer m, the QDNFS problem consists in finding, if it exists, a

QDNF sentence ϕ such that

• A(ϕ)⊆Φ,

• ϕ has m conjunctive clauses,

• ϕ is consistent with S.

The following example illustrates the QDNF Synthesis problem.

Example 7.2.1. Let S be the sample in Table 1 repeated below for convenience. Let Φ =

{suff(e),pref(s),σ(v)≥ 2,γ(p)≥ 1} be a set of atomic QNF sentences, and m = 1. A solution

to the QDNFS problem is the formula below.

pref(s)∧¬γ(p)≥ 1.

Table 1 – A sample of strings.

String Class
stviil Positive
ktvive Negative
stviie Positive
st piie Negative

Source: Own elaboration

Now, we consider a relaxed version of the QDNFS problem without the constraints on the

number of conjunctive clauses and set Φ. In the QDNFS problem, the set Φ of atomic QNF

sentences is also given as input. Clearly, if Φ is not a suitable set, then, for all positive integer

m, there does not exist ϕ consistent with S such that ϕ has m conjunctive clauses. For example,

let S be a sample such that P = {abbbb} and N = {abbba}, and let Φ = {pre f (ab)}. Then, for

all positive integer m, there does not exist ϕ consistent with S such that A(ϕ)⊆Φ and ϕ has m

conjunctive clauses.
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7.2.1 Suitable Set of Formulas

Now, we show how to consider a suitable set Φ. Let S be a sample. We define

Pref(S) = {x | xy ∈ P∪N} as the set of all prefixes of all strings in S. Analogously, we define

Suff(S) for suffixes. Moreover, we define Inf(S) = {y | xyz ∈ P∪N} as the set of all infixes of

all strings in a sample S. Now, we define the following set, given a sample S and QNF rank r.

Φ
r
S :=

{lgeq(n) | n≤ max{|w| | w ∈ P∪N},n≤ 2r−2}∪

{pre f (u) | u ∈ Pref(S), |u| ≤ 2r−2}∪

{su f f (u) | u ∈ Suff(S), |u| ≤ 2r−2}∪

{γ(u)≥ n | u ∈ Inf(S),n≥ 1,dlog2(|u|+1)e+n−1≤ r}∪

{σ(u)≥ n | u ∈ Inf(S),n≥ 1,dlog2(|u|+1)e+n−1≤ r}∪

{N (u,N (u,w)) | u ∈ Inf(S),w ∈ P∪N,dlog2(|u|+1)e+ |N (u,w)| ≤ r}.

The set Φr
S consists of atomic QNF sentences such that the QNF rank is at most r. Furthermore,

Φr
S can be built in polynomial time.

Proposition 7.2.1. Let ϕ ∈Φr
S. Then, qnfr(ϕ)≤ r.

Proposition 7.2.2. Let S be a sample and r be a positive integer. Then, |Φr
S| is polynomial in the

size of S. Moreover, Φr
S can be built in polynomial time.

Now, we show that Φ
max{MinRound(u,v)|u∈P,v∈N}
S is a suitable set of atomic sentences in the

QDNFS problem. Therefore, we show that there exists ϕ consistent with S such that A(ϕ)⊆

Φ
max{MinRound(u,v)|u∈P,v∈N}
S . First, we need the following result.

Lemma 7.2.1. Let u ∈ P be a positive string, v ∈ N be a negative string, and r be a positive

integer such that MinRound(u,v)≤ r. Then, there exists ψr
u,v ∈Φr

S and ϕr
u,v such that ϕr

u,v = ψr
u,v

or ϕr
u,v = ¬ψr

u,v and u |= ϕr
u,v and v 6|= ϕr

u,v.

Proof. Since MinRound(u,v)≤ r, first, suppose that pre f2r−2(u) 6= pre f2r−2(v). Note that the

atomic sentence pre f (pre f2r−2(u)) ∈Φr
S. Then, ϕr

u,v = pre f (pre f2r−2(u)). The case such that

su f f2r−2(u) 6= su f f2r−2(u) is analogous.

Now, without loss of generality, suppose that |u| 6= |v| and |u|< 2r−2. There are

two cases two consider. First, assume that |u| < |v|. Then, ϕr
u,v = ¬lgeq(|u|+ 1). Note that

|u|+ 1 ≤ 2r− 2 and lgeq(|u|+ 1) ∈ Φr
S. Now, suppose that |v| < |u|. Then, ϕr

u,v = lgeq(|u|)

which is also in Φr
S since |u| ≤ 2r−2.
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Assume now that σ(α,u)+qα ≤ r for some α such that |α|= 2qα−1 and σ(α,u) 6=

σ(α,v). First, suppose that σ(α,u) < σ(α,v). Therefore, ϕr
u,v = ¬(σ(α) ≥ σ(α,u) + 1).

As σ(α,u) + qα ≤ r, then (σ(α) ≥ σ(α,u) + 1) ∈ Φr
S. For the second case, assume that

σ(α,u)> σ(α,v). Then, we set ϕr
u,v = σ(α)≥ σ(α,u) which clearly is in Φr

S.

Lastly, suppose that σ(α,u)+qα ≤ r for some α such that |α|= 2qα −1, σ(α,u) =

σ(α,v), and γ(α,u) 6= γ(α,v). First, assume that γ(α,u)> γ(α,v). Then, ϕr
u,v =N (α,N (α,u)).

Observe that ϕr
u,v ∈Φr

S since |N (α,u)|=σ(α,u) and σ(α,u)+qα ≤ r. Clearly, u |=ϕr
u,v. Since

σ(α,u) = σ(α,v) and γ(α,u)> γ(α,v), there exists β ∈N (α,u) such that the number of oc-

currences of β in N (α,u) is greater than the number of occurrences of β ∈N (α,v). Therefore,

N (α,u) 6⊆N (α,v). Then, v 6|= ϕr
u,v. For the second case, assume that γ(α,u) < γ(α,v). In

this case, ϕr
u,v = ¬N (α,v). The rest is analogous to the case where γ(α,u)> γ(α,v).

Now, we define a formula such that its atoms are among those in Φ
max{MinRound(u,v)|u∈P,v∈N}
S ,

and it is consistent with S and its atoms are among those in Φ
max{MinRound(u,v)|u∈P,v∈N}
S . In the

following, sentences ϕ
max{MinRound(u,v)|u∈P,v∈N}
u,v are defined as in Lemma 7.2.1. Clearly, for

strings u ∈ P and v ∈ N, it follows that MinRound(u,v)≤ max{MinRound(u,v) | u ∈ P, v ∈ N}.

Given a sample S, we define the following formula.

ϕS =
∨
u∈P

∧
v∈N

ϕ
max{MinRound(u,v)|u∈P,v∈N}
u,v .

Theorem 7.2.1. Let S be a sample. Then, ϕS is consistent with S.

Proof. Let u∈ P. Then, as MinRound(u,v)≤max{MinRound(u,v) | u∈ P,v∈N}, for all v∈N,

by Lemma 7.2.1, it follows that

u |=
∧

v∈N

ϕ
max{MinRound(u,v)|u∈P,v∈N}
u,v .

Therefore, u |= ϕS. Now, let v ∈ N and assume that v |= ϕS,

i.e, v |=
∧

v′∈N ϕ
max{MinRound(u,v′)|u∈P,v′∈N}
u,v′ , for some u ∈ P. Then,

v |= ϕ
max{MinRound(u,v′)|u∈P,v′∈N}
u,v .

However, by Lemma 7.2.1, v 6|= ϕ
max{MinRound(u,v′)|u∈P,v′∈N}
u,v . This is an absurd.

Therefore, v 6|= ϕS.
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7.2.2 A SAT-Based Approach

Observe that ϕS above has |P| disjunctive clauses. In the QDNFS problem, the number of

conjunctive clauses is given. Now, we show how to solve the QDNFS problem by a translation to

the SAT problem. This approach is based on the one for the BFS problem (KAMATH et al., 1992;

IGNATIEV et al., 2018). Since our solution is based on SAT, we call our method QDNFSAT.

The variables used in the propositional representation are p j,ϕ and p′j,ϕ , for j ∈ {1, ...,m}, ϕ ∈Φ,

and c j,u, for j ∈ {1, ...,m}, u ∈ P. The propositional variable p j,ϕ is true iff ϕ is not included in

conjunctive clause j. Analogously, p′j,ϕ is true if ¬ϕ is not included in clause j. Finally, c j,u is

true iff conjunctive clause j is true in u ∈ P. Now, we show the constraints. The first constraint

ensures that, for each clause C j and each ϕ ∈Φ, ϕ and ¬ϕ are not both in C j.

p j,ϕ ∨ p′j,ϕ for j ∈ {1, ...,m}, ϕ ∈Φ. (7.1)

For the next constraint, given v ∈ N a negative string, we define Pv = {ϕ ∈ Φ | v |= ϕ} and

Nv = {ϕ ∈Φ | v 6|= ϕ}. In the second constraint, each negative string does not satisfy any clause.

∨
ϕ∈Pv

¬p′j,ϕ ∨
∨

ϕ∈Nv

p j,ϕ for j ∈ {1, ...,m},v ∈ N. (7.2)

For j ∈ {1, ...,m}, ϕ ∈Φ, and u ∈ P, the following constraint describes when clause j does not

hold in u.

 p′j,ϕ ∨¬c j,u, if u |= ϕ,

p j,ϕ ∨¬c j,u, otherwise.
(7.3)

Finally, the last constraint guarantees that each positive string must be satisfied by at least one

conjunctive clause.

