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ABSTRACT

Parameterized complexity theory is a subarea of computational complexity theory in which

the run-time analysis of a computational problem handles, besides the input size, an additional

term that allows us to recognize “some kind of tractability” for many previously intractable

problems. Many problems from Logic have been received attention by some parameterized

analysis technique. We explore two logical tasks using the tools of the parameterized complexity.

First, we study the parameterized complexity of the satisfiability problem for some prefix-

vocabulary fragments of first-order logic. We consider the natural parameters emerging from the

definition of these fragments, such as the quantifier rank, and the number of relation symbols.

Following the classical classification of decidable prefix-vocabulary fragments, we observed that,

when combining with the finite model property, many fragments have fixed-parameter tractability

for the satisfiability concerning some of these parameters. Secondly, we apply parameterized

complexity theory for classification for associative, commutative, and associative-commutative

matching problems ({A, C, AC}-MATCHING) considering different parameterizations. We

primarily consider the number of variables, the size of the substitution, and the size of the

vocabulary as parameters. Combining the size of the substitution and the size of the vocabulary,

we established the fixed-parameter tractability for these matching problems. For the other cases,

we obtained the membership in W[P] for C-MATCHING for the number of variables and, for

{A, AC}-MATCHING, when considering the size of the substitution.

Keywords: Parameterized Complexity. Satisfiability. Matching. First-order Logic.



RESUMO

A teoria da complexidade parametrizada é uma sub-área da teoria da complexidade computacio-

nal em que a análise de tempo computacional considera, além do tamanho da entrada, um termo

adicional e que permite perceber um “certa tratabilidade” para muitos problemas outrora intratá-

veis. Muitos problemas da Lógica tem sido tratados por alguma técnica de análise parametrizadas.

Nós exploramos dois problemas da Lógica usando ferramentas da complexidade parametrizada.

Inicialmente, nós estudamos a complexidade parametrizada do problema da satisfatibilidade

para alguns fragmentos definidos por prefixo e o vocabulário da lógica de primeira-ordem. Nós

consideramos parâmetros naturais retirados da definição desses fragmentos tais como o posto

de quantificadores e o número de símbolos relacionais. Seguindo a classificação clássica dos

fragmentos decidíveis definidos pelo prefixo e pelo vocabulário, nós observamos que, quando

combinados com a propriedade de modelo finito, muitos fragmentos tem a satisfatibilidade

tratável por um parâmetro fixo com respeito a um desses parâmetros. Em um segundo momento,

nós aplicamos a complexidade parametrizada para a classificação dos problemas de matching

associativo, comutativo e associativo-comutativo ({A, C, AC}-MATCHING) para diferentes

parametrizações. Nós inicialmente consideramos o número de variáveis, o tamanho da substitui-

ção e o tamanho do vocabulário como parâmetros. Combinando o tamanho da substiuição e o

tamanho do vocabulário, nós obtivemos a tratabilidade por um parâmetro fixo para esses proble-

mas. Para os outros casos, nós obtivemos a pertinência em W[P] para o matching comutativo

(C-MATCHING) considerando o número de variáveis e, para {A, AC}-MATCHING, quando

consideramos o tamanho da substituição.

Palavras-chave: Complexidade Parametrizada. Satisfatibilidade. Casamento de termos. Lógica

de primeira-ordem.
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1 INTRODUCTION

Parameterized complexity theory (DOWNEY; FELLOWS, 2012; FLUM; GROHE,

2006) is a branch of computational complexity theory dedicated to the analysis of computational

problems regarding an additional term, the parameter. The parameter can be seen as a particular

data arising from the structure of the problem, or a particular choice of input in the context of a

multivariate analysis.

For example, consider the k vertex cover in a graph, an NP-complete problem, which

we have to decide if there exists a subset of k vertices such that, each edge of the graph, one of

its endpoints is on this subset. There is an algorithm running in O(1.2738k + k ·n) time where n

is the size of the graph (CHEN et al., 2010) i.e., for all fixed values of k, there is an algorithm

running in O(n). Moreover, for small values of k, this algorithm is comparatively better than

the brute-force algorithm with O(nk) running time, while for many NP-complete problems like

k-Dominating-Set, it is unlikely that an algorithm with a similar running time exists.

The central notion of parameterized complexity theory is the fixed-parameter trac-

tability that corresponds to a relaxed version of classical tractability where the “intractability”

is confined to some expression in terms of the parameter. A parameterized problem is said

to be fixed-parameter tractable (see Chapter 2), if there exists an algorithm that runs in time

f (k) · |x|c, where |x| is the input size, c is some constant, k is the parameter, and f is some

arbitrary computable function (sometimes exponential or even worse). The definitions briefly

presented in this introduction will be more precisely presented in the following chapters. Here,

we introduce them to give a good understanding of the problem.

From the earliest research in the intractability of computational problems and the

search for more efficient algorithms, it was clear that finer analysis was needed. Take, for

example, the work of Moshe Vardi (VARDI, 1982) who considered three types of analyzes

for the query evaluation in databases: data-complexity, expression-complexity and combined-

complexity. However, it was only in the works of Rod Downey and Michael Fellows that the

area of parameterized complexity was introduced as a research field by their own (DOWNEY;

FELLOWS, 1992b; DOWNEY; FELLOWS, 1992a), and it has been applied extensively to

many logical problems (GOTTLOB et al., 2002; SZEIDER, 2004; ACHILLEOS et al., 2012;

PFANDLER et al., 2015; HAAN; SZEIDER, 2016; LÜCK et al., 2017; MEIER et al., 2019).

At the birth of parameterized complexity, the weighted satisfiability problem was

central in the definition of the fixed-parameter intractable class W[1]. Many problems for which
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no efficient algorithms were known within the theory were classified employing parameterized

reductions for the weighted satisfiability problem. Moreover, the model checking problem for

FO, the question of verifying whether a first-order sentence ϕ holds in a given finite structure A,

plays a central role in the characterization of fixed-parameter intractability (FLUM; GROHE,

2001; FLUM; GROHE, 2006; HAAN; SZEIDER, 2017). As we will see in Section 2.2, model

checking for fragments of first-order logic based on the alternation of quantifiers defines a

canonical family of parameterized complexity classes.

Many applications justify the effort in the area of parameterized complexity. Many

intractable problems have polynomial behavior when someone confines to a particular kind of

instances. For example, the model checking problem for FO is decidable in PSPACE in the

general case. However, when we consider the problem over graphs with bounded degree, the

problem can be solved in linear time (SEESE, 1996) (For a graph G with degree d ≥ 3 and a

first-order formula ϕ , the problem G |= ϕ can be solved in 222O(k)
·n time where k = |ϕ| and n is

the size of G). A similar result holds for Monadic Second-Order (MSO). In the general case,

model checking in MSO is in PSPACE. Courcelle’s theorem (COURCELLE, 1990) says that it

is possible to decide in linear time whether an MSO definable property holds for a given graph

when restricted to the class of bounded tree-width graphs.

In the next section, we introduce the parameterized analysis of the satisfiability

problem of some decidable first-order fragments concerning different parameters and, for almost

all fragments, we obtain a fixed-parameter result.

1.1 Satisfiability of Prefix-Vocabulary Fragments

The satisfiability problem for some fragments of first-order logic was initially explo-

red in the seminal work of Löwenheim (LÖWENHEIM, 1915) where he showed that satisfiability

of the monadic fragment of FO is decidable and that formulas with binary predicate have satisfia-

bility problem as hard as the class of all first-order formulas, i.e., they form a reduction class

for the satisfiability problem. Then, the decision problem (Entscheidungsproblem) was placed

at a central point within the Mathematical Logic (HILBERT; ACKERMAN, 1928), and the

classification of classes of formulas into reduction classes or decidable classes flourished. After

this, many reduction classes for satisfiability were established, for example, the ∀∗∃∗ sentences,

as a corollary of Skolem’s normal form in (SKOLEM, 1920), and it was improved to ∀3∃∗ by

K. Gödel (GÖDEL, 1933). A complete description of these developments of this problem is
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provided in the book “The Classical Decision Problem” BÖRGER et al., but we are mainly

concerned with decidable classes.

We consider the satisfiability problem of prefix-vocabulary classes of first-order

logic. A prefix-vocabulary class [Π, p, f ] (respectively [Π, p, f ]=) is a set of first-order logic

formulas ϕ in the prenex normal form without equality (respectively, with equality) where Π

is a string in {∃,∀,∃∗,∀∗} denoting a set of quantifier prefixes, p is a relation arity sequence

(p1, p2, . . .) such that ϕ has at most pa relation symbols of arity a, and f is a function arity

sequence ( f1, f2, . . .) such that ϕ has at most fa function symbols of arity a (with a≤ ω). (see

Definition 3.1). We occasionally use some abbreviations: we exclude an infinite sequence of

zeros, i.e., we write (1) instead of (1,0,0, . . .), and (ω) instead (ω,0,0, . . .). Moreover we

write “all” if there is no restrictions. For example, [∀3∃∗,(0,1),(ω)] is the class of all first-order

sentences, without equality, of form ∀x1∀x2∀x3∃y1∃y2 . . .∃ynϕ , with arbitrary n, where ϕ is

quantifier-free and whose vocabulary consists of a binary relation and an arbitrary number of

unary functions. The relational classes are the prefix-vocabulary classes of first-order formulas

without function symbols, and denoted by [Π, p̄].

In (BÖRGER et al., 2001, Chapters (6-7)), the authors present a complete investi-

gation of the decidability and the complexity for many prefix-vocabulary classes. Maximum

decidable fragments, depicted in Table ??, are those that are maximum with respect to decidabi-

lity, i.e if we extend the definition of the class in any dimension, then it turns into a reduction

class. An essential tool for some decidability results is the finite model property that guarantees

a finite model for all satisfiable formulas within the considered class. However, the classes

[all,(ω),(1)]= (RABIN, 1969) and [∃∗∀∃∗,all,(1)]= (SHELAH, 1977) are decidable without

finite model property.

We drawn our attention to the fragments that are maximal for the finite model property

depicted in Table 2. Then, we consider the parameterized satisfiability problem p-κ-SAT(X) for

some prefix-vocabulary class X , and parameterized by some function κ . We take into account

the parameter that are derived from the definition of prefix class like the quantifier rank, the

number of relations, and the arity of the vocabulary.

In Section 3.2, we address the parameterized analysis of the satisfiability of relational

classes from Table 2 (1-4). For these classes, we could establish fixed-parameter tractability with

respect to some parameters (Theorems(3.4)-(3.5)-(3.8)-(3.9)). Additionally, we express a lower

bound for the satisfiability problem of [all,(ω)], when parameterized by the quantifier rank
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Tabela 1 – Maximal Prefix-Vocabulary classes
Prefix-Vocabulary Class Reference

(1) [∃∗∀∗,all]=, (Bernays, Schönfinkel 1928) (BERNAYS; SCHÖNFINKEL, 1928)

(2) [∃∗∀2∃∗,all], (Gödel 1932, Kalmár 1933, Schütte 1934)

(GÖDEL, 1932; KALMÁR, 1933; SCHÜTTE, 1934)

(3) [all,(ω),(ω)], (Löb 1967, Gurevich 1969) (LÖB, 1967; GUREVICH, 1969)

(4) [∃∗∀∃∗,all,all], (Gurevich 1973) (GUREVICH, 1973)

(5) [∃∗,all,all]=, (Gurevich 1976) (GUREVICH, 1976)

(6) [all,(ω),(1)]=, (Rabin 1969) (RABIN, 1969)

(7) [∃∗∀∃∗,all,(1)]=, (Shelah 1977) (SHELAH, 1977)
Fonte: “The Classical Decision Problem” (BÖRGER et al., 2001).

Tabela 2 – Prefix-Vocabulary classes maximal for the finite model property.

Prefix-Vocabulary Class Reference

(1) [all,(ω)]= (Löwenheim 1915) (LÖWENHEIM, 1915)

(2) [∃∗∀∗,all]= (Bernays-Schönfinkel-Ramsey 1930)

(BERNAYS; SCHÖNFINKEL, 1928; RAMSEY, 1987)

(3) [∃∗∀∃∗,all]= (Ackermann 1928) (ACKERMANN, 1928)

(4) [∃∗∀2∃∗,all] (Gödel 1932, Schütte 1934) (GÖDEL, 1932; SCHÜTTE, 1934)

(5) [all,(ω),(ω)] (Löb 1967, Gurevich 1969) (LÖB, 1967; GUREVICH, 1969)

(6) [∃∗∀∃∗,all,all] (Gurevich 1973) (GUREVICH, 1973)

(7) [∃∗,all,all]= (Gurevich 1976) (GUREVICH, 1976)

(8) [∀∗,(ω),(1)]= (Ash 1975) (ASH, 1975)

(9) [∃∗∀,all,(1)]= (Grädel 1996) (GRÄDEL, 1989)

Fonte: “The Classical Decision Problem” (BÖRGER et al., 2001).

only, the problem is unlikely to be fixed-parameter tractable (Proposition 3.6).

In Section 3.3, we also address the fixed-parameter tractability of the classes with

modest complexity (BÖRGER et al., 2001, Sec. 6.4), classes with the satisfiability problem

placed on P, NP, CoNP, PSPACE, Σ
p
2 and Π

p
2 .

The strategy applied in the previous results is to define a set of fixed-parameter

reductions from p-κ-SAT(X) to the propositional parameterized satisfiability p-SAT. This method

will imply that the problem is fixed-parameter tractable due to the closure of the class FPT under

this kind of reduction. The results are based on the classical conversion of first-order sentences

into propositional sentences in a finite domain. We summarize them in Tables 6 and 7.

To close our contributions in this topic, in Section 3.4, we extend the analysis of

parameterized complexity to the functional classes [all,(ω),(ω)] and [∃∗,all,all]=.
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In the next section, we describe our approach into parameterized complexity of

the matching problem for first-order terms under associative, commutative, and associative-

commutative equational theories.

1.2 Matching of First-Order Terms

Unification and matching problems have an essential place in many areas like, for

example, term rewriting and resolution-based theorem proving (BAADER; SNYDER, 2001).

Historically, unification had already appeared in the works of Emil Post during his postdoctoral

year of 1920 (URQUHART, 2009; MOL, 2006), and in the PhD Thesis of Jacques Herbrand

(HERBRAND, 1930). However, unification has only been proposed explicitly in theorem-

proving context as a necessary procedure in the resolution step in the seminal paper of Robinson

(ROBINSON, 1965).

The unification problem of first-order terms is related to some identification between

two symbolic expressions that it could be strictly syntactical or equational. For example, in the

case of syntactic unification, in what case are f (x,a) and f (b,y) syntactically equal, such that f

is an arbitrary function symbol, a,b are constants, and x,y are variables? This question could be

answered by a method that decides whether is there any substitution for x and y by some other

expressions. Here we consider the decision version of this problem, and someone may check

that the substitution θ := {x 7→ b,y 7→ a} is a solution for the example. The matching problem

for first-order terms is a restriction of the unification problem such that just the first term has

variables to be replaced.

From computational complexity, the unification problem obtained some progress

after Robinson’s algorithm with exponential time complexity. First, a quadratic algorithm was

proposed (ZILLI, 1975). Then a linear algorithm was presented in (PATERSON; WEGMAN,

1978). Finally, the polynomial completeness under log-space reductions was achieved (DWORK

et al., 1984). From the perspective of parameterized complexity theory, the syntactic unification

is not very attractive once it is fixed-parameter tractable for every parameterized version of the

decision problem.

