
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE CIÊNCIAS

DEPARTAMENTO DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

RAUL WAYNE TEIXEIRA LOPES

DISJOINT PATHS AND THE GRID THEOREM IN DIGRAPHS

FORTALEZA

2021

RAUL WAYNE TEIXEIRA LOPES

DISJOINT PATHS AND THE GRID THEOREM IN DIGRAPHS

Tese apresentada ao Programa de Pós-
Graduação em Ciência da Computação do
Centro de Ciências da Universidade Federal do
Ceará, como requisito parcial à obtenção do
título de doutor em Ciência da Computação.
Área de Concentração: Algoritmos.

Orientador: Prof. Dr. Victor Almeida
Campos

FORTALEZA

2021

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

L855d Lopes, Raul Wayne Teixeira.
 Disjoint paths and the Grid Theorem in Digraphs / Raul Wayne Teixeira Lopes. – 2021.
 99 f. : il.

 Tese (doutorado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em
Ciência da Computação , Fortaleza, 2021.
 Orientação: Prof. Dr. Victor Almeida Campos.

 1. Complexidade parameterizada. 2. Digrafos. 3. Teorema do Grid. 4. Largura em árvore direcionada.
5. Kernelização. I. Título.
 CDD 005

RAUL WAYNE TEIXEIRA LOPES

DISJOINT PATHS AND THE GRID THEOREM IN DIGRAPHS

Tese apresentada ao Programa de Pós-
Graduação em Ciência da Computação
do Centro de Ciências da Universidade
Federal do Ceará, como requisito parcial
à obtenção do título de doutor em Ciência
da Computação. Área de Concentração:
Algoritmos.

Aprovada em: 23/06/2021

BANCA EXAMINADORA

Prof. Dr. Victor Almeida Campos (Orientador)
Universidade Federal do Ceará (UFC)

Profa. Dra. Ana Karolinna Maia de Oliveira
Universidade Federal do Ceará (UFC)

Prof. Dr. Rudini Menezes Sampaio
Universidade Federal do Ceará (UFC)

Prof. Dr. Uéverton dos Santos Souza
Universidade Federal Fluminense (UFF)

Prof. Dr. Vinícius Fernandes dos Santos
Universidade Federal de Minas Gerais (UFMG)

Dr. Ignasi Sau Valls
Laboratoire d’Informatique, de Robotique et de

Microélectronique de Montpellier (LIRMM)

ACKNOWLEDGEMENTS

To my family and my friends, for the support, motivation, and gaming sessions. In

special, to my grandmother Ziza for being an amazing example and for, well, being Ziza. To my

late grandfather José Colombo, also for being an amazing example. You were the best man I

have ever known. And to my wife Natália Diógenes, who always believed in me, supported me,

and pushed me forward.

To everyone I had the pleasure of working and learning with so far: Alexsander

Melo, Allen Ibiapina, Ana Karolinna Maia de Oliveira, Ana Shirley, Andrea Marino, Celina

Figueiredo, Cláudia Linhares, Cláudio Carvalho, Ignasi Sau, Jonas Costa, Guilherme Gomes,

Nicolas Nisse, Victor Campos, and others.

To the friends I made in Montpellier, for the working environment, the friendship,

and all those boardgames matches: Alan Carneiro, Kyllia de Paiva, Guilherme Gomes, and

Jacqueline Torres.

To my supervisor, Victor Almeida Campos, for accepting me as student since I was

an undergrad and for the many years of collaboration. A long time ago you said “he’ll get there

if he keeps going like this”, and now here we are. To Ignasi Sau, for the collaboration and for

teaching me, like, a lot, during the year I spent in Montpellier. You pushed me and supported me

to climb a mountain. Literally. And to Frédéric Havet and Christophe Paul, for the patience and

not leaving me behind in that mountain.

To all the members of the ParGO group, for the excellent study and research environ-

ment.

To the members of the evaluation committe, Ana Karolinna Maia de Oliveira, Rudini

Menezes Sampaio, Uéverton dos Santos Souza, Vinícius Fernandes dos Santos, and Ignasi Sau,

for helpful commentaries about the text, corrections, and suggestions.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brasil (CAPES) - Finance Code 001.

À minha família e amigos, pelo apoio, motivação e jogatinas. Em especial, à minha

avó Ziza por ser um grande exemplo e por, bem, ser a Ziza. Ao meu avô José Colombo, por

ser outro grande exemplo. Você foi o melhor homem que já conheci. E à minha esposa Natália

Diógenes, que sempre acreditou em mim, me apoiou e me incentivou.

A todos com quem tive o prazer de trabalhar e aprender até agora: Alexsander Melo,

Allen Ibiapina, Ana Karolinna Maia de Oliveira, Ana Shirley, Andrea Marino, Celina Figueiredo,

Cláudia Linhares, Cláudio Carvalho, Ignasi Sau, Jonas Costa, Guilherme Gomes, Nicolas Nisse,

Victor Campos e outros.

Aos amigos que fiz em Montpellier, pelo ambiente de trabalho, pela amizade e por

todos aquelas partidas de boardgames: Alan Carneiro, Kyllia de Paiva, Guilherme Gomes e

Jacqueline Torres.

Ao meu orientador, Victor Almeida Campos, por me aceitar como aluno desde a

graduação e pelos muitos anos de colaboração. Há muito tempo você disse “ele vai chegar lá

se continuar assim”, e agora aqui estamos. Ao Ignasi Sau, pela colaboração e por me ensinar,

tipo, muita coisa, durante o ano que passei em Montpellier. Você me empurrou e me incentivou

a cruzar uma montanha. Literalmente. E a Frédéric Havet e Christophe Paul, pela paciência e

por não me abandonarem naquela montanha.

A todos os membros do grupo ParGO, pelo excelente ambiente de estudo e pesquisa.

Aos membros da comissão avaliadora, Ana Karolinna Maia de Oliveira, Rudini

Menezes Sampaio, Uéverton dos Santos Souza, Vinícius Fernandes dos Santos e Ignasi Sau,

pelos comentários sobre o texto, correções e sugestões.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

RESUMO

Em complexidade parametrizada, frequentemente nos deparamos com problemas FPT em grafos

não direcionados que se tornam W[1]-difíceis quando adaptados para o caso direcionado. O

problema de CAMINHOS DIRECIONADOS E DISJUNTOS, um problema notoriamente difícil

em digrafos, é um clássico exemplo disto: Robertson e Seymour [1] mostraram que a versão

não direcionada deste problema é FPT quando parametrizada pelo número k de demandas

mas, por outro lado, Fortune et al. [2] mostraram que a versão direcionada é NP-completa para

k = 2 fixo e Slivkins [3] mostrou que é W[1]-difícil com relação ao parâmetro k mesmo quando

restrito a digrafos acíclicos. Nesta tese, nós mostramos dois novos resultados relacionados a

complexidade parametrizada em digrafos. Primeiro, mostramos como adaptar o Teorema do

Grid Cilíndrico de Kawarabayashi e Kreutzer [4], um resultado análogo ao celebrado Teorema

do Grid de Robertson e Seymour [5], em um algoritmo FPT. Depois, nós introduzimos uma nova

relaxação de CAMINHOS DIRECIONADOS E DISJUNTOS onde pedimos apenas que os caminhos

comportem-se adequadamente não no digrafo inteiro, mas em uma parte não especificada

de tamanho dado por um parâmetro. Isto é, no problema de CAMINHOS DIRECIONADOS

SUFICIENTEMENTE DISJUNTOS, recebemos um digrafo D junto com um conjunto de k pares

de vértices (as demandas) e dois inteiros não-negativos k e s, e o objetivo é encontrar uma

coleção de caminhos ligando as demandas tal que pelo menos d vértices de D ocorram em no

máximo s caminhos da coleção. Entre outros resultados algorítmicos e de dificuldade, mostramos

que este problema tem um kernel de tamanho d · 2k−s ·
(k

s

)
+ 2k em digrafos. Este resultado

tem consequências para o problema de REDE DE STEINER: nós mostramos que este é FPT

parametrizado pelo número k de terminais e p, onde p = n−q e q é o tamanho da solução.

Palavras-chave: complexidade parametrizada; digrafos; Teorema do Grid; largura em árvore

direcionada; kernelização.

ABSTRACT

In parameterized complexity, it is often the case that FPT problems in undirected graphs become

W[1]-hard when translated to the directed setting. The DIRECTED DISJOINT PATHS problem, a

notoriously hard problem in digraphs, is a classical example of this: Robertson and Seymour [1]

showed that undirected version is FPT when parameterized by the number k of requests but,

on the other hand, Fortune et al. [2], showed that the directed version is NP-complete for fixed

k = 2 and Slivkins [3] showed that it is W[1]-hard with parameter k even when restricted to

acyclic digraphs. In this thesis, we provide two new results regarding parameterized complexity

in digraphs. First, we show how to adapt the Directed Grid Theorem by Kawarabayashi and

Kreutzer [4], a result analogous to the celebrated Grid Theorem by Robertson and Seymour [5],

into an FPT algorithm. Then, we introduce a novel relaxation for DIRECTED DISJOINT PATHS in

which we only require the paths to behave properly not in the whole digraph, but in an unspecified

part of size prescribed by a parameter. Namely, in the DISJOINT ENOUGH DIRECTED PATHS

problem, given a digraph D together with a set of k pairs of vertices (the requests) and two

non-negative integers k and s, the task is to find a collection of paths connecting the requests such

that at least d vertices of D occur in at most s paths of the collection. Amongst other algorithmic

and hardness we show that this problem has a kernel of size d ·2k−s ·
(k

s

)
+2k in general digraphs.

This result has consequences for the STEINER NETWORK problem: we show that it is FPT

parameterized by the number k of terminals and p, where p = n− q and q is the size of the

solution.

Keywords: parameterized complexity; digraphs; Grid Theorem; directed tree-width; kerneliza-

tion.

LIST OF FIGURES

Figure 1 – Hierarchy of parameterized problems. 20

Figure 2 – An example of a graph and a tree decomposition. 21

Figure 3 – A path and a matching in a grid. 23

Figure 4 – Visualizing LONGEST PATH and Bidimensionality. 25

Figure 5 – A Z-guarded set S. 26

Figure 6 – A digraph D and an arboreal decomposition of D of width two. 27

Figure 7 – A cylindrical grid of order k = 4. 28

Figure 8 – Butterfly contractions preserves separations. 29

Figure 9 – Sketch of the algorithm used in the proof of the Directed Grid Theorem [4]. 35

Figure 10 – Example of a 3-strongly connected digraph, and an illustration of the haven

property. 36

Figure 11 – Illustration of the defining properties of brambles. 37

Figure 12 – Examples of balanced separators. On the left, Z is a (T1,3)-balanced separator,

and T1 is (3,3)-linked. On the right, each square vertex vi with i ∈ [3]

constitutes a (T2,1)-balanced separator. 38

Figure 13 – Example of a digraph D having a bramble of order one and size 2|V (D)|−1.

Here a bidirectional edge is used to represent a pair of edges in both directions. 40

Figure 14 – Illustration of steps (1)-(3). 42

Figure 15 – An `-linked path system of order p(= 3). A thick edge denotes a linkage of

size ` from a set Aout
i to a set Ain

j , with i 6= j. 43

Figure 16 – Finding the paths Pi from P and A. 44

Figure 17 – An example of cylindrical grid of order 2 in a “well-behaved” path system,

where we assume that every path in L is internally disjoint from all others. . 44

Figure 18 – Illustration of the construction used in the proof of Lemma 3.2.4 48

Figure 19 – Spreading the vertices in Wr0 . 51

Figure 20 – Illustration of a (2)-split of P. 57

Figure 21 – Example of the construction from Theorem 4.2.1 69

Figure 22 – Example of the construction from Theorem 4.2.2. 71

Figure 23 – Example of the construction from Lemma 4.3.8. 75

Figure 24 – Collections PA and PB in the proof of Lemma 4.3.9. 76

Figure 25 – Bypassing a vertex v. 80

Figure 26 – Three paths from si to ti in D/Bi. Square vertices are used to identify vertices

in S(I)∪T (I), which may not be bypassed. 82

Figure 27 – A path P from si to ti avoiding a large part of D. 82

LIST OF SYMBOLS

D(P) Digraph formed by the union of all paths in P .

d−D (v) In-degree of v in the digraph D

d+
D (v) Out-degree of v in the digraph D

dD(v) Degree of v in the digraph D

dtw(D) Directed tree-width of D

G[X] Graph induced by X

G\X Graph resulting by deleting X from G

H ⊆ G Subgraph relation

[`] Set {1, . . . , `}

N−D (v) In-neighborhood of v in D

N+
D (v) Out-neighborhood of v in D

n Number of vertices of the input (di)graph

m Number of edges of the input (di)graph

(u,v) Edge from u to v

Stirling(a,b) Stirling number of the second kind (1
2

(a
b

)
·ba−b)

SUMMARY

1 OVERVIEW . 11

2 DEFINITIONS AND PRELIMINARIES 16

2.1 Parameterized complexity . 18

2.1.1 Formal definitions . 18

2.2 Tree-width . 20

2.3 Arboreal decompositions and directed tree-width 25

2.4 List of problems . 29

3 ADAPTING THE DIRECTED GRID THEOREM INTO AN FPT AL-

GORITHM . 32

3.1 Preliminaries . 36

3.1.1 Brambles and the Directed Grid Theorem 39

3.1.2 Finding a cylindrical grid . 42

3.2 Balanced separators and arboreal decompositions 45

3.2.1 Computing (T,r)-balanced separators in FPT time 46

3.2.2 An FPT algorithm for approximate arboreal decompositions 49

3.3 Brambles and well-linked systems of paths 52

3.3.1 Brambles in digraphs of large directed tree-width 53

3.4 Finding P(BT) and A . 55

3.5 Concluding remarks . 60

4 THE DISJOINT ENOUGH PATHS PROBLEM 63

4.1 Preliminaries . 66

4.2 Hardness results for DEDP . 68

4.3 Algorithms for DEDP . 71

4.3.1 An XP algorithm with parameters k and dtw(D) 72

4.3.2 Algorithms for the dual parameterization 78

4.4 Concluding remarks . 85

REFERENCES . 87

APPENDIX A – LIST OF DEFINITIONS 93

APPENDIX B – COLLECTION OF OTHER WORKS 96

11

1 OVERVIEW

Parameterized complexity offers an approach to deal with computational problems

that are unlikely to admit polynomial time algorithms. Here, we express the running time of

an algorithm for a given problem as a function depending on the size of the input and on a

parameter carrying some information regarding instances of the problem, such as the size of the

solution, that can be relatively small with respect to the size of the input.

For a decision problem Π with input size n and an associated parameter k, the goal is

to provide an algorithm A with running time of the form f (k) ·nO(1) for a computable function

f . In this case, we say that Π is fixed-parameter tractable (FPT) with respect to parameter

k, and that A is an FPT algorithm. If an algorithm A with running time f (k) ·ng(k) exists for

computable functions f and g, we say that Π is slice-wise polynomial (XP) with parameter k,

and that A is an XP algorithm.

Notice that XP and FPT algorithms run in polynomial time for fixed k. In the

particular case of FPT algorithms, the idea is to isolate the combinatorial explosion that is likely

to occur when solving NP-hard problems by a function depending on the parameter of analysis

only, and there is a big difference in the running times of FPT and XP algorithms in favor of the

formers. To further the discussion on parameterized complexity, we now briefly introduce two

classical NP-complete problems.

In the VERTEX COVER problem, we are given an n-vertex graph G together with

a non-negative integer k, and the task is to decide if there is a set of vertices X with |X | ≤ k

such that every edge of G has an endpoint in X . This problem admits a simple 2k · nO(1)

algorithm [6, Chapter 3] and therefore it is FPT. The situation is different, however, for the

CLIQUE1 problem, in which we receive as input a graph G together with a positive integer k and

the task is to decide if G has a clique of size at least k. Although a classical result by Karp [7]

states that CLIQUE is NP-complete, it can be solved in O(nk) time by checking if any of the(|V (G)|
k

)
subsets of V (G) with size k is a clique. Thus, there is anO(k2 ·nk) algorithm for CLIQUE

and it is XP with respect to parameter k. On the other hand, there is strong evidence that CLIQUE

is not FPT regarding this parameterization.

Within parameterized complexity, the W-hierarchy can be seen as the parameterized

equivalent of the class NP of classical decision problems, a problem being W[1]-hard can be
1 A clique in a graph G = (V,E) is a set X ⊆V (G) such that there is an edge in E(G) between any pair of distinct

vertices in X .

12

seen as a strong evidence that it is not FPT, and the CLIQUE problem with parameter k is the

canonical example of a W[1]-hard problem. Downey and Fellows [8] showed that CLIQUE and

INDEPENDENT SET are both W[1]-complete when parameterized by the size of the solution.

Additionally, some problems are even more resistant to some parameterizations than

W[1]-hard problems. In the COLORING problem, for example, we receive as input an undirected

graph G together with a positive integer k and the goal is to color the vertices of G using at most

k colors in such way that any pair of adjacent vertices receive different colors. A well-known

result by Karp [7] states that COLORING is NP-complete for every fixed k ≥ 3.

It is worth mentioning that some deterioration in the tractability of parameterized

problems is often observed when moving from the undirected to the directed case. For example,

Dreyfus and Wagner [9] showed that STEINER TREE is FPT when parameterized by the number

of terminal vertices, and Bousquet et al. [10] and Marx and Razgon [11] showed that MULTICUT

is FPT when parameterized by the size of the solution. On the other hand, Guo et al. [12]

showed that a particular case of STEINER NETWORK, the directed counterpart of STEINER

TREE, is W[1]-hard when parameterized by the number of terminal vertices, and Pilipczuk and

Wahlström [13] showed that DIRECTED MULTICUT is W[1]-hard when parameterized by the

size of the solution. Later, Feldmann and Marx [14] completely characterized the tractability of

STEINER NETWORK with the aforementioned parameterization.

Finally, many hard problems become tractable under parameterizations that, although

not directly linked to the problem, provide some structural properties on the input graph. For

example, a number of hard problems can be efficiently solved in graphs of bounded tree-width, a

parameter introduced by Bertele and Brioschi [15], then by Halin [16], and finally by Robertson

and Seymour [5], that measures how tightly an undirected graph can be approximated by a tree.

In this thesis we present two new positive results regarding parameterized complexity

in digraphs.

Adapting the Directed Grid Theorem into an FPT algorithm [17]. The celebrated Grid

Theorem by Robertson and Seymour [5] states that there is a computable function f : N→ N

such that every undirected graph with tree-width at least f (k) contains a (k× k)-grid as a minor.

A polynomial bound for f (k) was given by Chekuri and Chuzhoy [18] and later improved by

Chuzhoy and Tan [19]. This has result found numerous applications in the design of FPT

algorithms for problems in undirected graphs, amongst other usages (we refer the reader to [6,

Chapter 7.7] for examples of applications).

13

In particular, the Grid Theorem allows the design of “win/win” approaches to attack

parameterized problems in graphs where we either gain because we conclude that the input

graph has bounded tree-width, or we gain by finding a large grid minor which is then used, for

example, as a certificate that the instance is positive (or negative), or to find a vertex that can

be safely deleted from the graph without changing the answer to the problem (thus reducing

the size of the input). The first scenario is an example of application of the framework of

Bidimensionality [20], introduced by Demaine et al. [21], a powerful tool that is often used to

design FPT algorithms with subexponential dependence on the considered parameter in planar

graphs. The second scenario is a rough description of the irrevelant vertex technique, originally

introduced by Robertson and Seymour [1, 22, 23] to solve the DISJOINT PATHS problem.

Kawarabayashi and Kreutzer [4]2 proved a result that is analogous to the Grid

Theorem for digraphs, exposing the duality between directed tree-width3, a parameter introduced

by Johnson et al. [24] which, informally, measures the distance of a digraph to being acyclic, and

the existence of a large planar minor of a particular kind in digraphs. Namely, in [4] it is shown

that every digraph with sufficiently large directed tree-width contains a large cylindrical grid3 as

a butterfly minor3, and there is hope that this result has laid the foundation for the development

of a framework analogous to bidimensionality for digraphs. In the first part of this thesis, we

show how to adapt the Directed Grid Theorem into an FPT algorithm by making some local

changes in the proof by Kawarabayashi and Kreutzer [4].

This is a joint work with Victor Campos, Ana Karolinna Maia, and Ignasi Sau. An

extended abstract of this work is available in the Proceedings of the X Latin and American

Algorithms, Graphs, and Optimization Symposium (LAGOS), volume 346 of ENTCS, pages 229-

240, 2019, and the full version is currently submitted to SIAM Journal on Discrete Mathematics

and awaiting review.

A relaxation of the Directed Disjoint Paths problem: a global congestion metric

helps [25]. In the DISJOINT PATHS problem, we are given a graph G and a set of pairs of

vertices {(s1, t1), . . . ,(sk, tk)}, called the requests, and the task is to find a collection of pairwise

vertex-disjoint paths {P1, . . . ,Pk} such that each Pi is a path from si to ti. The DIRECTED

DISJOINT PATHS (DDP) problem is defined analogously, but in digraphs and we ask the paths

to be directed. Although both undirected and directed versions are NP-complete even in planar
2 The full version of [4] is available at CoRR abs/1411.5681.
3 See Section 2.3 for the definitions of directed tree-width, cylindrical grids, and butterfly minors.

https://arxiv.org/abs/1411.5681

14

(di)graphs [2, 26], the latter turns out to be significantly harder under the optics of parameterized

complexity.

Robertson and Seymour [1] showed that DISJOINT PATHS is FPT with relation to

parameter k but, on the other hand, Fortune et al. [2] showed that DIRECTED DISJOINT PATHS

is NP-complete even for fixed k = 2. On the positive side, the authors also showed that this

problem is XP with parameter k in acyclic digraphs (DAGs). Finally, Slivkins [3] showed that

this parameterization is W[1]-hard even when restricted to DAGs and, by a simple local reduction

shown by Amiri et al. [27], it is easy to extend Slivkins’ reduction [3] to show that DIRECTED

DISJOINT PATHS WITH CONGESTION c, where we allow each vertex of the digraph to appear

in at most c paths of the collection, is also W[1]-hard with the same parameterization for every

fixed c≥ 1.

Positive results for DIRECTED DISJOINT PATHS, however, are scarce and usually

consider a restriction on the input digraph. For example, Johnson et al. [24] showed that DDP

with parameter k is XP in digraphs of bounded directed tree-width, Schrijver [28] showed that it

is also XP in planar digraphs, and then Cygan et al. [29] improved on this result by providing an

FPT algorithm for this problem in planar digraphs.

In the second part of this thesis, we introduce a novel relaxation of the DIRECTED

DISJOINT PATHS problem in which we consider a global congestion metric on top of a local

one. We introduce the DISJOINT ENOUGH DIRECTED PATHS problem (DEDP) where, given as

input a set of requests in a digraph D together with two non-negative integers d and s, we are

asked to find a collection of paths linking the requests such that at least d vertices of D occur in

at most s paths of the collection. Our main contribution regarding this problem is a kernel of size

d ·2k−s ·
(k

s

)
. See Table 1 for a summary of algorithmic and hardness results we prove for DEDP.

k d s w Complexity
fixed ≥ 3 Ω(nα) fixed ≥ 1 — NP-complete (Theorem 4.2.1)
parameter Ω(nα) fixed ≥ 1 0 W[1]-hard (Theorem 4.2.1)

input parameter fixed ≥ 0 — W[1]-hard (Theorem 4.2.2)
parameter — — parameter XP (Theorem 4.3.10)

input parameter parameter — XP (Theorem 4.3.12)
parameter parameter parameter — FPT (Theorem 4.3.21)

Table 1 – Summary of hardness and algorithmic results for distinct choices of the parameters. A
horizontal line in a cell means no restrictions for that case.