∨
j∈{1,...,m}

c j,u for u ∈ P. (7.4)

Let ψS,Φ,m be the conjunction of propositional formulas 7.1 to 7.4 where S is a sample, Φ is

a set of atomic QNF sentences, and m is the number of conjunctive clauses. Then, ψS,Φ,m has

O(m×|Φ|+m×|P∪N|) variables and O(m×|Φ|× |P∪N|) clauses. In addition, if ψS,Φ,m is

satisfiable, one can obtain a QDNF formula ϕV consistent with S such that A(ϕV )⊆Φ and ϕV

has m conjunctive clauses directly from a model V of ψS,Φ,m.
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Definition 7.2.2. Let V be a model of ψS,Φ,m. We define ϕV by

m∨
j=1

∧
({ϕ | ϕ ∈Φ,V 6|= p j,ϕ}∪{¬ϕ | ϕ ∈Φ,V 6|= p′j,ϕ}).

The next result states that our approach QDNFSAT produces a solution to the QDNFS problem.

Theorem 7.2.2. For a sample S, set Φ of atomic QNF sentences, and a positive integer m, a

model V of ψS,Φ,m provides a QDNF formula ϕV that is a solution to the QDNFS problem.

Proof. Clearly, ϕV is well defined because it consists of at most m conjunctive clauses such

that each clause is a conjunction of atomic sentences in Φ and negation of atomic sentences

in Φ. Furthermore, Formula 7.1 makes sure that at most one of ¬p j,ϕ and ¬p′j,ϕ is set to true.

Then, it is not possible to occur ϕ and ¬ϕ at the same clause. Otherwise, such a clause would be

unsatisfiable.

Now, we show that ϕV is consistent with S. Let u ∈ P. Then, Formula 7.4 ensures that there

exists j ∈ {1, ...,n} such that V |= c j,u. Formula 7.3 enforces that if V |= ¬p j,ϕ , then u |= ϕ and

if V |= ¬p′j,ϕ , then u |= ¬ϕ . Therefore, u |= ϕV .

Now, let v ∈ N. Assume that v |= ϕV . Then, v satisfies the jth clause for some j ∈ {1, ...,m}.

Then, by Formula 7.2, V |= ¬p′j,ϕ for some ϕ ∈ Pv or V |= ¬p j,ϕ for some ϕ ∈ Nv. In either

case, it follows an absurd because the jth clause does not hold in v. Then, v 6|= ϕV . Therefore,

ϕV is consistent with S.

7.2.3 NP-completeness

Now, we show that the QDNFS problem is NP-complete. First, we show the complexity of

deciding if a given formula is a solution to the QDNFS problem.

Lemma 7.2.2. Given a sample S, a set Φ of atomic QNF sentences, a natural m, and a QDNF

formula ϕ , one can check if ϕ is a solution of the QDNFS problem in polynomial time.

Proof. It is straightforward to check whether ϕ has at most m conjunctive clauses and A(ϕ)⊆Φ

in polynomial time. From Lemma 7.1.1, it follows directly that one can check whether ϕ is

consistent with S in polynomial time.

Theorem 7.2.3. QDNFS is NP-complete.

Proof. From Lemma 7.2.2, it follows that QDNFS is in NP. Now, we show a polynomial time

reduction from BFS to QDNFS.
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The reduction maps an instance (Ψ,E,m) of BFS into an instance (Φ,S,m) of

QDNFS as follows. First, we assume an order p1, ..., pr in Ψ. We associate each pi ∈ Ψ to

symbols pi0, pi1 ∈ Σ. We define a string wV = wV1...wVr ∈ S, for each valuation in V ∈ E+∪E−.

Let V ∈ E+∪E− be a valuation and pi ∈Ψ be a propositional variable. Then, if V 6|= pi, we set

wvi = pi0; if V |= pi, we set wvi = pi1. The set Φ is defined as {γ(pi1)≥ 1 | pi ∈Φ}. Note that

V |= pi iff wV |= γ(pi1)≥ 1.

Let (Ψ,E,m) be an instance of BFS such that ψ is consistent with E and ψ has m

clauses. Let (Φ,S,m) be as in the reduction. We build a QDNF formula ϕ by replacing each pi

occurring in ψ by γ(pi1)≥ 1. Therefore, V |= ψ iff wV |= ϕ . Thus, ϕ has m clauses and it is

consistent with S.

Now, let (Ψ,E,m) be an instance that has no formula with m clauses and consistent

with E, and (Φ,S,m) be as in the reduction. Suppose that there exists ϕ with m clauses and

consistent with S. We can easily build a formula ψ by replacing each γ(pi1) ≥ 1 in ϕ by pi.

Therefore, ψ is consistent with E and it has m clauses. This is an absurd.

A disadvantage of the method defined in this section is that it may return a QNF

sentence with a large number of literals per clause. In order to overcome this problem, we

suggest a method which also considers the maximum number of literals per clause in the next

section.

7.3 Synthesis of l-QDNF Sentences

In this section, since we consider the number of literals per conjunctive clause, we

say that a QDNF formula with at most l literals per clause is a l-QDNF formula. For example,

(pre f (ab)∧¬su f f (ba))∨¬γ(ab)≥ 1 is a 2-QDNF sentence.

Then, besides the number of conjunctive clauses, we can also control the maximum

number of literals per clause. Sentences with few clauses and with few literals per clause seem

more natural to be understood by humans than sentences with few clauses and a large number of

literals per clause. Then, our method defined in this section is able to obtain a compact set of

rules from the input sample. In the following, we formally define the problem.

Definition 7.3.1 (l-QDNF Synthesis (l-QDNFS)). Given a sample of strings S, a set Φ of atomic

QNF formulas, two positive integers m and l, the l-QDNFS problem consists in finding, if it

exists, a QDNF formula ϕ such that
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• A(ϕ)⊆Φ,

• ϕ has m conjunctive clauses,

• each conjunctive clause in ϕ has at most l literals,

• ϕ is consistent with S.

In the following, we give an example of instance and solution to the above problem.

Example 7.3.1. Let S be the sample in Table 3 repeated below for convenience. Let Φ below be

the set of atomic QNF sentences, m = 2, and l = 2.

Φ = {pref(H̀L̀),γ(L̀)≥ 1,suff(Ĺ),suff(H́),σ(H)≥ 1,γ(LL̀)≥ 1}

A solution to the l-QDNFS problem is the formula ϕ below.

ϕ = (¬σ(H)≥ 1∧ suff(Ĺ))∨ (suff(H́)∧¬γ(LL̀)≥ 1).

Table 3 – Sample of stress patterns in Cambodian.

String Class
H̀L̀H̀Ĺ Positive
H̀LHĹ Negative

H̀LH̀LH́ Positive
H̀LL̀H̀H́ Negative
H̀LH̀L Negative

Source: Own elaboration

Again, it is easy to solve a relaxed version of the l-QDNFS problem without the

constraints on the number of conjunctive clauses, the maximum number of literals per clause,

and set Φ. We can easily build a QDNF formula consistent with the input sample S using only

the atomic QNF sentences in Φ
max{MinRound(u,v)|u∈P,v∈N}
S . In what follows, we show our method

to solve the l-QDNFS problem.

7.3.1 A SAT Encoding for l-QDNF Synthesis

Now, we show how to solve the synthesis problem by encoding this problem into

the satisfiability problem of propositional logic. Since our solution is based on SAT, we call our

method l-QDNFSAT (l-QDNF Synthesis using SAT). Formally, given S, Φ, m, l, we construct

a propositional formula ψ
m,l
S,Φ of size polynomial such that ψ

m,l,K
S,Φ is satisfiable iff there exists
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an l-QDNF formula ϕ consistent with S with m conjunctive clauses, and A(ϕ)⊆Φ. Also, it is

possible to obtain such a l-QDNF formula ϕ from a model of ψ
m,l
S,Φ.

We define ψ
m,l
S,Φ to encode the structure of an l-QDNF formula with m conjunctive

clauses. In order to encode this structure, we use the following propositional variables: xi, j,t , for

i ∈ {1, ...,m}, j ∈ {1, ..., l}, t ∈Φ∪{∗}, and pi, j, for i ∈ {1, ...,m}, j ∈ {1, ..., l}. The meaning

of a variable of the form xi, j,t , for t ∈Φ, is that if it is set to true, then the associated atomic to

the jth literal in clause i is t. Therefore, if pi, j is set to true, then atomic t occurs as a positive

literal in clause i. Otherwise, it occurs as a negative literal. On the other hand, if xi, j,∗ is set to

true, then the jth literal is skipped in clause i. Therefore, we ignore pi, j in this case.

To make the variables to encode a structure of an l-QDNF formula, we impose the

following constraints expressing that at most one atomic QNF formula is associated to literal j in

clause i, for i ∈ {1, ...,m} and j ∈ {1, ..., l}. Formulas 7.5-7.6 enforce this property by allowing

to set only one xi, j,t to true for literal j in clause i. Formula 7.7 guarantees that each clause has at

least one literal.

∧
i∈{1,...,m}

∧
j∈{1,...,l}

∨
t∈Φ∪{∗}

xi, j,t . (7.5)

∧
i∈{1,...,m}

∧
j∈{1,...,l}

∧
t,t ′∈Φ∪{∗},t 6=t ′

¬xi, j,t ∨¬xi, j,t ′. (7.6)

∧
i∈{1,...,m}

∨
j∈{1,...,l}

¬xi, j,∗. (7.7)

Now, we consider the constraints related to the sample S. We add variables to track the semantics

of literals and clauses for each string in the sample. This idea is based on an encoding to the

problem of learning linear temporal logic formulas presented in (NEIDER; GAVRAN, 2018).