However, the unification/matching problems get a little more complicated when we

consider equality modulo some equational theory like, for example, associativity, commutativity,

or distribuitivity. If someone consider a certain axiomatization for which a function symbol

must be interpreted, there are more solutions for the unification problem. For example, consider
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a commutative function f such that f (x,y) ≈ f (y,x), and the previous equivalence example

modulo commutativity of f : f (x,g(a,b)) =C f (g(y,b),x), then there are many solutions with

respect to the substitution of x while y is substituted by a. In this case, we are dealing with

equational unification/matching.

In Chapter 4, we are mainly concerned with the equational matching problem for

associative (A), commutative (C) and associative-commutative (AC) terms which are known

to be NP-complete (BENANAV et al., 1987). More precisely, for s ∈ T (F ,V ) and t ∈ T (F )

(a term without variables), the problem asks for a substitution θ such that sθ =E t for some

equational theory E ∈ {A,C,AC}. They are said to match if there is a substitution θ such that

sθ = t.

We evoke the parameterized complexity theory as a framework able to distinguish the

fine-grained complexity of these matching problems for different parameters and, in some sense,

to detect the source of their hidden complexity. In addition to the concept of fixed-parameter

tractability, a diversified collection of classes describes the parameterized intractability, and

it is best represented by the classes W[1] and W[2], the lowest levels of the W-Hierarchy

(Definition 2.19). On the top of this, we have the class W[P] (Definition 2.16) which is the class

of parameterized problems decidable by an algorithm in f (k) · |x|c but with at most h(k) · log |x|

non-deterministic steps for some computable functions f ,h and a constant c.

In (AKUTSU et al., 2017), the parameterized complexity of the {A, C, AC}-

unification/matching was studied with respect to |var(s)|. They obtained that p-|var(s)|-E-

MATCHING are W[1]-hard for E∈ {A, AC}, and they conjectured that p-|var(s)|-C-MATCHING

is in FPT by a dynamic programming algorithm. The process passes through, in a dag represen-

tation of the input terms, all pairs of vertices of the same level to the root checking whether they

match.

In Section 4.4, we give an algorithm in W[P] for p-|var(s)|-C-MATCHING when

parameterized by |var(s)|. Although, for {A, AC}-MATCHING, we would like to answer if

these problems are within W[1] concluding their W[1]-completeness, we could only show the

W[P] membership with |θ | as the parameter.

The relevance to locate a problem within W[1] is related to an algorithmic solvability

faster than the exhaustive search over all
(n

k

)
subsets. For example, p-CLIQUE, a W[1]-complete

problem, has an algorithm that runs in time O(n(ω/3)k) (NEŠETŘIL; POLJAK, 1985), achieved

with the use of a n×n matrix multiplication algorithm with running time in O(nω) (best known
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value for ω is 2.3728639 (GALL, 2014)). For p-DOMINATING-SET, a W[2]-complete problem,

we cannot do anything better than an algorithm running in O(nk+1) unless CNF satisfiability has

an 2δn time algorithm for some δ < 1 (PĂTRAŞCU; WILLIAMS, 2010).

It seems that the size of the substitution |θ |= |var(s)|+∑
|var(s)|
i=1 |ti| (see Section 4.3)

determine a more natural parameter since it represents the size of the solution. In this case, we

may also provide a membership in W[P] for p-|θ |-{A, AC}-MATCHING. In Section 4.5, we

observe that with |F |+ |θ | as the parameter we can construct a brute-force algorithm that attests

the fixed-parameter tractability. This idea was applied in (FERNAU et al., 2016) to the string

morphism problem, with respect to different parameters.

In the next section, we summarize the results included here and refer to publications

resulting from the studies previously mentioned.

1.3 Overview and Contributions

We apply the parameterized complexity theory to two decision problems relevant to

first-order logic (FO):

1. the satisfiability of decidable fragments of FO; and

2. the matching for first-order terms with associative, commutative, and associative-commutative

function symbols.

For the first problem, we obtained the fixed-parameter tractability for satisfiability

of prefix-vocabulary classes well explored in “The Classical Decision Problem” of Börger,

Grädel, and Gurevich (BÖRGER et al., 2001, Chapters (6-7)). We extracted parameters from the

definition of these fragments that are based on the prefix and the vocabulary, like the quantifier

rank and the size of the vocabulary. The first fixed-parameter tractability results concerning

some relational classes, given in Chapter 3, were published in (BUSTAMANTE et al., 2018),

and the remaining cases, classes with function symbols, were presented at 19th Brazilian Logic

Conference (BUSTAMANTE et al., 2019a).

For the second problem, we explored different parameterized versions of the mat-

ching problem for first-order terms with associative, commutative, associative-commutative

function symbols. The parameters were extracted from the structure of the problem, namely:

the number of variables, the size of the substitution, and the size of the vocabulary. The

results characterize the membership in an intractable parameterized class and the fixed-parameter

tractability. The results of Chapter 4 were presented at the 33rd International Workshop on
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Unification (BUSTAMANTE et al., 2019b).
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2 PARAMETERIZED COMPLEXITY

In this chapter, we review some basic definitions and results of parameterized

complexity theory. Our primary reference for this chapter is the textbook “Parameterized

Complexity Theory” (FLUM; GROHE, 2006) from where we extract the main tools of fixed-

parameter tractability to develop the following chapters.

We assume that the reader has some knowledge in computational complexity theory

(PAPADIMITRIOU, 2003), and mathematical logic (EBBINGHAUS et al., 2013).

We denote the set of integers, non-negative integers, natural numbers by Z,N0,N,

respectively. For m,n ∈ Z, we define [m,n] := {l ∈ Z | m≤ l ≤ n} and [n] := [1,n]. We denote

tuples of elements (v1 . . . ,vk) by v.

2.1 Elements of Fixed-Parameter Tractability

Many computational problems were defined in a multivariate setting, and with some

natural parameterizations. Take for example the definition of Vertex Cover, or Dominating Set

whose instances consist of a graph G = (V,E), and a natural k ≤ |V | (JOHNSON; GAREY,

1979). Recall that all these problems are NP-complete.

For a graph G = (V,E), a vertex cover C is a subset of V such that for all {u,v} ∈ E

at least one of u and v belong to C.

VERTEX-COVER
Instance: A graph G = (V,E), a natural k.
Problem: Decide if G has a vertex cover C ⊂V of size k.

For a graph G = (V,E), a dominating set D is a subset of V such that for all u ∈V\D

there is a v ∈ D for which {u,v} ∈ E.

DOMINATING-SET
Instance: A graph G = (V,E), a natural k.
Problem: Decide if G has a dominant set with size k.

For the first problem, searching for a vertex cover of size k, the naive algorithm that

tries all possible solutions runs in time O(nk). However, a more clever solution exists. Someone

could build a recursive algorithm that for each edge {u,v} call two recursive procedures, one that

considers u in the solution set and others that consider v. It is easy to implement each recursive
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call to run in O(||G||). This procedure leads to an algorithm running in time O(2k · ||G||) (see

Example 2.5).

For the second problem, there is nothing better than the brute-force algorithm with

running time O(nk+1) assuming that there is no better algorithm for the Boolean satisfiability in

conjunctive normal form CNF-SAT (PĂTRAŞCU; WILLIAMS, 2010). Note that for all values

of k > 0 both problems have a polynomial-time algorithm. The difference in the running time

leads to a linear-time algorithm for all values of k in the first case while, in the second case,

the exponent in the running time depends on k. For small values of k, the difference between

O(2k ·n) and O(nk) is dramatic and characterizes the central aspect of parameterized complexity

theory that confines the combinatorial explosion to k.

Parameterized complexity theory (DOWNEY; FELLOWS, 2012; FLUM; GROHE,

2006) introduces an additional dimension to the analysis of computational complexity. The first

building block of this theory is the idea of the parameterized problem.

Definition 2.1 (Parameterized problem). A parameterized problem is a pair (Q,κ) where

Q⊆ Σ∗, for some finite alphabet Σ, is a decision problem1 and κ is a polynomial-time computable

function from Σ∗ to natural numbers N, called the parameterization1. For an instance x ∈ Σ∗ of

Q, κ(x) = k is the parameter of x.

Fixing a value of the parameter, we obtain the important concept of slices that will

be useful for the connection with classical complexity theory.

Definition 2.2 (Slice of a parameterized problems). A slice of a parameterized problem (Q,κ)

is the decision problem (Q,κ)` := {x ∈ Q | κ(x) = ` ∈ N}.

Example 2.3 (Parameterized satisfiability). A canonical example is the parameterized satisfiabi-

lity problem for propositional logic where a propositional formula ϕ is encoded over some finite

alphabet Σ and κ(ϕ) equals to the number of propositional variables of ϕ .

p-SAT
Instance: A propositional formula α .

Parameter: Number of variables of α .
Problem: Decide whether α is satisfiable.

1 As is common in complexity theory, a decision problem is described as a language over finite alphabets. We
always assume Σ to be nonempty.

1 The definition of “parameterization” can be slightly different if we consider problems with a particular structure.
For example, in the Courcelle’s Theorem, the parameterization is computable by an algorithm in fpt-time
(FLUM; GROHE, 2006, Chapter 11).
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We can also look at the satisfiability problem from the perspective of different parameterizations

like the number of clauses or structural parameters from different representations of the

clausal form of propositional formulas (SZEIDER, 2004).

The second and maybe the central concept of the parameterized analysis is a relaxed

notion of tractability.

Definition 2.4 (Fixed-parameter tractability). We say that a problem (Q,κ) is fixed-parameter

tractable (fpt) if there is an algorithm that decides x ∈ Q in time bounded by f (κ(x)) · |x|O(1)

for some computable and non-decreasing function f . The class of all fixed-parameter tractable

problems is denoted by FPT.

We can verify the fixed-parameter tractability of p-SAT by the exhaustive search

iterating over all 2k propositional truth values, and for each iteration, evaluate it in the input

formula. This procedure runs in O(2k · n) time such that k is the number of propositional

variables, and n is the size of the propositional formula. The number of propositional variables is

not expected to be small in this case, but it exposes the source of the difficulty of the problem.

The status of fixed-parameter tractable is the goal for many parameterized analysis

of many NP-hard problems. The list of problems that are settled in FPT is considerable, and it is

still increasing (CESATI, 2006).

Example 2.5. One of the most explored problems in parameterized complexity is p-VERTEX-

COVER (ABU-KHZAM et al., 2004; CHEN et al., 2010). Recall the definition of the problem.

For a graph G = (V,E), a vertex cover C is a subset of V such that, for all edge {u,v} ∈ E, u ∈C

or v ∈C. Then, the parameterized version of this problem consider the size of C as a parameter.

p-VERTEX-COVER
Instance: A graph G, and a natural k.

Parameter: k.
Problem: Decide if G has a vertex cover C of size k.

As we can see, the size of the solution |C| is a natural parameter, and it is an element of the

problem (JOHNSON; GAREY, 1979).

The method of bounded search trees of height k can be applied to obtain a solution

with size at most k in O(2k · ‖G‖) time (DOWNEY; FELLOWS, 1995b). Consider a binary

search tree of height k such that, each node of the tree is labeled with a possible solution C′ and

the remained graph to be explored G′. The root is labeled with { /0,G}. At the beginning, choose
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a {u,v} ∈ E, and make C′←C′∪{u} and G′← (V\{u},E\{{u,v′}| for all {u,v′} ∈ E}). Call

a recursive procedure searching a vertex cover of size k−1 in G′. Do similarly construction for

v. Note that these constructions can be executed in O(||G||). Repeat this process until k = 0.

A better algorithm is described in (CHEN et al., 2010), and provides a solution to

this problem O(1.2738k + k ·n) time, such that n is the number of vertices, and k is the size of

the solution.

The parameterization function κ is defined in a general way, and it comes out with

two “pathological” parameterizations: κone(x) := 1, and κsize(x) := max{1, |x|}, which we call

trivial parameterizations. In the first case, a parameterized problem (Q,κone) is fixed-parameter

tractable if and only if Q is polynomial-time decidable. In the second case, all parameterized

problems (Q,κsize) are fixed-parameter tractable.

This property of κsize can be generalized to all parameterizations that increases

monotonically with the size of the input leading to the fixed-parameter tractability trivially, and it

will be useful to set apart good parameterizations from anomalous ones. A function f : N→N is

non-decreasing if for all m,n ∈ N with m < n we have f (m)≤ f (n). A function f is unbounded

if for all n ∈ N there exists an m ∈ N such that f (m)≥ n.

Proposition 2.6. (FLUM; GROHE, 2006) Let g : N→ N be a computable non-decreasing and

unbounded function, Σ a finite alphabet, and κ : Σ∗→ N a parameterization that κ(x)≥ g(|x|)

for all x ∈ Σ∗. Then for every decidable set Q ⊆ Σ∗, the problem (Q,κ) is fixed-parameter

tractable.

To construct a robust complexity theory for parameterized problems, a proper notion

of reduction is considered avoiding any aspect of complexity confinement within the parameter.

Next, it leads to the definitions of hardness and completeness. Moreover, some parameterized

classes are constructed regarding the closure under the following parameterized reductions.

Definition 2.7 (Parameterized reduction). Given the parameterized problems (Q,κ) and

(Q′,κ ′) in the alphabets Σ and Σ′, respectively, an fpt-reduction from (Q,κ) to (Q′,κ ′) is a

mapping R : Σ∗→ (Σ′)∗ such that: (i) For all x ∈ Σ∗ we have (x ∈ Q⇔ R(x) ∈ Q′). (ii) R is

computable by an fpt-algorithm (with respect to κ). That is, there is a computable function f

such that R(x) is computable in time f (κ(x)) · |x|c for some constant c. (iii) There is a computable

function g : N→ N such that κ ′(R(x))≤ g(κ(x)) for all x ∈ Σ∗.
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Let C be a parameterized class. A parameterized problem (Q,κ) is C-hard under

fpt-reductions if every problem in C is fpt-reductible to (Q,κ). A parameterized problem (Q,κ)

is C-complete under fpt-reductions if (Q,κ) is C-hard and (Q,κ) ∈C.

It can be shown that FPT is closed under fpt-reduction. Let (Q,κ),(Q′,κ ′) be

parameterized problems and (Q′,κ ′) in FPT. If there is an fpt-reduction from (Q,κ) to (Q′,κ ′),

then (Q,κ) is in FPT too.

Lemma 2.8. (FLUM; GROHE, 2006) FPT is closed under fpt-reduction.

Proof. Let (Q,κ) and (Q′,κ ′) be two parameterized problems. Assume that (Q′,κ ′) ∈ FPT ,

and that there exists an fpt-reduction from (Q,κ) to (Q′,κ ′). We concatenate the fpt-reduction

with the fpt-algorithm that solves (Q′,κ ′) to decide (Q,κ) in a fpt-time.

Consider an instance x ∈ Q such that κ(x) = k. Then, there is a fpt-reduction

with running time f (k) · |x|c generating an instance x′ ∈ Q′ with κ ′(x′) = k′ ≤ g(k) for some

computable functions g, f , and a constant c ∈ N. From the first assumption, there is an fpt-

algorithm for (Q′,κ ′) with running time in h(k′) · |x′|d for some computable function h, and

constant d. Putting this two procedures together, we have a decision procedure for Q with

running time f (k) · |x|c +h(k′) · |x′|d . As |x′| ≤ f (k) · |x|c and k′ ≤ g(k), the time is bounded by

f (k) · |x|c +h(g(k)) · ( f (k) · |x|c)d ≤ ( f (k)+h(g(k)) · f (k)d) ·O(|x|cd) .