This is a joint work with Ignasi Sau. An extended abstract of this work is available in

15

the Proceedings of the 45th International Symposium on Mathematical Foundations of Computer

Science (MFCS), volume 170 of LIPIcs, pages 68:1-68:15, 2020, and the full version is to appear

in Theoretical Computer Science (TCS).

Organization. This thesis is organized as follows. In Chapter 2 we introduce

the basic definitions and notations commonly used by all parts of this text, as well as some

preliminary known results. In Chapter 3 we motivate, prove and further discuss our adaptation

of the Directed Grid Theorem [4] into an FPT algorithm. In Chapter 4, we formally introduce

the DISJOINT ENOUGH DIRECTED PATHS problem, prove our algorithmic and hardness results,

discuss some consequences of these results, and pose some open problems. In Appendix A

we include a list of all definitions used in this thesis and in Appendix B we include one page

abstracts of other results obtained during the Ph.D.

16

2 DEFINITIONS AND PRELIMINARIES

We refer the reader to [30] for basic background on graph theory. A graph G is

formed by an ordered pair (V (G),E(G)) where V (G) is a set of vertices, E(G) is a set of edges,

and an incidence function ψG : E(G)→V (G)×V (G) associating each edge e ∈ E(G) with an

unordered pair of vertices (u,v) of G. We say that |V (G)| is the size of G. If there is an edge

e with ψG(e) = (u,v), we say that e is an edge between u and v and simply write e = (u,v).

We also say that u and v are adjacent, that e is incident to u and v, and refer to u and v as the

endpoints of e. A digraph D is defined similarly, but with the difference that the incidence

function ψD associates each edge e ∈ E(D) with an ordered pair of vertices (u,v) of D. All the

definitions for graphs given above also apply to digraphs. Additionaly, if e is an edge of D with

e = (u,v), we say that u is the tail of e, that v is the head of e, and that e is oriented from u to v.

The underlying graph of D is the graph obtained by ignoring the orientation of the edges of D.

Unless stated otherwise, we let n = |V (G)| and m = |E(G)| when G is the input

(di)graph of some procedure. For an integer `≥ 1, we denote by [`] the set {1,2, . . . , `}.

The in-degree deg−D(v) (resp. out-degree deg+D(v)) of a vertex v in a digraph D is the

number of edges with head (resp. tail) v. The degree degD(v) of v in D is the sum of deg−D(v)

with deg+D(v). The in-neighborhood N−D (v) of v is the set {u ∈V (D) | (u,v) ∈ E(G)}, and the

out-neighborhood N+
D (v) is the set {u ∈V (D) | (v,u) ∈ E(G)}. We say that u is an in-neighbor

of v if u ∈ N−D (v) and that u is an out-neighbor of v if u ∈ N+
D (v). When D is clear from the

context, we drop it from the notation.

A subgraph of a (di)graph G is a (di)graph H with V (H) ⊆ V (G), E(H) ⊆ E(G),

and with the property that the incidence function ψH associated with H is the restriction of ψG to

E(H). We say that H is induced if for every u,v ∈V (H), we have that (u,v) ∈ E(H) whenever

(u,v) ∈ E(G). For a set X ⊆V (G), we write D\X for the digraph resulting from the deletion of

X from D, and we denote by G[X] the subgraph of G induced by X ; that is, the induced subgraph

of G with vertex set X . We write H ⊆ G when H is a subgraph of G.

A walk in a (di)graph G is an alternating sequence W of vertices and edges that starts

and ends with a vertex, and such that for every edge (u,v) in the walk, vertex u (resp. vertex v)

is the element right before (resp. right after) edge (u,v) in W . If the first vertex in a walk is u

and the last one is v, then we say this is a walk from u to v. A path is a (di)graph containing

exactly a walk that contains all of its vertices and edges without repetition. If P is a path with

V (P) = {v1, . . . ,vk} and E(P) = {(vi,vi+1) | i ∈ [k−1]}, we say that v1 is the first vertex of P,

17

that vk is the last vertex of P, and for i ∈ [k−1] we say that vi+1 is the sucessor in P of vi. If

P ⊆ G, we say that P is a path from v1 to vk in G. A cycle is a (di)graph formed by a path

containing at least two vertices together with an edge from its first to its last vertex. The length

of a path or a cycle is the number of edges it contains. All paths and cyles mentioned henceforth,

unless stated otherwise, are considered to be directed.

An orientation of an undirected graph G is a digraph D obtained from G by choosing

an orientation for each edge e∈E(G). The undirected graph G formed by ignoring the orientation

of the edges of a digraph D is the underlying graph of D.

We say that an undirected graph G is connected if, for every pair of vertices u,v ∈

V (G), there is a path from u to v in G. A component of G is maximal connected subgraph of

G. A digraph D is strongly connected if, for every pair of vertices u,v ∈V (D), there is a walk

from u to v and a walk from v to u in D. We say that D is weakly connected if the underlying

graph of D is connected. A separator of D is a set S (V (D) such that D \ S is not strongly

connected. If |V (D)| ≥ k+1 and k is the minimum size of a separator of D, we say that D is

k-strongly connected. A strong component of D is a maximal induced subgraph of D that is

strongly connected, and a weak component of D is a maximal induced subgraph of D that is

weakly connected.

A tree is an undirected connected and acyclic graph. We also abbreviate acyclic

digraphs with the acronym DAG. An arborescence R with root v is an orientation of a tree such

that there is a path from v to every other vertex in V (R)\{v}. If a vertex u ∈V (R) has out-degree

zero, we say that u is a leaf of R.

An independent set in a (di)graph G is a set of pairwise non-adjacent vertices of

G. A clique is a set of pairwise adjacent vertices of G. We say that a graph G is a complete

graph if V (G) is a clique and an empty graph if V (G) is an independent set. A tournament is an

orientation of a complete graph.

For X ,Y ⊆ V (D), an (X ,Y)-separator is a set of vertices S such that there are no

paths in D\S from any vertex in X to any vertex in Y . If X = {u} we just write (u,Y)-separator

instead of ({u},Y)-separator (omitting the braces), and do the same if Y = {v}. We make use

Menger’s Theorem [31] for digraphs.

Theorem 2.0.1 (Menger’s Theorem [31]). Let D be a digraph and X ,Y ⊆ V (D). Then the

minimum size of an (X ,Y)-separator in D equals the maximum number of pairwise internally

vertex-disjoint paths from X to Y in D.

18

For two positive integers a and b with a ≥ b, the Stirling number of the second

kind [32], denoted by Stirling(a,b), counts the number of ways to partition a set of a objects into

b non-empty subsets, and is bounded from above by 1
2

(a
b

)
·ba−b.

2.1 Parameterized complexity

Are all NP-hard problem equally hard? Under the optics of approximation there

are, for instance, hard problems for which we can compute solutions that are within a constant

factor of an optimal solution, and those for which no algorithm with such a guarantee can exist

unless P = NP. In some cases we can find a close-to-optimal solution to many instances of

NP-hard problems by applying heuristic algorithms, albeit without a general guarantee of the

approximation ratio.

Considerable effort is applied into optimizing exponential functions bounding the

running time of algorithms solving NP-hard problems. As mentioned in Chapter 1, parameterized

complexity offers another approach to deal with hard problems where the goal is to decide how

tractable a given decision problem is with relation to a parameter carrying some information

about instances of the problem. The first large study on parameterized complexity was done in the

monograph by Downey and Fellows [33] and, for further references, we refer the reader to [6,34].

To further justify the results of this thesis, in this section we delve a littler deeper in the field of

parameterized complexity, particularly on topics regarding tree-width and bidimensionality.

2.1.1 Formal definitions

A parameterized problem is a language L⊆ Σ∗×N where Σ is a fixed, finite alphabet.

If (x,k) is an instance of a parameterized problem, k is called the parameter. For example, an

instance of CLIQUE parameterized by the size of the solution is a pair (G,k) where G is the input

graph and k is the parameter.

We say that L is slice-wise polynomial if there exists an algorithm A and two

computable functions f : N→ N and g : N→ N such that, given an instance (x,k) ∈ Σ∗×N, A

correctly decides whether (x,k) ∈ L in time bounded by f (k) · |(x,k)|g(k). In this case,A is called

an XP algorithm and we say that L is solvable in XP time. The complexity class containing all

slice-wise polynomial problems is called XP. We also say that L is fixed-parameter tractable

if there is an algorithm A, a computable function f : N→ N, and a constant c such that A

19

correctly decides whether an instance (x,k) ∈ Σ∗×N is in L in time bounded by f (k) · |(x,k)|c.

In this case, A is called an FPT algorithm and we say that L is solvable in FPT time. The

complexity class containing all fixed-parameter tractable problems is called FPT. As examples,

when parameterized by the size of the solution, CLIQUE is XP and VERTEX COVER is FPT.

There is significant difference between the running times of an XP an FPT algorithm

for a given parameterized problem L, in favor of the latter, and thus the standard goal within

the optics of parameterized complexity when dealing with such a problem L is to find an FPT

algorithm for it or provide evidence that L is not FPT. Within parameterized problems, the

W-hierarchy may be seen as the parameterized equivalent to the class NP of classical decision

problems. A parameterized problem being W[1]-hard can be seen as a strong evidence that this

problem is not FPT. The canonical example of W[1]-hard problem is CLIQUE parameterized by

the size of the solution, and Downey and Fellows [8] showed that CLIQUE and INDEPENDENT

SET are W[1]-complete when parameterized by the size of the solution.

Parameterized reductions are used to transfer fixed-parameter tractability or hardness

between parameterized problems. Namely, a parameterized reduction is an algorithm that, given

an instance (x,k) of a parameterized problem L, runs in time f (k) · |x|O(1) and outputs an instance

(x′,k′) of a parameterized problem L′ such that k′ ≤ g(k) for some computable function g and

(x,k) is positive if and only if (x′,k′) is positive. For example, if L is W[1]-hard and there is a

parameterized reduction from L to L′, then L′ is also W[1]-hard and thus unlikely to admit an

FPT algorithm.

Most of the nautral NP-hard problems are equivalent to each other with respect to

polynomial time reductions in the sense that are reductions from P to Q and from P to Q, for

every pair P,Q of NP-complete problems. However, this does not seems to be the case within

hard parameterized problems. For example, there is a parameterized reduction from CLIQUE

to DOMINATING SET (both parameterized by the size of the solution), but the other direction

seems to be unlikely. In fact, the latter is the canonical example of a W[2]-hard problem, and it

is W[2]-complete. Thus there is a hierarchy within parameterized problems following

FPT⊆W[1]⊆W[2]⊆ ·· · ⊆W[t]⊆ XP.

For an instance (x,k) of a parameterized decision problem L, a kernelization algo-

rithm is an algorithm A that, in polynomial time, generates from (x,k) an equivalent instance

(x′,k′) of L such that |x|′+ k′ ≤ f (k), for some computable function f . If f (k) is bounded from

above by a polynomial of the parameter, we say that L admits a polynomial kernel. We also

20

say that L admits a kernel of size f (k), and it is folklore that a parameterized problem admits a

kernel if and only if it is FPT.

A polynomial time and parameter reduction (PPT) is similar to a parameterized

reduction, but runs in polynomial time and also requires k′ to be bounded from above by a

polynomial on k. Polynomial time and parameter reductions can be used to show evidence that

a parameterized problem is unlikely to admit a polynomial kernel: if L is unlikely to admit a

polynomial kernel, then the existence of a PPT from L to L′ is evidence that L′ is also unlikely to

admit a polynomial kernel.

See Figure 1 for an illustration of the hierarchy between parameterized problems.

Problem L,
parameter k XP FPT Polynomial

kernel

NP-hard
for fixed k W[1]-hard No polynomial

kernel

Figure 1 – Hierarchy of parameterized problems.

2.2 Tree-width

Most of the examples of parameterized problems we mentioned thus far are consid-

ering a parameter that is naturally related to some aspect of the solutions. CLIQUE parameterized

by the size of the solution is W[1]-hard and thus there is little hope in finding an FPT algorithm

for it under this parameterization. On the positive side, there are many hard problems that

become tractable under parameterizations that, although not directly linked to solutions, measure

some structural property of input instances.

Consider, for instance, the maximum degree ∆(G) of a graph G. If ∆(G)≤ k−2 we

can immediately say that the instance of CLIQUE is negative since every vertex in a clique of

size k clearly has k−1 neighbors in the clique. If this is not the case notice that, when given a

vertex v of G, we can check whether there is a clique of size k containing v by looking at each of

the 2∆(G) subsets of neighbors of v. This simple idea yields an O(2∆(G) ·∆2(G) ·n) algorithm to

solve CLIQUE and thus this problem is FPT when parameterized by ∆(G) (and notice that this

statement holds for any choice of k).

There is nothing special in this comparison between ∆(G) and k since, in general,

21

not much can be said about instances of CLIQUE whose input graph has maximum degree at

least k−1. The tree-width of a graph is more interesting than the maximum degree in this regard

since not only many hard problems become tractable in graphs of bounded tree-width, but in

many cases the existence of blocking structures certifying that the tree-width has to be large

allows the development of FPT algorithms with subexponential dependence on this parameter, as

well as other approaches to attack parameterized problems in graphs. Informally, the tree-width

of a graph G measures how close G is to a tree.

Definition 2.2.1 (Tree decomposition). A tree decomposition T of a graph G is a pair (T,X)

where T is a tree, X is a collection {Xt | t ∈V (T)} of bags of vertices of G, and

(1) X1∪X2∪·· ·∪Xt =V (G);

(2) for every edge (u,v) of G there is a bag Xt containing both u and v; and

(3) for every u ∈V (G), the set Tu = {t ∈V (T) | u ∈ Xt} induces a connected subgraph of T .

The width of T is the least integer k such that |Xt | ≤ k+1 for every t ∈V (T). The tree-width

of a graph G, denoted by tw(G), is the least integer k such that G has a tree decomposition of

width k.

See Figure 2 for an example of a graph and a tree decomposition for it.

X1

X2

X3

X1

X2

X3

Figure 2 – An example of a graph (on the right) and a tree decomposition for it (on the left).
Each set Xi is a bag of the decomposition.

It is easy to construct a tree decomposition (T,X) of width one for a tree F . If

V (F) = 1, let V (T) = {t}, X = {Xt}, and Xt =V (F). Otherwise, start with X = /0 and add to

it one bag Xe for each edge e ∈ E(F) and one bag Xv for each v ∈ V (F). Then, add to T the

associated vertices te and tv, respectively. Finally, add an edge between vertices te and tv in T if

and only if v is one of the endpoints of e. Since every graph containing at least one edge has

tree-width at least one, we conclude that trees are exactly the connected graphs with tree-width

22

at most one. With other simple observations, as seen in [6], one can show that cycles have

tree-width 2 and that any graph containing a clique of size k has tree-width at least k−1.

Arnborg et al. [35] showed that in general it is NP-hard to compute the tree-width of

a given graph G. On the positive side, Bodlaender showed that we can decide if tw(G)≤ k, and

construct a tree-decomposition for the input graph if this is the case, in FPT time [36].

Theorem 2.2.2 (Bodlaender [36]). Let G be a graph and k be a positive integer. There is an

algorithm running in time O(kO(k3) ·n) that either produces a tree-decomposition of G of width

at most k or correctly decides that tw(G)> k.

A classical result by Robertson and Seymour [37] shows that there is an approximation algorithm

for tree-width with a better dependence on the parameter, but with a quadratic dependence on n.

Theorem 2.2.3 (Robertson and Seymour [37]). Let G be a graph and k be a positive integer.

There is an algorithm running in time O(8k ·k2 ·n2) that either produces a tree-decomposition of

G of width at most k or correctly decides that tw(G)> k.

As is the case with maximum degree, CLIQUE is FPT with relation to the tree-

width of the input graph, as are the following problems: VERTEX COVER, DOMINATING

SET, FEEDBACK VERTEX SET, CONNECTED DOMINATING SET, and many others. Moreover,

Courcelle’s Theorem [38] states that every problem that can be modeled with monadic second

order logic admits an FPT algorithm when parameterized by the tree-width of the input graph.

We now briefly discuss the framework of Bidimensionality and, as an application,

discuss how it can be used to provide subexponential FPT algorithms for parameterized problems

in planar graphs. We introduce this powerful framework through simple examples connecting

the main ideas used in it. We use the following two classical problems. A vertex cover of a graph

G is set X ⊆V (G) such that there are no edges in G\X .

LONGEST PATH

Input: A graph G and a positive integer k.

Output: A path of size at least k in G.

23

VERTEX COVER

Input: A graph G and a positive integer k.

Output: A vertex cover of G with size at most k.

We denote by `p(G) the size of a longest path in G and by vc(G) the minimum size

of a vertex cover of G. It is not hard to see that a (k× k)-grid, or a grid of order k, contains a

path of size k2 and a set of bk2/2c independent edges. Such a set of edges in a graph is known as

a matching. See Figure 3 for a drawing of a grid of order k, of a path, and of a matching in this

grid.

k

k

k

k

k

k

Figure 3 – A grid of order k (top), a path of size k2 (bottom left) and a matching of size bk2/2c
(on the right) in a grid of order k.

Also notice that both LONGEST PATH and VERTEX COVER are closed with relation

to minors: if G is a graph, H is a minor of G, and H contains a path of size k, for example,

then clearly G also contains a path of size k since contractions can only decrease the size of a

path. Thus the size of a longest path in G is at least the size of a longest path in any minor of G.

Similarly, the size of a vertex cover of G has to be at least the size of a vertex cover of any minor

of G. Adding those observations with the bounds on the size of longest paths and vertex covers

of grids discussed in the previous paragraph, we obtain the following remark.

24

Remark 2.2.4. Every graph G containing a grid of order k as a minor has `p(G) ≥ k2 and

vc(G)≥ bk2/2c.

The grid Theorem by Robertson and Seymour [5] states that there is a relationship

between the tree-width of a graph G and the order of the largest grid minor of G. Robertson,

Seymour, and Thomas [39] and Gu and Tamaki [40], this time with a improved bound, showed

that this relationship is linear when G is planar. We state the version by Gu and Tamaki [40].

Theorem 2.2.5 (Planar excluded grid Theorem [40]). Let G be a planar graph. If tw(G)≥ 9t/2

then G contains a (t× t)-grid minor. Furthermore, for every ε > 0 there exists an algorithm

running in time O(n2) that receives as input a planar graph G and a integer t and either outputs

a tree decomposition of G with width at most (9/2+ε)t or constructs a minor model of a grid of

order t in G.

Finally, a classical results stated in [6, Chapters 7,11], for example, show that

LONGEST PATH and VERTEX COVER are FPT when parameterized by the tree-width of the

input graph.

Remark 2.2.6. LONGEST PATH and VERTEX COVER are solvable in time 2tw(G) ·nO(1).

Connecting the pieces. Let (G,k) be an instance of LONGEST PATH where G is planar. As done

with CLIQUE and ∆(G) (the maximum degree of G) in the beginning of this section, we start

by comparing the size k of solutions for LONGEST PATH with the tree-width tw(G) of the input

graph. Applying Theorem 2.2.5 with inputs G and
√

k we either obtain a (
√

k×
√

k)-grid minor

H of G, or a tree decomposition of width at most 9
√

k/2 of G. In the first case, by Remark 2.2.4

we conclude that `p(G)≥ k since `p(H)≥ k (see Figure 3 for an example) and thus the instance

is positive and H is a certificate of that. In the second case, we apply Remark 2.2.6 to solve (G,k)

in time 2O(
√

tw(G)) ·nO(1). Since we can decide which case occurs in polynomial time, we now

have a “win/win” scenario where we either win because we find a large grid minor certifying

that the instance is positive (or negative), or obtain a tree-decomposition and use it to solve the

problem in subexponential time. See Figure 4 for an illustration of this scenario.

Thus connecting the pieces stated in this section (Remark 2.2.4, Theorem 2.2.5,

and Remark 2.2.6) we conclude that there is an algorithm running in time 2O(
√

k) ·nO(1) for the

LONGEST PATH problem, and we can produce an algorithm with the same running time for the

VERTEX COVER problem applying the same technique.

25

PLANAR
LONGEST

PATH

“YES” instance
tw(G)≥ ·

√
k

(
√

k×
√

k)-grid minor

tw(G)< c ·
√

k

Tree decomposition

Figure 4 – Visualizing LONGEST PATH and Bidimensionality. Here c = 9/2.

LONGEST PATH and VERTEX COVER are examples of bidimensional problems.

Roughly speaking, a problemQ is bidimensional if it is minor-closed and if the size of a solution

for Q in a grid grows quadratically in relation to the order of the grid. Thus any bidimensional

problem that is solvable in time 2O(tw(G)) ·nO(1), for example, is solvable in time 2O(
√

k) ·nO(1)

in planar graphs.

2.3 Arboreal decompositions and directed tree-width

We now define guarded sets and arboreal decompositions of digraphs. From here on,

we refer to oriented edges only, unless stated otherwise. D will always stand for a digraph, and

G for an undirected graph. Unless stated otherwise, we define n = |V (D)| and m = |E(D)| when

D is the input digraph of some algorithm.

Definition 2.3.1 (Z-guarded sets). Let D be a digraph, Z ⊆ V (D), and S ⊆ V (D)\Z. We say

that S is Z-guarded if there is no directed walk in D\Z with first and last vertices in S that uses

a vertex of D\ (Z∪S). For an integer w≥ 0, we say that S is w-guarded if S is Z-guarded for

some Z with |Z| ≤ w.

That is, informally speaking, a set S is Z-guarded if whenever a walk starting in S leaves S, it is

impossible to come back to S without visiting a vertex in Z. See Figure 5 for an illustration of a

Z-guarded set. If a set S is Z-guarded, we may also say that Z is a guard for S. We remark that

in [24], the authors use the terminology of Z-normal sets instead of Z-guarded sets.

Given the enormous success achieved by applications based on width parameters

in undirected graphs, it is no surprise that there is interest in finding similar definitions for

digraphs. Johnson et al. [24] proposed an analogous measure for tree-width in the directed case.

The directed tree-width of a digraph measures its distance to being a DAG, and an arboreal

26

V (D)\ (Z∪S)

S

Z

u v

Figure 5 – A Z-guarded set S. The dashed line indicates that there is no path from u to v in
V (D)\ (Z∪S).

decomposition exposes a (strong) connectivity measure of a digraph. Reed [41] gave an intuition

for the similarities between the undirected and directed cases.

Let R be an arborescence, r ∈V (R), e ∈ E(R), and r′ be the head of e. We say that

r > e if there is a path from r′ to r in R (notice that this definition implies that r′ > e). We also

say that e∼ r if r is the head or the tail of e. To define the directed tree-width of directed graphs,

we first need to introduce arboreal decompositions.

Definition 2.3.2 (Arboreal decomposition). An arboreal decomposition β of a digraph D is a

triple (R,X ,W) where R is an arborescence, X = {Xe : e ∈ E(R)},W = {Wr : r ∈V (R)}, and

X ,W are collections of sets of vertices of D (called bags) such that

(i) W is a partition of V (D) into non-empty sets, and

(ii) if e ∈ E(R), then
⋃
{Wr : r ∈V (R) and r > e} is Xe-guarded.

We also say that r is a leaf of (R,X ,W) if r has out-degree zero in R.