Then, we use the following types of propositional variables: yw
i, j, for i ∈ {1, ...,m}, j ∈ {1, ..., l},

w ∈ P∪N, and zw
i , for i ∈ {1, ...,m}, w ∈ P∪N. Intuitively, the meaning is that if yw

i, j is set to

true, then w satisfies literal j in clause i. In addition, if zw
i is set to true, then clause i holds in

string w.

First, we define the constraints to enforce the meaning of variables of the form yw
i, j.

Clearly, the semantics of a literal in a string w depends on the atomic QNF formula associated to

literal j in clause i. Then, let dw,t
i, j = yw

i, j if w |= t and dw,t
i, j = ¬yw

i, j if w 6|= t, for t ∈Φ. Also, the

semantics relies upon the propositional variable pi, j. Then, Formula 7.8 ensures that yw
i, j is set to
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true iff w satisfies the jth literal in clause i. This is ensured by using the semantics of atomic QNF

formulas and variables pi, j. Formula 7.9 guarantees that the semantics of conjunctive clauses is

not interfered by skipped literals. Finally, Formula 7.10 implements the semantics of conjunctive

clauses. Clearly, zw
i must be set to true if all literals in clause i are satisfied by w.

∧
i∈{1,...,m}

∧
j∈{1,...,l}

∧
t∈Φ

∧
w∈P∪N

xi, j,t → (pi, j↔ dw,t
i, j ). (7.8)

∧
i∈{1,...,m}

∧
j∈{1,...,l}

∧
w∈P∪N

xi, j,∗→ yw
i, j. (7.9)

∧
i∈{1,...,m}

∧
w∈P∪N

zw
i ↔

l∧
j=1

yw
i, j. (7.10)

In this noiseless case, the following constraints impose that a QNF formula must be consistent

with the sample S.

∧
u∈P

m∨
i=1

zu
i . (7.11)

∧
v∈N

m∧
i=1

¬zv
i . (7.12)

Formulas 7.5-7.12 can easily be translated to CNF. Let ψ
m,l
S,Φ be the conjunction of Formulas 7.5-

7.12 in CNF. Then, ψ
m,l
S,Φ has O(m× l×|Φ|+m× l×|P∪N|) Boolean variables, and it consists

of O(m× l×|Φ|2 +m× l×|Φ|× |P∪N|) clauses.

Now, we show how to obtain a QDNF formula from a solution of SAT. One can

obtain a l-QDNF formula ϕV from a model V of ψ
m,l
S,Φ, if ψ

m,l
S,Φ is satisfiable. Clearly, we only

need the truth values of variables xi, j,t and pi, j.

Definition 7.3.2. Let V be a model of ψ
m,l
S,Φ. The l-QDNF formula is defined by

ϕV :=
∨m

i=1Ci, such that each Ci is defined by

Ci :=
∧
{t | V |= xi, j,t ,V |= pi, j, t 6= ∗, j ∈ {1, ..., l}}∪∧
{¬t | V |= xi, j,t ,V 6|= pi, j, t 6= ∗, j ∈ {1, ..., l}}.

We finish this subsection by showing that our approach l-QDNFSAT produces a solution to the

l-QDNFS problem.
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Theorem 7.3.1. For a sample S, a set of atomic QNF formulas Φ, positive integers m, l, a model

V of ψ
m,l
S,Φ provides a l-QDNF formula ϕV that is a solution to the l-QDNFS problem.

Proof. Clearly, ϕV is well defined because it consists of m conjunctive clauses such that each

clause is a conjunction of at most l literals. Formula 7.7 ensures that each clause has at least one

literal. Moreover, since each atomic is in Φ, A(ϕV )⊆Φ.

Let u ∈ P. By Formula 7.11, zu
i is true for some i ∈ {1, ...,m}. Then, from For-

mula 7.10, it follows that yu
i, j is true for all j ∈ {1, ..., l}. Let j be any element in {1, ..., l}.

Formulas 7.5-7.7 force that xi, j,t is true for some atomic QNF sentence t ∈Φ or xi, j,∗ is true. We

just need to consider the first case. If du,t
i, j = yu

i, j in Formula 7.8, then pi, j must be true. Then,

u holds in literal t in clause Ci. If du,t
i, j = ¬yu

i, j in Formula 7.8, then pi, j must be false. Then, u

holds in literal ¬t in clause Ci. Since j is arbitrary, then u |=Ci. Therefore, u |= ϕV .

Now, let v ∈ N. From Formula 7.12, it follows that zv
i is false for all i ∈ {1, ...,m}. Let i be an

arbitrary element in {1, ...,m}. Then, by Formula 7.10, yv
i, j is false for some j ∈ {1, ..., l}. Then,

xi, j,∗ must be false by Formula 7.9. Therefore, xi, j,t is true for some t ∈Φ. There are two cases.

First, assume that v |= t. Then, Formula 7.8 imposes that pi, j must be false. Then, v does not

hold in the jth literal in Ci. Now, suppose that v 6|= t. Then, pi, j must be true. Again, v does not

hold in the jth literal in Ci. As the clauses are conjunctive v 6|=Ci. Since i is arbitrary, v 6|= ϕV .

Therefore, ϕV is consistent with S.

7.3.2 NP-completeness of l-QDNFS

Since the l-QDNFS problem is an extension of the QDNFS problem, we show our

result on the hardness of the l-QDNFS problem.

Theorem 7.3.2. l-QDNFS is an NP-complete problem.

Proof. Since the size |S| of a sample S is the sum of the lengths of all strings it includes,

the construction of ψ
m,l
S,Φ takes polynomial time. Then, this construction is a polynomial time

reduction from l-QDNFS to SAT. Since SAT is an NP problem, it follows that l-QDNFS is in NP.

Now, we show a polynomial time reduction from QDNFS to l-QDNFS. The reduction

maps an instance (S′,Φ′,m′) of QDNFS into an instance (S,Φ,m, l) of l-QDNFS as follows. We

set S = S′, Φ = Φ′, m = m′, l = |Φ|.

Let (S′,Φ′,m′) be an instance of QDNFS such that ϕ ′ is a QDNF formula consistent

with S′ such that it has m′ conjunctive clauses and A(ϕ ′)⊆Φ′. Since l-QDNFS is an extension of
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QDNFS, then ϕ ′ also has at most |Φ| literals per clause, otherwise such a clause would certainly

be unsatisfiable.

Now, let (S′,Φ′,m′) be an instance of QDNFS such that it does not have solution.

We show by contradiction that l-QDNFS has no solution either. Assume that there exists an

l-QDNF formula ϕ consistent with S such that it has m conjunctive clauses and A(ϕ)⊆Φ. In

other words, ϕ has at most |Φ| literals per clause. Then, ϕ is a QDNF formula consistent with

S such that it has m clauses and A(ϕ)⊆Φ′. This is an absurd with the assumption, and so the

claim holds. Therefore, l-QDNFS is NP-complete.

7.4 Examples

In this section, we give exampĺes of solutions obtained by DFASAT (HEULE;

VERWER, 2010) for DFA synthesis and our methods QDNFSAT and l-QDNFSAT for synthesis

of QNF formulas. We use samples from the domain of phonology.

In phonology, stress is a relative emphasis given to a certain syllable in a word.

Usually, there are two syllable weights: light (L) and heavy (H). We use acute accent to denote

primary stress level and grave accent to denote secondary stress level. Then, H́ represents a

heavy syllable with primary stress and L̀ denotes a light syllable with secondary stress. Further-

more, LH̀Ĺ represents a word consisting of an unstressed light syllable, followed by a heavy

syllable with secondary stress, followed by a light syllable with primary stress. For details, see

(STROTHER-GARCIA et al., 2017).

We define samples of stress patterns in the human languages Alawa and Cambodian.

We define these samples using constraints presented in (LAMBERT; ROGERS, 2019) which

define stress patterns in these natural languages.

7.4.1 Stress Patterns in Alawa

First, we define a sample of stress patterns in the human language Alawa which is

an indigenous Australian language. In this language, there is only one syllable weight and two

level of stress (LAMBERT; ROGERS, 2019). Then, we use the alphabet Σalawa = {L, L̀, Ĺ}. In

Alawa, monosyllables are always stressed. In addition, in all other words, primary stress falls on

the penultimate syllable. Also, the following universal constraint is essential: every word has

exactly one syllable that receives primary stress.
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We adapted the constraints in (LAMBERT; ROGERS, 2019) to the language of

QDNF formulas. The following QDNF formula represents the constraints of the stress patterns

in Alawa.

ϕalawa = (su f f (ĹL)∧ γ(Ĺ)≥ 1∧¬γ(Ĺ)≥ 2)∨

(su f f (ĹL̀)∧ γ(Ĺ)≥ 1∧¬γ(Ĺ)≥ 2)∨

(pre f (Ĺ)∧¬lgeq(2)).

The DFA Aalawa in Figure 33 also represents the stress patterns in Alawa. We

generate a sample of stress patterns in Alawa according to the following procedure. First, we

generate all strings w over the alphabet Σalawa such that |w| ≤ 3. For each generated string, we

classify this string in P or N according to Aalawa. For example, LĹL ∈ P and ĹĹL ∈ N. This

sample is composed by 7 positive strings and 32 negative strings.

Figure 33 – DFA Aalawa

q0

q1

q2

q3

q4 q5

L, L̀

Ĺ

L, L̀
Ĺ

L, L̀

Ĺ

L, L̀

Ĺ

Σ

Σ

Source: Own elaboration

Now, we describe how we use the three methods in this example. For our method

QDNFSAT, we use s = r+m as the main parameter. Then, we start with r = 1 and m = 1, i.e.,

s = 2. We successively increase s by one until a QDNF formula is found. Note that, in general,

for a value of s, there is many values for r,m. For l-QDNFSAT, we follow a similar procedure.