It should be noted that, for every problem Q decidable in PTIME, the parameterized

version (Q,κ) is in FPT for every parameterization κ , and that, for each problem (Q,κ) ∈ FPT,

its slices (Q,κ)` (Definition 2.2) are polynomial-time decidable.

Another important point is that not every polynomial-time reduction is a fixed-

parameterized tractable reduction. The classical polynomial-time reduction from the INDEPENDENT-

SET problem to the VERTEX-COVER problem does not serve as an fpt-reduction. An inde-

pendent set in a graph G = (V,E) is subset I ⊆ V such that, for all u,v ∈ I, there is no edge

{u,v} ∈ E. The polynomial-time reduction considers the complement of the independent set as

the vertex cover in the same graph. The parameter in each case is the size of the solution, and the

reduction produces a parameter V − k for a vertex cover, while the independent set has size k.

This case infringes the condition (iii) from Definition 2.7.

The framework of parameterized complexity is quite robust for the classification of

parameterized problems within FPT. Namely, the methods of bounded search trees (DOWNEY;

FELLOWS, 1995b), kernelization (BUSS; GOLDSMITH, 1993), color coding (ALON et
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al., 1995), and iterative compression (REED et al., 2004) are examples of techniques that

were extensively applied to assert the fixed-parameter tractability for many different problems

(CYGAN et al., 2015).

In Sections 2.2 and 2.3, we will exhibit the question of fixed-parameter intractability,

defining some parameterized intractable classes that have similar role as NP-complete problems.

However, the fact that all slices of a fixed-parameter tractable problem are polynomial-time

decidable leads to a simple fixed-parameter intractability result.

Example 2.9. Consider for example the p-COLORABILITY problem. Let G = (V,E) be a

graph. It is said to be k-colorable if there exists a mapping c from V to [k] such that, for each

(u,v) ∈ E, c(u) 6= c(v).

p-COLORABILITY
Instance: A graph G, and a natural k.

Parameter: k.
Problem: Decide whether G k-colorable.

The 3-COLORABILITY is a well-known NP-complete problem (JOHNSON; GA-

REY, 1979). If p-COLORABILITY is in FPT, then there exists a polynomial-time algorithm for

3-COLORABILITY. Assuming that P 6= NP, it is unlikely that p-COLORABILITY is in FPT.

2.2 Fixed-Parameter Intractability

Many computational problems with different parameterizations resist to the fixed-

parameter tractability, and they were distributed over many parameterized intractable classes

(para-C classes, W-Hierarchy, A-Hierarchy, . . . (FLUM; GROHE, 2006)). Some parameterized

classes are the analog form for some classical class. Others are artificially constructed but have

their importance inside of the framework. In this section, we briefly introduce the elements for

the fixed-parameter intractability.

For each complexity class C, we define the class XC for which all parameterized pro-

blem in XC have their slices in C. This definition is non-uniform with respect to the algorithmic

realization of each slice, i.e., for some parameterized problem (Q,κ) ∈ XC, each slice (Q,κ)`

for ` > 0 may be attested by a different algorithm with resources bounded considering C.

Definition 2.10 (Slicewise polynomial). The class XP (for slicewise polynomial) is the parame-

terized analog of the exponential time class. A parameterized problem (Q,κ) is in XP, if there



24

is an algorithm that decides if x ∈ Q in at most f (κ(x)) · |x|g(κ(x)) steps, for some computable

functions f ,g : N→ N.

As a consequence of the previous definition, all fixed-parameter problems are in XP,

and then FPT ⊆ XP. The XP class is also be closed under fpt-reductions. As stated in (FLUM;

GROHE, 2006), XP will serve as a framework for the theory of parameterized complexity where

almost all problems with some natural parameterization are within XP.

Another construction of parameterized classes, denoted by para-C, interpret a pre-

computation procedure in terms of the parameterization was first defined in (FLUM; GROHE,

2003). After consuming an arbitrarily time in terms of the parameter k, produces an instance to

be decided in some computational complexity class C. Here the working example is the para-NP

class, and we define below.

Definition 2.11 (Para-NP). A parameterized problem (Q,κ) is in para-NP if there exist an

alphabet Π, a computable function π : N→Π∗, and a problem X ⊆ Σ∗×Π∗ such that X ∈ NP

and for all instances x ∈ Q we have x ∈ Q⇔ (x,π(κ(x))) ∈ X .

The following theorem appears in the context of many parameterized classes showing

the equivalence between two concepts: a machine characterization of a parameterized class, and

a definition that considers a pre-computation. Hence, para-NP can also be seen as the class of

parameterized problems decided by a non-deterministic algorithm with “fpt-time”.

Theorem 2.12. (FLUM; GROHE, 2003; FLUM; GROHE, 2006) Let (Q,κ) be a parameterized

problem in the alphabet Σ. The following statements are equivalent:

1) (Q,κ) is in para-NP

2) There is a non-deterministic algorithm that decides if x∈ (Q,κ) in at most f (κ(x)) · |x|O(1)

steps, such that f is a computable function.

Proof. 1)⇒ 2). Assume that there exists a computable function π :N→Π∗ for some finite alpha-

bet Π, and a problem X ∈NP such that, for all instances x∈Q, we have x∈Q⇔ (x,π(κ(x)))∈X .

There exists a non-deterministic algorithm A that decides Q on the input (x,y) in

time O((|x|+ |y|)d) where y = π(k) and k = κ(x). Then we construct another non-deterministic

algorithm AQ that, on the input x, computes the parameter k in polynomial-time, say O(|x|c) for

some natural c, and compute the string obtained by the function π in time bounded by g(k) for

some time constructible function g. After this, the algorithm AQ simulates A on the input x and



25

the generated string π(κ(x)) = y with |y| ≤ g(k). This algorithm AQ has running time bounded

by |x|c +g(k)+(|x|+g(k))d. Since |x|+g(k)≥ 1, the algorithm has running time bounded by

g(k)d+1 · |x|d+1.

2)⇒ 1). Let (Q,κ) a parameterized problem that is decidable by a non-deterministic

algorithm AQ in time f (k) · |x|c with k = κ(x). Let Π be the alphabet {1,§} and define π :N→Π∗

by π(k) := k§ f (k) where k and f (k) are written in unary. Let X ⊆ Σ∗×Π∗ be the decision

problem defined by the following algorithm A.

Given (x,y) ∈ Σ∗×Π∗, first A checks whether y = κ(x)§u for some u ∈ {1}∗. If this

is not the case, A rejects, otherwise A simulates |u| · |x|c steps of the computation of AQ on input

x. If AQ stops in this time and accepts, then A accepts, otherwise A rejects.

Since |u| ≤ |y|, one easily verifies that A runs in polynomial-time; moreover: x ∈

Q⇔ A accepts (x,κ(x)§ f (κ(x)))⇔ (x,π(κ(x))) ∈ X .

Proposition 2.13. (FLUM; GROHE, 2006) The class para-NP is closed under fpt-reductions.

Proof. Analogous to the proof of Lemma 2.8.

Proposition 2.14. (FLUM; GROHE, 2006) Para-NP = FPT if and only if P = NP.

Proof. Assume that FPT = para-NP. For every problem Q ∈ NP, we have (Q,κone) ∈ para-NP

for the trivial parameterization κone with κone(x) = 1 for all x ∈ Σ∗. Then, we have also that

(Q,κone) ∈ FPT, and there exists a deterministic algorithm with running time f (κone(x)) ·

|x|O(1) = f (1) · |x|O(1) for some computable function f . Hence Q ∈ PTIME.

The following theorem says that, when we find a finite set of NP-hard slices of a

parameterized problem (Q,κ), then (Q,κ) is para-NP-hard. In Corollary 3.7, we apply the

following result to conclude that the satisfiability problem for the monadic fragment of FO

parameterized by the quantifier rank is para-NP-hard.

Theorem 2.15. (FLUM; GROHE, 2006) Let (Q,κ) be a parameterized problem, and non-trivial

i.e. /0 ( Q ( Σ∗. Then (Q,κ) is paraNP-hard under fpt-reductions if, and only if, a union of

finitely many slices of (Q,κ) is NP-hard i.e. there are `,m1, . . . ,m` such that

(Q,κ)m1 ∪ (Q,κ)m2 ∪·· ·∪ (Q,κ)m`

is NP-hard under polynomial-time reductions.
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Proof. Assume that (Q,κ) is a para-NP-hard problem in the alphabet Σ. Let Q′ ⊆ (Σ′)∗ be an

NP-hard problem. Then we have that (Q′,κone) is in para-NP, and that there is an fpt-reduction

R : (Σ′)∗ → (Σ)∗ from (Q′,κone) to (Q,κ). Let f ,c,g be chosen according to Definition 2.7.

Then, for all x′ ∈ (Σ′)∗, R(x′) can be computed in time f (1) · |x′|c, and κ(R(x′))≤ g(1). Thus R is

a polynomial-time reduction from Q′ to (Q,κ)1∪ (Q,κ)2∪·· ·∪ (Q,κ)g(1). Since Q′ is NP-hard,

this implies that (Q,κ)1∪ (Q,κ)2∪·· ·∪ (Q,κ)g(1) is NP-hard.

In the opposite direction, assume that (Q,κ)m1 ∪ (Q,κ)m2 ∪ ·· · ∪ (Q,κ)m`
is NP-

hard. Consider a parameterized problem (Q′,κ ′) in para-NP over the alphabet Σ′. We show that

(Q′,κ ′)≤ f pt (Q,κ). By definition, there exists an alphabet Π, a computable function π : N→Π∗

and a problem X in NP such that, for all x ∈ (Σ′)∗ we have s ∈ Q′⇔ (x,π(κ ′(x))) ∈ X .

Since (Q,κ)m1 ∪ (Q,κ)m2 ∪ ·· · ∪ (Q,κ)m`
is NP-hard, there is a polynomial-time

reduction from X to (Q,κ)m1 ∪ (Q,κ)m2 ∪·· ·∪ (Q,κ)m`
, that is, a polynomial-time computable

mapping R : (Σ′)∗×Π∗→ Σ∗ such that for all (x,y) ∈ (Σ′)×Π∗ we have

(x,y) ∈ X ⇔ R(x,y) ∈ (Q,κ)m1 ∪ (Q,κ)m2 ∪·· ·∪ (Q,κ)m`
.

We construct an fpt-reduction S from (Q′,κ ′) to (Q,κ). Fix an arbitrary instance

x0 ∈ Σ∗\Q. Since (Q,κ) is non-trivial, there is an x0 such that

S(x) :=

R(x,π(κ ′(x))), if κ(R(x,π(κ ′(x)))) ∈ {m1, . . . ,m`},

x0, otherwise.

It is easy to check that x ∈ Q′⇔ S(x) ∈ Q and that S is computable by an fpt-algorithm.

Using the notion of bounded non-determinism in terms of the parameter leads to

another interesting parameterized class.

Definition 2.16 (The class W[P]). The W[P] class is the class of parameterized problems (Q,κ)

for which there is a non-deterministic Turing machine M, on alphabet Σ, that decides x ∈Q using

at most f (k) · p(|x|) steps with at most h(k) · log |x| non-deterministic ones for some computable

functions f and h.

Example 2.17. An example of a problem in W[P] is the parameterized version of the longest

common subsequence problem. Let a = a1 . . .an and b = b1 . . .bs be strings over the alphabet

Σ. We say that b is a subsequence of a if s≤ n and b1 = ai1 , . . . ,bs = ais for some i1, . . . , is with

1≤ i1 < .. . < is ≤ n.
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p-LCS
Instance: Strings a1, . . .am ∈ Σ∗ for some alphabet Σ and k ∈ N.

Parameter: k.
Problem: Decide whether there is a string of length k in Σ∗ that

is a subsequence of ai for i = 1, . . . ,m.

To attest the membership of p-LCS in W[P], we consider a non-deterministic Turing

machine that, on the input, guesses a string b ∈ Σ∗ of length k in O(k · log |Σ|) steps and then

deterministically verifies that b is a subsequence of every ai.

It is easy to see that W[P] is closed under fpt-reduction, and if we do not allow any

non-deterministic step, then we can see that FPT is contained in W[P]. Hence we can sum up the

relation between these classes by the following theorem.

Theorem 2.18. (FLUM; GROHE, 2006) FPT ⊆W[P] ⊆ XP ∩ para-NP.

Figura 1 – Parameterized classes.

Fonte: Made by the author himself.

2.3 W-Hierarchy

W-hierarchy is the most representative group for the fixed-parameter intractability.

The origin of the W-hierarchy is connected with the origin of parameterized complexity theory

while some fpt-reduction from p-WSAT(Γ) classified many problems, the weighted satisfiability

problem for different fragments of propositional logic Γ, and showing the completeness for some

finite level of the hierarchy (DOWNEY; FELLOWS, 1992b; DOWNEY; FELLOWS, 1992a).

Recall the definition of the propositional satisfiability problem. For a propositional

formula α ∈ Γ, the weight is the number of propositional variables assigned to 1. Then we define

the weighted satisfiability prolem.
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p-WSAT(Γ)
Instance: γ ∈ Γ and k ∈ N.

Parameter: k.
Problem: Is γ satisfiable by an assignment of weight k.

Each level of this hierarchy of parameterized classes, consider the satisfiability for

different fragments of propositional logic characterized by an alternated use of big conjunctions

(conjunction over a finite sequence of subformulas),
∧

or big disjunction
∨

interpreted as new

operators jointly with ∧ (small conjunction), ∨ (small disjunction), and ¬ .

We describe the fragments Γt,d that will characterize each level t of the W-Hierarchy

that corresponds to t nested levels of big connectives with at mots d literals on the lowest level.

A literal is an atomic formula, or a negated atomic formula. For t ≥ 0 and d ≥ 1, we define the

following class of propositional formulas Γt,d and ∆t,d:

Γ0,d := {λ1∧ . . .∧λc | c≤ d, and literals λ1, . . . ,λc},

∆0,d := {λ1∨ . . .∨λc | c≤ d, and literals λ1, . . . ,λc},

Γt+1,d :=

{∧
i∈I

δi | a finite set I, and, for all i ∈ I,δi ∈ ∆t,d

}
,

∆t+1,d :=

{∨
i∈I

γi | a finite set I, and, for all i ∈ I,γi ∈ Γt,d

}
,

There are many combinatorial properties associated with the definition of these

fragments of propositional logic, and we are reviewing in short. Chronologically, the original

definition of W-Hierarchy is given below considering the closure under fpt-reduction:

Definition 2.19 (W-Hierarchy). For all t ≥ 1, we define

W [t] :=
⋃
d≥1

{
(Q,κ) | (Q,κ)≤fpt p-WSAT(Γt,d)

}
.

Again, many problems that could not be settled into FPT were fortunately classi-

fied in terms of reductions from p-WSAT(Γt,d). For example, we can show that p-CLIQUE,

p-INDEPENDENT-SET (DOWNEY; FELLOWS, 1995a) and p-LCS (longest commom sub-

sequence when parameterize by the number of strings k and the size of the subsequence) are

W[1]-complete (BODLAENDER et al., 1995; DOWNEY; FELLOWS, 2012), p-DOMINATING-

SET and p-DOMINATING-CLIQUE are W[2]-complete (DOWNEY; FELLOWS, 1992a). In

Annex A, we present a different proof that the parameterized version of k-SUM is in W[1]. This

result was open for some time, and was only proved in (ABBOUD et al., 2014).
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In (DOWNEY et al., 1998; FLUM; GROHE, 2001), the connection between the p-

WSAT(Γ) and a similar version of the model checking problem for some fragments of first-order

logic was established in terms of parameterized reduction. Now we define the first-order logic

machinery1.