The left hand side of Figure 6 contains an example of a digraph D, while the right

hand side shows an arboreal decomposition for it. In the illustration of the arboreal decomposition,

squares are guards Xe and circles are bags of vertices Wr. For example, consider the edge e∈E(R)

with Xe = {b,c} from the bag W1 to the bag W2. Then
⋃
{Wr : r ∈V (R) and r > e}=V (D)\{a}

and, by item (ii) described above, this set must be {a}-guarded since Xe = {a}. In other words,

there cannot be a walk in D\{b,c} starting and ending in {a} using a vertex of V (D)\{a}. This

is true in D since every path reaching {a} from the remaining of the graph must do so through

vertices b or c. The reader is encouraged to verify the same properties for the other guards in the

decomposition.

Definition 2.3.3 (Nice arboreal decompositions). We say that an arboreal decomposition

(R,X ,W) of a digraph D is nice if

27

a
a

b

b
c
c

d
d

e
e

f
f

g
g

aW1

b,c

W2
d,e

W3

f,g

W4

b,c

b c

Figure 6 – A digraph D and an arboreal decomposition of D of width two. A bidirectional edge
is used to represent a pair of edges in both directions.

(iii) for every e ∈ E(R),
⋃
{Wr : r ∈V (R),r > e} induces a strong component of D\Xe, and

(iv) if r ∈V (R) and r1, . . . ,r` are the out-neighbors of r in R, then⋃
i∈[`]

Wri

∩(⋃
e∼r

Xe

)
= /0.

Definition 2.3.4 (Directed tree-width). Let (R,X ,W) be an arboreal decomposition of a digraph

D. For a vertex r ∈V (R), we denote by width(r) the size of the set Wr∪ (
⋃

e∼r Xe). The width of

(R,X ,W) is the least integer k such that, for all r ∈V (R), width(r)≤ k+1. The directed tree-

width of D, denoted by dtw(D), is the least integer k such that D has an arboreal decomposition

of width k.

We remark that DAGs have directed tree-width zero.

If G is an undirected graph and D the digraph obtained from G by replacing every

edge of G with two directed edges in opposite directions then, as shown by Johnson et al. [24],

the tree-width of G is equal to the directed tree-width of D. Thus, deciding if a digraph D

has directed tree-width at most k, for a given integer k, is NP-complete since deciding if the

tree-width of an undirected graph is at most k is an NP-complete problem [35].

Similarly to the undirected case, some hard problems become tractable when re-

stricted to digraphs of bounded directed tree-width. For example, Johnson et al. [24] showed that

the DIRECTED DISJOINT PATHS (DDP) problem, which Fortune et al. [2] showed to be NP-hard

even when the goal is to connect k = 2 pairs of vertices only, is XP with parameters k and dtw(D).

A similar approach given in [24] can be applied to the HAMILTON PATH and HAMILTON CYCLE

problems, HAMILTON PATH WITH PRESCRIBED ENDS, and others. However, Slivkins [3]

proved that DDP with parameter k is W[1]-hard even when restricted to DAG. As DAGs have

directed tree-width zero, there is little hope for the existence of an FPT algorithm for this

parameterization of DDP in digraphs of bounded directed tree-width. As another example of

28

application, a Courcelle-like theorem for directed tree-width is shown in [42], but running in XP

time.

We now formally define cylindrical grids, butterfly contractions, butterfly minors,

and some blocking structures for large directed tree-width.

Definition 2.3.5 (Cylindrical grid). A cylindrical grid of order k is a digraph formed by the union

of k disjoint cycles C1, . . . ,Ck and 2k disjoint paths P1, P2, . . ., P2k where

1. for i∈ [k],V (Ci)= {vi,1,vi,2, . . . ,vi,2k} and E(Ci)= {(vi, j,vi, j+1 | j∈ [2k−1])}∪{(vi,2k,vi,1)},

2. for i ∈ {1,3, . . . ,2k−1}, E(Pi) = {(v1,i,v2,i),(v2,i,v3,i), . . . ,(vk−1,i,vk,i)}, and

3. for i ∈ {2,4, . . . ,2k}, E(Pi) = {(vk,i,vk−1,i),(vk−1,i,vk−2,i), . . . ,(v2,i,v1,i)}.

In other words, path Pi is oriented from the first circle to the last one if i is odd, and the other

way around if i is even. Furthermore, every vertex of a cylindrical grid occurs in the intersection

of a path and a cycle. See Figure 7 for an example of a cylindrical grid of order k = 4.

Figure 7 – A cylindrical grid of order k = 4.

Definition 2.3.6 (Butterfly contraction and butterfly minors). Let D be a digraph. An edge e from

u to v of D is butterfly contractible if e is the only outgoing edge of u or the only incoming edge of v.

By butterfly contracting e in D, we obtain a digraph D′ with vertex set V (D′)=V (D)\{u,v}∪xu,v,

where xu,v is a new vertex, and E(D′) = E(D)\{e}. Every incidence of an edge f ∈ E(D′) to u

or v in D becomes an incidence to xu,v in D′. If D′ is generated from a subgraph of D by a series

a butterfly contractions, we say that D′ is a butterfly minor of D.

Notice that, in the above definition, the newly introduced vertex xu,v has in D′ the same neighbors

of u and v in D (minus u and v). It is not hard to see that butterfly contractions cannot generate

any new paths and that there is no such guarantee if no restrictions are imposed on which edges

of a digraph can be contracted. See Figure 8 for an example of this.

29

e1

e2

=⇒

e1

e2

=⇒

Figure 8 – Butterfly contractions preserves separations. In each example the dashed edge is con-
tracted to generate the digraph on the right. The edge e1 is not butterfly contractible.

2.4 List of problems

We provide here the definition of the problems that are mentioned in this thesis. For

the sake of completeness, we also include the following definitions, which we state again in

sections 3.1 and 4.1 when they are needed.

Definition 2.4.1 ((T,r)-balanced separators and (k,r)-linked sets). Let D be a digraph, T ⊆V (D),

and r be a positive integer. A (T,r)-balanced separator is a set of vertices Z such that every strong

component of D\Z contains at most r vertices of T . If the minimum size of a (T,r)-balanced

separator is at least k+1, we say that T is (k,r)-linked.

Definition 2.4.2 (Requests and satisfying collections). Let D be a digraph and P be a collection

of paths of D. A request in D is an ordered pair of vertices of D. For a request set I =

{(s1, t1),(s2, t2), . . . ,(sk, tk)}, we say that the vertices {s1,s2, . . . ,sk} are source vertices and that

{t1, t2, . . . , tk} are target vertices, and we refer to them as S(I) and T (I), respectively. We say

that P satisfies I if P = {P1, . . . ,Pk} and Pi is a path from si to ti, for i ∈ [k].

We remark that a requests set may contain many copies of the same pair.

CLIQUE

Input: A digraph D and a non-negative integer k.

Output: A clique of size at least k in D.

LONGEST PATH

Input: A graph G and a positive integer k.

Output: A path of size at least k in G.

30

VERTEX COVER

Input: A graph G and a positive integer k.

Output: A vertex cover of G with size at most k.

DIRECTED DISJOINT PATHS

Input: A digraph D, a request set I of size k.

Output: A collection of pairwise vertex-disjoint paths P satisfying I.

DIRECTED DISJOINT PATHS WITH CONGESTION (DDPC)

Input: A digraph D, a request set I of size k, and a non-negative integer c.

Output: A collection of paths P satisfying I such that each vertex of D occurs in at most c

paths of the collection.

DISJOINT ENOUGH DIRECTED PATHS (DEDP) (Page 67)

Input: A digraph D, a request set I of size k, and two non-negative integers c and s.

Output: A collection of paths P satisfying I such that at most c vertices of D occur in at

least s+1 paths of P and all other vertices of D occur in at most s paths of P .

INDEPENDENT SET

Input: A digraph D and a non-negative integer k.

Output: An independent set of size at least k in D.

LINEAR VERTEX CUT (Page 47)

Input: A digraph D, a collection of terminal sets T , with T = {T1,T2, . . . ,Tk}, where

Ti ⊆V (D) for i ∈ [k], and an integer s≥ 0.

Output: A set of vertices Z ⊆V (D) with |Z| ≤ s such that there are no paths in D\Z from

Ti to Tj, for 1≤ i < j ≤ k.

31

LINEAR EDGE CUT

Input: A digraph D, a collection of terminal sets T , with T = {T1,T2, . . . ,Tk}, where

Ti ⊆V (D) for i ∈ [k], and an integer s≥ 0.

Output: A set of edges Z ⊆V (D) with |Z| ≤ s such that there are no paths in D\Z from Ti

to Tj, for 1≤ i < j ≤ k.

BALANCED SEPARATOR (Page 46)

Input: A digraph D, a set T ⊆V (D) of size k, and two non-negative integers r and s.

Output: A (T,r)-balanced separator Z with |Z| ≤ s, if it exists.

STEINER NETWORK

Input: A digraph D, a request set of size k, and a non-negative integer c.

Output: A collection of paths P satisfying I such that |
⋃

P∈P V (P)| ≤ c.

32

3 ADAPTING THE DIRECTED GRID THEOREM INTO AN FPT ALGORITHM

Width parameters can be seen as an estimation of how close a given graph is to a

typical structure. For example, the tree-width of a graph, a parameter of particular interest in the

literature, measures how tightly a graph can be approximated by a tree. A tree decomposition of a

graph G with bounded tree-width shows how one can place the vertices of the original graph into

“bags” of bounded size which, in turn, can be arranged as the vertices of a tree T such that the

intersection between adjacent bags in T are separators in G. Thus, a tree decomposition exposes

a form of global connectivity measure for graphs: as only a bounded number of vertices can be

placed in each bag, many small separators can be identified through the decomposition. The

tree-width of graphs was first introduced by Bertele and Brioschi [15], then again by Halin [16],

and finally reintroduced by Robertson and Seymour [5]. For a survey on the subject, we refer the

reader to [43].

A number of hard problems can be efficiently solved in graphs of bounded tree-

width, either by making use of classical algorithmic techniques like dynamic programming,

or by making use of Courcelle’s Theorem [38]. Applications of algorithms based on tree

decompositions range from frequency allocation problems to the TRAVELING SALESMAN

problem [44, 45].

It is natural to ask what can be said of a graph with large tree-width. One of the

most relevant results in structural graph theory states that undirected graphs with large tree-width

contain large grid minors. More precisely, the Grid Theorem by Robertson and Seymour [5]

states that there is a function f : N→N such that every graph of tree-width at least f (k) contains

a (k× k)-grid as a minor. Recently, Chekuri and Chuzhoy [18] gave a polynomial function f (k)

for this result, which was further improved by Chuzhoy and Tan [19].

Sometimes, large tree-width (and therefore, the existence of a large grid minor)

implies that we are actually working with a positive instance of a particular problem. Demaine

et al. [21] gave a framework that generates FPT algorithms for many such problems, known

as bidimensional problems. This list includes VERTEX COVER, FEEDBACK VERTEX SET,

LONGEST PATH, MINIMUM MAXIMAL MATCHING, DOMINATING SET, EDGE DOMINATING

SET, and many others. This seminal work is currently known as Bidimensionality [20].

Another application of the Grid Theorem is in the irrelevant vertex technique, intro-

duced by Robertson and Seymour [1, 22, 23] to solve the DISJOINT PATHS problem. The goal is

to show that every instance whose input graph violates a set of conditions contains a vertex that

33

is “irrelevant”, that is, a vertex whose removal generates an equivalent instance of the problem.

This leads to an iterative algorithm, reducing the problem to a smaller instance, until it satisfies

sufficient conditions for its tractability. This technique was used to provide an FPT algorithm for

DISJOINT PATHS parameterized by the number k of requests, and a many other problems (cf. for

instance [46, 47]). For the directed case, Cygan et al. [29] used a similar technique to provide an

FPT algorithm with the same parameter for the DIRECTED DISJOINT PATHS (DDP) problem in

planar digraphs.

A result analogous to the Grid Theorem for digraphs was conjectured by Johnson et

al. [24] and Reed [41], and recently proved by Kawarabayashi and Kreutzer [4]1, after having

proved it for digraphs with forbidden minors [48]2. Namely, it is shown in [4] that there is a

function f : N→ N such that every digraph of directed tree-width (see Section 2.3) at least f (k)

contains a cylindrical grid (see Figure 7) of order k as a butterfly minor. Recently, Hatzel et

al. [50] proved that the function f can be made polynomial in planar digraphs.

The Directed Grid Theorem has found many applications. For instance, Amiri et

al. [51] proved that a strongly connected digraph H has the Erdős-Pósa property if and only

if H is a butterfly minor of some cylindrical grid of sufficiently large order. Additionally, the

authors showed that for every fixed strongly connected digraph H satisfying those conditions and

every fixed integer k, there is a polynomial-time algorithm that either finds k disjoint (butterfly or

topological) models of H in a digraph D or a set X ⊆V (D) of size bounded by a function of k

such that D\S does not contain a model of H.

Edwards et al. [52] applied some results used in the proof of the Directed Grid

Theorem [4] to provide an algorithmic result for the DIRECTED DISJOINT PATHS WITH CON-

GESTION problem, or DDPC-c if we want to specify the congestion. Namely, they showed that

DDPC-2 is XP with parameter k when restricted to (36k3 +2k)-strongly connected digraphs.

Kawarabayashi and Kreutzer [4] mention that the Directed Grid Theorem can be used to provide,

for fixed k, an algorithm running in polynomial time that either finds a solution for DDPC-4 or

concludes that no set of pairwise vertex-disjoint paths satisfying the requests exists. Although

Chekuri et al. [53] could not use the Directed Grid Theorem since the bound on f (k) (mentioned

above) is larger than required, they build on the ideas used in [49] to produce their own version

of the Directed Grid Theorem for planar digraphs.
1 The full version of [4] is available at https://arxiv.org/abs/1411.5681.
2 In an unpublished manuscript from 2001 [49], Johnson, Robertson, Seymour and Thomas gave a proof of this

result for planar digraphs.

34

A bramble B in a digraph D is a collection of strongly connected induced subgraphs

of D such that every two elements of B either intersect or there is an edge from the first to the

second and vice-versa. A haven of order k is a function β assigning to every set Z ⊆ V (D)

with |Z| ≤ k− 1 the non-empty vertex set of a strong component of D \ Z in such way that

β (Z)⊆ β (Z′) whenver Z′ ⊆ Z (those definitions are also included in Section 3.1).

The proof of the Directed Grid Theorem by Kawarabayashi and Kreutzer [4] is

constructive. Namely, the authors start from a result by Johnson et al. [24] stating that, given a

digraph D and an integer parameter k, outputs, in XP time, either an arboreal decomposition of

D of width at most 3k−2 or a haven of order k. Thus, if D has directed tree-width at least 3k−1,

they obtain a haven of order k. From this haven, they obtain a bramble B of order k and size

|V (D)|O(k). Finally, from B they find a path P containing a well-linked set A of size roughly
√

k

in XP time with parameter k. We remark that the bound on the running time of those algorithms

depends on the size of B since, in general, one must test whether X ∩V (B) 6= /0 for each B ∈ B

to check if a given set X ⊆V (D) is a hitting set of B. The remainder of the proof of the Directed

Grid Theorem [4] runs in FPT time, with parameter k.

Our approach, results, and techniques. By making local changes to the proofs by Johnson et

al. [24] and Kawarabayashi and Kreutzer [4], we show that there is an FPT algorithm that, given

a digraph D and an integer k, either constructs an arboreal decomposition of D of width at most

3k−2, or finds a path P in D containing a well-linked set A of size roughly
√

2k. Together with

the remainder of the proof of the Directed Grid Theorem given in [4], our results yield an FPT

algorithm that either constructs an arboreal decomposition of width at most f (k) or a cylindrical

grid of order k as a butterfly minor of D.

In Section 3.1 we give the necessary definitions to formally state the main contri-

butions of this chapter. In Section 3.2, we give an FPT algorithm that, given a digraph D and

parameter k, outputs either an arboreal decomposition of D of width at most 3k−2 or a havenH

of order k, improving the result by Johnson et al. [24]. This result also shows that the size of a

special kind of vertex separator, known as balanced separator [54], of some set T ⊆V (D) is

intrinsically connected to the directed tree-width of D, similarly to the undirected case (see, for

example, [55, Chapter 11]).

We acknowledge that a sketch of a proof of a similar result, with approximation

factor of 5k+10, is given in [54, Theorem 9.4.4]. In their proof, the authors mention how to

compute a weaker version of balanced separators for a given set T ⊆V (D) in FPT time with

35

parameter |T |, and the increase on the approximation factor they guarantee is a consequence of

this relaxation. As a tool towards our FPT approximation algorithm for directed tree-width, we

show in Section 3.2 how to compute a generalized version of balanced separators in FPT time

with the same parameter. We make use of an algorithm by Erbacher et al. [56] for a variation

of the MULTICUT problem for digraphs, named as MULTICUT WITH LINEARLY ORDERED

TERMINALS by the authors.

In Section 3.3, we show how to use our algorithm for the generalized version of

balanced separators for finding hitting sets for a specific bramble B of order k that naturally

occurs in digraphs of directed tree-width at least 3k− 1 in FPT time with parameter k. The

running time of our algorithm to find hitting sets of B does not depend on the size of B, but only

on its order. We remark that, in this particular case, we can decide if a given set X ⊆V (D) is a

hitting set of B in polynomial time. This is an easy observation that also holds for the bramble

used in the proof of the Directed Grid Theorem [4]. Finally, in Section 3.4, we use B and our

algorithm to find hitting sets of B to find a path P containing a well-linked set A of order roughly
√

2k in FPT time with parameter k.

A roadmap of the aforementioned algorithm is given in Figure 9. We mark by a

dashed arc the steps of [4] which are already FPT and do not need to be adapted. All others

edges represent steps that we adapt in this thesis.

(D,k) Haven of
order k

Bramble
of order k

Well-linked
set and path P

Arboreal decomposi-
tion of width ≤ 3k−2

Theorem
3.1.11

[4]Section
3.3

Theorem
3.1.15

Figure 9 – Sketch of the algorithm used in the proof of the Directed Grid Theorem [4].

We conclude this chapter in Section 3.5 with some remarks and potential algorithmic

applications of our results.

36

3.1 Preliminaries

In this section we give the definitions relevant to this chapter, mention some known

results, and present a more detailed discussion of our main contributions.

Definition 3.1.1 (Well-linked sets). Let D be a digraph and A⊆V (D). We say that A is well-

linked in D if, for all disjoint X ,Y ⊆ A with |X |= |Y |, there are |X | vertex-disjoint paths from

X to Y in D. The order of a well-linked set A is |A|. We denote by wlink(D) the size of a largest

well-linked set in D.

Definition 3.1.2 (Havens in digraphs). Let D be a digraph. A haven of order k in D is a function β

assigning to every set Z ⊆V (D), with |Z| ≤ k−1, the non-empty vertex set of a strong component

of D\Z in such way that if Z′ ⊆ Z ⊆V (D) then β (Z)⊆ β (Z′). The haven number of a digraph

D, denoted by hn(D), is the maximum k such that D admits a haven of order k.

A k-strongly connected digraph, for example, admits a haven of order k: it suffices to choose

β (Z) =V (D)\Z for any Z⊆V (D) with |Z| ≤ k−1. See Figure 10 for an example of a 3-strongly

connected digraph and an illustrates the defining property of havens.

Z

Z′

β (Z′)

β (Z)

Figure 10 – Example of a 3-strongly connected digraph, and an illustration of the haven property.
On the left, a bidirectional edge is used to represent a pair of edges in both directions.

Definition 3.1.3 (Brambles in digraphs). A bramble B = {B1, . . . ,B`} in a digraph D is a family

of strongly connected subgraphs of D such that if {B,B′} ⊆ B then V (B)∩V (B′) 6= /0 or there

are edges in D from V (B) to V (B′) and from V (B′) to V (B). A hitting set of a bramble B is a set

C ⊆V (D) such that C∩V (B) 6= /0 for all B ∈ B. The order of a bramble B, denoted by ord(B),

is the minimum size of a hitting set of B. The bramble number of a digraph D, denoted by bn(D),

is the the maximum k such that D admits a bramble of order k.

There is a direct relation between the haven number and the tree-width of undirected

graphs. A haven in an undirected graph is defined similarly: the function β retains all its

37

B B′

(a) V (B)∩V (B′) 6= /0.

B B′

(b) There is an edge from B to B′ and vice-versa.

Figure 11 – Illustration of the definining properties of brambles in digraphs. If B and B′ are
elements of a bramble, either (a) or (b) occurs.

properties, but mapping sets of at most k−1 vertices to components of the graph resulting from

the deletion of those vertices.

Proposition 3.1.4 (Seymour and Thomas [57]). Let G be an undirected graph and k ≥ 1 be an

integer. Then G has a haven of order k if and only if its tree-width is at least k−1.

For digraphs, only one implication of the previous result is known to be true.

Proposition 3.1.5 (Johnson et al. [24]). Let D be a digraph and k be a non-negative integer. If D

has a haven of order k, then dtw(D)≥ k−1.

For the reverse direction of Proposition 3.1.5, only an approximate version is known.

Proposition 3.1.6 (Johnson et al. [24]). Let D be a digraph and k be a positive integer. If

dtw(D)≥ 3k−1 then D admits a haven of order k.

Finally, the following two lemmas show that brambles of large order and large

well-linked sets are obstructions to small directed tree-width. The proof of the first lemma can

be done by converting brambles into havens and back. For the second lemma, it is sufficient to

show that any minimum hitting set of a bramble of order k is well-linked and to extract a bramble

of order k from a well-linked set of order 4k+1. The proofs are simple and can be found, for

example, in [58, Chapter 6].

Lemma 3.1.7. Let D be a digraph. Then bn(D)≤ hn(D)≤ 2bn(D).

Lemma 3.1.8. Let D be a digraph. Then bn(D)≤ wlink(D)≤ 4bn(D).

The proof of Proposition 3.1.6 given in [24] yields an XP algorithm that correctly

states that D has a haven of order k or produces an arboreal decomposition of D of width

at most 3k− 2. Furthermore, although not explicitly mentioned in the paper, this algorithm

actually produces a nice (as in Definition 2.3.3) arboreal decomposition for D, and can be used

38

T1

Z
v1

v1

v2v2 v3 v3

T2

Figure 12 – Examples of balanced separators. On the left, Z is a (T1,3)-balanced separator, and
T1 is (3,3)-linked. On the right, each square vertex vi with i ∈ [3] constitutes a
(T2,1)-balanced separator.

as a procedure that, given a digraph D′ such that dtw(D′) ≤ k− 2, generates a nice arboreal

decomposition for D′ of width at most 3k−2. At each iteration, the algorithm tests whether the

strong components intersecting a given set T ⊆V (D) with |T | ≤ 2k−1 can be separated into

parts containing at most a small portion of T . Namely, the algorithm tests whether there is a

set Z ⊆V (D) with |Z| ≤ k−1 such that every strong component of D\Z contains at most k−1

vertices of T \Z. Such a set Z is known as a balanced separator for T as defined, for instance,

in [54, Chapter 9]. In this paper we consider a generalization of such sets where we can choose

how many vertices of T each strong component of D\Z can have. We remind the reader of the

following definition.

Definition 2.4.1 ((T,r)-balanced separators and (k,r)-linked sets). Let D be a digraph, T ⊆V (D),

and r be a positive integer. A (T,r)-balanced separator is a set of vertices Z such that every strong

component of D\Z contains at most r vertices of T . If the minimum size of a (T,r)-balanced

separator is at least k+1, we say that T is (k,r)-linked.