We use s = r+m+ l such that the procedure starts with s = 3, and we successively increase s

by one until a QDNF formula is found. For DFASAT, we start with the number of states n = 1.

Then, we increase n by one until a DFA is found.

DFASAT returned the following DFA in Figure 34. This DFA has 5 states, while

Aalawa consists of 6 states. In addition, the DFA in Figure 34 accepts strings with more than one

occurrence of Ĺ. For example, it accepts ĹLĹĹ.
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Figure 34 – DFA returned by DFASAT

q0

q1 q2

q3 q4

Ĺ
L, L̀

Ĺ

Ĺ

L, L̀

Ĺ

L, L̀, Ĺ

Ĺ

L̀,L

Source: Own elaboration

Our method QDNFSAT returned the QDNF formula below. It consists of 18 literals

and only one clause. Also observe that the formula below does not hold in LLĹL since LLĹL 6|=

¬pre f (LL). However, LLĹL is a stress pattern in Alawa. This is probably due to the large

number of literals in the formula returned by QDNFSAT. Clauses with a large number of literals

constrains too much the number of strings classified as positive since the string must be true in

all literals.

γ(Ĺ)< 2∧σ(Ĺ)≥ 1∧σ(ĹL̀L)< 1 ∧

¬su f f (L̀Ĺ)∧¬su f f (L̀L̀)∧¬pre f (LL) ∧

¬su f f (ĹĹ)∧¬su f f (LĹ)∧σ(LLL)< 1 ∧

γ(LLĹ)< 1∧ γ(L̀LL̀)< 1∧σ(ĹLL̀) ∧

γ(ĹLL)< 1∧ γ(ĹĹL)< 1∧ γ(LLL̀) ∧

σ(LLL̀)< 1∧ γ(LL̀L̀)< 1∧ γ(ĹL̀L̀).

l-QDNFSAT returned the following QDNF formula. It consists of 6 literals, 3

clauses, and at most 2 literals per clause. Moreover, it is easy to see that this formula is

equivalent to ϕalawa. For example, the formula below holds in LLĹL. Also, it does not hold in

ĹLĹĹ. Furthermore, observe that γ(Ĺ)≥ 1 is not necessary in the first two clauses. For example,

su f f (ĹL) forces at least one occurrence of Ĺ since su f f (ĹL) |= γ(Ĺ) ≥ 1. Then, this formula
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considers the universal constraint that primary stress falls on exactly one syllable.

(su f f (ĹL)∧¬γ(Ĺ)≥ 2)∨

(su f f (ĹL̀)∧¬γ(Ĺ)≥ 2)∨

(σ(Ĺ)≥ 1∧¬lgeq(2)).

7.4.2 Stress Patterns in Cambodian

Now, we turn to the human language Cambodian which is the official language

of Cambodia. The stress patterns in Cambodian satisfy the following constraints: in words

of all sizes, primary stress falls on the final syllable and secondary stress falls on all heavy

syllables. Moreover, light syllables occur only immediately following heavy syllables and light

monosyllables do not occur. Also, every word has exactly one syllable that receives primary

stress.

Then, we consider an alphabet Σcambodian = {L,H, Ĺ, H́, L̀, H̀}. We are interested

in formal languages over Σ∗ which represent stress patterns in Cambodian. We adapted the

constraints in (LAMBERT; ROGERS, 2019) to the language of QDNF formulas. Then, we

obtained the formula ϕcambodian below.

ϕcambodian = (su f f (Ĺ)∨ su f f (H́))∧

γ(H)< 1 ∧

(pre f (H̀)∨ pre f (H́))∧

γ(LL)< 1∧ γ(LL̀)< 1∧ γ(LĹ)< 1 ∧

γ(L̀L)< 1∧ γ(L̀L̀)< 1∧ γ(L̀Ĺ)< 1 ∧

γ(ĹL)< 1∧ γ(ĹL̀)< 1∧ γ(ĹĹ)< 1 ∧

¬(γ(Ĺ)≥ 1∧ γ(H́)≥ 1)∧

(γ(Ĺ) = 1∨ γ(H́) = 1).

The DFA Acambodian in Figure 35 below recognizes exactly the stress patterns in

Cambodian. We use the sample procedure defined in Subsection 7.4.1 in order to generate a

sample of stress patterns in Cambodian. Then, the sample consists of all strings w over the

alphabet Σcambodian such that |w| ≤ 3. We classify each string as positive or negative in accord

with Acambodian. Then, this sample has 7 positive strings and 251 negative ones. For example,

H̀LH́ ∈ P and H̀LĹ ∈ N.
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Figure 35 – DFA Acambodian

q0

q1

q2 q3

H̀

H́

L, L̀, Ĺ,H

H̀

L, L̀

H

Ĺ, H́

Σ

Σ

Source: Own elaboration

We ran the three method as in Subsection 7.4.1. DFASAT returned a DFA isomorphic

to Acambodian. QDNFSAT returned a QDNF formula with 208 literals only one clause. Then, we

do not provide this QDNF formula here. However, the literal ¬γ(L̀H̀)≥ 1 is present in the clause.

Therefore, this QDNF formulas does not hold in H̀L̀H̀Ĺ, for example. Observe that H̀L̀H̀Ĺ is a

stress pattern in Cambodian. Again, a likely explanation for this phenomenon is that a string

must hold in all literals in order to be classified as positive.

Lastly, l-QDNFSAT returned the QDNF formula below. Clearly, l-QDNFSAT

returned a QDNF formula smaller than the one provided by QDNFSAT. The formula below

consists of 5 clauses and 10 literals with at most 2 literals per clause. However, it holds in LH̀LH́.

Observe that his string is not a stress pattern in Cambodian since there exists an L which does

not occur immediately following a heavy syllable.

(su f f (H́)∧σ(H̀LH̀)≥ 1)∨

(pre f (H̀)∧ su f f (H̀Ĺ))∨

(su f f (H̀H́)∧ pre f (H̀))∨

(¬su f f (H)∧σ(H̀L̀H́)≥ 1)∨

(σ(H́)≥ 1∧¬lgeq(2)).



111

8 QDNF SYNTHESIS FROM NOISY SAMPLES

In this chapter, we show how to apply our techniques to the synthesis of sentences

from noisy data. In this case, not all examples should necessarily be covered. Then, we define a

cost function for QNF sentences on samples. We also introduce the notion of indistinguishability

graph using the Ehrenfeucht–Fraïssé game. Using this notion of indistinguishability graph, we

show how to determine a suitable set of atomic QNF sentences for the synthesis problem from

noisy samples.

Since, in the noisy case, a QNF sentence may not classify correctly a string in the

sample, our first approach consists of covering the majority of the examples. In this first noise

tolerant extension of our framework, we consider the synthesis of QNDF and l-QDNF sentences.

In both cases, we solve the synthesis problem using a MaxSAT encoding. The main results of

our first approach were submitted to (ROCHA et al., 2020).

We also present an approach in which the maximum number of misclassified strings

is also given as part of the input. Then, the advantage of this approach is that it can verify whether

there exists a QNF sentence with cost bounded by the input. Again, we regard the synthesis

of QNDF and l-QDNF sentences. In this different scenario, we directly adapt the SAT-based

approach to learn DFA from noisy samples in (ULYANTSEV et al., 2015). The primary results

of this second approach were accepted for publication in (ROCHA; MARTINS, 2019).

8.1 Cost Function and Indistinguishability Graph

In our extension to handle noisy samples, a sentence may not cover an example.

Therefore, we use a cost associated with a sentence for not covering examples. Formally, the

cost function of a sentence ϕ on S is the fraction of all examples that are not covered by ϕ .

cost(ϕ,S) :=
|{u ∈ P | u 6|= ϕ}|+ |{v ∈ N | v |= ϕ}|

|P|+ |N|
.

One should note that P and N are not necessarily disjoint, that is, we may have P∩N 6= /0. Then,

we do not use |P∪N| as a denominator in the definition of cost(ϕ,S).

Observe that, in the cost function we are considering, all examples have the same

weight. We may choose another cost function when the sample is unbalanced. For example, if

the number of positive examples is far greater than the number of negative examples, we may

choose a higher weight for the negative examples.
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Now, we show that the set Φr
S is a suitable set, i.e., there exists a QNF sentence ϕ such that

A(ϕ)⊆Φr
S, and for all ϕ ′ such that qn f r(ϕ ′)≤ r, then cost(ϕ,S)≤ cost(ϕ ′,S). Then, there is

no sentence with QNF rank at most r that is better than ϕ . First, we define the indistinguishability

graph for a sample S and a QNF rank r.

Definition 8.1.1 (Indistinguishability Graph). Let S be a sample and r be a QNF rank. The

indistinguishability graph for S and r is a undirected bipartite graph G(S,r) := (P,N,E) such

that

E = {(u,v) | u ∈ P, v ∈ N, and MinRound(u,v)> r}.

The edges of G(S,r) consist of pairs (u,v) such that the minimum QNF rank of a sentence

distinguishing u from v is greater than r. A sentence of QNF rank at most r can not distinguish

u from v for (u,v) ∈ E. Then, for all ϕ such that qn f r(ϕ)≤ r, u |= ϕ and v |= ϕ or u 6|= ϕ and

v 6|= ϕ .

Example 8.1.1. Let S=(P,N) such that P= {abbb,aabb,bbab,bbaa}, N = {aaab,abab,babb},

and r = 1. Then, G(S,r) is represented in Figure 36. For the edge (aaa,aa)∈E and ϕ = γ(b)≥ 1,

aaa 6|= ϕ and aa 6|= ϕ .