The set of quantifier-free formulas is denoted by Σ0 and Π0. For t > 0, we define

Σt+1 as the class of formulas in the form ∃x1 . . .∃xkϕ , such that ϕ ∈Πt ; and Πt+1 as the class of

all formulas in the form ∀x1 . . .∀xkϕ , where ϕ ∈ Σt .

We define ϕ(X1, . . .Xl) as a first-order logic formula with free variables X1, . . .Xl (as

second-order variables). Given a vocabulary τ of ϕ , and for all i ∈ [l], si corresponds to the arity

of Xi. A solution for ϕ in A is a tuple S̄ = (S1, . . . ,Sl), where, for each i ∈ [l], Si ⊆ Asi , such that

A |= ϕ(S̄). Thus, ϕ(X) corresponds to a first-order formula with a unique relation variable X .

We define the weighted definability problem for a formula ϕ .

p-WDϕ

Instance: A structure A and k ∈ N.
Parameter: k.
Problem: Decide if exists S⊆ As with |S|= k such that A |= ϕ(S) .

For a class of formulas Φ ⊆ FO, we define p-WD-Φ as the class of all problems

p-WDϕ such that ϕ ∈Φ. Then, we provide a different characterization of W hierarchy in terms

of p-WD-Φ for fragments Πt .

Theorem 2.20 (W Hierarchy). (DOWNEY et al., 1998; FLUM; GROHE, 2001) For all t ≥ 1,

we define

W [t] = [p-WD-Πt ]
fpt.

We say that the W-hierarchy is build by W [t] with t ≥ 1.

From our perspective, the previous result lifted the classification of W-hierarchy in

terms of a more succinct representation represented by an FO expression. We close this section

with some examples. Among other things, due to the closure of the classes of the W-hierarchy,

to show the membership within some finite level, one has to produce a structure and a first-order

formula that satisfies it. Here are some examples.

Example 2.21. p-CLIQUE is in W[1]:
1 In the next chapter, we present a definition of the syntax of FO aiming the definition of structural parameters.
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A clique in a graph G = (V,E) is a subset of vertices C ⊆V such that there exists

an edge for all pair of vertices in C. The parameterized version p-CLIQUE has the size of the

clique k as the parameter.

p-CLIQUE
Instance: a graph G, k ∈ N

Parameter: k
Problem: Decide if G has a clique with size k.

The following sentence is satisfiable in a graph G if, and only if, it contains a clique

with size k. In the following sentence, X is a subset of V that forms a clique.

clique(X) := ∀x∀y((Xx∧Xy∧ x 6= y))→ Exy).

Hence, p-CLIQUE is in p-WD-Π1

Example 2.22. p-DOMINATING-SET is in W[2]:

A dominant set in a graph G = (V,E) corresponds to a subset of vertices D⊆V in

which, for all vertex v ∈V , v ∈ D or there exists a vertex u ∈V such that {v,u} ∈ E .

p-DOMINATING-SET
Instance: a graph G, k ∈ N

Parameter: k
Problem: Decide if G has a dominant set with size k.

The following sentence is satisfiable in a graph G if, and only if, it contains a

dominating set of size k.

dominant(X) := ∀x∃y(Xy∧ (Exy∨ x = y)).

Thus, p-DOMINATING-SET is in p-WD-Π2

To summarize, we presented the basic tools for parameterized analysis that will be

used in the following chapters. In particular, in the next chapter, we will apply the notion of

fixed-parameter tractability for first-order fragments defined by the quantifier prefix and the

vocabulary used.
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3 SATISFIABILITY OF PREFIX-VOCABULARY FRAGMENTS OF FO

In this chapter, we explore the parameterized complexity of the satisfiability problem

for some decidable fragments of first-order logic classified by their prefix and vocabulary. Our

study extends the computational complexity status of many decidable fragments of first-order

logic compiled in the textbook “The Classical Decision Problem” (BÖRGER et al., 2001,

Chapter 6) within the framework of parameterized complexity. Using well-known concepts from

mathematical logic, we obtain the fixed-parameter tractability for these fragments identifying

the source of the computational difficulty and reducing to the propositional satisfiability and the

satisfiability of these fragments.

In Section 3.1, we define the prefix-vocabulary classes, the parameterized versions

of the satisfiability problem, and we summarize the decidability and complexity results for these

classes. In Section 3.2, we provide some fixed-parameter reductions from satisfiability for the

classical prefix-vocabulary classes to p-SAT. In Section 3.3, we show that all prefix classes with

modest complexity are in FPT considering some parameterization. In Section 3.4, we extend

the fixed-parameter tractability for two functional classes: [all,ω,ω] and [∃,all,all]. The results

presented here were published in (BUSTAMANTE et al., 2018) and (BUSTAMANTE et al.,

2019a).

3.1 Introduction

The satisfiability problem consists of deciding, given a formula ϕ , if there exists

a model A for the formula ϕ or not. In the general case, the first-order satisfiability SAT(FO)

is undecidable (EBBINGHAUS et al., 2013). In this work, we are interested in decidable

prefix-vocabulary fragments characterized by their quantifiers pattern in the prenex normal form,

and the use of relation, function symbols with different arities and the equality relation.

Recall that a vocabulary τ is a finite set of relation, function and constant symbols.

Each symbol σ ∈ τ is associated with a natural number, its arity(σ ). The arity of τ is the

maximum arity of its symbols. A τ-structure A is a tuple (A,RA
1 , . . .R

A
r , fA1 , . . . , fAs ,cA1 , . . .c

A
t )

such that A is a non-empty set, called the domain, and each RA
i is a relation under Aarity(Ri)

interpreting the symbol Ri ∈ τ , each fAi is a function from Aarity( fi) to A interpreting the symbol

fi ∈ τ , and each cAi is an element of A interpreting the symbol ci. We assume structures with

finite domain, and, without loss of generality, we use a domain of naturals {1, . . . ,n} denoted by
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[n].

A τ-term is a variable x, a constant c, or an m-ary function symbol f applied to

τ-terms t1, t2, . . . , tm, f (t1, t2, . . . , tm). If R is an m-ary relation symbol, and t1, t2, . . . tm are τ-

terms, then R(t1, t2, . . . , tm), and t1 = t2 are τ-formulas, which we call atomic formulas. If ϕ

and ψ are τ-formulas, then (ϕ ∧ψ), (ϕ ∨ψ), ¬ϕ are τ-formulas. If x is a variable, and ϕ is a

τ-formula, then ∀xϕ and ∃xϕ are τ-formulas. A sentence is a formula in which every variable in

a subformula is in the scope of a corresponding quantifier. A formula is in prenex normal form if

it is of the form Q1x1 . . .Q`x`ψ , such that ψ is a quantifier-free formula and Q1 . . .Q` ∈ {∃,∀}∗

is the prefix. We define the quantifier rank qr(ϕ) as the maximum number of nested quantifiers

occurring in ϕ . If ϕ is an atomic formula, then qr(ϕ) = 0. If ϕ := ¬ϕ ′, then qr(ϕ) = qr(ϕ ′).

If ϕ := (ψ � θ), where � ∈ {∧,∨}, then qr(ϕ) = max{qr(ψ),qr(θ)}. If ϕ := Qxψ , where

Q ∈ {∃,∀}, then qr(ϕ) = qr(ψ)+1.

We define six structural parameters for a first-order formula. For a fixed formula ϕ ,

we define τϕ as the set of symbols occurring in the formula ϕ . Then we denote the number of

relation symbols in τϕ by #r(ϕ), the number of function symbols in τϕ by #f(ϕ), the maximum

arity of a symbol in τϕ by ar(ϕ), the number of terms occurring in ϕ by |T |, where T is the set

of terms in ϕ , and the maximum size of a term in ϕ by |ϕterm|. The last two parameters will be

considered in Section 3.4.

Let A be a τ-structure and a1,a2, . . . ,am be elements of the domain. If ϕ(x1,x2, . . .xm)

is a τ-formula with free variables x1,x2, . . .xm, then we write A |= ϕ(a1,a2, . . .am) to denote that

A satisfies ϕ if x1,x2, . . .xm are interpreted by a1,a2, . . .am, respectively. If ϕ is a sentence, then

we write A |= ϕ to denote that A satisfies ϕ , or that A is a model of ϕ .

Definition 3.1 (Prefix-Vocabulary Classes (BÖRGER et al., 2001)). A prefix-vocabulary frag-

ment [Π, p, f ] is a set of first-order formulas in the prenex normal form, without equality, where

Π is a quantifier pattern, i.e., a string on {∃,∀,∃∗,∀∗} denoting a set of quantifier prefixes, p

is a relation arity sequence (p1, p2, . . .), and f is a function arity sequence ( f1, f2, . . .) where

pa, fa ∈ N∪{ω} are the number of relations and functions of arity a, respectively. Occasionally,

we use all to denote an arbitrary sequence of arities, or an arbitrary prefix. We denote an empty

sequence (0,0, . . .) by (0). In case f = (0), we may write [Π, p̄] instead of [Π, p,(0)]. The

prefix-vocabulary fragment [Π, p, f ]= is defined in the same way, but allowing formulas with the

equality symbol =.

For example, [∃∗,all,all]= is the set of all existential first-order sentences with an
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arbitrary vocabulary.

Parameterized Satisfiability for First-Order Fragments

Now, we are going to introduce the parameterized satisfiability problem for first-order

logic.

Definition 3.2 (The Parameterized Satisfiability Problem). Let X be a fragment of first-order

logic, and κ be some parameterization. We define p-κ-SAT(X) in the following way:

p-κ-SAT(X)
Instance: A first-order formula ϕ ∈ X .

Parameter: κ , some parameterization.
Problem: Decide whether ϕ is a satisfiable sentence.

If we consider a list of parameters L, we denote p-[L]-SAT(X) as the parameterized satisfiability

problem with parameterization κ(ϕ) := ∑ι∈L ι(ϕ) such that ι is a parameterization function.

The parameters considered here are:

• qr(ϕ). the quantifier rank,

• #r(ϕ), the number of relation symbols in τϕ ,

• #f(ϕ), the number of function symbols in τϕ ,

• ar(ϕ) the arity of τϕ ,

• |T | the number of terms occurring in ϕ where T is the set of terms in ϕ , and

• |ϕterm|, the maximum size of a term in ϕ .

A combination of these parameters leads to different parameterized problems. For example,

we have p-qr-SAT(X) is the parameterized satisfiability for the class X when considering the

quantifier rank as the parameter. Similarly, for p-#r-SAT(X) when considering the number of

relation symbols as the parameter, and p-[qr,#r]-SAT(X) when considering both parameters.

Decidability and Computational Complexity

Here we reproduce the results of decidability and computational complexity for these

prefix-vocabulary classes presented in (BÖRGER et al., 2001). Let us consider the first-order

satisfiability in its classical form. The classification problem for the satisfiability of first-order

logic considers then, for each subset X ⊆ FO, if SAT(X) is decidable, or undecidable (BÖRGER

et al., 2001). In Chapter 6 of (BÖRGER et al., 2001), the decidable cases are divided into
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Tabela 3 – Maximal Prefix-Vocabulary classes.
Prefix-Vocabulary Class Reference

(1) [∃∗∀∗,all]=, (Bernays, Schönfinkel 1928) (BERNAYS; SCHÖNFINKEL, 1928)

(2) [∃∗∀2∃∗,all], (Gödel 1932, Kalmár 1933, Schütte 1934)

(GÖDEL, 1932; KALMÁR, 1933; SCHÜTTE, 1934)

(3) [all,(ω),(ω)], (Löb 1967, Gurevich 1969) (LÖB, 1967; GUREVICH, 1969)

(4) [∃∗∀∃∗,all,all], (Gurevich 1973) (GUREVICH, 1973)

(5) [∃∗,all,all]=, (Gurevich 1976) (GUREVICH, 1976)

(6) [all,(ω),(1)]=, (Rabin 1969) (RABIN, 1969)

(7) [∃∗∀∃∗,all,(1)]=, (Shelah 1977) (SHELAH, 1977)

Fonte: “The Classical Decision Problem” (BÖRGER et al., 2001).

maximal (see Table 3), classical (see Table 4), and modest complexity classes (see Table 5). This

division has didactic and chronological importance and it gives different complexity analysis.

We are mainly interested in the classical and modest complexity classes restricted to

their relational cases while we observe that a general conversion of first-order formulas over finite

domains to propositional formulas handles the parameterized complexity classification. Here,

this procedure is understood as a transformation from a first-order sentence to a propositional

formula considering some finite domain. The classical classes are depicted in Table 4 and we

will explore them in Section 3.2.

Tabela 4 – Classical Prefix-Vocabulary classes.
Prefix-Vocabulary Class Reference

(A) [all,(ω)](=) (Löwenheim, 1915) (LÖWENHEIM, 1915)

(B) [∃∗∀∗,all] (Bernays, Schönfinkel 1928) (BERNAYS; SCHÖNFINKEL, 1928)

(C) [∃∗∀∃∗,all] (Ackermann 1928) (ACKERMANN, 1928)

(D) [∃∗∀2∃∗,all] (Gödel 1932, Kalmár 1933, Schütte 1934)
(GÖDEL, 1932; KALMÁR, 1933; SCHÜTTE, 1934)

Fonte: “The Classical Decision Problem” (BÖRGER et al., 2001).

The strategy for decidability for most of these classes is carried out by the finite

model property. For a class X with the finite model property, one can think of an algorithm

that iterates over the structure size. For each possible structure A with that fixed size, it verifies

whether A |= ϕ and, simultaneously, verifies if ¬ϕ is a valid sentence. Moreover, it is possible

to obtain an upper bound on the size of the structure. The following lemma specifies the size of

the model for formulas in the classical classes, and we will use them in most of the results of
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Section 3.2 and 3.3.

Lemma 3.3. (BÖRGER et al., 2001; SCHÜTTE, 1934)

(i) Let ψ be a satisfiable sentence in [all,ω]. Then ψ has a model with at most 2m elements

where ψ has m monadic predicates.

(ii) Let ψ be a satisfiable sentence in [all,ω]=. Then ψ has a model with at most q · 2m

elements where ψ has quantifier rank q and m monadic predicates.

(iii) Let ψ := ∃x1 . . .∃xp∀y1 . . .∀ymϕ be a satisfiable sentence in [∃∗∀∗,all]=. Then ψ has a

model with at most max(1, p) elements.

(iv) Let ψ := ∃x1 . . .∃xp∀y1∀y2∃z1 . . .∃zmϕ be a satisfiable sentence in ∃p∀2∃m containing t

predicates of maximal arity h. Then ψ has a model with cardinality at most

410tm22h(p+1)h+4
+ p.

In some cases, an upper bound on the running time of the satisfiability problem can

be found. Using nondeterminism, we can guess a structure with a size less than or equal to

the size provided by the finite model property, and then we evaluate the input formula on this

structure. For example, the satisfiability problem for [all,(ω)] is in NTIME(2n), where n is the

size of the formula and, for the class [∃∗∀2∃∗,all], the same problem is in NTIME(2n/ logn). The

complexity of the satisfiability for most of these classes is addressed in (LEWIS, 1980; FÜRER,

1981; GRÄDEL, 1989).

The second group of prefix-vocabulary classes that we are interested in this work are

those on which the satisfiability problem is in P, NP, Co-NP, Σ
p
2 , Π

p
2 , and PSPACE designated as

modest classes (BÖRGER et al., 2001, Section 6.4). In Table 5, we summarize the description of

modest complexity classes with their respective complexity result from (BÖRGER et al., 2001).