If r = b|T |/2c, (T,r)-balanced separators are exactly T -balanced separators in the classical sense

as defined, for instance, in [54, Chapter 9]. If D admits a (T,r)-balanced separator Z, we know

that we can split T \Z into small strongly connected parts which are guarded by Z. See Fig. 12

for an illustration of a (T,r)-balanced separator Z. A DAG, for instance, admits a (T,1)-balanced

separator (the empty set) for any T ⊆V (D) since every strong component of a DAG is formed

by a single vertex.

Deciding whether a digraph D admits a (T,b|T |/2c)-balanced separator is a key

ingredient for the algorithm given by Johnson et al. [24]. Moreover, the cost of this procedure has

the largest impact on the running time of their algorithm: it is the only step which is (originally)

done in XP time, while the remaining parts of the algorithm can be done in polynomial time.

In Section 3.2.2, we use of a variation of the MULTICUT problem introduced in [56] to show

39

how to find (T,r)-balanced separators in FPT time with parameter |T |, if any exists with size

bounded from above by an integer s with s≤ |T |−1. In our first main contribution, we use this

result to improve on the algorithm for arboreal decompositions given in [24]. Namely, we prove

the following.

Theorem 3.1.9. Let D be a digraph and k be a non-negative integer. There is an algorithm

running in time 2O(k logk) ·nO(1) that either produces a nice arboreal decomposition of D of width

at most 3k−2 or outputs a (k−1,k−1)-linked set T with T = 2k−1.

It is also not hard to see how to use (k,r)-linked sets to construct havens. The

following lemma is a generalization of a result shown as part of the proof of [24, 3.3].

Lemma 3.1.10. Let D be a graph, T ⊆V (D) with |T |= s, and r ≥ bs/2c. If T is (k,r)-linked

then D admits a haven of order k+1.

Proof. By hypothesis, it holds that, for every set Z ⊆ V (D) with |Z| ≤ k, there is a strong

component C of D \Z such that |V (C)∩T | ≥ r+ 1. Let β (Z) = V (C). We claim that β is a

haven of order k+1 in D. It suffices to show that if Z′ ⊆ Z, then β (Z)⊆ β (Z′). Notice that β (Z)

induces a strongly connected subgraph of D and is disjoint from Z′, since it is disjoint from Z,

and thus all paths in the graph induced by β (Z) are in D\Z′. Furthermore, since |T | = s and

r ≥ bs/2c, we have β (Z)∩β (Z′) 6= /0 and the result follows as β (Z′) is a strong component of

D\Z′, which is a supergraph of D\Z, and thus it must contain completely the strongly connected

subgraph induced by β (Z).

Applying this lemma on a (k−1,k−1)-linked set T with |T |= 2k−1 we obtain a

haven of order k and therefore we can write Theorem 3.1.9 with havens instead of (k,r)-linked

sets, as done by Johnson et al. [24, 3.3], with the guarantee that the procedure runs in FPT time.

Theorem 3.1.11 (First main contribution). Let D be a digraph and k be a non-negative integer.

There is an algorithm running in time 2O(k logk) ·nO(1) that correctly states that D admits a haven

of order k or produces an arboreal decomposition of D of width at most 3k−2.

Next, we discuss some of the steps in the proof of the Directed Grid Theorem.

3.1.1 Brambles and the Directed Grid Theorem

The Directed Grid Theorem is as stated below.

40

Theorem 3.1.12 (Kawarabayashi and Kreutzer [4]). There is a function f : N→ N such that

given any directed graph and any fixed constant k, in polynomial time, we can obtain either

1. an arboreal decomposition of D of width at most f (k), or

2. a cylindrical grid of order k as a butterfly minor of D.

The proof of the Directed Grid Theorem [4] starts by asking if a digraph D has dtw(D)≤ f (k),

for some integer k. By Theorem 3.1.11, an approximate answer to this question can be computed

in FPT time with parameter k ≥ 0. If a haven is obtained, the next step uses it to construct a

bramble of large order. In order to justify our following results, we now discuss how to construct

brambles from havens.

Finding a hitting set of minimum size of a bramble B is not an easy task. In general,

in order to check whether a given set X is a hitting set of B, the naive approach would be to

go through all the elements of B and verify that X intersects each of them. Since a bramble

B may contain Ω(2n) elements, independently of its order, this procedure is not efficient. For

instance, consider the digraph D shown in Fig. 13, which has vertex set {v0,v1, . . . ,vn} and edge

set {(v0,vi)∪ (vi,v0) | i ∈ [n]}. The set B = {D[X] | X ⊆V (D) and v0 ∈ X} is easily seen to be

a bramble in D of order one and size 2|V (D)|−1 since there is an edge in D from every vertex in

V (D)\{v0} to v0 and vice-versa. However, when B is the bramble obtained by a construction

v0

v1 v2 v3 v4 vn· · ·

Figure 13 – Example of a digraph D having a bramble of order one and size 2|V (D)|−1. Here a
bidirectional edge is used to represent a pair of edges in both directions.

used in a proof of Lemma 3.1.7, which we present below, then |B|= nO(k) and thus in this case

we can find hitting sets of B of size k in XP time, and decide whether a given set X ⊆V (D) is a

hitting set of B in XP time.

Lemma 3.1.7 implies that if D is a digraph admitting a haven of order k+1, then

D contains a bramble of order at least d(k+1)/2e= bk/2c+1. In fact, given such a haven, it

is easy to construct the claimed bramble, as we proceed to explain. Namely, given a haven β

of order k+1 in D, we define B = {D[β (Z)] | Z ⊆V (D) and |Z| ≤ bk/2c}. Note that, since β

is a haven, the elements of B are strongly connected subgraphs of D. We claim that any two

41

elements of B intersect.

Indeed, let B,B′ ∈B and let Z,Z′ ⊆V (D) such that β (Z) =V (B) and β (Z′) =V (B′).

Since |Z| ≤ bk/2c and |Z′| ≤ bk/2c, we have that |Z∪Z′| ≤ k, and since β is a haven of order

k + 1, it follows that β (Z ∪ Z′) ⊆ β (Z)∩ β (Z′) = V (B)∩V (B′) and therefore, in particular,

V (B)∩V (B′) 6= /0. Finally, let us argue about the order of B. Consider an arbitrary vertex set

X ⊆ V (D) with |X | ≤ bk/2c. Since β is a haven or order k+ 1 ≥ bk/2c, there is a bramble

element β (X) ∈ B with V (β (X))∩X = /0, and thus ord(B)≥ bk/2c+1, as we wanted to prove.

Moreover, since there is one element in B for each Z ⊆V (D) with |Z| ≤ bk/2c, we conclude that

|B|= nO(k).

In [4], the authors show how to obtain, from a bramble B of order k(k+2), a path P

that is a hitting set of B containing a well-linked set A of size k.

Proposition 3.1.13 (Kawarabayashi and Kreutzer [4, Lemma 4.3 of the full version]). Let D be

a digraph and B be a bramble in D. Then there is a path P intersecting every B ∈ B.

Proposition 3.1.14 (Kawarabayashi and Kreutzer [4, Lemma 4.4 of the full version]). Let D be

a digraph, B be a bramble of order k(k+2) in D, and P = P(B) be a path intersecting every

B ∈ B. Then there is a set A⊆V (P) of size k which is well-linked.

Although the statements of the previous two propositions in [4] are not algorithmic,

algorithms for both results can be extracted from the constructive proofs. However, the naive

approach to decide if a set X ⊆V (D) is a hitting set of a bramble B is to check if V (B)∩X 6= /0 for

each B ∈ B. Thus the running time of the algorithms yielded by the proofs of Propositions 3.1.13

and 3.1.14 is influenced by the size of the bramble given as input. Although in general this is not

efficient since, as discussed above, a bramble can have size Ω(2n) even if it has small order, in

the particular case where B is the bramble constructed from havens as presented above, those

constructions yield XP algorithms with parameter k since |B|= nO(k).

In Section 3.3 we show that, when considering a particular choice of a bramble B

which is constructed from (k,r)-linked sets, for appropriate choices of k and r, we can decide

if a given set X is a hitting set of B in polynomial time and compute hitting sets of B in FPT

time when parameterized by ord(B). Then, we show how to obtain a path P intersecting all

elements of B in polynomial time, improving Proposition 3.1.13. We use this latter result to give

an FPT algorithm with parameter ord(B) that produces, from a path P intersecting all elements

of a bramble of large order, a well-linked set A of size k which is contained in V (P).

42

Theorem 3.1.15 (Second main contribution). Let g(k) = (k+1)(bk/2c+1)−1, D be a digraph

and T be a (g(k)− 1,g(k)− 1)-linked set in D with |T | = 2g(k)− 1. There is an algorithm

running in time 2O(k2 logk) ·nO(1) that finds in D a bramble B of order g(k), a path P that is a

hitting set of B, and a well-linked set A of order k such that A⊆V (P).

The request that we make on ord(B) is also an improvement when compared to

Proposition 3.1.14. In the next section we give an overview of how a cylindrical grid is found

in [4] from the output of Theorem 3.1.15. We discuss why the algorithms used in the remaining

constructive steps of their proof are naturally FPT to obtain the following corollary.

Corollary 3.1.16. Let k be a non-negative integer and D be a digraph. There is a function

f : N→ N and an FPT algorithm, with parameter k, that either

1. produces an arboreal decomposition of D of width at most f (k), or

2. finds a cylindrical grid of order k as a butterfly minor of D.

3.1.2 Finding a cylindrical grid

On a very high level, the proof of the Directed Grid Theorem [4] can be summarized

in three parts. Using the terminology adopted in this paper, for a function f as in the statement

of Theorem 3.1.12 and given a digraph D, we

(1) pipeline theorems 3.1.9 and 3.1.15 to either produce an arboreal decomposition of D of

width at most f (k) or construct P and A as in the statement of the latter;

(2) use P and A to construct a well-linked path system that is formed by a collection of paths;

and

(3) iteratively refine the paths in the path system into new structures until a (butterfly) model

of a cylindrical grid is obtained.

D, f (k) (f (k)−1, f (k)−1)-
linked set T

Path P,
well-linked set A⊆V (P) Path system

Arboreal decomposition
of width ≤ f (k)

Theorem 3.1.9
(1)

Refinement (3)

Theorem 3.1.15
(2)

Figure 14 – Illustration of steps (1)-(3).

43

See Figure 14 for an illustration of those steps. As previously mentioned, we only improve on the

procedures related to the first part and, in this section, we justify why this is sufficient to obtain

Corollary 3.1.16. The main observations are that the algorithm runs maintaining and refining a

collection of paths, where the size of the collection depends only on k, and that each of those

refinements can be realized by iteratively testing how a given path intersects some subset of the

collection. The number of tests depends only on k and each test is done in polynomial time. We

show how to construct a path system from P and A, as mentioned in item (2) above. For our

examples, it is convenient to adopt the following definitions from from the full version of [4].

Definition 3.1.17 (Linkages). Let D be a digraph and A,B⊆V (D) with A 6= B. A linkage from

A to B in D, or an (A,B)-Linkage, is a set of of pairwise vertex-disjoint paths from A to B.

Definition 3.1.18 (Path system). Let D be a digraph and `, p be two positive integers. An `-linked

path system of order p is a sequence S with S = (P,L,A) where

• A= {Ain
i ,A

out
i | i ∈ [p]} where each Ain

i and each Aout
i is a well-linked set of order `;

• P is a sequence P1, . . . ,Pp of pairwise vertex disjoint paths such that, for all i ∈ [p],

V (Pi)⊇ Ain
i ∪Aout

i , every vertex in Ain
i appears in Pi before any vertex of Aout

i ; and

• L is a collection {Li, j | i, j ∈ [p] with i 6= j} of linkages where each Li, j is a linkage of size

` from Aout
i to Ain

j .

Although the definition of path systems is quite loaded, it is not hard to visualize;

see Figure 15 for an illustration. Notice that, knowing that the sets Ai
in,A

i
out are well-linked, a

Ain
1

Aout
1 Ain

3

Aout
3

Ain
2 Aout

2

Figure 15 – An `-linked path system of order p(= 3). A thick edge denotes a linkage of size `
from a set Aout

i to a set Ain
j , with i 6= j.

path system is entirely formed by paths behaving in a particular way: the collection P of size p,

and the collection of paths appearing in the linkages Li, j. Since each of those linkages has size `,

44

an `-linked path system of order p is formed by p+2
(p

2

)
` paths. With this observation, the task

of constructing a path system from the output of Theorem 3.1.15 becomes an easy one.

Assume that we are given a path P and a well-linked set A with |A| = 2` · p and

A⊆V (P). Let σ = a1,a2, . . . ,a2`·p be an ordering of the vertices of A as they appear in P, from

the first to the last vertex of the path. To construct an `-linked path system of order p, we follow

P in this order and, for i ∈ [p], we define the path Pi to be the subpath of P from a(i−1)2`+1 to

ai·2`. See Figure 16 for an illustration of this procedure. Since we know that A is well-linked, and

clearly every subset of a well-linked set is also well-linked, we define Ai
in to be the set containing

the first ` vertices of V (Pi)∩A and Ai
out to be last ` vertices of V (Pi)∩A with respect to σ .

a1 a2`+1 a4`+1 a6`+1 · · ·

P1 P2 P3

Figure 16 – Finding the paths Pi from P and A.

Next, for i, j ∈ [p] with i 6= j, we choose Li, j to be a linkage from Ai
out to A j

in. At least

one choice for Li, j is guaranteed to exist because Ai
in∪A j

out ⊆ A and A is well-linked. Moreover,

we can find each linkage in polynomial time by applying Menger’s Theorem (c.f. Theorem 2.0.1)

and solving a flow problem. Hence given P and A of adequate size, we can find an `-linked path

system of order p in polynomial time.

As in Figure 17, it is easy to find a cylindrical grid in a sufficiently large path system

if it is “well-behaved”, that is, when every path in L is internally disjoint from all others. In fact,

in such cases every Pi models one vertex of a biclique that is a butterfly minor of D. A biclique

is a digraph H having a pair of edges in both directions between any two vertices of H. Clearly a

biclique with 2k2 vertices contains a cylindrical grid of order k.

1′ 2′
In Out

3′ 4′
In Out

2 3
In Out

4 1
In Out

1
2

3
4

1′

2′

3′

4′

Figure 17 – An example of cylindrical grid of order 2 in a “well-behaved” path system, where
we assume that every path in L is internally disjoint from all others.

45

Unfortunately, in general we cannot expect every path system to behave in this way.

Hence the proof of the Directed Grid Theorem by Kawarabayashi and Kreutzer [4] follows a

sequence of refinements, as mentioned in item (3) above, each constructing a new structure

from the previous one until a cylindrical grid is obtained. This part is represented by the dashed

edges in figures 9 and 14 and, although it is not hard to see that the algorithms realizing those

constructions are naturally FPT, the constructive proofs are in fact the largest and most involved

part of their paper. Namely, they show how to find a web3 or a cylindrical grid from a path-system

that is sufficiently large. If a web is obtained, then the next step is to find a fence3 in it. Lastly,

they prove that we are guaranteed to find a cylindrical grid of order k in any sufficiently large

fence.

Fortunately, and as is the case with path systems, webs and fences are defined around

collections of paths satisfying some properties that can be easilly verified in polynomial time.

Since the number of paths in a `-linked path system of order p depends on ` and p only, we can

search for a web in a path system by testing the defining properties of webs for every subset of

the set of paths in the path system. Thus in FPT time with parameters ` and p we can find a web

in a path system. A similar approach is viable to find fences in webs and cylindrical grids in

fences and thus Corollary 3.1.16 follows from Theorem 3.1.15.

3.2 Balanced separators and arboreal decompositions

The algorithm for arboreal decompositions given in [24] starts with a trivial de-

composition ({r}, /0,{Wr}) whose underlying arborescence contains only one vertex r. Thus,

Wr =V (G). Each iteration splits the vertices contained in an excessively large leaf of the current

decomposition, if one exists, into a set of new leaves, while guaranteeing that the width of the

non-leaf vertices remains bounded from above by a function of k. Although this problem is not

explicitly named by the authors, on each of those split operations the algorithm has to decide

whether the input digraph admits a (T,r)-balanced separator for a given set T ⊆V (D). Formally,

on each iteration they need to solve a particular case of the following problem.

BALANCED SEPARATOR

Input: A digraph D, a set T ⊆V (D) of size k, and two non-negative integers r and s.

Output: A (T,r)-balanced separator Z with |Z| ≤ s, if it exists.

3 The definitions of fences can be found in the full version of [4].

46

The BALANCED SEPARATOR problem can be naively solved by checking all
(n

s

)
sets Z of size s in V (D) and enumerating the strong components of D\Z. Therefore it is in XP

with parameter s. Furthermore, the process of finding balanced separators is the only step of the

algorithm given in [24] that is done in XP time. In the next section, we show how to compute

(T,r)-balanced separators in FPT time with parameter k. In particular, we show that a set Z

is a (T,r)-balanced separator if and only if Z is a solution to a separation problem introduced

in [56] that is a particular case of the MULTICUT problem in digraphs. Then, we use this result

to improve the algorithm by Johnson et al. [24] for approximate arboreal decompositions (cf.

Proposition 3.1.6), showing that it can be done in FPT time. Notice that we can assume that

r ≤ k−1 and s≤ k− r−1: if r ≥ k, the empty set is a (T,r)-balanced separator and, if s≥ k− r,

any choice of s vertices from T form a (T,r)-balanced separator. To avoid repetition, we make

these considerations here and refrain from repeating them in the remainder of this article. We

refer to instances of BALANCED SEPARATOR as (D,T,k,r,s)

3.2.1 Computing (T,r)-balanced separators in FPT time

Given a graph or digraph D and a set of pairs of terminal vertices {(s1, t1), (s2, t2),

. . . ,(sk, tk)}, the MULTICUT problem asks to minimize the size of a set Z ⊆V (D) such that there

is no path from si to ti in D\Z, for i ∈ [k]. When parameterized by the size of the solution, the

problem is FPT in undirected graphs [10, 11]. On the directed case, this problem is FPT in

DAGs when parameterized by the size of the solution and the number of pairs of terminals [59],

but W[1]-hard in the general case even for a request set of size 4 [13].

A variation of MULTICUT is considered in [56]. Namely, in the LINEAR EDGE CUT

problem, we are given a digraph D and a collection of sets of vertices {S1, . . . ,Sk}, and we want

to find a minimum set of edges Z such that there is no path from Si to S j in D\Z whenever j > i.

We remark that the authors in [56] refer to this problem as LINEAR CUT only. This problem is

FPT when parameterized by the size of the solution:

Proposition 3.2.1 (Erbacher et al. [56]). The LINEAR EDGE CUT problem can be solved in time

O(4s · s ·n4), where s is the size of the solution.

We remark that the authors of [56] mention that this result can also be achieved by

using a reduction to the SKEW SEPARATOR algorithm given in [60].

In this section, we show how to use the algorithm for the LINEAR EDGE CUT

47

problem to solve the vertex version, and then show how this version can be used to compute

(T,r)-balanced separators in FPT time. We formally define the vertex version below.

LINEAR VERTEX CUT

Input: A digraph D, a collection of terminal sets T , with T = {T1,T2, . . . ,Tk}, where

Ti ⊆V (D) for i ∈ [k], and an integer s≥ 0.

Output: A set of vertices Z ⊆V (D) with |Z| ≤ s such that there are no paths in D\Z from

Ti to Tj, for 1≤ i < j ≤ k.

From an instance (D,T ,s) of LINEAR VERTEX CUT, we construct an equivalent

instance of (D′,T ′,s) of LINEAR EDGE CUT as follows. First, notice that any vertex v occurring

in the intersection of two distinct sets in T must be part of any solution for the instance. Thus we

can assume that every vertex of D occurs in at most one set in T . Now, for each vertex v ∈V (D),

add to D′ two vertices vin and vout and an edge ev from vin to vout. For each edge e ∈ E(D) with

tail u and head v, add to D′ a set of s+1 parallel edges from uout to vin. Finally, for each v ∈ Ti,

for i ∈ [k], add a new vertex v′ to D′ together with s+1 edges from v′ to vin and s+1 edges from

vout to v′. Let T ′i = {v′ | v ∈ Ti} and T ′ = {T ′1, . . . ,T ′k}. We have the following easy lemma.

Lemma 3.2.2. An instance (D,T ,s) of LINEAR VERTEX CUT is positive if and only if the

associated instance (D′,T ′,s) of LINEAR EDGE CUT is positive.

Proof. Let Z ⊆V (D) be a solution for (D,T ,s) and Z′ = {ev | v∈ Z} ⊆ E(D′). By contradiction,

assume that there is a path P′ in D′ \Z′ from a vertex u′ to a vertex v′, for u′ ∈ T ′i , v′ ∈ T ′j , and

j > i. Then there is a path P from u to v in D\Z with vertex set {v | ev ∈ E(P′)}. This contradicts

our choice of Z and thus the necessity holds.

For the sufficiency, let Z′ be a minimal solution for (D′,T ′,s). Notice that all edges

in Z′ are from a vertex vin to its respective vout, as the budget s for the size of Z′ does not allow

any other choice. Let Z = {v | ev ∈ Z′} and, by contradiction, let P be a path in D \Z from a

vertex u to a vertex v, with u ∈ Ti, v ∈ Tj, and j > i. For each edge e ∈ E(P) with e = (x,y) there

is an edge e′ with e′ = (xout,yin) in D′ \Z′. Let F ′ be the set of such edges of D′. Now, there is

a path P′ from uin to vout in D′ with edge set {ev | v ∈V (P)}∪F ′. Appending to P′ the edges

from u′ to uin and from vout to v′ we construct a path from u′ to v′ in D\Z′, contradicting our

choice of Z′. Therefore, the sufficiency also holds and the lemma follows.

Combining Proposition 3.2.1 and Lemma 3.2.2 we get the following.

48

T1

C1∩T

T2

C2∩T

T3

C3∩T

Figure 18 – Illustration of the construction of the sets Ti. In the figure, we include only the
strongly connected components of D\Z intersecting T . Dashed edges indicate that
there are no paths from Ci to C j whenever i > j (and thus no path from Ti to Tj
whenever i > j).

Corollary 3.2.3. There is an FPT algorithm for the LINEAR VERTEX CUT problem parameter-

ized by the size s of the solution and running in time O(4s · s ·n4).

We now show how to solve BALANCED SEPARATOR using LINEAR VERTEX CUT.

Namely, we show that a digraph D admits a (T,r)-balanced separator Z if and only if Z is a

solution to some instance (D,T ,s) of LINEAR VERTEX CUT where T depends of T .

Lemma 3.2.4. Let (D,T,k,r,s) be an instance of BALANCED SEPARATOR. A set Z ⊆ V (D)

with |Z| ≤ s is a (T,r)-balanced separator if and only if there is a partition T of T into sets

T1,T2, . . . ,T` such that

1. |Ti| ≤ r, for i ∈ [`], and

2. Z is a solution for the instance (D,T ,s) of LINEAR VERTEX CUT.

Proof. For the necessity, let Z be a (T,r)-balanced separator with |Z| ≤ s. Let C be the set

of strong components of D \Z and consider an ordering C1, . . . ,C` of its elements such that

there is no path from Ci to C j in D \ Z whenever j > i. Notice that this is the reverse of

a topological ordering for the elements of C. Let v1, . . . ,vq be the vertices in T ∩ Z, if any

exist. For i ∈ [`], choose Ti = V (Ci)∩T and define T = {T1,T2, . . . ,T`} if T ∩Z 6= /0 or T =

{T1,T2, . . . ,T`,{v1}, . . . ,{vq}} otherwise. See Figure 18 for an illustration of this construction.