Figure 36 – Indistinguishability graph of Example 8.1.1

aaa

aaaaa

bb

bab

aaaa

aa

bbbbb
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P N

Source: Own elaboration

From Example 8.1.1, one should note that the set of edges induces a partition on P∪N such that

each partition is the set of vertices of a complete bipartite graph. It is straightforward to compute
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the complete bipartite subgraphs in linear time in the numbers of vertices of the graph. The idea

is to compute the connected components of the graph. Each connected component is a complete

bipartite subgraph of the original graph. In what follows, we show this claim.

Proposition 8.1.1. Let G(S,r) be a indistinguishability graph for some S and r. Assume that

w1,w1,w2, ...,wn is a path in G(S,r). Then, MinRound(w1,wn)> r.

Proof. Clearly, when n = 1, MinRound(w1,wn) > r. By induction hypothesis, suppose that

it holds for w1,w1,w2, ...,wk−1. Now, let w1,w1,w2, ...,wk be a path. Then, it follows that

(wk−1,wk) ∈ E. By definition, MinRound((wk−1,wk)> r. By induction hypothesis, it follows

that MinRound((w1,wk−1) > r. By contradiction, assume that there exists a QNF sentence ϕ

such that qn f r(ϕ)≤ r, w1 |= ϕ and wk 6|= ϕ . Since MinRound((w1,wk−1)> r, then wk−1 |= ϕ .

Again, as MinRound((wk−1,wk)> r, then wk |= ϕ . This is an absurd.

Proposition 8.1.2. Let G(S,r) be a indistinguishability graph for some sample S and QNF rank

r. Let G′ = (V ′,E ′) be a connected component of G(S,r). Then, G′ = (V ′,E ′) is a complete

bipartite graph.

Proof. Let G′ = (V ′,E ′) be a connected component of G(S,r). Clearly, G′ = (V ′,E ′) is bipartite

by the definition of G(S,r). Then, we can see G′ as a bipartite G′ = (PC,NC,E ′) such that,

V ′ = PC∪NC, PC∩NC = /0, PC ⊆ P and NC ⊆ N. By contradiction, assume that G′ = (PC,NC,E ′)

is not a complete bipartite graph. Then, there exists a pair (u,v) 6∈ E ′ such that u ∈ PC and v ∈ NC.

It follows that there exists a QNF sentence ϕ such that qnfr(ϕ)≤ r, u |= ϕ and v 6|= ϕ . As G′

is connected, there exists a path u = u1,v1,u2, ...,un,vn = v in G′. Clearly, by Proposition 8.1.1,

MinRound(u,v) > r. Then, by definition, (u,v) ∈ E, and then, (u,v) ∈ E ′. This is an absurd.

Therefore, G′ is a complete bipartite graph.

Let G(S,r) be a indistinguishability graph. A cluster C = (PC,NC,EC) of G is a complete bipartite

subgraph of G such that (PC∪NC,EC) is a connect component of G, PC ⊆ P, NC ⊆ N.

Example 8.1.2. Let G(S,r) be the indistinguishability graph of Example 8.1.1. The graph C in

Figure 37 is a cluster of G(S,r).

It is straightforward that a positive example and a negative example in the same cluster of G(S,r)

are indistinguishable by QNF sentences of QNF rank at most r. This also holds for any pair of

examples in the same cluster as in the following result.
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Figure 37 – A cluster of the indistinguishability graph of Example 8.1.1
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Source: Own elaboration

Lemma 8.1.1. Let C be a cluster of G(S,r) for some S and r. For all w1,w2 ∈ PC ∪NC, and

sentence ϕ of QNF rank at most r, w1 |= ϕ and w2 |= ϕ or w1 6|= ϕ and w2 6|= ϕ .

Proof. The case such that w1 ∈ PC and w2 ∈ NC follows directly from the definition of G(S,r).

Now, suppose that w1,w2 ∈ PC. The case such that w1,w2 ∈ NC is analogous. Then, it must exist

v ∈ NC such that (w1,v),(w2,v) ∈ EC. Let ϕ be a sentence of QNF rank at most r. Then, ϕ is

true in w1 and v or it is false in w1 and v. Without loss of generality, assume that ϕ is true in w1

and v. As (w2,v) ∈ EC, ϕ must also be true in w2. Therefore, the lemma holds.

Furthermore, for a cluster C of G(S,r), and a formula ϕ such that qnfr(ϕ)≤ r, ϕ is true in all

vertices of PC ∪NC or it is false in all vertices of PC ∪NC. For example, for ϕ = ¬pref(b), ϕ

is false in all vertices of PC ∪NC in Example 8.1.2. This result is formalized in the following

lemma. It follows directly from Lemma 8.1.1.

Lemma 8.1.2. Let C be a cluster of G(S,r) for some S and r. Let ϕ be a QNF sentence such

that qnfr(ϕ)≤ r. Then, either for all w ∈ PC∪NC, w |= ϕ or for all w ∈ PC∪NC, w 6|= ϕ .

Therefore, for a cluster C of G(S,r) such that |PC|> 0 and |NC|> 0, any formula of QNF rank

at most r can not cover all vertices of the cluster. In this case, a solution to the synthesis problem

must cover the examples of the biggest set between PC and NC. For example, a solution must

cover the examples in PC if |PC| > |NC|. Let C (S,r) = {C1, ...,Cn} be the set of clusters of

G(S,r). Let P = {C ∈ C | |PC| ≥ |NC|} be the set of all clusters such that the number of positive

examples is not less than the number of negative examples. We define N in an analogous way.

Then, the lower bound to the cost of a sentence ϕ of QNF rank at most r on a sample S is

sum{|NC| |C ∈P}+ sum{|PC| |C ∈N }
|P|+ |N|

.
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For example, the lower bound to the setting in Example 8.1.1 is 2+1
8 . Now, we show a formula of

QNF rank at most r such that its atoms are among the ones in Φr
S, and its cost on S is the lower

bound. For a cluster C, we define an arbitrary vertex of C as wC. Let S be a sample and r a QNF

rank, then

ϕ
r
S :=

∨
CP∈P

∧
CN∈N

ϕ
r
uCP ,vCN

such that ϕr
uCP ,vCN

is as in Lemma 7.2.1. Clearly, qn f r(ϕr
S) ≤ r. In what follows, we give an

example.

Example 8.1.3. Let S and r be as in Example 8.1.1. Let ϕr
S = ¬γ(b) ≥ 1∨ γ(a) ≥ 1. The

cost of ϕr
S on S is cost(ϕr

S,S) =
3
8 . Then, ϕr

S is a solution to the instance of QDNFS-Noise in

Example 8.1.1.

Theorem 8.1.1. Let S be a sample and r be a QNF rank. Then, for all ϕ such that qnfr(ϕ)≤ r,

it follows that cost(ϕr
S,S)≤ cost(ϕ,S).

Proof. We compute the cost of ϕr
S. Let CP ∈P . Clearly, it follows that uCP |=

∧
CN∈N ϕr

uCP ,vCN
.

Let u ∈ PCP ∪NCP be an element of CP. Then, by Lemma 8.1.2, u |=
∧

CN∈N ϕr
uCP ,vCN

. Therefore,

u |= ϕr
S and ϕr

S does not cover |NCP | elements of CP.

Now, let CN ∈N . Let v∈ PCN ∪NCN be an element of CN . By contradiction, suppose

that v |=
∧

C∈N ϕr
uCP ,vC

for some CP ∈P . Then, v |= ϕr
uCP ,vCN

. Then, vCN |= ϕr
uCP ,vCN

. This is an

absurd. It follows that, v 6|= ϕr
S. Therefore, ϕr

S does not cover |PCN | elements of CN . Finally, it

follows that

cost(ϕr
S,S) =

sum{|NC| |C ∈P}+ sum{|PC| |C ∈N }
|P|+ |N|

.

Therefore, for all ϕ such that qn f r(ϕ)≤ r, cost(ϕr
S,S)≤ cost(ϕ,S).

8.2 A MaxSAT Approach

In this section, we present our first framework to handle noisy samples. The goal of

this first framework is to find a QDNF sentence that minimizes the cost function concerning a

given sample.

Here, we consider that the QNF rank is also given. First, we consider the synthesis of

QDNF sentences in which the number of clauses is given as input. In what follows, we formally

define the problem.
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Definition 8.2.1 (min-QDNFS). Given a sample of strings S, a QNF rank r, a positive integer

m, and a set Φ of atomic QNF sentences such that for all µ ∈Φ, qnfr(µ)≤ r, the min-QDNFS

problem consists in finding a QDNF sentence ϕ such that

• A(ϕ)⊆Φ;

• ϕ has m conjunctive clauses;

• For all ϕ ′ such that A(ϕ ′)⊆Φ, cost(ϕ,S)≤ cost(ϕ ′,S).

Now, we show how to solve the min-QDNFS problem by a translation to MaxSAT. We call our

approach QDNFMaxSAT since it is based on MaxSAT. We use Formula 7.1 and Formula 7.3,

defined in Subsection 7.2.2, as hard clauses. Furthermore, we use Formula 7.2 and Formula 7.4,

also defined in Subsection 7.2.2, as soft clauses. Formula 7.2 and Formula 7.4 are repeated below

for convenience.

∨
ϕ∈Pv

¬p′j,ϕ ∨
∨

ϕ∈Nv

p j,ϕ for j ∈ {1, ...,m},v ∈ N. (7.2)

∨
j∈{1,...,m}

c j,u for u ∈ P. (7.4)

Using Formula 7.2 as soft clauses allows a negative string to be true in the solution.