We give an example of how this classification works for the monadic classes in

Fig. 2. The class [all,(ω)] and [all,(ω)]= called the Löwenhein class and the Löwenhein class

with equality, or, alternatively, relational monadic fragments, and all classes below these classes

are considered as classes of modest complexity, and, [all,(ω),(ω)] the full monadic class, and

[all,(ω),(1)]= the Rabin’s class are maximal with respect to decidability.

3.2 Parameterized Complexity of Classical Classes

Our strategy to prove that p-[L]-SAT(X) is fixed-parameter tractable, for some

prefix-vocabulary class X and some list of parameters L, is to present an fpt-reduction to the
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Tabela 5 – Prefix-vocabulary classes of modest complexity
Prefix-Vocabulary Class Complexity classification

[∃∀∗,all]=

NP
[∃∗∀u,all]= for u ∈ N

[∃p∀2∃∗, s̄] for p ∈ N and s̄ finite

[∃p∀∃∗, s̄]= for p ∈ N and s̄ finite

[Πt ,(m)]= t,m ∈ N, and Πt

containing at most t universal quantifiers

[∃∗,(0)]=

NP-complete
[∃∗,(1)]
[∃,(ω)]

[∀,(ω)]

[∃p∀∗, s̄]= for p ∈ N and s̄ finite
Co-NP

[Πt ,(m)]= for t,m ∈ N,and Πt

containing at most t existential quantifiers

[∃2∀∗,(0)]=

Co-NP-complete

[∃2∀∗,(1)]
[∀∗∃,(0)]=
[∀∗∃,(1)]

[∀∃∀∗,(0)]=
[∀∃∀∗,(1)]
[∃∗∀∗,(0)]=

Σ
p
2-complete[∃∗∀∗,(1)]

[∃2∀∗,(ω)]

[∀∗∃∗,(0)]=
Π

p
2-complete

[∀∗∃∗,(ω)]

[∃∗∀∃,(0,1)]
PSPACE-complete

[∀∃,(ω)]

Fonte: “The Classical Decision Problem” (BÖRGER et al., 2001).

propositional satisfiability problem p-SAT. As we know, p-SAT is in FPT and FPT is closed

under fpt-reductions, then we obtain that p-[L]-SAT(X) is in FPT too1. The essential tools for

these results are the finite model property and the conversion to propositional formulas that we

outline below.

In the conversion of a first-order formula into a propositional one, the finite model
1 Another way to see the fixed-parameter tractability for these problems can be obtained by cycling over the

structures up to some domain size limits imposed by the finite model property.
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Figura 2 – The inclusion relation for monadic classes with modest complexity on Löwenheim’s
classes, and the maximal classes [all,(ω),(ω)], [all,(ω),(1)]=

Maximal

Classical

Modest

[all, (ω), (ω)] [all, (ω), (1)]=

[all, (ω)] [all, (ω)]=

[Πp, (q)] [∃∗, (0)]=

[∃∗, (1)]

[∃, (ω)]

[∀, (ω)]

[∃2∀∗, (0)]=

[∀∗∃, (0)]=

[∀∃∀∗, (0)]=

[∃2∀∗, (1)]

[∀∗∃, (1)]

[∀∃∀∗, (1)]

[∃∗∀∗, (0)]=

[∃∗∀∗, (1)]

[∃2∀∗, (ω)]

[∀∗∃∗, (0)]=

[∀∗∃∗, (ω)]

[∀∃, (ω)]

Fonte: “The Classical Decision Problem” (BÖRGER et al., 2001).

property provides a bound on the number of propositional variables since they represent the

description of the finite structure. As we see in Theorem 3.4, the quantifier rank is intrinsically

related to the conversion due to the replacement of the quantifiers by their corresponding

connectives. In the next subsection, we present our first result, and it will act as a prototypical

argument for the other proofs.

The Löwenheim Class and the Löwenheim Class with Equality

For the monadic fragments [all,(ω)] and [all,(ω)]=, we can show that the paramete-

rized satisfiability problem is in FPT when parameterized by the quantifier rank and the number

of relation symbols. Moreover, based on Proposition 3.6 given below, we observe evidence of

intractability when parameterized by the quantifier rank only.

Theorem 3.4. The satisfiability problem p-[qr,#r]-SAT([all,(ω)]) is in FPT.

Proof. We give an fpt-reduction to p-SAT. Let ϕ ∈ [all,(ω)] be a satisfiable formula with r

monadic relation symbols and quantifier rank q. By Lemma 3.3-(i), there is a model with at

most 2r elements. As we transform ϕ into a propositional formula ϕ∗, we represent each relation

by 2r propositional variables. More precisely, for each relation Ri with 1≤ i≤ r, and for each

element j ∈ [2r], we use the variable pi j to represent the truth value of Ri( j). The translation

works as follows. By structural induction on ϕ , apply the conversion of existential quantifiers

into big disjunctions, and universal quantifiers into big conjunctions. We formally define this
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conversion as:

ϕ
∗ =



pi j If ϕ := Ri( j) is an atomic formula;∨
j∈[2r]

(ψ[x/ j])∗ If ϕ := ∃xψ;

∧
j∈[2r]

(ψ[y/ j])∗ If ϕ := ∀yψ.

It is easy to see that ϕ has a model if and only if ϕ∗ is a satisfiable formula. Each inductive step

constructs a formula of size 2r · |ϕ|, and the whole process takes O((2r)q ·n) where n is the size

and q is the quantifier rank of ϕ . As the number of variables is bounded by k ·2r, this leads to

the desired fpt-reduction.

The satisfiability problem for the Löwenheim class with equality [all,(ω)]= is also

in FPT when considering the quantifier rank and the number of monadic relations.

Theorem 3.5. The satisfiability problem p-[qr,#r]-SAT([all,(ω)]=) is in FPT.

Proof. Using the same idea of Theorem 3.4, and the finite model property from Lemma 3.3.(ii),

we can describe an fpt-reduction from p-[qr,#r]-SAT([all,(ω)]=) to p-SAT.

For a satisfiable formula ϕ ∈ [all,(ω)]= with at most r = #r(ϕ) monadic relation sym-

bols and quantifier rank q= qr(ϕ), there is a model with at most q ·2r elements by Lemma 3.3.(ii).

The number of steps on the conversion is bounded by O((q ·2r)q ·n) where n is the formula size.

Each atomic formula (including those with equality symbol) is converted into a propositional

variable, and this number is a function of the size of the domain and the size of the vocabulary,

hence a function of q and r. Then, the whole process can be done in FPT.

However, when we choose the quantifier rank as the parameter, it is unlikely to

obtain an fpt-algorithm for the satisfiability of the Löwenheim’s class.

Proposition 3.6. Unless P = NP, p-qr-SAT([all,(ω)]) is not in XP.

Proof. Assume, by contradiction, that p-qr-SAT([all,(ω)]) is in XP. Then there is an algorithm

that solves the problem in time f (q) ·ng(q), where n is the size of the formula, q is the quantifier

rank of the input formula, and f and g are computable functions. Hence, for the first slice of the

problem, [∃,(ω)] and [∀,(ω)] (see Table 5), there is an algorithm that runs in f (1) ·ng(1) ∈ O(n).

This is a contradiction with the fact that these problems are NP-complete and with the reasonable

assumption that P 6= NP.
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As a consequence of Theorem 2.15 and that [∃,(ω)] and [∀,(ω)] are NP-complete

problems, we have that p-qr-SAT[all,(ω)] is para-NP-hard under fpt-reductions.

Corollary 3.7. p-qr-SAT([all,(ω)]) is paraNP-hard.

Proof. The result follows directly from Theorem 2.15.

The Bernays-Schönfinkel-Ramsey Class

Taking the same idea from Theorem 3.4 for the monadic class, if we choose a

parameter that bounds the number of propositional variables, and a conversion procedure that

can be conducted in FPT, we can provide an fpt-reduction for the parameterized satisfiability of

prefix-vocabulary classes to p-SAT. This is the case of the Bernays-Schönfinkel-Ramsey class

[∃∗∀∗,all]= when parameterized by the quantifier rank, number of relations, and arity of τϕ .

Theorem 3.8. p-[qr, #r, ar]-SAT([∃∗∀∗,all]) and p-[qr, #r, ar]-SAT([∃∗∀∗,all]=) are in FPT.

Proof. Let ϕ be a satisfiable formula in [∃∗∀∗,all] in the form ∃x1 . . .∃xk∀y1 . . .∀y`ψ . By

Lemma 3.3.(iii), ϕ has a model of size at most k ≤ qr(ϕ). Then it will be necessary at most

#r(ϕ) · kar(ϕ) propositional variables to represent the whole structure data. Applying the con-

version described in Theorem 3.4 considering the finite domain, we will produce a satisfiable

propositional formula with the number of variables bounded by g(qr(ϕ),#r(ϕ),ar(ϕ)), for some

computable function g. Clearly, this reduction can be done in FPT.

The same argument can be applied to the Ramsey’s class [∃∗∀∗,all]=.

The Ackermann and Gödel-Kalmár-Shütte Classes

For the Ackermann class [∃∗∀∃∗,all] and Gödel-Kalmár-Shütte class [∃∗∀2∃∗,all], by

Lemma 3.3.(iv), the finite model property provides a model with size related to the parameters of

the class definition (the number of existential quantifiers, the number of relations, the maximum

arity). If we consider the quantifier rank and the number of relation symbols as the parameters,

we can show it is in FPT.

Theorem 3.9. p-[qr, #r, ar]-SAT([∃∗∀∃∗,all]) and p-[qr, #r, ar]-SAT([∃∗∀2∃∗,all]) are in FPT.

Proof. For example, consider [∃∗∀2∃∗,all]. Let ϕ := ∃x1 . . .∃xk∀y1∀y2∃z1 . . .∃z`ψ be a first-

order formula in a vocabulary with r relation symbols of maximum arity ar(ϕ). By Lemma 3.3.(iv)1,
1 Unfortunately, the finite model property for the class ∃∗∀2∃∗ from (SCHÜTTE, 1934) is hard to follow.
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there is a model of size bounded by s := 410·r·`2·2ar(ϕ)·(k+1)ar(ϕ)+4
+ k that satisfies ϕ . There is a

bound for a satisfiable structure of ϕ . Considering the conversion to propositional formula, the

number of propositional variables will be bounded by r · sar(ϕ). By structural induction on ϕ ,

apply the conversion of existential quantifiers into big disjunctions, and universal quantifiers into

big conjunctions. Then it introduces one propositional variable to each possible assignment of

tuples and relation symbols. This conversion is clearly a function of s,r,ar(ϕ) and n, the size of

ϕ . This lead to an fpt-reduction to p-SAT.

The same argument can be applied to the Ackermann’s class [∃∗∀∃∗,all].

The results presented in this section are summarized in Table 6.

Tabela 6 – The parameterized complexity of the classical solvable cases.
Problem Result

p-[qr, #r]-SAT([all,(ω)]) FPT (Theorem 3.4)

p-qr-SAT([all,(ω)]) paraNP-hard (Corollary 3.7)

p-[qr, #r]-SAT([all,(ω)]=) FPT (Theorem 3.5)

p-[qr, #r, ar]-SAT([∃∗∀∗,all](=)) FPT (Theorem 3.8)

p-[qr, #r, ar]-SAT([∃∗∀∃∗,all]) FPT (Theorem 3.9)

p-[qr, #r, ar]-SAT([∃∗∀2∃∗,all]) FPT (Theorem 3.9)
Fonte: Made by the author himself.

3.3 Parameterized Complexity of Modest Complexity Classes

In this section, we analyze the parameterized complexity of prefix-vocabulary classes

with modest complexity. We summarize our results on Table 7. For these classes, it is possible to

point out a parameter that put the problem in FPT. First, for some of these classes, the inclusion

of the relational monadic class leads to an fpt result for the same parameters chosen. Then, we

begin with a corollary of Theorem 3.4.

Corollary 3.10.

(i) p-#r-SAT(X) is in FPT for X ∈ {[∃,(ω)], [∀,(ω)], [∀∃,(ω)]}.

(ii) p-[qr, #r]-SAT(X) is in FPT for X ∈ {[∃2∀∗,(ω)], [∀∗∃∗,(ω)]}.

Proof. Let ϕ ∈ X and r = #r(ϕ). We already know that the finite model property gives us, for

a satisfiable formula, a model of size at most 2r. Then the same conversion procedure used
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in Theorem 3.4 leads to an fpt-reduction to p-SAT. In these cases, the quantifier rank is a constant.

The claim (ii) follows directly from Theorem 3.4.

Again, we can apply Lemma 3.3.(i) to give an fpt-reduction for the satisfiability

problem of some classes with modest complexity.

Theorem 3.11. p-qr-SAT(X) is in FPT for X ∈ {[∀∗∃,(1)], [∀∃∀∗,(1)], [∃∗∀∗,(1)]}.

Proof. Consider the satisfiability problem for the class [∀∗∃,(1)]. By Lemma 3.3.(i), a satisfiable

formula ϕ := ∀x1 . . .∀xk∃yψ with one monadic relation and quantifier rank q = qr(ϕ) has a

model with size at most 2. Applying the same conversion of Theorem 3.4, the number of

steps will be bounded by 2q ·n where n is the size of ϕ . This will lead to an fpt-reduction to a

propositional formula with two propositional variables.

The same reduction works for [∀∃∀∗,(1)] and [∃∗∀∗,(1)].

In the sequence, we can use Lemma 3.3.(ii) to obtain a reduction from the satisfia-

bility of some classes with modest complexity to p-SAT when we use the quantifier rank as a

parameter.

Theorem 3.12. p-qr-SAT(X) is in FPT for X ∈ { [Πt ,(m)]=, [Πt ,(m)]=,

[∀∗∃,(0)]=, [∀∃∀∗,(0)]=, [∀∗∃∗,(0)]=}.

Proof. Consider the satisfiability problem for the class [Πt ,(m)]=. Let ϕ be a satisfiable formula

in [Πt ,(m)]= with at most m monadic relations and quantifier rank q. Then, by Lemma 3.3.(ii),

ϕ has a model with size at most q · 2m. Each monadic relation can be represented by q · 2m

propositional variables. So, in order to transform ϕ into a propositional formula, q ·m · 2m

propositional variables will be necessary to represent all relations. Applying the same conversion

of Theorem 3.5, it will lead to an fpt-reduction to p-SAT.

The same reduction holds for [Πt ,(q)]= with at most t existential quantifiers. For

[∀∗∃,(0)]=, [∀∃∀∗,(0)]=, and [∀∗∃∗,(0)]=, the size of the structure is bounded by qr(ϕ) and the

reduction follows in the same way.

Formulas with a leading block of existential quantifiers can be handled with the finite

model property by Lemma 3.3. (iii).

Theorem 3.13. p-[qr, #r, ar]-SAT(X) is in FPT for X ∈ {[∃∀∗,all]=, [∃∗∀u,all]}.
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Proof. Consider the satisfiability problem for the class [∃∗∀u,all]. Let ϕ be a satisfiable formula

in [∃∗∀u,all] with fixed natural u. So, ϕ := ∃x1 . . .∃xk∀y1 . . .∀yuψ . By Lemma 3.3.(iii), ϕ has a

model with size at most k ≤ qr(ϕ). Let τϕ the vocabulary of ϕ with maximum arity ar(ϕ) and

size #r(ϕ). Applying the same conversion presented in Theorem 3.4, it will return a propositional

formula with at most #r(ϕ) ·qr(ϕ)ar(ϕ) propositional variables, and the whole process can be

carried out by an fpt-algorithm.

For the class [∃∀∗,all]=, the finite model property will provide a model of size 1, and

each universally quantified variable could be handled as a dummy variable.