Notice that it is possible for a set Ti to be empty.

Since Z is a (T,r)-balanced separator, we know that |Ti| ≤ r holds for all i ∈ [`].

Since the vertices in a non-empty set Ti are contained in exactly one strong component of D\Z,

any path between different sets in T must contain a path between distinct strong components of

D\Z. Thus we conclude that there are no paths from a set Ti to another set Tj with j > i, since

otherwise we would have a contradiction to our choice for the order of the elements of C, and

therefore Z is a solution for the instance (D,T ,s) of LINEAR VERTEX CUT.

49

For the sufficiency, let T be as in the statement of the lemma and Z be a solution

for the instance (D,T ,s) of LINEAR VERTEX CUT. First, notice that no strong component of

D\Z can intersect two distinct sets T,T ′ ∈ T . Indeed, if this were the case, then there would be

a path in D\Z from a vertex in T to a vertex in T ′ and vice-versa, contradicting the fact that Z is

a solution for (D,T ,s). Thus, if |V (C)∩T | ≥ r+1 for some strong component C of D\Z, we

have a contradiction as C would intersect at least two distinct sets in T . We conclude that Z is a

(T,r)-balanced separator and the lemma follows.

The FPT algorithm for BALANCED SEPARATOR follows from Lemma 3.2.4 and

Corollary 3.2.3. The running time is heavily tied to the number of partitions T that can be

generated from a given set T of an instance (D,T,k,r,s) of BALANCED SEPARATOR. This value

is bounded by the k-th ordered Bell number [61]. The Bell number [62] counts the number

of partitions of a set, and its ordered variant also considers the number of possible orderings

for each partition. The k-th ordered Bell number is of the form 2O(k logk). From the previous

discussion we get the following theorem.

Theorem 3.2.5. There is an algorithm running in time O(4k ·2O(k logk) · k ·nO(1)) for the BAL-

ANCED SEPARATOR problem.

Proof. Let (D,T,k,r,s) be an instance of BALANCED SEPARATOR and T ∗ be the set of all

ordered partitions {T1, . . . ,T`} of T with |Ti| ≤ r, for i ∈ [`].

By Corollary 3.2.3, we can solve instances of LINEAR VERTEX CUT problem in

time O(4s · s ·n4) for s being the size of the solution. By Lemma 3.2.4, Z is a (T,r)-balanced

separator if and only if there is a T ∈ T ∗ such that the instance (D,T ,s) of LINEAR VERTEX

CUT is positive. Finally, since |T ∗| is at most the k-th ordered Bell number, we can solve

BALANCED SEPARATOR by testing 2O(k logk) instances of LINEAR VERTEX CUT. As s≤ k− r

(since otherwise the instance of BALANCED SEPARATOR is trivially positive), the bound on the

running time follows.

3.2.2 An FPT algorithm for approximate arboreal decompositions

We are now ready to prove Theorem 3.1.9. We remark that the proof below fol-

lows [24, 3.3] except that we replace the XP procedure of the proof by our FPT algorithm for

k-BALANCED SEPARATOR. In the following proof, we need to test whether a given set T ⊆V (D)

admits a (T,k−1)-balanced separator of size at most k−1. Thus we remind the reader of the

50

discussion made in the beginning of Section 3.2: if |T | ≤ 2k− 2, then the answer is positive

since we can pick any k−1 vertices of T to form a solution.

Theorem 3.1.9. Let D be a digraph and k be a non-negative integer. There is an algorithm

running in time 2O(k logk) ·nO(1) that either produces a nice arboreal decomposition of D of width

at most 3k−2 or outputs a (k−1,k−1)-linked set T with T = 2k−1.

Proof. We begin with a nice arboreal decomposition (R0,X0,W0) of D where X0 = /0, V (R0) =

{r}, andW0 = V (D). We maintain an arboreal decomposition (R,X ,W) of D for which the

following two properties hold:

(P1) |Wr∪ (
⋃

e∼r Xe)| ≤ 3k−1 for every r ∈V (R) of out-degree at least one, and

(P2) |Xe| ≤ 2k−1 for every e ∈ E(R).

Notice that both (P1) and (P2) hold for (R0,X0,W0).

If (P1) holds for all r ∈V (R), then we have constructed an arboreal decomposition

with the desired width. Otherwise, we can assume that (R,X ,W) contains at least one leaf that

is too large. That is, the width of a vertex r0 of out-degree zero of R is at least 3k. If there is an

edge e0 ∈ E(R) with head r0, let T = Xe0 . Otherwise, let T = /0. Either way, |T | ≤ 2k−1 and

|Wr0| ≥ 3k−|T | ≥ k+1.

Now, we test whether D contains a (T,k−1)-balanced separator of size at most k−1

and, by Theorem 3.2.5, this test can be done in time O(4k ·2O(k logk) · k ·nO(1)). If |T | ≤ 2k−2

then the answer is positive since we can pick any set of k−1 vertices of T to form a solution.

Thus, if the answer is negative, we have |T |= 2k−1 and we terminate the algorithm outputting

T . We may now assume that D contains a (T,k−1)-balanced separator Z′ with |Z′| ≤ k−1.

From the bound on the sizes of the sets, there are at least two vertices in Wr0 \Z′.

Choose v to be any of those two vertices, and let Z = Z′∪{v}. Now |Z| ≤ k, Z∩Wr0 6= /0, and

|V (C)∩T | ≤ k−1 holds for every strong component C of D\Z.

Let C1, . . . ,C` be the strong components of D \Z. If B is a strong component of

Ci \T , for i ∈ [`], then either V (B)⊆Wr0 or V (B)∩Wr0 = /0, for Wr0 is T -guarded. Let B1, . . . ,Bd

be all such strong components for which V (B j)⊆Wr0 for all j ∈ [d]. Furthermore, let f : N→N

be a function assigning an index j to an index i if and only if Bi ⊆C j \T . Thus, f can be used to

tell which set Ci contains a given B j. Now, Z∩Wr0,V (B1), . . . ,V (Bd) is a partition of Wr0 into

non-empty sets. We show that this partition yields another arboreal decomposition of D.

Let R′ be the arborescence obtained from R by adding a vertex ri and an edge ei from

r0 to ri, for i ∈ [d]. Furthermore, let X ′e = Xe for all e ∈ E(R) and W ′r =Wr for all r ∈V (R)\{r0}.

51

Also, let W ′r0
= Wr0 ∩Z and, for i ∈ [d], let X ′ei

= Z ∪ (V (C f (i))∩T) and W ′ri
= V (Bi). Finally,

define X ′ = {X ′e | e ∈ E(R′)} and W ′ = {W ′r | r ∈ V (R′)}. As the vertices of Wr0 have been

spread into non-empty sets, we only need to verify that (R′,X ′,W ′) is an arboreal decomposition

of D for which (P1) and (P2) hold; see Figure 19 for an illustration.

Z∩Wr0

V (Bd)

V (Bi)

V (B1)
X ′e1

X ′ed

Z∪ (C f (i)∩T)
X ′eiT

Figure 19 – Spreading the vertices in Wr0 .

W ′ is indeed a partition of V (D) into non-empty sets, as Wr0 is partitioned into non-

empty sets. For i ∈ [d], W ′ri
=V (Bi) and Bi is a strong component of C f (i) \T . Thus, each new

leaf ri added to R is such that W ′ri
is X ′ei

-guarded and, for all e ∈ E(R′),
⋃
{W ′r : r ∈V (R′),r > e}

is X ′e-guarded as the property remains unchanged for all e ∈ E(R).

For r ∈V (R), the validity of (P1) remains unchanged. The width of r0 is bounded

from above by |T |+ |Z| ≤ 2k− 1+ k = 3k− 1, as desired, for W ′r0
⊆ Z and

⋃
e∼r0

X ′e ⊆ T ∪Z.

(P2) remains true in (R′,X ′,W ′) for all e ∈ E(R). For ei, i ∈ [d], |Xei| ≤ |Z|+ |V (C f (i))∩T |. By

the assumption that (D,T,2k−1,k−1,k−1) is a positive instance of BALANCED SEPARATOR,

|Z|+ |V (C f (i)∩T | ≤ k+ k−1 = 2k−1.

Observe that, since each Bi is disjoint from T ∪Z, (R′,X ′,W ′) is actually a nice

arboreal decomposition.

Now, if no leaf of (R′,X ′,W ′) is too large, we end the algorithm returning this

arboreal decomposition of D. Otherwise, we repeat the aforementioned procedure with new

choices for T and Wr0 .

Finally, the running time holds by Theorem 3.2.5, since W partitions V (D) into

non-empty sets and each iteration decreases the number of vertices in leaves that have width at

least 3k.

The proof of Theorem 3.1.11 easily follows from Lemma 3.1.10 and Theorem 3.1.9.

52

Theorem 3.1.11 (First main contribution). Let D be a digraph and k be a non-negative integer.

There is an algorithm running in time 2O(k logk) ·nO(1) that correctly states that D admits a haven

of order k or produces an arboreal decomposition of D of width at most 3k−2.

Proof. Applying Theorem 3.1.9 with input D, we either produce an arboreal decomposition

of D of width at most 3k− 2 or find a set T ⊆ V (D) with |T | = 2k− 1 such that there is no

(T,k−1)-balanced separator in D. Now, by Lemma 3.1.10 applied with inputs D, T , r = k−1,

and s = k−1, we conclude that D admits a haven of order k and the result follows.

Next, we show to use Theorem 3.1.9 to construct a bramble in digraphs of large

directed tree-width that is easier to work with than the usual construction that depends on havens

(see, for instance, [58, Chapter 6]).

3.3 Brambles and well-linked systems of paths

Let T be the set constructed by Theorem 3.1.9 applied to a digraph D with n vertices

and dtw(D) ≥ 3k− 1 and H be the haven obtained by applying Lemma 3.1.10 with input D

and T . We remark that from H it is possible to construct a bramble B of order bk/2c and size

|V (D)|O(k) (see the discussion in Section 3.1.1). In this particular case the naive approach yields

an XP algorithm to find a hitting set of B of size k in XP time with parameter k, by checking all(n
k

)
subsets X of V (D) with size k and testing whether X ∩V (B) 6= /0 for each B ∈ B, and thus

XP algorithms can be extracted from the constructive proofs of Propositions 3.1.13 and 3.1.14

assuming that these properties hold for the input brambles. In Section 3.3.1, we show how to

construct from T a bramble BT of order k in digraphs with directed tree-width at least 3k−1

that skips havens and is more efficient in the following two ways.

First, this construction allows us to verify if an induced subgraph D′ of D contains an

element of BT by looking only at the strong components of D′. This allows us to test if a given

set X ⊆V (D) is a hitting set of BT in polynomial time. Second, we show that a set Y ⊆V (D) is

a minimum hitting set of BT if and only if Y is a solution for an appropriately defined instance

of BALANCED SEPARATOR. Since we showed that this problem is FPT with parameter |T |

(Theorem 3.2.5), we can compute hitting sets of BT in FPT time with parameter ord(BT). Then,

in Section 3.4 we use those results to prove stronger versions of Propositions 3.1.13 and 3.1.14.

53

3.3.1 Brambles in digraphs of large directed tree-width

We now define T -brambles and some of its properties when T is the set obtained by

applying Theorem 3.1.9 to a digraph D with dtw(D)≥ 3k−1.

Definition 3.3.1. Let D be a digraph and T ⊆V (D) with |T |= 2k−1. The T -bramble BT of D

is defined as

BT = {B⊆ D | B is induced, strongly connected, and |V (B)∩T | ≥ k}.

Notice that BT is a bramble since, as |T |= 2k−1, any two of its element intersect. We remark

that, in general, it is possible that ord(BT) is very small: it is in fact zero if, for example, no two

vertices of T lay in the same strong component of D. Note also that BT may be empty if, for

instance, any strong component of D has size strictly smaller than k.

Lemma 3.3.2. Let D be a digraph and T be a (k−1,k−1)-linked set of size 2k−1 in D. Then

the T -bramble BT is a bramble of order k and a set X ⊆V (D) is a hitting set of BT if and only if

X is a (T,k−1)-balanced separator.

Proof. Let D, T and BT be as in the statement of the lemma. Since |T | = 2k− 1, any set

containing k vertices of T is a hitting set of B. Thus ord(BT)≤ k. Let Z ⊆V (D) with |Z| ≤ k−1.

By definition of (k−1,k−1)-linked sets, D does not contain any (T,k−1)-balanced separator

of size k−1, and hence there is no strong component B of D\Z such that |V (B)∩T | ≥ k. Since

V (B)∩Z = /0 and B∈BT , we conclude that Z is not a hitting set of BT and therefore ord(BT) = k.

For the second part of the lemma, let X be a hitting set of BT . Then |V (C)∩T | ≤ k−1

holds for every strong component C of D \X and, by definition, X is a (T,k− 1)-balanced

separator. Similarly, if X is a (T,k− 1)-balanced separator then, by definition of BT , X is a

hitting set of BT and the result follows.

Note that we can check whether a given set X ⊆ V (D) is a hitting set of BT by

enumerating the strong components of D \X and, for each such a component C, checking

whether |V (C)∩T | ≥ k. This can be done in time O(n+m). For the remaining of this section,

and unless stated otherwise, let T be a (k−1,k−1)-linked set with |T |= 2k−1. In what follows,

we use T -brambles to adapt Proposition 3.1.14 into an FPT algorithm.

To prove our version of Proposition 3.1.14, we start with a T -bramble BT of order

g(k) (the value of g(k) is specified later) in a digraph D with dtw(D)≥ 3g(k)−1, and then we

54

show how to find in polynomial time a path P(BT) that is a hitting set of BT , adapting the proof

of Proposition 3.1.13 shown in [4, Lemma 4.3 of the full version]. Next, we need to show how

to split BT into brambles of order at least dk/2e whose elements are intersected by subpaths

of P(BT). We do this by growing a subpath of P′ of P(BT) iteratively while checking, on each

iteration, whether the set B′T of elements of BT intersecting V (P′) is a bramble of adequate order.

We now show how our choice of BT allows us to estimate the order of B′T by

computing the order of its “complement bramble” BT \B′T , and we show how to do this procedure

in FPT time with parameter ord(BT). These ideas are formalized by the following definitions

and results.

Definition 3.3.3. Let X ⊆V (D) and B be a bramble in D. The restricted bramble B(X) contains

the elements of B intersecting X and its complement bramble B(X) contains the elements of B

disjoint from X. Formally,

B(X) = {B ∈ B |V (B)∩X 6= /0},

B(X) = {B ∈ B |V (B)∩X = /0}.

Notice that both B(X) and B(X) are brambles, as both are subsets of a bramble B.

Additionally, B(X) is disjoint from B(X) and the union of a hitting set of the former with a

hitting set of the latter is a hitting set of B. From this remark, we have that

ord(B(X))+ord(B(X))≥ ord(B), (3.1)

and although in general the order of B(X) is hard to compute, we can estimate it by knowing the

order of its complement bramble B(X) and ord(B).

Consider now the brambles BT , BT (X), and BT (X) for some X ⊆ V (D). The

following results show that hitting sets of BT (X) are exactly (T \X ,k−1)-balanced separators

in D\X .

Lemma 3.3.4. Let X ,Z ⊆ V (D) and B be a strongly connected subgraph of D. Then B ∈

BT (X) and V (B)∩Z = /0 if and only if B is a strongly connected subgraph of D\ (Z∪X) with

|V (B)∩T | ≥ k.

Proof. For the necessity, assume that B∈BT and V (B)∩Z = /0. Then by the definition of BT (X),

B is a strongly connected subgraph of D\ (Z∪X) intersecting T in at least k vertices.

55

For the sufficiency, assume that B is a strongly connected subgraph of D\ (Z∪X)

containing at least k vertices of T . Then B ∈ BT (X) by the definition of BT (X) and the lemma

follows since it is disjoint from Z∪X .

The contrapositive of Lemma 3.3.4 characterizes hitting sets of BT (X).

Corollary 3.3.5. Let X ,Z ⊆V (D). Z is a hitting set of BT (X) if and only if Z is a (T \X ,k−1)-

balanced separator in D\X.

Therefore, we can decide whether ord(BT (X)) ≤ s by testing whether D admits

a (T \X ,k− 1)-balanced separator of size s. The following result is a direct consequence of

Theorem 3.2.5 and Corollary 3.3.5.

Corollary 3.3.6. For any X ⊆V (D), there is an algorithm running in time O(4k ·2O(k logk) · k ·

nO(1)) that decides whether ord(BT (X))≤ s.

Next, we show how to find such a path P(BT) as described above and a well-linked

set A of size roughly
√

2k that is contained in V (P(BT)).

3.4 Finding P(BT) and A

The next lemma is an adaptation of the proof of [4, Lemma 4.3 of the full version] to

our scenario. We exploit the fact that we can check whether a given set of vertices is a hitting set

of BT in polynomial time: by Lemma 3.3.2, a set X ⊆V (D) is a hitting set of BT if and only if

X is a (T,k−1)-balanced separator, and we can check if a given set X is a (T,k−1)-balanced

separator by enumerating the strong components of the input digraph.

Lemma 3.4.1. Let D be a digraph, T be a (k−1,k−1)-linked set of size 2k−1, and consider

the T -bramble BT . There is an algorithm running in time O(n(n+m)) that produces a path P

that is a hitting set of BT .

Proof. If ord(BT) ≥ 1, then there is an element B ∈ B and a strong component C of D such

that V (B)⊆C and, by the definition of B, we know that D[C] ∈ BT . Define B1 = D[V (C)], let

v1 be any vertex of B1, and define P1 as the path containing only the vertex v1 and V (P0) = /0.

We proceed to grow a path by iterating from P1 to Pk′ where they all start from v1, each Pi

with i≥ 2 contains Pi−1, and Pk′ is a hitting set of BT . Throughout our process, we maintain a

collection of elements Bi ∈ BT such that V (Pi) intersects V (Bi) only in the last vertex vi of Pi.

56

Since |V (P1)|= 1 and v1 ∈ T ⊆V (B1), this condition trivially holds for P1. Assume now that i

paths have been chosen this way, with i≥ 1.

Consider the last vertex vi of the path Pi and the element Bi of BT with V (Pi)∩

V (Bi) = {vi}. By Lemma 3.3.2, V (Pi) is a hitting set of BT if and only if V (Pi) is a (T,k−1)-

balanced separator, and this can be tested in timeO(n+m) by enumerating all strong components

of D \V (Pi). If V (Pi) is a hitting set of BT , then we terminate the algorithm returning Pi.

Otherwise, V (Pi) is not a (T,k−1)-balanced separator and thus there is a strong component C

of D\V (Pi) with |V (C)∩T | ≥ k. Therefore, D[V (C)] is an element of BT whose vertices are

disjoint from V (Pi) and we choose Bi+1 = D[V (C)].

Since BT is a bramble, we can find a path P′ from vi ∈ V (Pi)∩V (Bi) to a vertex

vi+1 ∈ Bi+1 in D[V (Bi)∪V (Bi+1)] such that V (P′)∩V (Bi+1) = {vi+1}. Moreover, vi is the only

vertex of Pi in Bi and thus the path P′ does not contain any vertex in V (Pi)\{vi}. Now, let Pi+1

be the path obtained from Pi by appending P′. By our choice of P′, we know that only the last

vertex vi+1 of Pi+1 is in V (Bi+1), as desired, and V (Pi+1) hits strictly more elements of BT than

V (Pi). We repeat the aforementioned procedure now considering the vertex vi+1, the path Pi+1,

and the element Bi+1 of BT .

Since we can enumerate the strong components of a subgraph of D in time O(n+m)

(see, for instance, [30, Chapter 6]), at the i-th iteration we can find Bi+1, the path Pi+1, and the

vertex vi+1 in time O(n+m). Finally, the procedure eventually terminates as |V (P)| ≤ n and

thus the bound on the running time follows.

For the remainder of this section, we assume that g(k) = (k+ 1)(bk/2c+ 1)− 1,

that D is a digraph containing a (g(k)−1,g(k)−1)-linked set T of size 2g(k)−1, consider the

T -bramble BT and fix P to be the path received by applying Lemma 3.4.1 with inputs D, T , and

BT . To prove Theorem 3.1.16, we use the following definition.

Definition 3.4.2 ((i)-splits). An (i)-split S of P is a collection formed by a set {Q j | j ∈ [i]} of

subpaths of P, a subpath Pi of P, a set of brambles {B j | j ∈ [i]}, a set of vertices {a j | j ∈ [i]},

and a set of vertices Xi such that

1. for j ∈ [i], vertex a j is the sucessor in P of the last vertex of Q j, and, if j ≤ i−1, the first

vertex of Q j+1 is the sucessor in P of vertex a j,

2. for j ∈ [i], ord(B j)≥ bk/2c,

3. for j ∈ [i], B j ⊆ BT and V (Q j) is a hitting set of B j,

57

4. Pi is the subpath of P from the sucessor in P of the last vertex of Qi to the last vertex of P,

and

5. Xi =
⋃

j∈[i](V (Pj)∪{a j}), and

ord(B(Xi))≥ g(k)− i
(⌊

k
2

⌋
+1
)
.

See Figure 20 for an example of a (2)-split. We remark that a (0)-split for P consists

only of the path P0 with P0 = P and the empty set X0.

a2a1
Q1 Q2

X2 V (P2) =V (P)\X2

B(X2)

Figure 20 – Illustration of a (2)-split of P. A circle represents an element of the bramble B(X2).

Now, the proof of Theorem 3.1.16 follows three steps. First, Lemma 3.4.3 states

that the set of vertices {a1, . . . ,ai} of a (i)-split of P is well-linked when i≤ k. Thus our goal

is to construct a (k)-split of P. Then, Lemma 3.4.4 states that, for i ≥ 0, we can construct an

(i+1)-split of P from an (i)-split of P in FPT time if ord(B(Xi)) is large enough. Finally, the

proof of Theorem 3.1.16 starts from a (0)-split of P and iterates Lemma 3.4.4 until a (k)-split is

constructed.

Lemma 3.4.3. Let Si be an (i)-split of P with i ∈ [k]. Then the set A with A = {a1, . . . ,ai} is

well-linked in D.

Proof. Let X and Y be disjoint subsets of A such that |X |= |Y |= r for some r ∈ [i]. Suppose, by

contradiction, that there is no set of r pairwise internally disjoint paths from X to Y in D. Then,

by Menger’s Theorem, there is an (X ,Y)-separator S⊆V (D) such that |S| ≤ r−1.

Let Qi+1 = Pi and Bi+1 = B(Xi). By the definition of (i)-splits and our choice of

Qi+1, we know that for every a j ∈ A with j ∈ [i], there is a path Q j ending on the vertex occurring

in P before a j, and a path Q j+1 starting on the first vertex occurring in P after a j (see Figure 20

for an example when i = 2). Moreover, we have

ord(Bi+1)≥ g(k)− i
(⌊

k
2

⌋
+1
)

which implies that ord(Bi+1)≥ bk/2c since i≤ k.

As |S| ≤ r− 1 ≤ bk/2c− 1 there must be a path Q j+1 such that a j ∈ X \ S and

S∩V (Q j+1) = /0. Furthermore, since S is not large enough to be a hitting set of B j+1, there

58

must be B ∈ B j+1 such that S∩V (B) = /0. Similarly, there must be an a` ∈ Y \ S such that

S∩V (Q`) = /0 and a B′ ∈ B` such that S∩V (B′) = /0.