Analogously, if we use Formula 7.4 as soft clauses, then a positive string may do not satisfy the

solution. As a MaxSAT algorithm finds a valuation that maximizes the number of satisfied soft

clauses, the number of strings covered by a solution is maximum.

A MaxSAT encoding provides means to minimize the number of literals as well.

This can be achieved by including soft clauses in order to force all literals associated with atomic

QNF formulas of Φ to be unused. This is achieved by using the following clauses.

q j,ϕ for j ∈ {1, ...,m}, ϕ ∈Φ, q j,ϕ ∈ {p j,ϕ , p′j,ϕ}. (8.1)

Let Ψ
so f t
S,Φr,m be the set of clauses in Formula 7.2, Formula 7.4, and Ψhard

S,Φr,m be the set

of clauses in Formula 7.1 and Formula 7.3. A valuation V that is a solution to MaxSAT with

instance (ψhard
S,Φr,m,ψ

so f t
S,Φr,m) allows us to extract a solution ϕV to the min-QDNFS problem with

instance S,Φr,m. The formula ϕV is as in Definition 7.2.2.

The next result states that our approach QDNFMaxSAT produces a solution to the min-QDNFS

problem.
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Theorem 8.2.1. For a sample S, set Φ of atomic QNF formulas of QNF rank at most r, and a

positive integer m, a model V of ψS,Φ,m provides a QDNF formula ϕV that is a solution to the

min-QDNFS problem.

Clearly, this MaxSAT encoding can be adapted to the case in which the maximum

number of literals per clause is also given as input. Then, the goal is to find a l-QDNF sentence

that minimizes the cost function.

Definition 8.2.2 (min-l-QDNFS). Given a sample of strings S, a QNF rank r, positive integers m,

l, and a set Φ of atomic QNF sentences such that for all µ ∈Φ, qnfr(µ)≤ r, the min-l-QDNFS

problem consists in finding a QDNF sentence ϕ such that

• A(ϕ)⊆Φ;

• ϕ has m conjunctive clauses;

• Each conjunctive clause in ϕ consists of at most l literals;

• For all ϕ ′ such that A(ϕ ′)⊆Φ, cost(ϕ,S)≤ cost(ϕ ′,S).

In order to solve the min-l-QDNFS problem using a MaxSAT encoding, we use

Formula 7.11 and Formula 7.12 as soft clauses. These formulas are defined in Subsection 7.3.1

and repeated below for convenience. Let Ψ
so f t
S,Φr,m,l be the set of clauses in Formula 7.11,

Formula 7.12.

m∨
i=1

zu
i for u ∈ P. (7.11)

¬zv
i for i ∈ {1, ...,m}, v ∈ N. (7.12)

We also use Formulas 7.5-7.10 as hard clauses. Let Ψhard
S,Φr,m,l be the set of clau-

ses in Formulas 7.5-7.10. A valuation V which is a solution to MaxSAT with instance

(ψhard
S,Φr,m,l,ψ

so f t
S,Φr,m,l) provides a solution ϕV to the min-l-QDNFS problem with instance S,Φr,m, l.

The formula ϕV is as in Definition 7.3.2. We call our method l-QDNFMaxSAT.

Again, one can define a MaxSAT encoding that minimizes the number of literals as

well. The following soft clauses impose that a valuation must satisfy as many xi, j,∗ as possible,

i.e., maximizes the the number of literals that must be skipped.

xi, j,∗ for i ∈ {1, ...,m}, j ∈ {1, ..., l}. (8.2)
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The next result states that our approach l-QDNFMaxSAT produces a solution to the min-l-

QDNFS problem.

Theorem 8.2.2. For a sample S, set Φ of atomic QNF formulas of QNF rank at most r, and

positive integers m, l, a model V of ψS,Φ,m provides a QDNF formula ϕV that is a solution to

the min-QDNFS problem.

We finish this section by showing that our framework for handling noisy data defined in this

section is an extension of that for samples without noise. This extension may be used in real

settings where examples are not guaranteed to be covered. Then, we show that a solution to the

case with noise is also a solution to the noiseless case. We give this result for the synthesis of

QDNF and l-QDNF sentences.

Theorem 8.2.3. Let S be a sample, r be a QNF rank, m be a positive integer, and Φ be a set of

atomic QNF sentences such that for all µ ∈Φ, qn f r(µ)≤ r. If there exists a QDNF formula ϕ

consistent with S such that A(ϕ)⊆Φ and ϕ has m conjunctive clauses, then a solution to the

min-QDNFS problem is also a solution to the QDNFS problem.

Proof. Let µ ′ be a solution to the min-QDNFS problem. As ϕ is consistent with S, then

cost(ϕ,S) = 0. Therefore, cost(µ ′,S) = 0 because for all ϕ ′ such that A(ϕ ′) ⊆ Φ, it holds

that cost(µ ′,S)≤ cost(ϕ ′,S). Then, µ ′ is consistent with S and it is a solution to the QDNFS

problem.

The proof of the following theorem for the synthesis of l-QDNF sentences is directly

adapted from the proof above.

Theorem 8.2.4. Let S be a sample, r be a QNF rank, m and l be positive integers, and Φ be a set

of atomic QNF sentences such that for all µ ∈Φ, qn f r(µ)≤ r. If there exists a l-QDNF formula

ϕ consistent with S such that A(ϕ)⊆Φ and ϕ has m conjunctive clauses, then a solution to the

min-l-QDNFS problem is also a solution to the l-QDNFS problem.

Therefore, our methods QDNFMaxSAT and l-QDNFMaxSAT for data with noise may also be

used to handle noiseless data. Then, each method is a unified approach for noise-free and noisy

data.

In the following section, we give our second approach to the synthesis of QDNF

sentences from noisy samples.
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8.3 The SAT-Based Approach

In this section, we present our second approach to the synthesis problem from noisy

samples. In this second approach, the maximum number of strings that can me misclassified

is given as input as well. Then, the objective is finding a QDNF sentence which obey this

requirement. This approach is directly adapted from the one in (ULYANTSEV et al., 2015) for

synthesis of DFA. In what follows, we formally define the problem for general QDNF sentences.

Definition 8.3.1 (Synthesis of QDNF Formulas from Noisy Samples (QDNFSN)). Given a

sample of strings S, a set Φ of atomic QNF sentences, a positive integer m, and a natural number

K, the QDNFSN problem consists in finding, if it exists, a QDNF formula ϕ such that

• A(ϕ)⊆Φ;

• ϕ has m conjunctive clauses;

• cost(ϕ,S)≤ K.

In what follows, we give an example of instance and solution to the above problem. Let S be the

sample in Table 5. One should note that P and N in S are not disjoint since H̀LH̀L is positive

and negative.

Table 5 – Sample of stress patterns in Cambodian.

String Class
H̀L̀H̀Ĺ Positive
H̀LHĹ Negative

H̀LH̀LH́ Positive
H̀LL̀H̀H́ Negative
H̀LH̀L Positive
H̀LH̀L Negative

Source: Own elaboration

Example 8.3.1. Let Φ = {pref(H̀L̀),γ(L̀)≥ 1,suff(Ĺ),suff(H́),σ(H)≥ 1,γ(LL̀)≥ 1} be the set

of atomic QNF sentences, m = 2, and K = 2. Let S be the sample in Table 5. A solution to the

QDNFSN problem is the formula ϕ below. The reader should observe that cost(ϕ,S)≤ 2.

ϕ = (¬σ(H)≥ 1∧ suff(Ĺ))∨ (suff(H́)∧¬γ(LL̀)≥ 1).
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Now, in order to solve the QDNFSN problem, we adapt the approach defined in

(ULYANTSEV et al., 2015). Then, we define a SAT-based method QDNFSAT-Noise for solving

this problem.

For the noiseless case in Subsection 7.2.2, we consider the constraints in Formula 7.2

and Formula 7.4. Now, we adapt these constraints to deal with noisy samples.

As in Subsection 4.3.2, for each string w in the sample, we use a variable ew such that

it is set to true if the class of string w can (but does not have to) be incorrect. Then, Formulas 8.3-

8.4 below express that if a string w is in the correct class, then a QDNF formula must cover

w.

¬eu→
∨

j∈{1,...,m}
c j,u for u ∈ P. (8.3)

¬ev→ (
∨

ϕ∈Pv

¬p′j,ϕ ∨
∨

ϕ∈Nv

p j,ϕ) for j ∈ {1, ...,m}, v ∈ N. (8.4)

In order to limit the number of strings that can be considered in the wrong class, we also use the

constraints in Formulas 4.7-4.11 defined in Subsection 4.3.2.

Formulas 8.3-8.4 can easily be translated to CNF. Let ψS,Φ,m,K be the conjunction

of Formulas 8.3-8.4, Formulas 4.7-4.11, Formula 7.1, and Formula 7.3 in CNF. If ψS,Φ,m,K is

satisfiable, then we can derive a QDNF formula ϕV from a model V of ψS,Φ,m,K .

Theorem 8.3.1. For a sample S, set Φ of atomic QNF sentences, a positive integer m, and a

natural number K, a model V of ψS,Φ,m,K determines a QDNF formula ϕV that is a solution to

the QDNFSN problem.

Clearly, the QDNFSN problem is an extension of the QDNFS problem in the fol-

lowing sense: one can use our method QDNFSAT-Noise with K = 0 in order to solve the QDNFS

problem. It follows that QDNFSAT-Noise also handles noiseless samples.

Theorem 8.3.2. Let S be a sample, m be a positive integer, and Φ be a set of atomic QNF

sentences. There exists a QDNF formula ϕ consistent with S such that A(ϕ)⊆Φ and ϕ has m

conjunctive clauses if and only if there exists a solution to the QDNFSN problem with K = 0.