Theorem 3.14. p-qr-SAT(X) is in FPT for X ∈ {[∃∗,(0)]=, [∃∗,(1)], [∃p∀∗, s̄]=,

[∃2∀∗,(0)]=, [∃2∀∗,(1)], [∃∗∀∗,(0)]=}.

Proof. Consider the satisfiability problem for [∃∗∀∗,(0)]=. By Lemma 3.3.(iii), for a satisfiable

formula ϕ := ∃x1 . . .∃xk∀y1 . . .∀ylψ there is a model with size k ≤ qr(ϕ). Applying the same

translation of Theorem 3.4, and considering that only the equality symbol is in τϕ , the number of

propositional variables obtained in the reduction is bounded by a function of qr(ϕ). This will

lead to an fpt-reduction to p-SAT.

Theorem 3.15. p-qr-SAT(X) is in FPT for X ∈ { [∃p∀2∃∗, s̄], [∃p∀∃∗, s̄]=,

[∃∗∀∃,(0,1)]}.

Proof. We will consider the satisfiability problem of [∃p∀2∃∗,s] as an example. Let ϕ :=

∃x1 . . .∃xp∀y1∀y2∃z1 . . .∃zkψ be a first-order formula with a fixed vocabulary with r relation sym-

bols of arity ar(ϕ). By Lemma 3.3.(iv), there is a model of size bounded by ` := 410r·k22ar(ϕ)(p+1)ar(ϕ)+4
+

p that satisfies ϕ . As p,r,ar(ϕ) are constants, the size of this model is a function of k.

Then we can describe each relation with at most `ar(ϕ) propositional variables. All

relations are described by a binary string with length r · `ar(ϕ). By structural induction on ϕ ,

apply the conversion procedure of Theorem 3.4. Introduce one propositional variable to each

possible assignment of a tuple to a relation symbol, which is a function of k. This conversion is a

function of k and n, the size of ϕ . This process leads to an fpt reduction to p-SAT.

We summarize the results of this section in Table 7.
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Tabela 7 – Prefix-vocabulary classes of modest complexity in which their satisfiability problem
is in FPT with respect to some parameter.
Prefix-vocabulary Complex. Complex. p-κ-SAT

Class SAT Param. κ Result

[∃∀∗,all]=

NP

(qr+vs+ar) FPT( Theo. 3.13)

[∃∗∀u,all]= for u ∈ N (qr+vs+ar) FPT (Theo. 3.13)

[∃p∀2∃∗, s̄] for p ∈ N and s̄ finite qr FPT (Theo. 3.15)

[∃p∀∃∗, s̄]= for p ∈ N and s̄ finite qr FPT (Theo. 3.15)

[Πt ,(m)]= t,m ∈ N, Πt qr FPT (Theo. 3.12)

containing at most t universal quantifiers

[∃∗,(0)]=

NP-complete

qr FPT (Theo. 3.14)

[∃∗,(1)] qr FPT (Theo. 3.14)

[∃,(ω)] vs FPT (Cor. 3.10)

[∀,(ω)] vs FPT (Cor. 3.10)

[∃p∀∗, s̄]= for p ∈ N and s̄ finite |τ|
Co-NP

qr FPT (Theo. 3.14)

[Πt ,(m)]= for t,m ∈ N, and Πt qr FPT (Theo. 3.12)

containing at most t existential quantifiers

[∃2∀∗,(0)]=

Co-NP-complete

qr FPT (Theo. 3.14)

[∃2∀∗,(1)] qr FPT (Theo. 3.14)

[∀∗∃,(0)]= qr FPT (Theo. 3.12)

[∀∗∃,(1)] qr FPT (Theo. 3.11)

[∀∃∀∗,(0)]= qr FPT (Theo. 3.12)

[∀∃∀∗,(1)] qr FPT (Theo. 3.11)

[∃∗∀∗,(0)]=
Σ2

p-complete
qr FPT (Theo. 3.14)

[∃∗∀∗,(1)] qr FPT (Theo. 3.11)

[∃2∀∗,(ω)] (qr+vs) FPT (Cor. 3.10)

[∀∗∃∗,(0)]=
Π2

p-complete
qr FPT (Theo. 3.12)

[∀∗∃∗,(ω)] (qr+vs) FPT (Cor. 3.10)

[∃∗∀∃,(0,1)]
PSPACE-complete

qr FPT (Theo. 3.15)

[∀∃,(ω)] vs FPT (Cor. 3.10)

Fonte: Made by the author himself.

3.4 Parameterized Complexity of [all,(ω),(ω)] and [∃∗,all,all]=

Now we consider the functional classes [all,(ω),(ω)] and [∃∗,all,all]=. If we look

at those classes that are maximal concerning the finite model property (Table 2), it will remain

the analysis of those with function symbols. Among them, we can apply the same argument of

the previous sections for the classes that have an upper bound on the size of the structure. For
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others, we cannot attach the finite model property with some bound on the size of the structure.

We only have an existential condition for a structure of a satisfiable formula within the class.

To handle prefix-vocabulary classes with function symbols, someone has to replace

the function symbols to reduce to a relational class with finite model property or find a finite

model based on possible ground terms constructed by the formula. Then, we can attest the

fixed-parameter tractability of these functional classes when parameterized by the parameters

that we already considered (quantifier rank, number of relations, and the arity of the vocabulary)

with the number of functions, the number of terms, and the maximum size of a term.

The Löb-Gurevich class [all,(ω),(ω)]

For the class [all,(ω),(ω)], we can show that the parameterized satisfiability problem

is in FPT when parameterized by the quantifier rank, the number of monadic relation symbols,

the number of unary function symbols, and the maximum size of the terms. We need to modify

a Lemma from (GRÄDEL, 1989) removing the unary function symbols. The lemma shows

that every monadic formula ϕ of length n can be converted into a formula ψ ∈ [all,(n),(0)]

satisfiable over the same domains as ψ and with some bound on quantifier rank.

Lemma 3.16. (GRÄDEL, 1989) Let ϕ be a formula in the prenex normal form with size n,

quantifier rank q, r monadic relations, f unary function symbols, and with terms of the form f ix j

such that i < t for some constant t < n. Then, there is an equivalent formula ψ without functions.

Proof. Consider a first-order sentence ϕ as in the claim. For each Ri, f j ∈ τϕ , we introduce

a new monadic relation Qi j for a term in the form Ri f jt for some arbitrary term t. Then ϕ is

satisfiable over the same domains as

ϕ[Ri f jt/Qi jt]∧∀x(Ri f jx↔ Qi jx).

To each possible sequence of a relation and function symbol, apply the previous process.

Occasionally, we reach Qa fit for some index a. Thus, a new monadic relation Qai

should be added. Taking a nested sequence of functions with size at most t, this will lead to a

maximum of O(r · st) new monadic relation symbols.

Then we arrive at α ∧∀xβ where α is a formula without function symbols and β a

conjunction of formulas of the form Ri f jx↔Qi jx and Qa f jx↔Qa jx. Let f1, . . . , fs be function

symbols in β . Then, ∀xβ is the Skolem normal form of ∀∃y1 . . .∃ysβ [ fix/yi] which is a relational
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formula, and

ψ := α ∧∀x∃y1 . . .∃ysβ [ fix/yi]

is satisfiable over the same domains as ϕ . So ψ have at most O(r + r · st) monadic relation

symbols with the quantifier rank bounded by q+ s+1. Thus ψ is in [all,(r+ r · st),(0)].

Using the previous lemma, we can achieve the fixed-parameter tractability.

Theorem 3.17. The satisfiability problem p-[qr, #r, #f, |ϕterm|]-SAT([all,(ω),(ω)] is in FPT.

Proof. We give an fpt-reduction to p-SAT. Let ϕ ∈ [all,(ω),(ω)] be a satisfiable formula with

size n, quantifier rank q, r monadic relation symbols, s function symbols, and terms with size

at most t. Using the Lemma 3.16, we obtain a first-order formula ψ ∈ [all,(r+ r · st),(0)]. By

Lemma 3.3-(i), there is a model with at most 2(r+r·st) elements with quantifier rank bounded

by q+ s+1. The next step follow similarly to the relational case. As we will transform ψ into

a propositional formula ψ∗, we will represent each relation by 2(r+r·st) propositional variables.

More precisely, for each relation Ri with 1≤ i≤ (r+ r · st), and for each element j ∈ [2(r+r·st)],

we use the variable pi j to represent the truth value of Ri( j). The conversion follows in the same

way as in Theorem 3.4. Once again, it is easy to see that ϕ has a model if and only if ψ∗ is

a satisfiable formula. Each inductive step constructs a formula of size 2(r+r·st) · |ϕ|, and the

whole process takes O((2(r+r·st))q+s+1 ·n) where n is the size of ϕ . As the number of variables

is bounded by (r+ r · st) ·2(r+r·(s)t), this leads to the desired fpt-reduction.

The Existential class [∃∗,all,all]=

The existential fragment with equality is one of the decidable cases that are maximal

concerning the finite model property, and its satisfiability is NP-complete (BÖRGER et al.,

2001, pg. 304). The finite model property, then, is obtained through the size of the set of

terms occurring in a given existential formula. In this case, we add the number of terms in the

parameterization function. For all terms in the form s = f s1 . . .sr ∈ T , we also consider s1 . . .sr

and their sub-terms in T .

Lemma 3.18. (BÖRGER et al., 2001) Let ϕ a first-order sentence in [∃∗,all,all]= with quantifier

rank q, and let be T the set of terms occurring in ϕ with t = |T |. Then ϕ has a model with size

q+ t.
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Theorem 3.19. p-[qr, #r, #f, ar, |T |]-SAT([∃∗,all,all]=) is in FPT.

Proof. Let ϕ be in the form ∃x1 . . .∃xqψ , and let T be the set of terms occurring in ϕ with

|T |= t. Also consider that the number of relation and function symbols are r and s, respectively,

and that the arity of τϕ is a. By the Lemma 3.18, there is a model for ϕ with size at most q+ t.

All atoms are in the form Pz1 . . .z`, z1 = z2, f z1 . . .z` = z. It is obvious that the

number of atomic formulas are bounded by a computable function in r,s,a, t. For each relation

in τϕ , we will need at most (q+ t)a propositional variables to represent it. So, for all relation

symbols, we need r · (q+ t)a. For atomic formulas with equality symbol, we need a number of

propositional variables bounded by a function in s,a, t.

Applying the conversion from Theorem 3.4, we will achieve an fpt-reduction to

p-SAT.

To summarize, we presented a strategy to provide fixed-parameter tractability for the

satisfiability of many prefix-vocabulary classes. Further investigation on the maximal classes

without finite model property ([all,(ω),(1)]= and [∃∗∀∃∗,all,(1)]=) and the remaining classes

with functional symbols ([∀∗,all,(1)]=, [∃∗∀,all,(1)]=, and [∃∗∀∗,(0),(1)]=) is still missing.

In the next chapter, we investigate the parameterized analysis to the matching problem

with respect to associative, commutative, and associative-commutative theories.
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4 MATCHING PROBLEMS

In this chapter, we consider the parameterized complexity analysis of the matching

problem for first-order terms with associative (A), commutative (C), and associative-commutative

(AC) function symbols. We extend the results presented in (AKUTSU et al., 2017) considering

the membership in W[P] and fixed-parameter tractability concerning different parameters. Parti-

cularly, we consider the number of variables, the size of the substitution, and the size of the

vocabulary. We also consider the standard of equational unification (BENANAV et al., 1987;

BAADER; SNYDER, 2001).

In Sections 4.1 and 4.2, we briefly introduce the unification problem and present

some known results related to complexity issues. In Section 4.3, we introduce the parameterized

version of associative, commutative, and associative-commutative matching problem, p-κ-E-

MATCHING for E ∈ {A, C, AC}. In Section 4.4, we show the membership in W[P] of p-|var(ϕ)|-

C-MATCHING when parameterized by the number of variables, and p-|θ |-E-MATCHING

for the size of the substitution when restricted to E ∈ {A, AC}. In Section 4.5, we present a

brute-force algorithm that guarantees the fixed-parameter tractability of these matching problems

when parameterized by the size of the vocabulary and the size of the substitution. The results

contained in this chapter have been presented in (BUSTAMANTE et al., 2019b).

4.1 Introduction

The unification problem consists in verifying the existence of a substitution of

variables that turns two first-order terms equal. Let f ,g be arbitrary function symbols, a,b

constants, and x,y variables. We would like to determine whether f (x,g(a,b)) and f (g(y,b),x)

have a substitution of the variables that makes them equal. One can check that θ := {x 7→

g(a,b),y 7→ a} is a solution for the previous example. Thus, we say that θ unifies the terms

f (x,g(a,b)) and f (g(y,b),x).

Unification has an essential place in many areas as automated reasoning, program

verification, logic programming, and term rewriting (BAADER; SNYDER, 2001). Historically,

the problem of unification already appeared in the PhD Thesis of Herbrand (HERBRAND, 1930).

However, unification has only been proposed explicitly in theorem-proving context for first-order

logic in the seminal paper of Robinson (ROBINSON, 1965). He describes a unification algorithm

to be applied in the context of first-order logic to most general unifier as opposed to all possible
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instantiations. The proposed algorithm has a high complexity. It has exponential time and space

complexity.

After Robinson’s paper, many complexity results were obtained to the unification

problem. First, a quadratic algorithm was proposed (ZILLI, 1975). Then a linear algorithm

was presented in (PATERSON; WEGMAN, 1978). Finally, the polynomial completeness under

log-space reductions was achieved (DWORK et al., 1984). This kind of unification problem is

called Syntactic Unification, and, once it is decidable in PTIME, it is not interesting from the

perspective of parameterized complexity.

On the other hand, if someone may consider a certain axiomatization for which

a function symbol must be interpreted, there are more solutions for the unification problem.

For example, consider a commutative function f such that f (x,y) ≡ f (y,x), and the previous

equality example modulo commutativity of f : f (x,g(a,b)) =C f (g(y,b),x), then there are many

solutions with respect to the substitution of x while y is substituted by a.

In the case presented before, unification is characterized as Equational Unification,

and, for this version of the problem, many techniques were proposed like paramodulation

(NIEUWENHUIS; RUBIO, 2001) and narrowing (HULLOT, 1980). In the seminal paper

“Building-in Equational Theories” of Plotkin (PLOTKIN, 1972), the author showed how to build

these tricky axioms into the context of an automated theorem prover without losing completeness.

In this chapter, we are mainly concerned with the matching problem, a restricted

version of the unification problem, in which only one term has variables, and the other is a term

free of variables. In other words, for a first-order term s and t, the problem asks for a substitution

θ such that sθ =E t for some equational theory E. Mnemonically and from now on, we denote

s (“source”) to be the term with variables and t (“target”), the ground term. They are said to

match if there is a substitution θ such that sθ = t. In (BENANAV et al., 1987), the associative,

commutative, and associative-commutative matching problems are shown to be NP-complete. In

the next section, we review these complexity results.

4.2 Complexity of Matching Problem

Let F be a countable set of function symbols with some arity, and V a countable set

of variables. A term t is inductively defined from variables in V closed under functions f ∈F .

A function symbol with arity 0 is called a constant. We denote by T (F ,V ) the set of terms built

up from F and V . A ground term is a term without variables, and the set of ground terms is
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denoted by T (F ). For a term s, Fs is the set of function symbols occurring in s, var(s) is the set

of variables occurring in s, the size |s| is the number of symbols in s, and |s|var is the maximum

number of occurrences of a variable in s. A function f is associative if it satisfies

f ( f (x,y),z) = f (x, f (y,z)),

and it is commutative if it satisfies

f (x,y) = f (y,x).