Now, since V (Q j+1) is a hitting set of B j+1, the set S is disjoint from V (Q j+1) and

from V (B), and V (B) induces a strongly connected subgraph of D, there is in D\S a path from

a j to any vertex in V (B). Similarly, there is a path from any vertex in V (B′) to a` in D\S. Finally,

since every pair of elements in BT intersect, we conclude that there is a path in D\S from a j

to a` using the path Q j+1, the vertices in V (B)∪V (B)′, and the path Q`. This contradicts our

choice of S, and thus we conclude that every (X ,Y)-separator in D must have size at least r, and

the result follows by Menger’s Theorem.

Lemma 3.4.4. Let Si be an (i)-split of P with i≤ k−1. Then in time 2O(k2 logk) ·nO(1) we can

construct an (i+1)-split of P.

Proof. For a digraph F , for the sake of notational simplicity, we abbreviate –recall Defini-

tion 3.3.3– B(V (F)) and B(V (F)) as B(F) and B(F), respectively, and write B(v) and B(v)

(omitting the braces) for v ∈V (F). Let B′ = B(Xi).

The goal is to construct a subpath Qi+1 of P starting on the first vertex of P appearing

after the vertex ai (or simply the first vertex of P if i = 0) such that

ord(B′(Qi+1))≥
⌊

k
2

⌋
.

That is, the order of the bramble containing the elements of B which are disjoint from Xi while

intersecting V (Qi+1) is at least bk/2c. We start with V (Qi+1) = /0. By Inequality 3.1, we have

that

ord(B′(Qi+1))≥ ord(B′)−ord(B′(Qi+1))

at any point of the procedure. Now, we iteratively grow Qi+1, adding one vertex at a time while

testing, at each newly added vertex, whether

ord(B′(Qi+1))≤ g(k)− i
(⌊

k
2

⌋
+1
)
−1−

⌊
k
2

⌋
.

Observe that, when V (Qi+1) = /0, we have B′(Qi+1) = B′ and thus

ord(B′(Qi+1))≥ g(k)− i
(⌊

k
2

⌋
+1
)
> g(k)− i

(⌊
k
2

⌋
+1
)
−
⌊

k
2

⌋
.

As B′ = B(Xi), we have B′(Qi+1) = B(Xi∪V (Qi+1)) and thus, by Corollary 3.3.6,

we can test whether ord(B′(Qi+1))≤ s in time 2O(k2 logk) ·nO(1) for any s ∈ [g(k)] since g(k) =

O(k2).

59

On a negative answer, we add to Qi+1 the first vertex of P not contained in V (Qi+1)∪

Xi and repeat the test. On the first time we obtain a positive answer to this test, we set Bi+1 =

B′(Qi+1), define ai+1 to be the first vertex appearing in P after the last vertex of Qi+1, and

stop the procedure. In this case, we have that ord(Bi+1)≥ bk/2c and since ord
(
B′(Qi+1)

)
can

decrease by at most one each time we increase by one the size of V (Qi+1), this procedure actually

ends with ord(B′(Qi+1)) = g(k)− i(bk/2c+1)−bk/2c.

Now, we define Xi+1 = Xi∪V (Qi+1)∪{ai+1} and Pi+1 to be the subpath of P with

V (Pi+1) =V (P)\Xi+1. Finally, let B∗ = B′(Qi+1). Then by Inequality 3.1,

ord(B∗(Pi+1))≥ ord(B∗)−ord(B∗(Pi+1))

and observing that B∗(Pi+1) = B(Xi+1), we conclude that

ord(B(Xi+1))≥ g(k)− i
(⌊

k
2

⌋
+1
)
−
⌊

k
2

⌋
−1 = g(k)− (i+1)

(⌊
k
2

⌋
+1
)
,

as required, since B∗(Pi+1) = B∗(ai+1) and thus ord(B∗(Pi+1))≤ 1. Then, we output the (i+1)-

split Si+1 of Pi formed by the sequence of paths Q1, . . . ,Qi+1, the path Pi+1, the sequence of

brambles B1, . . . ,Bi+1, the set of vertices {a1, . . . ,ai+1}, and the set of vertices Xi+1.

We remark that the bramble B′(Qi+1) is used only in the proof of Lemma 3.4.3

and thus we do not need to maintain it during the algorithm. However, if we want to store this

information, it suffices to maintain the set T , the set Xi, and the path Qi+1 since the bramble

B′(Qi+1) is equal to the bramble B(Qi+1) in the digraph D \Xi. We are now ready to prove

Theorem 3.1.15.

Theorem 3.1.15 (Second main contribution). Let g(k) = (k+1)(bk/2c+1)−1, D be a digraph

and T be a (g(k)− 1,g(k)− 1)-linked set in D with |T | = 2g(k)− 1. There is an algorithm

running in time 2O(k2 logk) ·nO(1) that finds in D a bramble B of order g(k), a path P that is a

hitting set of B, and a well-linked set A of order k such that A⊆V (P).

Proof. Applying Theorem 3.1.9 with input D, we obtain a set T ⊆V (D) of size 2g(k)−1 such

that D does not contain a (T,g(k)−1)-balanced separator of size g(k)−1. Now, by Lemma 3.3.2,

the T -bramble BT has order g(k) and, by Lemma 3.4.1, we can find a path P that is a hitting set

of BT in polynomial time. We start with a trivial (0)-split S0 of P where P0 = P and X0 = /0.

For i ∈ {0, . . . ,k−1}, we apply Lemma 3.4.4 with input Si to obtain an (i+1)-split

Si+1 of P in time 2O(k2 logk) ·nO(1). After the last iteration, we obtained a (k)-split Sk of P and,

60

by Lemma 3.4.3, the set of vertices {a1, . . . ,ak} of Sk is well-linked in D and all such vertices

are in V (P), as desired.

By following the remaining of the proof of the Directed Grid Theorem [4], which

yields FPT algorithms for all the remaining steps, we can validate Corollary 3.1.16.

3.5 Concluding remarks

The main consequence of our results is an FPT algorithm with parameter k that

either produces an arboreal decomposition of width at most f (k) for a digraph D or constructs a

cylindrical grid of order k as a butterfly minor of D, for some computable function f (k). This is

achieved by adapting some of the steps used in the proof of the Directed Grid Theorem from

Kawarabayashi and Kreutzer [4].

For the first possible output of this algorithm, we improve on a result from [24] by

providing an FPT algorithm with parameter k that either produces an arboreal decomposition

of a digraph D with width at most 3k− 2, or concludes that D has a haven of order k. As a

tool to prove this result, we show how to solve the BALANCED SEPARATOR problem, which

generalizes the problem of finding balanced separators, in FPT time with parameter |T |. Since in

the undirected case balanced separators are strongly related to the tree-width of undirected graphs,

and the only result for balanced separators in the directed case considered only a relaxed version

of the problem (see [58, Chapter 6]), we consider this result to be of its own interest. We remark

that, in a loopless digraph, a (V (D),0)-balanced separator is exactly a directed feedback vertex

set and thus BALANCED SEPARATOR generalizes DIRECTED FEEDBACK VERTEX SET (DFVS).

We leave open the question of whether BALANCED SEPARATOR is FPT when parameterized by

the size of the solution.

Although it is possible to construct a bramble B of order bk/2c from a haven of

order k, this construction is not efficient in general, in the sense that we must go through all

elements of B to verify whether a given set X is a hitting set of B. Motivated by this, we consider

a definition of brambles, which we call T -brambles, which naturally occur in digraphs of large

directed tree-width that are better to work with in a number of ways. For instance, by reducing

to the problem of computing balanced separators for T , we show how to compute hitting sets of

T -brambles in FPT time when parameterized by |T |.

We use our results for T -brambles in digraphs of large tree-width to show how to

61

find, in FPT time with parameter k, a path that is a hitting set of a T -bramble BT of order

(k+1)(bk/2c+1) and a well-linked set of size k that is contained in this path. This is the second

step that we change in the proof of the Directed Grid Theorem [4]. From this point forward, the

remaining steps in the proof yield FPT algorithms.

Kreutzer and Ordyniak [63] and Ganian et al. [64] showed that many important

problems in digraphs remain hard when restricted to digraphs of bounded directed tree-width.

In particular, Kreutzer and Ordyniak [63] showed that the DIRECTED FEEDBACK VERTEX

SET problem is NP-complete even when restricted to digraphs of directed tree-width at most

five. However, some open problems in digraphs may benefit from an approach resembling

Bidimensionality using our FPT algorithm for the Directed Grid Theorem. For example,

Bezáková et al. [65] asked whether the LONGEST DETOUR problem in digraphs could be

solved by using the Directed Grid Theorem. To provide more potential applicability of our

results, we briefly discuss the parameterized tractability of the DFVS problem.

Chen et al. [60] provided an algorithm running in time 2O(k logk) ·nO(1) for the DFVS

problem, where k is the size of the solution. It is an open problem whether the dependency on

this parameter can be improved to 2O(k), and whether DFVS admits a polynomial kernel, even

in planar digraphs. Bonamy et al. [66] showed that, when parameterized by the tree-width t

of the underlying graph, DFVS is solvable in time 2O(t log t) ·nO(1) in general digraphs and the

dependency on the parameter is improved to 2O(t) when restricted to planar digraphs. When

parameterized by the feedback vertex set number of the underlying graph, Bergougnoux et

al. [67] showed that DFVS admits a polynomial kernel in general digraphs, and a linear kernel

in digraphs that are embeddable on surfaces of bounded genus.

On the one hand, DFVS remains hard even when restricted to digraphs of directed

tree-width at most five [63], but on the other hand both of the aforementioned parameters related

to the underlying graph are individually stronger than the directed tree-width of the input digraph

and, by the Directed Grid Theorem [4], every positive instance of DFVS parameterized by the

size k of the solution occurs in a digraph of bounded directed tree-width: since a cylindrical grid

of order r contains a set of r vertex-disjoint cycles and butterfly contractions do not generate new

paths, the minimum size of a feedback vertex set of a digraph D is at least the order of the largest

cylindrical grid that is as a butterfly minor of D. Now, by Corollary 3.1.16, in FPT time with

parameter k we can either find a certificate that the considered instance of DFVS is negative

(a cylindrical grid of order k+1 that is a butterfly minor of the input digraph), or produce an

62

arboreal decomposition of the input digraph of width at most f (k), for some computable function

f : N→ N.

Thus, it is sensible to ask whether similar or improved results for DFVS (when

parameterized by the tree-width or the feedback vertex set number of the underlying graph, as

previously mentioned) can be proved if we consider that the input digraph has bounded directed

tree-width, since by the above discussion we can restrict instances of DFVS to this class of

digraphs.

One could also consider the tractability of hard problems in digraphs of bounded

directed tree-width under stronger parameterizations. For example, in Chapter 4 we show that a

relaxation for the DIRECTED DISJOINT PATHS problem, a notoriously hard problem in digraphs,

admits a kernelization algorithm for some choices of parameters. In this spirit, it seems plausible

that combining directed tree-width with other parameters may lead to FPT algorithms for hard

problems, and in this context the FPT algorithm presented in this chapter may become handy.

It is worth mentioning that Giannopoulou et al. [68] recently provided an analogous

version of the Flat Wall Theorem [1] for directed graphs, which may have interesting algorithmic

applications when combined with our results.

Finally, the attempts to obtain a Bidimensionality theory for directed graphs, such as

the one presented by Dorn et al. [69], are so far less satisfying that the undirected version, from

the point of view of generality and efficiency of the obtained algorithms. We hope that our FPT

version of the Directed Grid Theorem will have a relevant role in an eventual Bidimensionality

theory for directed graphs.

63

4 THE DISJOINT ENOUGH PATHS PROBLEM

Robertson and Seymour [1] showed, in their seminal work on graph minors, that

DISJOINT PATHS is FPT when parameterized by the number k of requests. The DIRECTED

DISJOINT PATHS (DDP) problem, however, turns out to be significantly harder: Fortune et

al. [2] showed that the problem is NP-complete even for fixed k = 2. In order to obtain positive

results, a common approach has been to consider restricted input digraphs. For instance, it is also

shown in [2] that DDP is XP in DAGs with parameter k. For some time the question of whether

this could be improved to an FPT algorithm remained open, but a negative answer was given by

Slivkins [3]: DDP is W[1]-hard in DAGs with this parameter k. Johnson et al. [24] extended the

previous result for DAGs by showing an nO(k+w) algorithm for DDP in digraphs with directed

tree-width (see Section 2.3) at most w. Another restriction considered in the literature is to ask

for the underlying graph of the input digraph to be planar. Under this restriction, Schrijver [28]

provided an XP algorithm for DDP with parameter k, which was improved a long time afterwards

to an FPT algorithm by Cygan et al. [29].

A natural relaxation for the DIRECTED DISJOINT PATHS problem is to allow for

vertex and/or edge congestion. Namely, in the DIRECTED DISJOINT PATHS WITH CONGESTION

problem (DDPC for short, or DDPC-c if we want to specify the value of the congestion), the

task is to find a collection of paths satisfying the k requests such that no vertex in the graph

occurs in more than c paths of the collection. Amiri et al. [27] considered the tractability of this

problem when restricted to DAGs. By a simple local reduction to the general version and the

hardness result by Slivkins [3], they showed that DDPC-c in DAGs is W[1]-hard for every fixed

c≥ 1. The authors also proved that DDPC-c admits an XP algorithm with parameter d in DAGs,

where d = k− c. Together with the result by Johnson et al. [24], this simple reduction presented

in [27] is also sufficient to show that DDPC-c also admits an XP algorithm with parameters k

and w for every fixed 1≤ c≤ n−1 in digraphs with directed tree-width at most w, and the same

result also holds when we allow for congestion on the edges.

Motivated by Thomassen’s proof [70] that DDP remains NP-complete for k = 2

when restricted to β -strongly connected digraphs, for any integer β ≥ 1, Edwards et al. [71]

recently considered the DDPC-2 problem (this version of the problem is usually called half-

integral in the literature) and proved, among other results, that it can be solved in time n f (k)

when restricted to (36k3 +2k)-strongly connected digraphs.

Kawarabayashi et al. [72] considered the following asymmetric version of the DDPC-

64

4 problem: the task is to either find a set of paths satisfying the requests with congestion at most

four, or to conclude that no set of pairwise vertex-disjoint paths satisfying the requests exists. In

other words, we ask for a solution for DDPC-4 or a certificate that there is no solution for DDP.

They proved that this problem admits an XP algorithm with parameter k in general digraphs,

and claimed –without a proof– that Slivkins’ reduction [3] can be modified to show that it is

W[1]-hard in DAGs. In their celebrated proof of the Directed Grid Theorem, Kawarabayashi

and Kreutzer [4] claimed that an XP algorithm can be also obtained for the asymmetric version

with congestion at most three. To the best of our knowledge, the existence of an XP algorithm in

general digraphs for the DDPC-2 problem, or even for its asymmetric version, remains open.

Summarizing, the existing positive results in the literature for parameterizations

and/or relaxations of the DIRECTED DISJOINT PATHS problem in general digraphs are quite

scarce.

Our approach, results, and techniques. In this chapter, we propose another congestion metric

for DDP. In contrast to the usual relaxations discussed above, which focus on a local congestion

metric that applies to every vertex, our approach considers, on top of local congestion, a global

congestion metric: we want to keep control of how many vertices (a global metric) appear in

“too many” paths (a local metric) of the solution. That is, we want the paths to be such that “most”

vertices of the graph do not occur in too many paths, while allowing for any congestion in the

remaining vertices. In the particular case where we do not allow for local congestion, we want

the paths to be pairwise vertex-disjoint not in the whole graph, but in an unspecified part of size

prescribed by a parameter; this is why we call such paths “disjoint enough”.

Formally, in the DISJOINT ENOUGH DIRECTED PATHS (DEDP) problem, we are

given a set of requests {(s1, t1), . . . ,(sk, tk)} in a digraph D and two non-negative integers c and s,

and the task is to find a collection of paths {P1, . . . ,Pk} such that each Pi is a path from si to ti in

D and at most c vertices of D occur in more than s paths of the collection. If s = 1, for instance,

we ask for the paths to be pairwise vertex-disjoint in at least n− c vertices of the graph, and

allow for at most c vertices occurring in two or more paths. Choosing c = 0 and s = 1, DEDP

is exactly the DDP problem and, choosing s = 0, DEDP is exactly the STEINER NETWORK

problem (see [14] for its definition).

By a simple reduction from the DIRECTED DISJOINT PATHS WITH CONGESTION

problem, it is easy to prove that DEDP is NP-complete for fixed k ≥ 3 and s≥ 1, even if c is

large with respect to n, namely at most n−nα for some real value 0 < α ≤ 1, and W[1]-hard in

65

DAGs with parameter k. By applying the framework of Johnson et al. [24], we give an nO(k+w)

algorithm to solve DEDP in digraphs with directed tree-width at most w.

The fact that DEDP is NP-complete for fixed values of k = 2, c = 0, and s = 1 [2]

motivates us to consider the “dual” parameter d = n−c. That is, instead of bounding from above

the number of vertices of D that lie in the intersection of many paths of a collection satisfying

the given requests, we want to bound from below the number of vertices that occur only in few

paths of the collection. Formally, we want to find X ⊆V (D) with |X | ≥ d such that there is a

collection of paths P satisfying the given requests such that every vertex in X is in at most s

paths of the collection. We first prove, from a reduction from the INDEPENDENT SET problem,

that DEDP is W[1]-hard with parameter d for every fixed s ≥ 0, even if the input graph is a

DAG and all source vertices of the request set are the same.

Our main contribution consists of positive algorithmic results for this dual parame-

terization. On the one hand, we give an algorithm for DEDP running in time O(nd · kd·s). This

algorithm is not complicated, and basically performs a brute-force search over all vertex sets

of size d, followed by k connectivity tests in a digraph D′ obtained from D by an appropriate

local modification. On the other hand, our most technically involved result is a kernel for DEDP

with at most d ·2k−s ·
(k

s

)
non-terminal vertices. This algorithm first starts by a reduction rule

that eliminates what we call congested vertices; we say that the resulting instance is clean. We

then show that if D is clean and sufficiently large, and k = s+1, then the instance is positive

and a solution can be found in polynomial time. This fact is used as the base case of an iterative

algorithm. Namely, we start with the original instance and proceed through k− s+1 iterations.

At each iteration, we choose one path from some si to its destination ti such that a large part of

the graph remains unused by any of the pairs chosen so far (we prove that such a request always

exists) and consider only the remaining requests for the next iteration. We repeat this procedure

until we arrive at an instance where the number of requests is exactly s+1, and use the base case

to output a solution for it. From this solution, we extract in polynomial time a solution for the

original instance, yielding a kernel of the claimed size.

Since positive results for the DIRECTED DISJOINT PATHS problem are not common

in the literature, especially in general digraphs, we consider our algorithmic results to be

of particular interest. Furthermore, the kernelization algorithm also brings good news for

the STEINER NETWORK problem: when s = 0 Feldmann and Marx in [14] showed that the

tractability of the STEINER NETWORK problem when parameterized by the number of requests

66

depends on how the requests are structured. Our result adds to the latter by showing that the

problem remains FPT if we drop this structural condition on the request set but add d, the

number of vertices occurring in at most s paths of the solution, as a parameter. More details can

be found in Section 4.1.

For reference, we include here another copy of Table 1, showing a summary of

our algorithmic and complexity results, which altogether provide an accurate picture of the

parameterized complexity of the DEDP problem for distinct choices of the parameters.

k d s w Complexity
fixed ≥ 3 Ω(nα) fixed ≥ 1 — NP-complete (Theorem 4.2.1)
parameter Ω(nα) fixed ≥ 1 0 W[1]-hard (Theorem 4.2.1)

input parameter fixed ≥ 0 — W[1]-hard (Theorem 4.2.2)
parameter — — parameter XP (Theorem 4.3.10)

input parameter parameter — XP (Theorem 4.3.12)
parameter parameter parameter — FPT (Theorem 4.3.21)

Table 1 – Summary of hardness and algorithmic results for distinct choices of the parameters. A
horizontal line in a cell means no restrictions for that case. In all cases, we have that
c = n−d and 0 < α ≤ 1.

This chapter is organized as follows. In Section 4.1 we present some preliminaries

and formally define the DISJOINT ENOUGH DIRECTED PATHS problem. We provide the

hardness results in Section 4.2 and the algorithms in Section 4.3. We conclude the chapter in

Section 4.4 with some open questions for further research.

4.1 Preliminaries

Before defining the problem, we remind the reader of Definition 2.4.2.

Definition 2.4.2 (Requests and satisfying collections). Let D be a digraph and P be a collection

of paths of D. A request in D is an ordered pair of vertices of D. For a request set I =

{(s1, t1),(s2, t2), . . . ,(sk, tk)}, we say that the vertices {s1,s2, . . . ,sk} are source vertices and that

{t1, t2, . . . , tk} are target vertices, and we refer to them as S(I) and T (I), respectively. We say

that P satisfies I if P = {P1, . . . ,Pk} and Pi is a path from si to ti, for i ∈ [k].

Again we remark that a request set may contain many copies of the same pair,

and that when considering the union of two or more requests, we keep all such copies in the

resulting request set. For instance, if I1 = {(u1,v1)} and I2 = {(u1,v1),(u2,v2)} then I1∪ I2 =

67

{(u1,v1),(u1,v1),(u2,v2)}, and this indicates that a collection of paths satisfying this request set

must contain two paths from u1 to v1. The DEDP problem is defined as follows.

DISJOINT ENOUGH DIRECTED PATHS (DEDP)

Input: A digraph D, a request set I of size k, and two non-negative integers c and s.

Output: A collection of paths P satisfying I such that at most c vertices of D occur in at

least s+1 paths of P and all other vertices of D occur in at most s paths of P .

Unless stated otherwise, we consider d = n− c for the remaining of this chapter.

Intuitively, c imposes an upper bound on the size of the “congested” part of the solution, while d

imposes a lower bound on the size of the “disjoint” part. For a parameterized version of DEDP,

we sometimes include the parameters before the name. For instance, we denote by (k,d)-DEDP

the DISJOINT ENOUGH DIRECTED PATHS problem with parameters k and d.

Notice that if c≥ n or s≥ k, the problem is trivial since every vertex of the graph is

allowed to be in all paths of a collection satisfying the requests, and thus we need only to check

for connectivity between the given pairs of vertices. Furthermore, if there is a pair (si, ti) in the

request set such that there is no path from si to ti in the input digraph D, the instance is negative.

Thus we henceforth assume that c < n, that s < k, and that there is a path from si to ti in D for

every pair (si, ti) in the set of requests.

Choosing the values of k,d, and s appropriately, we show in Table 2 that the DEDP

problem generalizes several problems in the literature.

Parameters Equivalent to Complexity
d = n, s = 1 DISJOINT PATHS NP-complete for k = 2 [2]
d = n, s≥ 2 DISJOINT PATHS WITH CONGESTION W[1]-hard with parameter k [3]
d ≥ 1, s = 0 STEINER NETWORK FPT with parameters k and d

Table 2 – Summary of related problems and complexity results.

The last line of Table 2 is of particular interest, and we focus on it in the next two

paragraphs. In the STEINER NETWORK problem, we are given a digraph D and a request set I

and we are asked to find an induced subgraph D′ of D with minimum number of vertices such

that D′ admits a collection of paths satisfying I. For a request set I in a digraph D, let D(I) be the

digraph with vertex set S(I)∪T (I) and edge set {(s, t) | (s, t) ∈ I}. The complexity landscape of

the STEINER NETWORK problem when parameterized by the size of the request set was given

by Feldmann and Marx [14]. They showed that the tractability of the problem depends on D(I).