We use the above result in order to prove the following theorem.

Theorem 8.3.3. QDNFSN is NP-complete.
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Proof. The construction of Formula ψS,Φ,m,K takes polynomial time in the input size of QDNFSN.

Then, this construction is a polynomial time reduction from QDNFSN to SAT. Since SAT is an

NP problem, it follows that SQFS is in NP.

By Theorem 8.3.2, there is a polynomial time reduction from QDNFS to QDNFSN.

Since QDNFS is NP-complete, it follows that QDNFSN is also an NP-complete problem.

Now, we present the SAT-based approach to handle noisy samples for the case of

l-QDNF sentences. Then, the maximum number of literals per clause is also given as input. We

formally define the problem below.

Definition 8.3.2 (Synthesis of l-QDNF Formulas from Noisy Samples (l-QDNFSN)). Given a

sample of strings S, a set Φ of atomic QSF formulas, two positive integers m and l, and a natural

number K, the l-QDNFSN problem consists in finding, if it exists, a QDNF sentence ϕ such that

• A(ϕ)⊆Φ

• ϕ has m conjunctive clauses;

• ϕ is an l-QDNF sentence;

• cost(ϕ,S)≤ K.

Now, we show how to solve this problem by adapting the approach in (ULYANTSEV

et al., 2015). Since our solution is based on SAT, we call our method l-QDNFSAT-Noise

(Synthesis of l-QDNF sentences from noisy samples using SAT). We adapt the constraints in

Formula 7.11 and Formula 7.12 as in the following formulas.

¬eu→ (
m∨

i=1

zu
i ) for u ∈ P. (8.5)

¬ev→¬zv
i for i ∈ {1, ...,m}, v ∈ N. (8.6)

Clearly, Formulas 8.5-8.6 can be easily translated to conjunctive normal form. Let

ψS,Φ,m,l,K be the conjunction of Formulas 8.5-8.6, Formulas 4.7-4.11, Formula 7.5-7.10 in CNF.

The proofs of the following results are analogous to the proofs of Theorems 8.3.1-8.3.3.

Theorem 8.3.4. For a sample S, set Φ of atomic QNF sentences, positive integers m and l, and

a natural number K, a QDNF formula ϕV that is a solution to the l-QDNFSN problem can be

derived from a model V of ψS,Φ,m,l,K .
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Theorem 8.3.5. Let S be a sample, m and l be positive integers, and Φ be a set of atomic QNF

sentences. There exists a l-QDNF formula ϕ consistent with S such that A(ϕ)⊆Φ and ϕ has m

conjunctive clauses if and only if there exists a solution to the l-QDNFSN problem with K = 0.

Theorem 8.3.6. l-QDNFSN is NP-complete.
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9 CONCLUSIONS AND FUTURE WORK

This work consists in defining approaches to obtain first-order sentences from positive

and negative structures over a fixed class. In the general case, for a fixed class of structures,

given a sample of structures in the class, the task is to find a first-order sentence that holds in

all positive structures and does not hold in any negative structure. We considered the following

classes of structures: monadic structures, equivalence structures, disjoint unions of linear order,

and strings.

Our first approach considers first-order formulas over standard vocabularies. In this

case, the goal is to find a first-order sentence such that the quantifier rank is minimum. We

introduced an algorithm that returns, in polynomial time, a first-order sentence of minimum

quantifier rank that is consistent with a given sample of structures. Our work is motivated by the

algorithm defined in (KAISER, 2012) that runs in exponential time for these classes of structures

since it works for arbitrary classes of structures. Therefore, our approach is an improvement

over the work in (KAISER, 2012), for the particular problem on monadic structures, equivalence

structures, disjoint unions of linear orders, and strings.

In general, our first approach consists in using results on Ehrenfeucht–Fraïssé games

for the classes of structures we are considering. The algorithm defined in (KAISER, 2012) uses

Hintikka formulas which have size exponential in the size of a given structure. Then, we introdu-

ced the distinguishability sentences which are defined based on the conditions characterizing

winning strategies for the Spoiler on MS, ES, DULO, and strings. Given two structures A ,B

and a natural number r, the distinguishability sentences hold in A , do not hold in B, and have

quantifier rank at most r.

The first step of our algorithm is to find, for each pair A ∈ P and B ∈ N, the

minimum number of rounds r such that the Spoiler has a winning strategy in an EF game on

A and B. Let {r1, ...,rk} be the set of minimum rounds computed in the first step. Then,

the maximum value among r1, ...,rk is the minimum quantifier rank of a first-order sentence

consistent with the input sample of structures. Then, we use this quantifier rank to build

distinguishability sentences for pair of structures A and B such that A is a positive structure

and B is a negative structure.

In order to show that our algorithm runs in polynomial time, we showed that the

size of distinguishability sentences is polynomial in the size of the input sample of structures.

Furthermore, given A ,B and r, the number of distinguishability formulas is also polynomial
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in the size of A and B. Finally, we also show that any first-order sentence is equivalent to a

Boolean combination of distinguishability sentences. This result suggests that our approach

is likely to find any first-order sentence, up to logical equivalence, given a suitable sample of

structures.

In order to summarize, our contributions and comparisons for the first approach are

in the following items:

• We showed our result on a characterization of the winning strategies for Ehrenfeu-

cht–Fraïssé games on disjoint unions of linear orders. Furthermore, for this class of

structures, it takes polynomial time to find the minimum number such that the Spoiler has

a winning strategy. We considered disjoint unions of linear orders because one may model

states of the elementary blocks world by using them (COOK; LIU, 2003).

• We described the synthesis of minimum quantifier rank first-order sentences on a fixed

class of structures. We considered the following classes: monadic structures, equivalence

structures, disjoint unions of linear orders, and strings.

• For the classes of structures we are considering in this work, we defined distinguishability

sentences. Given two structures A , B and a quantifier rank r, a distinguishability sentence

hold in exactly one of the given structures, and it has quantifier rank bounded by r. We

also define distinguishability sentences in a way such that they have polynomial size. This

result is essential in ensuring that our algorithm runs in polynomial time in the size of

the sample. Furthermore, we also showed that any first-order formula is equivalent to a

Boolean combination of distinguishability sentences.

• We designed an algorithm for the synthesis problem on the classes of structures we are

considering. We used results on Ehrenfeucht–Fraïssé games to find the minimum quantifier

rank. Our algorithm returns a Boolean combination of distinguishability sentences in order

to find a first-order formula consistent with the sample. Our algorithm takes polynomial

time in the size of the sample since it takes polynomial time to compute the minimum

quantifier rank and distinguishability sentences have size polynomial.

• The algorithm for the synthesis problem on arbitrary structures defined in (KAISER,

2012) returns a Boolean combination of Hintikka formulas. Hintikka formulas have size

exponential while distinguishability sentences have polynomial size. Besides, for arbitrary

structures, the problem of determining whether the Spoiler has a winning strategy for a

given number of rounds is a PSPACE-complete problem. Then, our algorithm runs in
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polynomial time while the one in (KAISER, 2012) takes exponential time for the classes

we are dealing with in this work. Then, our approach is an improvement, with respect to

computational complexity, over the one in the literature for monadic structures, equivalence

structures, disjoint unions of linear orders, and strings. This fact illustrates the importance

of considering a fixed class of structures.

However, our first approach has disadvantages. The main first disadvantage is that

general first-order sentences may be hard to read. The second main disadvantage is that the

problem of deciding whether a sentence holds in a structure is PSPACE-complete even in the

classes we are considering in this work. This motivated our second approach to the synthesis of

first-order sentences. Then, we defined a quantifier-free disjunctive normal form QDNF for each

class of structures we are dealing with. This normal form is easier to read than general first-order

sentences. Furthermore, we showed that determining whether a formula in QDNF is true in a

structure takes polynomial time.

We also showed that for every first-order sentence, there exists an equivalent formula

in QDNF and vice versa. We also present the synthesis problem of finding a formula in QDNF

that is consistent with a given sample of structures. We analyze this problem, and we show that

it is NP-complete. We also present our method QDNFSAT based on a SAT encoding for solving

this synthesis problem.

QDNFSAT may return QDNF sentences with a large number of literals per clause.

Then, we also introduce the synthesis problem for l-QDNF sentences, i.e., QDNF sentences such

that each conjunctive clause has at most l literals. Therefore, we design our SAT-base approach

l-QDNFSAT to solve the problem in which the maximum number of literals per clause is also

given as input. We also show that this new problem is NP-complete.

In this work, we also introduce an extended version of the synthesis problem in order

to handle noisy samples of structures. We present two frameworks to the synthesis problem

from noisy samples. In our first framework, the goal is to find a QDNF sentence that maximizes

the number of structures correctly covered. We showed our approach QDNFMaxSAT to solve

the extended version by a translation to MaxSAT. In the second framework, the maximum

number of structures misclassified K is given as input. Then, the objective is finding an l-QDNF

sentence such that it classifies incorrectly at most K structures. In this case, we propose a SAT-

based approach l-QDNFSAT-Noise to solve this version of the synthesis problem. Therefore,

QDNFMaxSAT and l-QDNFSAT-Noise are unified approaches that extract knowledge from
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noiseless and noisy samples of classified structures.

We think that our algorithm can be useful when it is desirable to compute sentences

defining a class of structures from positive and negative structures. For example, as we have

outlined in the introduction, disjoint unions of linear orders may represent states of the elementary

blocks world domain. Therefore, for disjoint unions of linear orders, our algorithm can be used

to define initial and final states of this problem. In the elementary blocks world domain, given

initial and final states, the goal is to find a sequence of actions capable of transforming the initial

state into a final state.