A substitution θ is a mapping from the set of variables V to the set of terms T (F ).

We are interested in finite substitutions, and we explicitly represent them by {x1 7→ t1, . . . ,xk 7→

tk}. The size of a substitution is defined as k+∑
k
i=1 |ti|, and we denote by |θ |. The domain of a

substitution θ is extended to the set of all terms by inductively defining θ( f (t1, . . . , tn)) to be

f (θ(t1), . . . ,θ(tn)). A substitution θ is said to match a term s with a term t if and only if sθ = t.

We can extend the notion of matching considering a set of equations E, an equational theory,

taking into account the congruence classes of the relation generated by E.

Let s, t be two first-order terms. We say that s and t are E-equal for some equational

theory E ∈ {A,C,AC} if and only if they are equivalent under the axioms of the equational theory

E. For example, if f is an associative and commutative symbol, f ( f (a,b),c) =AC f (c, f (b,a)).

We represent the matching problem for some equational theory E in the following

way:

E-MATCHING
Instance: A first-order term s ∈ T (F ,V ), a first-order

term t ∈ T (F ).
Problem: Does there exist a θ such that sθ =E t?

It is well known that E-MATCHING is NP-complete for E ∈ {A,C,AC}1 (BENA-

NAV et al., 1987). It is easy to see that the problem is in NP. Considering two terms s, t and a

substitution θ such that sθ =E t. The size of θ cannot be greater than |s|+ |t|. Then, for any

input terms s and t, someone has to guess θ such that |θ | ≤ |s|+ |t|, apply θ to s, and check if

sθ =E t. The last two steps can be obviously computed in polynomial time, and then, we achieve

an algorithm in NP for the problem by non-deterministically guessing. To show the NP-hardness,

the authors exhibit a polynomial reduction from 3SAT to E-MATCHING for each equational

theory.
1 When considering different equational problems at the same time, we abuse the notation denoting {A,AC}-

MATCHING, for example, as the associative and associative-commutative matching problems.
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Theorem 4.1. (BENANAV et al., 1987) The {A,C,AC}-MATCHING problems are NP-complete.

We define the equality problem for some equational theory E in the following way:

E-EQUALITY
Instance: A first-order term s ∈ T (F ,V ), a first-order

term t ∈ T (F ).
Problem: Decide whether sθ =E t?

The equality of terms under associative-commutative theories can be done in polyno-

mial time (BENANAV et al., 1987, Corollary 3). This result is obtained as a consequence of the

matching problem for terms with distinct occurrences (DO-AC-MATCHING) whose runtime

complexity is bounded by O(|s|3×|t|).

Lemma 4.2. (BENANAV et al., 1987) Associative-commutative equality can be done in polyno-

mial time.

4.3 Parameterized Complexity of {A, C, AC}-MATCHING

In this section, we summarize the relevant results contained in (AKUTSU et al.,

2017). We consider the parameterized version of the matching problem, p-κ-E-MATCHING.

Again, given two terms s∈ T (F ,V ) and t ∈ T (F ), the problem asks if there exists a substitution

θ such that sθ =E t for some equational theory E ∈ {A, C, AC} for some parameterization κ .

We already defined all the parameters that we consider for the matching problems.

• the number of variables of s: var(s);

• the size of the substitution θ : |θ |= var(s)+∑
var(s)
i=1 |ti|;

• the number of symbols in Ft : |Ft |;

• the number of occurrences of variables: |s|var.

We may also combine these parameters. For a list of parameters P, we define p-[P]-

E-MATCHING as parameterized E-Matching for E ∈ {A, C, AC}, where the parameterization is

the sum of the parameters in P. We represent this parameterized problem in the following way:

p-[P]-E-MATCHING
Instance: A first-order term s ∈ T (F ,V ), and first-order

term t ∈ T (F ), and a natural number k.
Parameter: k such that k = ∑κ∈P κ(x).
Problem: Does there exist a θ such that sθ =E t?
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For example, p-[|Ft |, |θ |]-A-MATCHING is associative matching with parameterization κ(s, t)=

|Ft |+ |θ |.

For matching and unification problems, there are three different types of unification

problems: elementary, with constants, and general. Given an equational theory E, an elementary

term is a term containing only functional symbols of E. We call an E-matching problem

elementary if the terms being matched are elementary. If we allow constants in the term, the

E-matching is called with constants and, if we allow non-constant function symbols that not

occurs within E, then the E-matching is called general. In this work, we are dealing with the

general matching problem.

The parameterized version of the unification and matching problem was initially stu-

died in (AKUTSU et al., 2017) using as parameter the number of variables. The problem was

shown to be W[1]-hard for associative and associative-commutative cases, and the proofs rely on

an fpt-reduction from p-LCS, longest common subsequence, for both cases (see Example 2.17).

Theorem 4.3. (AKUTSU et al., 2017) The p-|var(s)|-{A,AC}-MATCHING problems are W[1]-

hard.

They also exhibit a linear algorithm for the “unification of associative and com-

mutative ground terms” which we recognize it as identical to the equality problem defined

here.

Theorem 4.4. (AKUTSU et al., 2017) {A,C}-EQUALITY can be done in linear time.

For the commutative case, they conjectured that C-MATCHING is fixed-parameter

tractable describing an algorithm using dynamic programming (AKUTSU et al., 2017, Theo-

rem 3). Considering terms in dag form, they constructed a 0-1 table by a bottom-up dynamic

programming that steps on all pair of nodes. The algorithm computes all pair of nodes that can

be matched and, finally, checks whether the roots of s and t match.

In the following sections, we will consider the membership in W[P] and in FPT for

matching with respect to different parameters.

4.4 W[P] membership

Recall that the class W[P] is defined using algorithms with bounded non-determinism

(see Definition 2.16) and that C-MATCHING was conjectured to be in FPT in (AKUTSU et al.,

2017). Let us consider our first result relevant to equational matching.
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p-|var(s)|-C-MATCHING

Here, we settle a parameterized complexity result for C-MATCHING. We show the

membership in W[P] providing a non-deterministic algorithm with fpt-time and a limited number

of non-deterministic steps.

Theorem 4.5. p-|var(s)|-C-MATCHING is in W[P].

Proof. Given two terms s ∈ T (F ,V ) and t ∈ T (F ) with |var(s)| = k. We design a Turing

machine receiving s, t and k as inputs with running time f (k) · |(s+ t)|O(1) and at most h(k) ·

log |(s+ t)| non-deterministic steps for some computable functions f and h.

For each variable xi, it guesses a position vi in t. To guess these positions, it needs

k · log |t| non-deterministic steps. The machine applies the substitution θ to s producing sθ , and

then checks if sθ =C t. For every variable and for each occurrence, the application process

could be seem as a detection of the variable in s and a replacement by the sub-term ti from t

related to the position vi. The previous application can be computed in k · (|s|+ |t|)O(1) and

the equality modulo commutativity is decided in linear time with respect to the size of (sθ , t)

(Lemma 2.12). As the size of sθ is bounded by k · (|s|+ |t|)O(1), the whole process leads to a

running time bounded by f (k) · (|s|+ |t|)O(1). Then, we can conclude the membership in W[P]

for |var(s)|-C-MATCHING.

If we consider a parameter that is greater than the number of variables, membership

in W[P] remains for the commutativity case.

p-|θ |-{A, AC}-MATCHING

One step further, considering the size of the substitution

|θ |= |var(s)|+
|var(s)|

∑
i=1
|ti|,

we can verify membership in W[P] for the p-|θ |-{A, AC}-MATCHING problems. Considering

|θ | as the parameter, we can build up a non-deterministic Turing machine with similar behavior.

It guesses a substitution θ and then checks if the equivalence holds.

Theorem 4.6. The |θ |-{A, AC}-MATCHING problems are in W[P].

Proof. This proof is similar to the proof of Theorem 4.5. Given two terms s ∈ T (F ,V ) and

t ∈ T (F ), and some natural number k. Consider |θ | ≤ k and |var(s)|= `. The algorithm guesses
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` terms ti ∈ T (F ) with size bounded by |θ | ≤ k, instantiates them in s and checks if s θ =E t.

Let m = max{|ti| : 1≤ i≤ `}. Again, the substitution and the equality modulo E are made in

polynomial time observing that the process is similar in the proof of Theorem 4.5. In both cases,

we obtain an algorithm in W[P] for |θ |-{A, AC}-MATCHING.

If we consider |s|var, the number of occurrences of variables, as a parameter, it

is unlikely that E-MATCHING is in FPT. Moreover, it is unlikely to be within XP assuming

P 6= NP.

Theorem 4.7. Unless P = NP, |s|var-E-MATCHING is not in XP.

Proof. Assume that |s|var-E-MATCHING is in XP. By definition, there is an algorithm that

solves the problem in time f (k) ·ng(k) for some k = |s|var, and f and g are computable functions.

Then, for k = 2, E-MATCHING is solved in time O(nc), for some constant c. Assuming that

P 6= NP, we reach a contradiction with the fact that E-MATCHING when |s|var = 2 is already

NP-complete (VERMA; RAMAKRISHNAN, 1992).

The size of the vocabulary F is not a good parameter for the same reasons. The

{A, C, AC}-MATCHING problems are NP-complete with fixed vocabulary (BENANAV et al.,

1987).

Theorem 4.8. Unless P = NP, |Ft |-E-MATCHING is not in XP.

Proof. The proof is similar to the previous one. Assume that |Ft |-E-MATCHING is in XP.

Then, there exists an algorithm that on the input s, t, decides time (|s|+ |t|)g(|Ft |) if s matches

t. In this case, there is a polynomial time algorithm when the problem has 6 function symbols.

Unfortunately, the problem is already NP-complete with at least 6 symbols (BENANAV et al.,

1987).

4.5 Fixed-Parameter Tractability

From the perspective of parameterized complexity theory, the parameter is expected

to be smaller than the input size. If we consider, for example, the size of the ground term

|t|, it will lead to the case where the parameterized complexity is uninteresting, or trivially

fixed-parameter tractable. In such conditions where the parameter increases monotonically with

the size of the input, the problem is trivially in FPT (FLUM; GROHE, 2006, Proposition 2.6).
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However, this is not the case for the parameters |Ft | and |θ |, and we will describe an algorithm

in FPT for the matching problems considered here.

p-[|Ft |, |θ |]-{A, C, AC}-MATCHING

We show an FPT brute-force algorithm that solves these matching problems when

parameterized by |Ft |+ |θ |. The algorithm enumerates of all possible substitutions checking

whether it corresponds to a match. The idea of Algorithm 1 was inspired by the work of FERNAU

et al..

First, it constructs the set T (Ft) of ground terms with size at most k, for some natural

number k. Then, for every tuple of size |var(s)| of terms in T (Ft), we build a substitution θ ,

apply it into s, i.e., for every occurrence of a variable vi, we remove its encoding from s inserting

the encoding of the term θ(vi), and evaluate whether sθ is equal to t modulo E ∈ {A, C, AC}.

The equality of terms with respect to associative, commutative, and associative-commutative

terms implemented in Step 5 can be computed in polynomial time (see Lemma 4.2).

Algorithm 1 {A, C, AC}-MATCHING via brute force
INPUT: A term s in T (F ,V ), a term t in T (F ), and a natural number k.
OUTPUT: Yes iff there exists a substitution θ s.t. sθ = t, and |θ |+ |Ft | ≤ k.

1: T (Ft)← GENERATE(t,k) . It constructs all terms in Ft with size bounded by k.
2: for every tuple of terms (t1, . . . t|var(s)|) in T (Ft) do
3: for i = 1 to |var(s)| do
4: θ ← θ ∪{xi 7→ ti}
5: if sθ =E t then return Yes;

return No;

Proposition 4.9. The running time of Algorithm 1 is bounded by

kk2+2+c · (|s|+ |t|)O(1)

for some fixed natural c and |Ft |+ |θ | ≤ k.

Proof. Let |Ft | be the number of symbols in t. It is clear that |Ft | ≤ k. Then, the number

of terms in T (Ft) with size at most k is in O(kk+1). Then, the main loop will take at most

O((kk+1)|var(s)|) iterations. The construction of θ in Step 4 is bounded by the function k2. For

each variable xi, it writes a term ti with size bounded by k. The application of θ on s can be

done in time polynomial in kO(1) · |s|O(1). For each variable xi and for each occurrence, we need

to find and erase the encoding of xi changing to ti, being careful to save the remained part of
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the string. The equality modulo E can be done in time (|sθ |+ |t|)O(1) by Theorems 4.2 and 4.4.

Then, the whole computational complexity of the algorithm is (kk+1)|var(s)| · (|s|+ |t)O(1).

Theorem 4.10. The [|Ft |, |θ |]-E-MATCHING problem is in FPT for E ∈ {A, C, AC}.

Proof. Algorithm 1 solves the matching problem for all equational theory considered here in

time f (|Ft |, |θ |) · (|s|+ |t|)O(1) for some computable function f . Then, we can conclude that

they are in FPT.

As we can see, a specific choice of parameters allows us to recognized the matching

problems that are fixed-parameter tractable. We summarize these results in the following table.

Tabela 8 – Parameters for associative, commutative, and associative-commutative matching.

Parameter
Problem

A-MATCHING C-MATCHING AC-MATCHING

|Ft | or |s|var not in XP not in XP not in XP

|var(s)|
W[1]-hard†

?
FPT†

W[P]
W[1]-hard†

?

|θ | W[P] W[P] W[P]
|θ |+ |Ft | FPT FPT FPT

Fonte: Made by the author himself.

In the next chapter, we summarize the thesis and all future directions that we can see

in a short distance.

† Results from (AKUTSU et al., 2017)



56

5 CONCLUSION

In this thesis, we addressed the parameterized analysis of two logical problems

within the setting of first-order logic: the satisfiability of some decidable classes of formulas,

and the matching problem for associative, commutative, and associative-commutative terms.

The satisfiability problem for many decidable fragments of first-order logic was

investigated in Chapter 3. To our knowledge, this was a first time that the satisfiability problem

of first-order fragments has received a parameterized complexity analysis. For some prefix-

vocabulary classes, satisfiability was shown to be fixed-parameter tractable concerning some

parameters. We evaluated different parameters that appear in Definition 3.1. Combining the

choice of the parameterization with a proper finite model property, we could construct a fixed-

parameter reduction to the propositional satisfiability.

We have seen that in Section 3.2, for all classical classes, the satisfiability problem

parameterized by the size of the vocabulary, the quantifier rank, and the maximum arity is

fixed-parameter tractable, and, for all relational classes of modest complexity, satisfiability is

also in FPT considering different parameters. For example, we observed that the satisfiability

problem of Lowenheim’s class [all,ω] is within FPT when parameterized by the number of

monadic relations and the quantifier rank (Theorem 3.4). However, when just the quantifier

rank is considered, the problem is not in XP, unless P6= NP (Proposition 3.6).

We also expanded the idea of fixed-parameter tractability from relational classes to

functional ones. In Section 3.4, we achieved two fixed-parameter results for the satisfiability of

[all,(ω),(ω)] and [∃∗,all,all]=. For both cases, the paremeterization included elements related

the functional side of the vocabulary.

Now we outline some directions in order to improve the understanding of the para-

meterized complexity of the satisfiability of prefix-vocabulary classes.

1. Reducing the parameterization. For [∃∗∀∗,all]=, [∃∗∀∃∗,all], and [∃∗∀2∃∗,all],

the fixed-parameter tractability is obtained when we consider qr(ϕ)+#r(ϕ)+ ar(ϕ) as our para-

meterization function in Theorems 3.8 and 3.9. One question remains: What is the parameterized

complexity of the satisfiability for these classes when some terms (qr(ϕ),#r(ϕ), and ar(ϕ)) are

not considered in the parameterization function? The same question arises in the context of

functional classes developed in Section 3.4.