68

Namely, they proved that if D(I) is close to being a caterpillar, then the STEINER NETWORK

problem is FPT when parameterized by |I|, and W[1]-hard otherwise. When parameterized

by the size of the solution, Jones et al. [73] showed that the STEINER NETWORK problem is

FPT when D[I] is a star whose edges are all oriented from the unique source and the underlying

graph of the input digraph excludes a topological minor, and W[2]-hard on graphs of degeneracy

two [73].

Our algorithmic results for DEDP for the particular case s = 0 yield an FPT algo-

rithm for another parameterized variant of the STEINER NETWORK problem. In this case, we

want to decide whether D admits a large set of vertices whose removal does not disconnect any

pair of requests. That is, we want to find a set X ⊆V (D) with |X | ≥ d such that D\X contains a

collection of paths satisfying I. In Theorem 4.3.21 we give an FPT algorithm (in fact, a kernel)

for this problem with parameters |I| and d. We remark that this tractability does not depend on

D(I).

4.2 Hardness results for DEDP

In this section we provide hardness results for the DEDP problem. Namely, we

first provide in Theorem 4.2.1 a simple reduction from DISJOINT PATHS WITH CONGESTION,

implying NP-completeness for fixed values of k,c,d and W[1]-hardness in DAGs with parameter

k. We then prove in Theorem 4.2.2 that DEDP is W[1]-hard in DAGs with parameter d.

As mentioned in [73], the STEINER NETWORK problem is W[2]-hard when parame-

terized by the size of the solution (as a consequence of the results of [74]). Hence (c)-DEDP is

W[2]-hard for fixed s = 0. As discussed in the introduction, the DIRECTED DISJOINT PATHS

problem is NP-complete for fixed k = 2 [2] and W[1]-hard with parameter k in DAGs [3]. Al-

lowing for vertex congestion does not improve the tractability of the problem: DISJOINT PATHS

WITH CONGESTION parameterized by the number of requests is also W[1]-hard in DAGs for

every fixed congestion c≥ 1, as observed in [27]. When c = 0 and s≥ 1, DEDP is equivalent

to the DIRECTED DISJOINT PATHS WITH CONGESTION problem and thus the aforementioned

bounds also apply to it. In the following theorem we complete this picture by showing that DEDP

is NP-complete for fixed k ≥ 3 and s≥ 1, even if c is quite large with respect to n (note that if

c = n all instances are trivially polynomial), namely for c as large as n−nα with α being any

fixed real number such that 0 < α ≤ 1. The same reduction also allows to prove W[1]-hardness

in DAGs with parameter k. The idea is, given the instance of DDPC with input digraph D, build

69

an instance of DEDP where the “disjoint” part corresponds to the original instance, and the

“congested” consists of c new vertices that are necessarily used by s+1 paths of any solution. In

this process, we generate an instance of DEDP in a digraph D′ with |V (D′)| = n = d + c and

d = |V (D)|. This is why we restrict the value of d to be of the form nα , but not smaller: if we

ask d to be “too small”, d = logn for example, our procedure would generate an instance of

DEDP such that the size of the “disjoint part” d satisfies d = log(d + c) which in turn implies

that the size of this instance would be exponential on the size of the original instance of DDPC.

Theorem 4.2.1. Let 0 < α ≤ 1 and d : N→ N with d(n) = Ω(nα). Then, for c = n−d(n),

(i) DEDP is NP-complete for every fixed k ≥ 3 and s≥ 1; and

(ii) (k)-DEDP is W[1]-hard in DAGs for every fixed s≥ 1.

Proof. We prove items (i) and (ii) at the same time by a simple reduction from the DIRECTED

DISJOINT PATHS WITH CONGESTION (DDPC) problem. Given an instance (D, I,k,s) of DDPC,

we output an equivalent instance (D′, I′,k+ s,c,s) of DEDP that does not generate any new

cycles and such that the size d(|V (D′)|) of the disjoint part of the new instance is equal to |V (D)|,

with d(n) as in the statement of the theorem. Since DDP, which is exactly the DDPC problem

with congestion one, is NP-complete for fixed k≥ 2 [2] and k-DDPC is W[1]-hard in DAGs [27],

our reduction implies that DEDP with c = n−d(n) is NP-complete for fixed k ≥ 3 and s≥ 1,

and W[1]-hard in DAGs with parameter k and any fixed s≥ 1. We can assume that c≥ 1 since

DEDP is exactly DDPC when c = 0 and s≥ 1 (as discussed previously).

Formally, let (D, I,k,s) be an instance of DDPC with I = {(s1, t1),(s2, t2), . . . ,(sk, tk)}

and choose i ∈ [k] arbitrarily. We construct an instance of DEDP as follows. Let D′ be a digraph

on vertex set V (D) together with new vertices {v1, . . . ,vc}. Add to E(D′) all edges from E(D)

plus the set (v j,v j+1) for j ∈ [c−1]. Finally, add to I′ all pairs in (I \{si, ti}), the pair (si,vc),

and s copies of the pair (v1,vc). Figure 21 illustrates this construction. It is easy to verify that

V (D)

s2

s1

t2

t1

vc
v1

{v1, . . . ,vc}

Figure 21 – Example of the construction from Theorem 4.2.1 with k = 2, s= 1, and i= 2. Source
and target vertices are represented by square vertices in the figure.

70

(D, I,k,s) is positive if and only if the instance (D′, I′,k+s,c,s) of DEDP is positive; we provide

the formal proof for completeness.

For the necessity, let P be a solution for (D, I,k,s), where P = {P1,P2, . . . ,Pk}. Let

P′i be the path in D′ formed by a copy of Pi together with the path from ti to vc and Q be the

collection formed by s copies of the unique path in D′ from v1 to vc. Now, (P\{Pi})∪{P′i }∪{Q}

is a solution for (D′, I′,k+s,c,s) as every vertex in V (D) occurs in at most s paths ofP . Similarly,

a solution P ′ for (D′, I′,k+ s,c,s) yields a solution for (D, I,k,s): as all vertices in {v1, . . . ,vc}

occur in s+1 paths of P ′, every vertex in V (D) can appear in at most s paths of the collection.

We now show that the construction runs in polynomial time for our choice of d(n).

By definition, if d(n) = Ω(nα) then there are positive constants a and n0 such that

d(n) ≥ a · nα for all n ≥ n0, and we can assume that |V (D)| ≥ n0 since DDPC is solvable in

constant time on instances of fixed size through a brute force algorithm. In the construction,

we generate an instance of DEDP in a digraph D′ such that |V (D′)|= |V (D)|+ c and thus, to

satisfy d(|V (D′)|) = |V (D)|, we want to choose c such that d(|V (D)|+c) = |V (D)|. Now, by the

choice of d(n) we get that d(|(V (D′)|+ c)≥ a · (|V (D)|+ c)α and therefore our goal is satisfied

choosing c such that |V (D)| ≥ a · (|V (D)|+ c)α or, equivalently, c≤ (|V (D)|/a)1/α −|V (D)|=

O(|V (D)|1/α).

Next, we show that (d)-DEDP is W[1]-hard, even when the input graph is acyclic

and all source vertices of the request set are the same. The reduction is from the INDEPENDENT

SET problem parameterized by the size of the solution, which is W[1]-hard [6, 34].

Theorem 4.2.2. The DEDP problem is W[1]-hard with parameter d for every fixed s≥ 0, even

when the input graph is acyclic and all source vertices in the request set are the same.

Proof. Let (G,d) be an instance of the INDEPENDENT SET problem, in which we want to decide

whether the (undirected) graph G contains an independent set of size at least d, and s be a

non-negative integer. Let V E be the set {ve | e ∈ E(G)} and D a directed graph with vertex set

V (G)∪{r}∪V E . Add to D the following edges:

• for every v ∈V (G), add the edge (r,v); and

• for every edge e ∈ E(G) with endpoints u and w, add the edges (u,ve) and (w,ve).

Finally, for every ve ∈ V E , add 2s+ 1 copies of the pair (r,ve) to I. Figure 22 illustrates this

construction.

71

u w

r

ve

Figure 22 – Example of the construction from Theorem 4.2.2 with s = 1 and e = (u,w). A
dashed line indicates a request in I.

Notice that each vertex ve of D associated with an edge E of D has out-degree zero

in D and r has in-degree zero. Moreover, every edge of D has as extremity either r or a vertex of

the form ve. Thus D is a acyclic, as desired. Furthermore |S(I)|= 1 since all of its elements are

of the form (r,ve), for e ∈ E(G). We now show that (G,d) is positive if and only if (D, I,k,c,s)

is positive, where k = |I|= m · (2s+1).

For the necessity, let X be an independent set of size d in G. Start with a collection

P = /0. We classify the edges of G into two sets: the set E1 containing all edges with both

endpoints in V (G)\X , and the set E2 containing all edges with exactly one endpoint in X . Now,

for each e ∈ E1, chose arbitrarily one endpoint u of e and add to P 2s+1 copies of the path in D

from r to ve using u. For each e ∈ E2 with e = (u,w) and w 6∈ X , add to P 2s+1 copies of the

path in D from r to ve using w. Since X is an independent set, no vertex in X occurs in any path

of P , and since E(G) = E1∪E2, P satisfies I and the necessity follows as c = n−d.

Let P be a solution for (D, I,k,c,s) and X ⊆V (D) be a set of vertices with |X |= d

and such that each vertex of X occurs in at most s paths of P . Such choice is possible since

d = n−c. For contradiction, assume that X is not an independent set in G. Then there is an edge

e ∈ E(G) with e = (u,w) and u,w ∈ X , and 2s+1 copies of the request (r,ve) in I. Thus each

path satisfying one of those requests uses u or w, but not both, and therefore either u or w occurs

in at least s+1 paths of P , a contradiction. We conclude that X is an independent set in G and

the sufficiency follows.

4.3 Algorithms for DEDP

In this section we focus on algorithmic results for DEDP. In Theorem 4.2.1 we

showed that DEDP is NP-complete for every fixed k ≥ 3 and a large range of values of c. We

also showed that considering only d as a parameter is still not enough to improve the tractability

of the problem: Theorem 4.2.2 shows that (d)-DEDP is W[1]-hard in DAGs even if all requests

share the same source. Thus DEDP is as hard as the DIRECTED DISJOINT PATHS problem

72

when k is not a parameter. Here we show that, similarly to the latter, DEDP admits an XP

algorithm when parameterized by the number of requests and the directed tree-width of the input

digraph. Then, we show how the tractability of DEDP improves when we consider stronger

parameterizations including d. Namely, we show that DEDP is XP with parameters d and s (cf.

Theorem 4.3.12), and FPT with parameters k and d (hence s as well, since we may assume that

k > s as discussed in Section 4.1; cf. Theorem 4.3.21). It is worth mentioning that this kind

of dual parameterization (remember that d = n− c) has proved useful in order to improve the

tractability of several notoriously hard problems (cf. for instance [27, 75–78]).

In Section 4.3.1 we apply the ideas and results used by Johnson et al [24] to show

an XP algorithm for the DIRECTED DISJOINT PATHS problem parameterized by the number

of requests in digraphs of bounded directed tree-width to show that a similar result holds for

DEDP. In Section 4.3.2 we show our algorithms for parameterizations of DEDP including d as

a parameter.

4.3.1 An XP algorithm with parameters k and dtw(D)

The algorithm consists of dynamic programming along an arboreal decomposition of

the input graph. Following the notation used by Johnson et al. [24], we refer to the information

we want to compute at every step of the algorithm as an itinerary. We provide a formal definition

for an itinerary for DEDP later. We recall that a set of vertices S is w-guarded if S is Z-guarded

for some Z with |Z| ≤ w (cf. Definition 2.3.1).

Johnson et al. [24] provided two conditions that, if satisfied by a given problem, are

sufficient to provide an XP algorithm for it in digraphs with bounded directed tree-width. More

precisely, for a digraph D with dtw(D) = w, they ask that there is a real number α depending

on w (and possibly some parameters of the problem, if any) and two algorithms satisfying the

following conditions.

Condition 4.3.1 (Johnson et al. [24]). Let A,B be two disjoint subsets of V (D) such that there

are no edges in D with head in A and tail in B. Then an itinerary for A∪B can be computed from

an itinerary for A and an itinerary for B in time O(nα).

Condition 4.3.2 (Johnson et al. [24]). Let A,B be two disjoint subsets of V (D) such that A is

w-guarded and |B| ≤ w. Then an itinerary for A∪B can be computed from an itinerary for A

and an itinerary for B in time O(nα).

73

Using this notation, the following theorem says how to compute an itinerary for

V (D).

Theorem 4.3.3 (Johnson et al. [24]). Provided that Conditions 4.3.1 and 4.3.2 hold, there is

an algorithm running in time O(nα+1) that receives as input a digraph D and an arboreal

decomposition for D with width at most w and outputs an itinerary for V (D).

In [24] an XP algorithm for the DIRECTED DISJOINT PATHS problem in digraphs

of bounded directed tree-width is given as an example of application of the aforementioned

tools, and a similar approach is claimed to work for the HAMILTON PATH, HAMILTON PATH

WITH PRESCRIBED ENDS, EVEN CYCLE THROUGH A SPECIFIED VERTEX problems, and

others. We follow their ideas to provide an XP algorithm for (k,w)-DEDP, where w is the

directed tree-width of the input digraph. The main idea, formalized by the following definition

and lemma, is that the number of weak components in the digraph formed by the union of the

paths in a collection P satisfying the request set is bounded by a function depending on k and

w only. Thus we can guess how the paths in P cross a set of vertices A that is w-guarded and

use an arboreal decomposition of the input digraph to propagate this information in a dynamic

programming scheme. We use the following definition.

Definition 4.3.4. Let D be a digraph and P be a collection of paths in D. We denote by D(P)

the digraph formed by the union of all paths in P .

Definition 4.3.5 (Limited collections). Let I be a request set in a digraph D with |I| = k and

P be a collection of paths satisfying I.We say that P is (k,w,S)-limited, for some S⊆V (D), if

D(P)⊆ D[S] and for every w-guarded set S′ ⊆ S, the digraph induced by V (D(P))∩S′ has at

most (w+1) · k weak components.

The following lemma is inspired by [24, Lemma 4.5] and is key to the algorithm.

Lemma 4.3.6. Let I be a request set of size k in a digraph D and w be an integer. Then every

collection of paths P satisfying I is (k,w,S)-limited for every S⊆V (D) containing all paths in

P .

Proof. Let k = |I| and S be as in the statement of the lemma and S′ be a w-guarded subset of S. By

the definition of w-guarded sets, there is a set Z ⊆V (D) with |Z| ≤ w such that S′ is Z-guarded.

For i ∈ [k], let Qi be the collection of paths formed by the subpaths of Pi intersecting S′. Thus,

74

D(Qi) consists of the union of subpaths of Pi. Let qi be the number of weak components of

D(Qi). Since S′ is Z-guarded, each subpath of Pi linking two distinct weak components of D(Qi)

must intersect Z. Thus, |V (Pi)∩Z| ≥ qi−1 and qi ≤ w+1 since a vertex of Z can be in all paths

of P . We conclude that ∑i∈[k] qi ≤ (w+1) · k, as desired.

We now formally define an itinerary for DEDP. From this point forward, we say that

a request set I in a digraph D is contained in A if every vertex occurring in I is contained in A.

Definition 4.3.7 (Itinerary). Let Γ be an instance of DEDP with Γ = (D, I,k,c,s), A⊆V (D),

and IA be the set of all request sets on D which are contained in A. For an integer w, a

(Γ,w)-itinerary for A is a function fA : IA×N→{0,1} such that fA(I′,c′) = 1 if and only if

(i) k′ ≤ (w+1) · k, for k′ = |I′|;

(ii) c′ ≤ c; and

(iii) the instance (D[A], I′,k′,c′,s) of DEDP is positive.

With this notation, an instance (D, I,k,c,s) is positive if and only if fV (D)(I,c′) = 1

for some c′ ≤ c. We now provide algorithms satisfying Conditions 4.3.1 and 4.3.2 for the given

definition of an itinerary for DEDP. By Lemma 4.3.6, we need to consider only request sets

of size at most (w+1) · k whenever the input digraph has directed tree-width at most w in the

following lemmas. We follow the proofs given by Johnson et al. [24], adapting them to our case.

For every t ∈ [n], the authors show how to compute a solution containing at most t vertices for a

given instance of the DIRECTED DISJOINT PATHS problem, if one exists, or to decide that no

such solution exists. We drop this demand in our algorithm, and instead include the restriction

on the congestion c.

Lemma 4.3.8. Let Γ be an instance of DEDP with Γ = (D, I,k,c,s) and A,B be disjoint subsets

of V (D) such that there are no edges in D with head in A and tail in B. Then a (Γ,w)-itinerary

for A∪B can be computed from itineraries for A and B in time O(n4(w+1)·k+3).

Proof. Let fA and fB be (Γ,w)-itineraries for A and B, respectively. Given a request set L

contained in A∪B, with L = {(s1, t1), . . . ,(s`, t`)} and `≤ (w+1) · k, and an integer c′ ∈ [c], we

show how to correctly define fA∪B(L,c′) by looking at fA, fB, and the edges in D from A to B.

If L is contained in A we set fA∪B(L,c′) = fA(L,c′) as there are no edges from B to

A in D, and set fA∪B(L,c′) = fB(L,c′) if L is contained in B. If there is a pair (s, t) ∈ L such that

s ∈ B and t ∈ A, we set fA∪B(L,c′) = 0. Assume now that no such pairs exist in L and that L is

not contained in A nor in B.

75

Define LA = LB = /0. For i ∈ [`], do the following:

1. If si ∈ A and ti ∈ A, define sA
i = si, tA

i = ti and include the pair (sA
i , t

A
i) in LA.

2. If si ∈ B and ti ∈ B, define sB
i = si, tB

i = ti and include the pair (sB
i , t

B
i) in LB.

3. If si ∈ A and ti ∈ B, define sA
i = si, tB

i = ti, choose tA
i ∈ A and sB

i ∈ B arbitrarily in such

way that there is an edge from tA
i to sB

i in D, include (sA
i , t

A
i) in LA and (sB

i , t
B
i) in LB.

Figure 23 illustrates this construction. Now, for c′ ∈ [c], if fA(LA,c1) = fB(LB,c2) = 1 for some

sA
1 tA

1

sA
2 tA

2 sB
2 tB

2

sB
3 tB

3

A B

Figure 23 – Example of the construction from Lemma 4.3.8.

c1, c2 with c1 + c2 ≤ c′, then we set fA∪B(L,c′) = 1. Otherwise, we repeat the procedure used

to construct LA and LB with a different choice for tA
i and/or sB

i in the third step. If all possible

choices of LA,LB,c1, and c2 have been considered this way, we set fA∪B(L,c′) = 0. We now

show that this definition of fA∪B(L,c′) is correct.

Consider the instance (D[A∪B],L, `,c′,s) of DEDP, let k1 = |LA|, and k2 = |LB|. If

it is positive, then for some choice of LA, LB, c1, and c2, there are collections of paths PA and PB

and integers c1 and c2 such that PA and PB are solutions for the instances (D[A],LA,k1,c1,s) and

(D[B],LB,k2,c2,s) of DEDP, respectively. Thus, fA(LA,c1) = fB(LB,c2) = 1 since LA and LB are

at most as large as L. Conversely, if the above equation holds for some choice of LA,LB,c1, and

c2 such that c1 + c2 ≤ c′, we can construct a solution for the instance on D[A∪B] by considering

the union of a solution for (D[A],LA,k1,c1,s) with a solution for (D[B],LB,k2,c2,s), together

with edges from targets of LA to sources of LB which where considered in step 3 described above.

We conclude that the instance (D[A∪B],L, `,c′,s) is positive if and only if there are integers c1,

c2 and request sets LA, LB such that c1 + c2 ≤ c and

fA(LA,c1) = fB(LB,c2) = 1.

By definition, to compute a (Γ,w)-itinerary for A∪B we need to consider every

request set of size at most (w+1) · k contained A∪B. Thus there are n2(w+1)·k choices of L. By

construction, there are at most n2(w+1·k) choices for LA and LB in total since we need to choose

76

u1

v1

u2

v2

u3

v3

u4

v4

u5

v5

s t

Figure 24 – Collections PA and PB. A continuous line represents a piece of P contained in A
and a dashed line represents a piece of P contained in B.

only the vertices tA
i and sB

i in step 3 of the construction of those requests sets. Finally, since

c′ ∈ [c] and c < n, the bound on the running time follows.

Lemma 4.3.9. Let Γ be an instance of DEDP with Γ = (D, I,k,c,s) and A,B ⊆ V (D) such

that A is w-guarded and |B| ≤ w. Then a (Γ,w)-itinerary for A∪B can be computed from

(Γ,w)-itineraries for A and B in time O(n4(w+1)·k+2).

Proof. Let fA be a (Γ,w)-itinerary for A, L be a request set contained in A∪ B with L =

{(s1, t1), . . . ,(s`, t`)} and `≤ (w+1) · k, and Γc′ be the instance (D[A∪B],L, `,c′,s) of DEDP,

for c′ ∈ [c].

For each pair (s, t) ∈ L, a path from s to t in D[A∪B] in a solution for Γc′ may be

entirely contained in A, entirely contained in B, or it may intersect both A and B. We can test if

there is a solution for Γc′ whose paths are all contained in A by verifying the value of fA(L,c′),

and in time O(2w·`) we can test if there is a solution for Γc′ that is entirely contained in B, since

|B| ≤ w. We now consider the case where all solutions for Γc′ contain a path intersecting both A

and B.

Suppose that P is a path from s to t in a solution P for Γc′ . Let PA be the set of

subpaths of P which are contained in A, with PA = {PA
1 , . . . ,P

A
a }, and, for i ∈ [a], let ui and vi be

the first and last vertices occurring in PA
i , respectively. Furthermore, let PB be the collection of

subpaths of P contained in B∪(
⋃

i∈[a]{ui,vi}). Then PB is a collection of disjoint paths satisfying

the request set {(v1,u2), . . . ,(va−1,ua)}, together with (s,u1) if s ∈ B and (va, t) if t ∈ B, such

that each path of PB has its extremities in B∪{u1,v1, . . . ,ua,va} and all internal vertices in B.

Figure 24 illustrates this case.

The number of such collections is a function depending on a and w only and, by

Lemma 4.3.6 and our assumption that A is w-guarded, we can assume that a≤ (w+1) · k. We

show how we can test whether there is a solution for Γc′ using an itinerary for A and, for each

(s, t) ∈ L, searching for a collection PB as described above. Intuitively, we want to guess how

77

the paths in a solution for Γc′ intersect A and how those pieces can be connected through B.

For i ∈ [`], let Li = {(ui
1,v

i
1), . . . ,(u

i
`i
,vi

`i
)} and LA = L1∪L2∪·· ·∪L` (keeping each

copy of duplicated entries) such that

1. ui
1 = si and vi

`i
= ti, for i ∈ [`];

2. all vertices occuring in Li are in A except possibly ui
1 and vi

`i
(which may occur in A∪B);

and

3. |LA| ≤ (w+1) · k.

By Lemma 4.3.6, we only need to consider request sets of size at most (w+1) · k in

A∪B since every solution for Γ has at most (w+1) · k weak components in A. Let B+ be the set

formed by the union of B with all vertices occurring in LA and in

LB =
⋃

i∈[`]
{(vi

j,u
i
j+1) | j ∈ [`i−1]}.

That is, for each pair (ui
j,v

i
j) ∈ LA that we want to satisfy in A, we want to link this subpath in a

(possible) solution for Γc′ to the next one through a path in B+ satisfying the pair (vi
j,u

i
j+1) ∈ LB.