Our results for strings are important to grammatical inference. In grammatical

inference, one crucial problem is to find a model for a formal language from a sample of strings.

For strings, first-order logic defines exactly the class of locally threshold testable languages (LTT)

(THOMAS, 1982). Then, first-order logic over strings is a model for LTT languages. The class of

LTT languages is a subregular class, i.e., it is included in the class of regular languages. Several

recent works on grammatical inference consider models for subregular classes of languages

(GARCIA; RUIZ, 2004; HEINZ, 2009; HEINZ, 2010; HEINZ et al., 2012; HEINZ; ROGERS,

2013; STROTHER-GARCIA et al., 2017; CHANDLEE et al., 2019). As far as we know, there

are no results available in the literature considering the class of LTT languages as a whole. Then,

our approaches for strings may be seen as contributions for grammatical inference.

Below, we summarize our contributions to the synthesis of QNDF sentences.

• We defined a quantifier-free disjunctive normal form QDNF for first-order logic over

strings. For the other classes of structures we are dealing with in this work, the definition

is analogous. Sentences in this normal form are defined over a non-standard vocabulary

such that atomic sentences are an abbreviation of first-order sentences over the standard

vocabulary. This normal form is easier to read than general first-order sentences.

• We showed that, given a string w and a QDNF sentence ϕ , determining whether ϕ holds

in w, i.e., w |= ϕ , takes polynomial time.

• We proved that, for strings, the class of languages defined by QDNF sentences is exactly

the class of languages defined by general first-order sentences, i.e., locally threshold

testable languages.

• We defined two synthesis problem for QDNF sentences. In the first one, given a positive

integer m, the goal is to find a QNDF sentence with m conjunctive clauses and consistent

with the input sample. In the second synthesis problem, given two positive integers m and
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l, the problem is determining if exists a QDNF sentence with m conjunctive clauses, at

most l literals per clause and consistent with the input sample.

• We designed methods to solve each of the above problems. Our methods are based on

encoding these problems into the Boolean satisfiability problem. Then, one can use a

modern SAT-solver to find a solution. We also proved that both problems are NP-complete.

• We presented two scenarios to handle noisy samples of strings. In the first scenario, the

task is to return a QDNF sentence such that the number of misclassified strings in the input

samples is minimum. In the second scenario, the problem is testing whether there exists

an l-QDNF sentence such that it classifies incorrectly at most a given number of strings in

the input sample.

• We described a Max-SAT method to solve the first scenario and a SAT-based approach

to solve the second scenario. We also proved that the problem in the second scenario

is NP-complete. The advantage of the SAT-based method is that it allows to determine

exactly the existence or non-existence of a solution of the synthesis problem from noisy

samples.

The results in this work motivate some directions for future research. For example,

since our work is close to the area of grammatical inference, our results can be used in applications

of this area such as classification of biological sequences (WIECZOREK; UNOLD, 2014) and

finding patterns in phonology (STROTHER-GARCIA et al., 2017; LAMBERT; ROGERS, 2019).

In these applications, understanding the characteristics of the samples is essential. Therefore,

our approaches QDNFSAT, l-QDNFSAT, QDNFMaxSAT, and l-QDNFSAT-Noise can be used

to extract knowledge from samples of strings. Besides, l-QDNFSAT-Noise also considers the

maximum number of literals per clause, and it also can minimize the total number of literals in

solutions. This is useful because it provides small formulas that are easier to read. Interpretability

is essential in fields where human experts need to be able to infer new knowledge from the model

provided by the method.

Our methods for synthesis of QDNF sentences rely on a set of atomic QDNF formulas

Φr
S. However, this set is potentially huge and could be a source of intractability. Then, a direction

for future research is to define approaches to select a small relevant subset of Φr
S. One criterion

for selecting such a subset is using only the distinguishability formulas instead of all Φr
S. Other

criteria can be found in the literature of sequence classification (CHUZHANOVA et al., 1998;

LESH et al., 1999; AGGARWAL, 2002; JI et al., 2007; XING et al., 2010).
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Also, we plan to explore natural parameterizations of the synthesis problem, such as

the number of clauses and sample size. Then, we can classify such parameterizations with the

tools provided by parameterized complexity (FLUM; GROHE, 2006) such as fixed-parameter

tractability and W-hierarchy. Using these tools, it is possible to determine what aspects of a

problem cause it to become hard. For example, the DFA synthesis problem is NP-complete even

when the number of states is 2 (FERNAU et al., 2015; FERNAU, 2019). This means that the DFA

synthesis problem with the number of states as the parameter does not belong to the W-hierarchy.

On the other hand, this problem is fixed-parameter tractable (FPT) when parameterized with

the sample size, i.e., the sum of the lengths of all strings it includes (FERNAU et al., 2015).

Therefore, parameterized complexity may be a useful tool to theoretically compare the synthesis

of QDNF sentences and DFA synthesis concerning natural parameters.

In (STROTHER-GARCIA et al., 2017), positions in strings may belong to more than

one unary relation. Using this non-standard vocabulary, one can define languages with smaller

formulas as seen in Section 4.4. Interesting future work is to modify our methods so that they also

become robust concerning this non-standard vocabulary for strings. This representation of strings

is very common in phonology (STROTHER-GARCIA, 2018; VU et al., 2018; LAMBERT;

ROGERS, 2019; CHANDLEE et al., 2019).

As future work, we intend to investigate algorithms for the synthesis problem on other

classes of structures. For example, equivalence structures with colors, embedded equivalence

structures, and trees with level predicates (KHOUSSAINOV; LIU, 2009). For these classes

of structures, the problem of determining if the Spoiler has a winning strategy is solved in

exponential time. Besides, we intend to consider the class of strings with a limited order relation

(MARIA et al., 2009) and strings with a built-in linear order.

In the case of first-order logic over strings with a built-in linear order, it is necessary

to show necessary and sufficient conditions for a winning strategy in Ehrenfeucht–Fraïssé games

on these structures. First-order logic over strings with a built-in linear order is compelling because

it captures star-free languages (THOMAS, 1982). An algorithm for the synthesis problem over

strings can be used to derive a recognizer for a star-free language from a sample of strings. This

result is significant because strings may be used to model text data, traces of program executions,

DNA sequences, and sequences of symbolic data in general. Also, the class of star-free languages

includes the class of locally threshold testable language. Moreover, first-order logic over strings

with a built-in linear order is more expressive than the logic we considered in this work.
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We also plan to extend our approach to other logics such as monadic second-order

logic. For example, the Ajtain-Fagin game (AJTAI; FAGIN, 1990) is an extension of Ehren-

feucht–Fraïssé games such that the players are able to choose sets of elements in each round.

Then, Ajtain-Fagin games may be seen as Ehrenfeucht–Fraïssé games for monadic second-order

logic. Regular languages are exactly the languages definable in monadic second-order logic over

strings (BÜCHI, 1960; LADNER, 1977). An algorithm which returns monadic second-order

sentences consistent with a given sample of strings can be used in the problem of finding a

model of a regular language consistent with a given sample of strings (HEULE; VERWER, 2010;

ZAKIRZYANOV et al., 2017; ZAKIRZYANOV et al., 2019).

Another direction of future research is to combine our exact methods with traditional

algorithms of machine learning, such as algorithms for learning decision trees. This idea is

presented in (NEIDER; GAVRAN, 2018) for learning linear temporal logic formulas. Classical

algorithms for learning decision trees do not ensure the minimality of the solution. However,

they usually build a small decision tree, and they have a good trade-off between input size and

solution time. Then, this may result in methods that return small QDNF sentences and scale to

samples with a large number of strings.

We also intend to analyze classical logical properties for QNF sentences such as

satisfiability and entailment. In phonology, it is essential to check whether a property follows

from phonotactic constraints represented as logical formulas (LAMBERT; ROGERS, 2019).

Then, we plan to define methods for these logical problems and investigate their complexity. A

starting point is the literature of satisfiability modulo theories (SMT) (GANZINGER et al., 2004;

NIEUWENHUIS; OLIVERAS, 2005; NIEUWENHUIS et al., 2005; NIEUWENHUIS et al.,

2006) since the main technique for the SMT problem relies on solvers for classical propositional

logic.

Earlier works on SAT-based rule learning (IGNATIEV et al., 2018; MALIOUTOV;

MEEL, 2018; GRIENENBERGER; RITZERT, 2019) consider only the number of clauses as

input. Since we introduced a SAT encoding that considers the maximum number of literals per

clause, an exciting direction of future work consists of using our encoding for rule learning.

Lastly, we plan to investigate the synthesis of first-order queries. A first-order query is

a mapping Qt : C1→C2 from a class of structures C1 to another class of structures C2 defined by a

tuple of first-order formulas t (IMMERMAN, 1999). In this case, a sample is a binary relation S⊆

C1×C2. Then, the problem is to find a tuple of first-order formulas t such that S⊆{(A ,Qt(A )) |
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A ∈ C1} (JORDAN; KAISER, 2016). This methodology may be used for learning programs as

logical queries (JORDAN; KAISER, 2013c), and finding reductions automatically (CROUCH

et al., 2010; JORDAN; KAISER, 2013b; JORDAN; KAISER, 2013a). Furthermore, we plan

to investigate this problem when C1 and C2 are fixed classes of structures. For example, for

strings, this approach may be used to find models of phonological processes (CHANDLEE,

2014; CHANDLEE et al., 2014; CHANDLEE; HEINZ, 2018; HAO; ANDERSSON, 2019;

CHANDLEE; JARDINE, 2019).
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