2. Functional classes. Functional classes were not completely investigated. As

future work, we indicate a further investigation of the parameterized complexity of the remaining
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maximal classes concerning finite model theory (Table 2), and some functional classes with

modest complexity (Table 10).

Tabela 10 – Modest complexity prefix-vocabulary classes with functions.
Prefix-Vocabulary Class Complexity classification

[∃∗∀m,(0),(1)]= NP-complete

[∃∗∀∃∗,(0),(1)]= NP-complete

[∃k∀∗,(0),(1)]= Co-NP-complete

[∃∗∀∗,(0),(1)]= Σ
p
2-complete

Fonte: Made by the author himself.

3. Classes without finite model property. Finally, the finite model property does

not hold for all decidable prefix-vocabulary classes (see (BÖRGER et al., 2001, Chapter 7)). The

methods applied here cannot be extended to [all,(ω),(1)]= (RABIN, 1969) and [∃∗∀∃∗,all,(1)]=

(SHELAH, 1977). The decibility for these classes is obtained as a consequence of Rabin’s

Theorem that the monadic theory of the infinite binary tree is decidable.

For the second problem, the matching problem for associative (A), commutative

(C), and associative-commutative (AC) functions, we provided parameterized complexity results

connected to the membership in W[P] and fixed-parameter tractability in Chapter 4. The main

questions for {A, AC}-MATCHING is their membership in W[1] when parameterized by the

number of variables since they were proved to be W[1]-hard (AKUTSU et al., 2017), and the

fixed-parameter tractability of C-MATCHING for the same parameterization. More than this, we

expand the analysis to other parameters.

Restricted to the number of variables, we showed that the C-MATCHING problem

is in W[P] witnessed by an algorithm with a limited number of non-deterministic steps in

terms of the number of variables. Increasing the parameterization, we consider the size of the

substitution, we show that the |θ |-{A, AC}-MATCHING problems are in W[P]. Combining

the size of the substitution with the number of functions, we achieved the fixed-parameter

tractability in all cases providing a brute-force algorithm that runs over all substitutions.

Now, we depicted some open problems and similar problems within unification

theory that could be explored in the future.

1. Open problems. In this work, we could not solve the conjecture from (AKUTSU

et al., 2017), that C-MATCHING is in FPT when the number of variables is the parameter. We

could not improve the dynamic programming strategy developed there nor could we apply any
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method to fpt algorithms. A proof of membership in W[1] would be interesting. For the other two

problems, |var(s)|-{A, AC}-MATCHING, we cannot say anything better than the membership

in para-NP, and we wonder if it is the case that these problems are in W[1].

Considering the size of the substitution, we would like to set the matching problems

within some finite level of W-Hierarchy (W[1], W[2], W[3], . . . ). Also, we could not extend the

W[1]-hardness of |var(s)|-{A, AC}-MATCHING for |θ |-{A, AC}-MATCHING.

2. Other similar problems. In the future, we plan to reach the parameterized

analysis to other unification/matching problems like high-order matching (STIRLING, 2006),

and context unification (JEŻ, 2014). Unfortunately, these problems seem to fall in the same

techniques used to prove the decidability for classes without finite model property. We do not

know how to detach the non-elementary complexity of the existing algorithms.
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JEŻ, A. Context unification is in pspace. In: International Colloquium on Automata,
Languages, and Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. p.
244–255.

JOHNSON, D. S.; GAREY, M. R. Computers and intractability: A guide to the theory of
NP-completeness. San Francisco: W. H. Freeman and Company, 1979. v. 1.

KALMÁR, L. Über die erfüllbarkeit derjenigen zählausdrücke, welche in der normalform zwei
benachbarte allzeichen enthalten. Mathematische Annalen, Springer, v. 108, n. 1, p. 466–484,
1933.



62

LEWIS, H. R. Complexity results for classes of quantificational formulas. Journal of Computer
and System Sciences, Elsevier, v. 21, n. 3, p. 317–353, 1980.

LÖB, M. Decidability of the monadic predicate calculus with unary function symbols. In: ASSN
SYMBOLIC LOGIC INC 1325. Journal of Symbolic Logic. SOUTH OAK ST, CHAMPAIGN,
IL 61820, 1967. v. 32, n. 4, p. 563.

LÖWENHEIM, L. Über möglichkeiten im relativkalkül. Mathematische Annalen, Springer,
v. 76, n. 4, p. 447–470, 1915.

LÜCK, M.; MEIER, A.; SCHINDLER, I. Parametrised complexity of satisfiability in temporal
logic. ACM Transactions on Computational Logic (TOCL), ACM, v. 18, n. 1, p. 1, 2017.

MAJDODDIN, R. Uniform csp parameterized by solution size is in w[1]. In: International
Computer Science Symposium in Russia. Cham: Springer International Publishing, 2019. p.
275–285.

MEIER, A.; ORDYNIAK, S.; RAMANUJAN, M.; SCHINDLER, I. Backdoors for linear
temporal logic. Algorithmica, Springer, v. 81, n. 2, p. 476–496, 2019.

MOL, L. D. Closing the circle: An analysis of emil post’s early work. Bulletin of Symbolic
Logic, Cambridge University Press, v. 12, n. 2, p. 267–289, 2006.
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APÊNDICE A – CONSIDERING FO2

In this appendix, we develop some ideas about a parameterized analysis of FO2.

The fragments of first-order logic with restricted use of variables have many computational

applications. We denote FOk as the class of first-order formulas with at most k variables. For

k ≥ 3, the satisfiability problem for FO3 is undecidable.

Let us consider a solution for the satisfiability of FO2 observing the finite model

property and a polynomial time algorithm to verify A |= ϕ .

p-SAT(FO2)
Instance: A sentence ϕ in FO2

Parameter: k, the number of relations τϕ

Problem: Decide if ϕ is satisfiatible.

Theorem A.1. The model checking problem for FO can be solved in time O(|ϕ| · |A |w ·w) such

that w it the width of ϕ .

Proof. The recursive definition of ϕ(A ) directly give us a recursive algorithm. Observe that for

a formula ϕ(x1, . . . ,xk), compute ϕ(A ) from the immediate subformulas of ϕ takes O(w · |A |w)

time. For example, assume that

ϕ(x1, . . . ,xk) := ψ(xi1, . . . ,xir)∧θ(x j1 , . . . ,x js),

where {i1, . . . , ir}∪{ j1, . . . , js}= [k]. Assume that {i1, . . . , ir}∩{ j1, . . . , js}= {`1, . . . , `t}.

Corollary A.2. For k = 2, MC(FO2) can be solved in polynomial time. More precisely, there is

an algorithm with running time bounded by O(n · |A |2).

Consider the finite model property of FO2. We can obtain, for satisfiable formulas in

FO2, an upper bound on the size of their models.

Theorem A.3. For all satisfiable formulas of FO2 with size n, there is a model of cardinality at

most 2O(n).

This result is obtained from the satisfiability analysis of a formula in the Scott normal

form

(∀x)(∃y)α(x,y)∧
m∧

i=1

(∀x)(∃y)βi(x,y),

where α and βi, with 1≤ i≤ m, are quantifier-free formulas.
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Theorem A.4. All first-order formula in FO2 can be converted to the Scott normal form.

Theorem A.5. All satisfiable formula ϕ in FO2 in the Scott normal form has a model of

cardinality at most 3n ·2r, where r is the number of relation symbols of ϕ .

Then, we can decide the satisfiability of ϕ ∈ FO2 is given by the following procedure:

Algorithm 2 Satisfiability for FO2.
INPUT: ϕ , with |ϕ|= n and |τϕ |= r.
OUTPUT: Yes iff ...

1: for i = 2 to n ·2r do
2: for all structure A with |A |= i do
3: if A |= ϕ then return Yes;

return No;

With the finite model property, there is an upper bound on the size of the universe of

the structure that satisfies a formula ϕ in FO2. For a structure in the vocabulary
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ANEXO A – DESCRIPTIVE COMPLEXITY OF K-SUM

Here we provide a different proof for the membership of the k-SUM into the W[1]

class. This work was presented on XVIII Brazilian Logic Conference (EBL2017)

Introduction

Among many problems that were showed to be W[1]-hard, the k-SUM problem

resist to the classified within W[1].

In (ABBOUD et al., 2014), k-SUM (see Definition A.2) was shown to be W [1]-

complete. They considered a version of the problem using integers of the domain of [−n2k,n2k]

such that, from a set of n integers, and k number sum zero. This problem is equivalent over

arbitrary integers by linear-time randomized reductions.

Then, for this version of k-SUM, they obtained two different reductions showing that

the problem is W[1]-hard and establishing that the problem is within W [1].

Here, we proof that the problem is in W[1] reducing it to the model checking problem

for W[1] class.

Background

Let us recall the definitions of fpt-reduction and the first level of W-hierarchy.

Given the instances (x,k) and (x′,k′) of parameterized problems P and P′ respectively.

The problem P is fpt-reductible to P′, if there is an algorithm that computes an instance (x′,k′) ∈

P′ in time f (k) |x|c, and there is an computable function g such that k′ ≤ g(k).

Let τ = {R1, . . . ,Rr,c1, . . . ,cs} be a set of relation symbols and constants symbols,

and {x1,x2, . . .} a countable set of variables. The language of First-order Logic is defined

inductively, x = y and Rx1, . . .xr are formulas in First-order Logic. If ϕ ,ψ are First-order

formulas, ¬ϕ , ϕ ∧ψ , ϕ ∨ψ , ϕ → ψ are also First-order formulas.

The class W[1] is the first level of W-Hierarchy. For a definition of W[1], we

consider the model checking problem for Σ1 (ϕk := ∃x1, . . . ,x f (k) ψ, such that ψ is quantifier-

free formula), the existential fragment of FO, in some vocabulary τ .
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MC (Σ1)

Instance: A structure A , a sentence ϕ ∈ Σ1

Parameter: |ϕ|

Problem: Decide whether A � ϕ .

Theorem A.1. (DOWNEY et al., 1998; FLUM; GROHE, 2003) For t ≥ 1,W [t] = [MC(ST R[τ],ΣFO
t,l )]

FPT .

To provide the result that k-SUM is in W[1], we need to encode a structure A , and a

formula ϕ from an positive instance of K-SUM.

Coding issues and k-SUM problem

The definition of k-SUM is given as it was formulated in (ABBOUD et al., 2014).

Definition A.2. The (k,M)-SUM problem is to determine, given n integers x1, · · · ,xn ∈ [0,M]

and an integer s ∈ [0,M], if there exists a subset S⊆ [n] of size |S|= k such that ∑i∈S xi = s. The

k-SUM problem is defined as (k,n f (k))-SUM for some computable function f .

For the k-SUM problem, the parameter k will control at the same time the size of the

solutions and the upper bound for the integer values assigned to x’s.

In this work we will identify the k-SUM problem with the set of binary strings which

represent positive solutions for the problem. Since k can be computed in polynomial time from

the input of k-SUM, we could also codify k in this string. In this case,

k-SUM :=

{
〈x1〉 . . . 〈xn〉 〈s〉 〈k〉 ∈ {0,1}∗ | there exists S⊆ [n],

with |S|= k such that∑
i∈S

xi = s

}
These positive instances described in k-SUM have length equals to

|w|= f (k) · (n+1) · logn+ logk ∈ O( f (k) ·n · logn),

and k can be obtained in time limited by |w|

The reduction to a model Checking Problem

The structure’s encoding:

〈A 〉 := 〈0〉 . . .〈n〉〈〈R〉〈〈1〉〈x1〉〉 . . .〈〈n〉〈xn〉〉〉〈0〉 . . .〈n+1〉〈s1〉 . . .〈s f (k)〉︸ ︷︷ ︸
|〈A 〉|∈O(n· f (k)·logn)
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We need to encode the input for the model checking problem: A structure A and a

formula ϕk ∈ Σ1 such that A � ϕk

Theorem A.3. There is a fpt-redution from the k-SUM problem to a model checking problem in

Σ1

We can immediately represent an instance of k-SUM by a finite structure A over

the vocabulary {R2k+1,=,≤,PLUS3,0,1,n+1,s1, · · · ,s2k} with domain {0, · · · ,n+1}. Then

k-SUM can be expressed by a family of formulas {φk} ∈ ΣFO
1 in the form:

(∃u1, · · · ,uk,v1, · · · ,vk)
∧

1≤i, j≤k

(
(ui 6= u j)∧ (vi 6=4k v j)

)
∧

k∧
i=1

R(ui,vi)∧

(
k

∑vi = s

)
,

where R(i, j) is true when xi = j, with the constants 0,1,n,s1, · · ·s2k ∈ |A |, s := 〈s1, · · ·s2k〉, a

fixed k from the problem, and the sum that can be expressed by

(∃r1r2 · · ·rk−2)PLUS6k(v1,r1,s)∧
k−2∧
i=2

PLUS6k(vi,ri,ri−1)∧PLUS6k(vk−1,vk,rk−2). (A.1)

k-SUM can be expressed by {ϕk} formulas in Σ1 in the form:

(∃u1, . . . ,u f (k),v1, . . . ,v f (k))∧
1≤i, j≤k

(
(ui 6= u j)∧ (vi 6=2 f (k) v j)

)
∧

k∧
i=1

R(ui,vi)∧

(
k

∑vi =
2 f (k) s

)
,

where s := 〈s1, . . .s f (k)〉. The sum above can be expressed by

(∃r1r2 . . .r f (k)−2) PLUS3 f (k)(v1,r1,s)

∧
f (k)−2∧

i=2

PLUS3 f (k)(vi,ri,ri−1)∧PLUS3 f (k)(vk−1,vk,r f (k)−2).

As we can see, it is possible to define a 3 f (k)-ary PLUS relation for numbers in

the interval [n f (k)] in the base n. With just one existential block of quantifiers, the length of the
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formula is a function of k. These variables represent the carries and the intermediate values.

PLUS3 f (k)(x1, . . . ,x f (k),y1, . . . ,y f (k),z1, . . .z f (k)) :=

∃u1 . . .u f (k) v1 . . .v f (k)

(PLUS(x f (k),y f (k),z f (k))∧ (v f (k) = 0)∧ (z f (k) 6= n+1))

∨ (PLUS(x f (k),u f (k),n+1)∧PLUS(u f (k),z f (k),y f (k))∧ (v f (k) = 1))

∨ (PLUS(u f (k),y f (k),n+1)∧PLUS(u f (k),z f (k),x f (k))∧ (v f (k) = 1))

1∧
i= f (k)−1

( ((vi+1 = 0)→ (PLUS(xi,yi,zi)∧ (vi = 0)∧ (zi 6= n+1))

∨ (PLUS(xi,ui,n+1)∧PLUS(ui,zi,yi)∧ (vi = 1))

∨ (PLUS(ui,yi,n+1)∧PLUS(ui,zi,xi)∧ (vi = 1)))

∧ ((vi+1 = 1)→ (PLUS(xi,yi,zi)∧ (vi = 0)∧ (zi 6= n+1))

∨ (PLUS(xi,ui,n+1)∧PLUS(ui,zi,yi)∧ (vi = 1))

∨ (PLUS(ui,yi,n+1)∧PLUS(ui,zi,xi)∧ (vi = 1))))

Hence, in the form of Theorem (A.1) for the first level. This implies that k-SUM ∈W [1].

This question was not developed further. After some time the K-SUM was proved to

be in W[1] by the machine characterization of the class in (MAJDODDIN, 2019).
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