We claim that there is a solution for Γc′ if and only if, for some choice of LA, c1, and LB, we have

fA(LA,c1) = 1 and a collection of paths PB satisfying LB in D[B+] such that

(a) every path of PB starts and ends in B+ \B and has all of its internal vertices in B; and

(b) at most c− c1 vertices of B occur in more than s paths of PB.

For the necessity, we can choose LA and LB as described above in this proof. For the

sufficiency, let `A = ∑i∈[`] `i and PA be a solution for the instance (D[A],LA, `A,c1,s) of DEDP,

with PA = {P1, . . . , P̀ A}. Now, since the paths in this collection are not necessarily disjoint,

we are guaranteed to find only a directed walk from si to ti for each pair (si, ti) ∈ L by linking

(through the paths in B+) the endpoints of the paths in the collection satisfying Li, with i ∈ [`].

However, every such directed walk contains a path from si to ti whose set of vertices is contained

in the set of vertices of the walk. Thus by following those directed walks and choosing the paths

appropriately, we can construct a solution for Γc′ , since shortening the walks can only decrease

the number of vertices occurring in s+1 or more paths of the collection.

The number of collections PB for which (a) and (b) hold is O(2w·`) and thus depend-

ing on k and w only, since ` ≤ (w+1) · k. Since |A| ≤ n, c ≤ n, and the number of itineraries

contained in A∪B is at most n4(w+1)·k, the bound on the running time follows.

Finally, we obtain the XP algorithm combining Lemmas 4.3.8 and 4.3.9 together

with Theorem 4.3.3.

78

Theorem 4.3.10. The DEDP problem is solvable in time O(n4(w+1)·k+3) in digraphs of directed

tree-width at most w.

4.3.2 Algorithms for the dual parameterization

We now show our algorithmic results for stronger parameterizations of DEDP

including d as a parameter. The following definition is used in the description of the algorithms

of this section.

Definition 4.3.11. Let D be a graph, I be a request set with I = {(s1, t1), . . . ,(sk, tk)}, and s be an

integer. We say that a set X ⊆V (D) is s-viable for I if there is a collection of paths P satisfying

I such that each vertex of X occurs in at most s paths of P . We also say that P is certifying X.

Thus an instance (D, I,k,c,s) of DEDP is positive if and only if D contains an

s-viable set X with |X | ≥ d. In other words, we want to find a set of vertices X of size at least d

such that there is a collection of paths P satisfying I that is “well-behaved” inside of X ; that is,

the paths of P may intersect freely outside of X , but each vertex of X must be in at most s paths

of P . When s = 1, for instance, instead of asking for the paths to intersect only inside a small set

of vertices (size at most c), we ask for them to be disjoint inside a large set of vertices (size at

least d). Since we now consider d as a parameter instead of c, from this point onwards we may

refer to instances of DEDP as (D, I,k,d,s).

Theorem 4.3.12. There is an algorithm running in timeO(nd+2 ·kd·s) for the DISJOINT ENOUGH

DIRECTED PATHS problem.

Proof. Let D be a graph on n vertices and (D, I,k,d,s) be an instance of DEDP. Notice that if X

is s-viable for I, then any proper subset of X is also s-viable for I. Therefore, we can restrict our

attention to sets of size exactly d.

If s = 0, it is sufficient to test whether there is a d-sized set X ⊆V (D) such that there

is a collection of paths satisfying I in D\X , and this can be done in time O(nd · k ·n2).

Let now that s = 1, and I = {(s1, t1), . . . ,(sk, tk)}. We claim that a set X ⊆V (D) is

1-viable for I if and only if there is a partition X of X into sets X1, . . . ,Xk such that X \Xi is not

an (si, ti)-separator, for i ∈ [k].

Let X be as stated in the claim. For each i ∈ [k], let Pi be a path from si to ti in

D− (X \Xi). Now, {P1, . . . ,Pk} is a collection satisfying I and no pair of paths in it intersect

79

inside X . Thus X is 1-viable for I as desired. For the necessity, since X is 1-viable for I,

there is a collection of paths P1, . . . ,Pk satisfying I such that V (Pi)∩V (Pj)∩ X = /0 for all

i, j ∈ [k] with i 6= j. Thus we choose X = {X1, . . . ,Xk} with Xi = V (Pi)∩X for i ∈ [k−1] and

Xk = X \ (X1, . . . ,Xk−1) and the claim follows.

Assume now that X ⊆ V (D) with |X | = d. By the previous claim, we can check

whether X is 1-viable for I by testing whether X admits a partition into (possibly empty) sets

X1, . . . ,Xk such that X \Xi is not an (si, ti)-separator. Since Stirling(d,k) =O(kd), this yields an

algorithm in time O(nd+2 · kd) for the DEDP problem when s = 1.

For s≥ 2, let X = {v1, . . . ,vd} and construct a graph D′ from D by making s copies

v1
i , . . . ,v

s
i of each vertex vi ∈ X and adding one edge from each copy to each vertex in the

neighborhood of vi in D, respecting orientations.

For i ∈ [d], let Vi = {v1
i , . . . ,v

s
i} and X ′ =

⋃
i∈[d]Vi. Now, there is a collection of paths

P satisfying I in D such that each vertex in X is in at most s paths of P if and only if there is a

collection of paths P ′ in D′ such that no vertex in X ′ occurs in more than one path of P ′. To test

whether a given X is s-viable for I with s≥ 2, we can just test whether X ′ is 1-viable for I in D′.

Since |X ′|= d · s, this yields an algorithm in time O(nd+2 · kd·s) for DEDP.

We now proceed to show that (k,d,s)-DEDP is FPT, by providing a kernel with at

most d ·2k−s ·
(k

s

)
+2k vertices. We start with some definitions and technical lemmas.

Notice that any vertex in D whose deletion disconnects more than s pairs in the

request set I cannot be contained in any set X that is s-viable for I. Hence we make use of an

operation to eliminate all such vertices from the input digraph while maintaining connectivity.

We remind the reader that, for a request set I, we denote by S(I) the set of source vertices in I

and by T (I) the set of target vertices in I (cf. Definition 2.4.2).

Definition 4.3.13 (Non-terminal vertices). Let (D, I,k,d,s) be an instance of DEDP. For a

digraph D′ such that V (D′)⊆V (D), we define V ∗(D′) =V (D′)\ (S(I)∪T (I)).

That is, V ∗(D) is the set of non-terminal (i.e., neither source nor target) vertices of D.

Definition 4.3.14 (Congested vertex and blocking collection). Let (D, I,k,d,s) be an instance

of DEDP. For X ⊆ V ∗(D), we define IX as the subset of I that is blocked by X, that is, there

are no paths from s to t in D \X for every (si, ti) ∈ IX . We say that a vertex v ∈ V ∗(D) is

an (I,s)-congested vertex of D if |I{v}| ≥ s+ 1. The blocking collection of I is the collection

{B1, . . . ,Bk} where Bi = {v ∈V ∗(D) | (si, ti) ∈ I{v}}, for i ∈ [k]. We say that D is clean for I and

80

v ⇒

Figure 25 – Bypassing a vertex v.

that (D, I,k,d,s) is a clean instance if there are no congested vertices in V ∗(D). When I and s

are clear from the context, we drop them from the notation.

We use the following operation to eliminate congested vertices of D while maintain-

ing connectivity. It is used, for instance, in [79] (as the torso operation) and in [80].

Definition 4.3.15 (Bypassing vertices and sets). Let D be a graph and v ∈V (D). We refer to the

following operation as bypassing v: delete v from D and, for each u ∈ N−(v) add one edge from

u to each vertex w ∈ N+(v). We denote by D/v the graph generated by bypassing v in D. For a

set of vertices B⊆V (D), we denote by D/B the graph generated by bypassing, in D, all vertices

of B in an arbitrary order.

Figure 25 illustrates the bypass operation. We restrict our attention to vertices in

V ∗(D) in Definition 4.3.14 because we want to avoid bypassing source or target vertices, and

work only with vertices inside V ∗(D). Since |S(I)∪T (I)| ≤ 2k, we show later that this incurs an

additive term of 2k in the size of the constructed kernel.

In [80, Lemma 3.6] the authors remark that the ending result of bypassing a set

of vertices in a digraph does not depend on the order in which those vertices are bypassed.

Furthermore, bypassing a vertex of D cannot generate a new congested vertex: if u is a congested

vertex of D/v, then u is also a congested vertex of D, for any v ∈V (D)\{u}. Thus any instance

(D, I,k,d,s) of DEDP is equivalent to the instance (D/v, I,k,d,s), if v is a congested vertex of

D, and arbitrarily bypassing a vertex of D can only make the problem harder. We formally state

those observations below.

Lemma 4.3.16. Let D be a digraph, I be a request set with I = {(s1, t1), . . . ,(sk, tk)}, s be an

integer, B be the set of (I,s)-congested vertices of D, and D′ = D/B. Then, with respect to I, X

is s-viable in D if and only if X is s-viable in D′.

Proof. Let X be an s-viable set for I in D. If X ∩B 6= /0, then at least s+1 paths of any collection

satisfying I must intersect in X , contradicting our choice for X , and hence X ⊆V (D′). Similarly,

if X ⊆V (D′) then X ∩B = /0 and the sufficiency follows.

81

Furthermore, from any solution for an instance resulting from bypassing a set of

vertices in V ∗(D), we can construct a solution for the original instance in polynomial time by

undoing the bypasses.

Remark 4.3.17. Let (D, I,k,d,s) be an instance of DEDP and Y ⊆V ∗(D). If P is a solution

for (D/Y, I,k,d,s), then (D, I,k,d,s) is positive and a solution can be constructed from P in

polynomial time.

The main ideas of the kernelization algorithm are the following. Let (D, I,k,d,s) be

an instance of DEDP and {B1, . . . ,Bk} be the blocking collection of I. First, we show that, if D

is clean for I, there is an i ∈ [k] such that |V ∗(D)\Bi| ≥ n/(k− s)k (Lemma 4.3.18). Then, we

show that if D is clean and sufficiently large, and |I|= s+1, then the instance is positive and a

solution can be found in polynomial time (Lemma 4.3.19).

Lemma 4.3.19 is used as the base case for our iterative algorithm. We start with

the first instance, say (D, I,k,d,s), and proceed through k− s+1 iterations. At each iteration,

we will choose one path from some si to its destination ti such that a large part of the graph

remains unused by any of the pairs chosen so far (by Lemma 4.3.18) and consider the request

set containing only the remaining pairs for the next iteration. We repeat this procedure until we

arrive at an instance where the number of requests is exactly s+1, and show that if n is large

enough, then we can use Lemma 4.3.19 to output a solution for the last instance. From this

solution, we extract a solution for (D, I,k,d,s) in polynomial time.

Lemma 4.3.18. Let (D, I,k,d,s) be an instance of DEDP, {B1, . . . ,Bk} be the blocking col-

lection of I, and n∗ = |V ∗(D)|. If D is clean, then there is an i ∈ [k] such that |V ∗(D/Bi)| ≥

n∗(k− s)/k and there is a path P in D/Bi from si to ti such that |V ∗(P)| ≤ |V ∗(D/Bi)|/2.

Proof. First, notice that

∑
v∈V ∗(D)

|Iv|= ∑
v∈V ∗(D)

|{Bi | v ∈ Bi}|= ∑
i∈[k]
|Bi|.

Now, if |Bi|> n∗ ·s/k for every i ∈ [k], then there must be a vertex in v such that |Iv| ≥ s+1, as in

this case ∑i∈[k] |Bi|> n∗ · s, contradicting our assumption that D is clean. We conclude that there

is an i ∈ [k] such that |Bi| ≤ n∗ · s/k and thus V ∗(D/Bi) = n∗−|Bi| ≥ n∗(k− s)/k, as desired.

The result trivially follows if there is a path P from si to ti in D/Bi with V ∗(P) = /0.

Thus we can assume that every path from si to ti in D/Bi intersects V ∗(D/Bi) (see Figure 26). Let

X = (S(I)∪T (I))\{si, ti}. By Menger’s Theorem and since no vertex in V ∗(D/Bi) intersects

82

∈ S(I)∪T (I)

si ti

Figure 26 – Three paths from si to ti in D/Bi. Square vertices are used to identify vertices in
S(I)∪T (I), which may not be bypassed.

every path from si to ti, there are two internally disjoint paths P1 and P2 from si to ti in (D/Bi)/X .

Without loss of generality, assume that P1 is the shortest of those two paths, breaking ties

arbitrarily. Then |V ∗(P1)| ≤ |V ∗(D/Bi)|/2 since P1 and P2 are disjoint, and the result follows.

Figure 27 illustrates the procedure described in Lemma 4.3.18. We find a set Bi

containing at most n∗ · s/k vertices, and bypass all of its vertices in any order. Then we argue

that a shortest path from si to ti in D/Bi avoids a large set of vertices in D.

si

ti

D/(Bi∪V ∗(P))Bi

Figure 27 – A path P from si to ti avoiding a large part of D.

Lemma 4.3.19. Let (D, I,k,d,s) be an instance of DEDP, m = |E(D)|, and n∗ =V ∗(D). If D

is clean, n∗ ≥ 2d(s+1), and k = s+1, then (D, I,k,d,s) is positive and a solution can be found

in time O(k ·n(n+m)).

Proof. Let {B1, . . . ,Bk} be the blocking collection of I and D′i =D/Bi, for i∈ [k]. By Lemma 4.3.18,

there is an i ∈ [k] such that |V ∗(D′i)| ≥ n∗/(s+1) and a path P from si to ti such that V ∗(P)≤

|V ∗(D′i)|/2. Let Di = D′i/V ∗(P). Now,

|V ∗(Di)| ≥
|V ∗(D′i)|

2
≥ n∗

2(s+1)

and since |I \{(si, ti)}|= s, we are free to choose arbitrarily any collection of paths satisfying

I \ {(si, ti)} in Di. Reversing the bypasses done in D, this collection together with Pi yields a

collection of paths satisfying I in D such that all vertices in V ∗(Di) are contained in at most s of

83

those paths. Since n∗ ≥ 2d(s+1) by hypothesis, we have that |V ∗(Di)| ≥ d as required. We can

generate the sets Bi in time O(n(n+m)) by deleting a vertex of D and testing for connectivity

between si and ti. Thus a solution can be found in time O(k ·n(n+m)), as desired.

We are now ready to show the main ingredient of the algorithm: we provide a

polynomial-time algorithm to solve large clean instances of the DISJOINT ENOUGH DIRECTED

PATHS problem.

Theorem 4.3.20. Let (D, I,k,d,s) be a clean instance of DEDP with |V ∗(D)|= n∗≥ d ·2k−s ·
(k

s

)
.

Then (D, I,k,d,s) is positive and a solution can be found in time O(k ·n2(n+m)).

Proof. Let B0 = {B1, . . . ,Bk} be the blocking collection of I. We consider B0 to be sorted in

non-decreasing order by the size of its elements and, by rearranging I if needed, we assume that

this order agrees with I. For i ∈ [k− (s+1)], we construct a sequence of sets {Di,Bi,Pi} where

n∗i = |V ∗(Di)| and

(i) Bi = {Bi+1, . . . ,Bk};

(ii) Pi is a collection of paths {P1,P2, . . . ,Pi} such that Pj is a path from s j to t j in D j, for

j ∈ [i]; and

(iii) n∗i−1 is large enough to guarantee that we can find a path from si to ti avoiding a large part

of Di−1. Formally, we want that

n∗i ≥ n∗0 ·
(k− s)(k− s−1) · · ·(k− s− i+1)

2i · k(k−1) · · ·(k− i+1)
.

We begin with D0 = D, n∗0 = n∗, and P0 = /0. Let D′1 = D0/B1. By applying

Lemma 4.3.18 with input (D0, I,k,d,s), we conclude that |V ∗(D′1)| ≥ n∗(k− s)/k and there is

a path P1 from s1 to t1 in D′1 with |V ∗(P1)| ≤ |V ∗(D′1)|/2. Let D1 = D′1/V ∗(P1) and P1 = {P1}.

Now,

n∗1 ≥
|V ∗(D′1)|

2
≥

n∗0(k− s)
2k

and conditions (i), (ii), and (iii) above hold for (D1,B1,P1). Assume that i−1 triples have been

chosen in this way.

As before, we assume that Bi−1 is sorted in non-increasing order by the size of its

elements, and that this order agrees with I \ Ii−1. Furthermore, as D0 is clean, so is Di−1.

Let D′i = Di−1/Bi. Applying Lemma 4.3.18 with input (Di−1, I \ Ii−1,k− i+1,d,s),

we conclude that |V ∗(D′i)| ≥ n∗i (k− i+1− s)/(k− i+1) and there is a path Pi from si to ti in D′i

84

with |V ∗(Pi)| ≤ |V ∗(D′i)|/2. Let Pi = Pi−1∪{Pi} and Di = D′i/Bi. Then

n∗i ≥ n∗i−1 ·
k− i+1− s
2(k− i+1)

and by our assumption that (iii) holds for ni−1 it follows that

n∗i ≥ n∗0 ·
(k− s)(k− s−1) · · ·(k− s− i+2)

2i−1k(k−1) · · ·(k− i+2)
·
(

k− s− i+1
2(k− i+1)

)
= n∗0 ·

(k− s)(k− s−1) · · ·(k− s− i+1)
2i · k(k−1) · · ·(k− i+1)

,

as desired and thus (i), (ii), and (iii) hold for (Di,Bi,Pi). The algorithm ends

after iteration k− (s+ 1). Following this procedure, we construct the collection Pk−(s+1) =

{P1,P2, . . . ,Pk−(s+1)} satisfying (ii) and the graph Dk−(s+1) with nk−(s+i) satisfying (iii). Noticing

that |I\Ik−(s+1)|= s+1 (that is, only s+1 pairs in I are not accounted for inPk−(s+1)), it remains

to show that our choice for n∗ is large enough so that we are able to apply Lemma 4.3.19 on the

instance (Dk−(s+1), I− Ik−(s+1),s+1,d,s) of DEDP. That is, we want that n∗k−(s+1) ≥ 2d(s+1).

By (iii) it is enough to show that

n∗k−(s+1) ≥ n∗0 ·
(k− s)(k− s−1) · · ·3 ·2

2k−(s+1) · k(k−1) · · ·(s+3)(s+2)
≥ 2d · (s+1),

and rewriting both sides of the fraction as k! and k!/(s+1)!, respectively, we get

n0 ·
(k− s)!
2k−(s+1)

≥ 2d · (s+1) · k!
(s+1)!

=
2d · k!

s!
,

which holds for

n0 ≥

(
2k−(s+1) ·2d · (s+1)

(s+1)!

)
·
(

k!
(k− s)!

)
= d ·2k−s ·

(
k
s

)
,

as desired.

Applying Lemma 4.3.19 with input (Dk−(s+1), I \ Ik−(s+1),s+1,d,s) yields a collec-

tion P̂ satisfying I \ Ik−(s+1) and a set X ⊆V (D) of size d such that X is disjoint from all paths

in Pk−(s+1), since all vertices in V ∗(P) were bypassed in Dk−(s+1) for every P ∈ Pk−(s+1), and

all vertices in X occur in at most s paths of P̂ . We can construct a collection of paths satisfying

I from P̂ ∪Pk−(s+1) by reversing all the bypasses done in D and connecting appropriately the

paths in the collections (see Remark 4.3.17). We output this newly generated collection as a

solution for (D, I,k,d,s).

For the running time, let m = |(E(D)|. We need timeO(k logk) to order the elements

of B0, O(k · n(n+m)) to find the sets Bi, for i ∈ [k], and O(n+m) to find each of the paths

{P1, . . . ,Pk}. Hence the algorithm runs in time O(k ·n2(n+m)).

85

We acknowledge that it is possible to prove Theorem 4.3.20 without using Lemma 4.3.19

by stopping the iteration at the digraph Dk−s instead of Dk−s−1. However we believe it is easier

to present the proof of Theorem 4.3.20 by having separate proofs for the iteration procedure

(Lemma 4.3.18) that aims to generate an instance of DEDP for which we can apply our base

case (Lemma 4.3.19).

Since any instance can be made clean in polynomial time, the kernelization algorithm

for (k,d,s)-DEDP follows easily. Given an instance (D, I,k,d,s), we bypass all congested

vertices of D to generate D′. If |V ∗(D′)| is large enough to apply Theorem 4.3.20, the instance is

positive and we can find a solution in polynomial time. Otherwise, we generated an equivalent

instance (D′, I,k,d,s) with |V (D′)| bounded from above by a function depending on k,d, and

s only. As we restrict |S(I)∪T (I)| ≤ 2k, if D is clean and V (D)≥ d ·2k−s ·
(k

s

)
+2k we get the

desired bound for |V ∗(D)|. Thus, the following is a direct corollary of Theorem 4.3.20.

Theorem 4.3.21. There is a kernelization algorithm running in time O(k ·n2(n+m)) that, given

an instance (D, I,k,d,s) of DEDP, outputs either a solution for the instance or an equivalent

instance (D′, I,k,d,s) with |V (D′)| ≤ d ·2k−s ·
(k

s

)
+2k.

4.4 Concluding remarks

We introduced the DISJOINT ENOUGH DIRECTED PATHS problem and provided a

number of hardness and algorithmic results, summarized in Table 1. Several questions remain

open.

We showed that DEDP is NP-complete for every fixed k ≥ 3 and s≥ 1. We do not

know whether DEDP is also NP-complete for k = 3 and s = 2.

We provided an algorithm running in time O(nd+2 · kd·s) to solve the problem. This

algorithm tests all partitions of a given X ⊆V (D) in search for one that respects some properties.

Since there are at most
(n

d

)
subsets of V (D) of size d, this yields an XP algorithm. The second

term on the time complexity comes from the number of partitions of X we need to test. The

problem may become easier if X is already given or, similarly, if d is a constant. In other words,

is the (s)-DEDP problem FPT for fixed d?

Our main result is a kernel with at most d · 2k−s ·
(k

s

)
+ 2k vertices. The natural

question is whether the problem admits a polynomial kernel with parameters k, d, and s, or even

for fixed s. Notice that if there is a constant ` such that k− s = `, then the size of the kernel

86

is d ·2` · k`, which is polynomial on d and k. The case s = 0 is also particularly interesting, as

DEDP with s = 0 is equivalent to the STEINER NETWORK problem. In this case, we get a kernel

of size at most d ·2k +2k.

While we do not know whether (k,d,s)-DEDP admits a polynomial kernel, at least

we are able to prove that a negative answer for s = 0 is enough to show that (k,d,s)-DEDP is

unlikely to admit a polynomial kernel for any value of s ≥ 1 when k is “far” from s, via the

following polynomial time and parameter reduction.

Remark 4.4.1. For any instance (D, I,k,d,0) of DEDP and integer s > 0, one can construct in

polynomial time an equivalent instance (D, I′,k′,d,s) of DEDP with k′ = k · (d · s+1).

Proof. For a request set I in D, let I′ be the request set in D formed by d · s+1 copies of each

pair in I and let k′ = k · (d · s+1). We claim that an instance (D, I,k,d,0) of DEDP is positive if

and only if the associated instance (D, I′,k′,d,s), also of DEDP, is positive.

From any solution P for the first instance, we can construct a solution for the second

by taking d · s+1 copies of each path in P and thus the necessity holds. For the sufficiency, let

X be a s-viable set for (D, I′,k′,d,s) with certifying collection P ′. By the construction of I′ and

since at most d · s paths in P ′ can intersect X , we conclude that there is path P ∈ P ′ from s to t

in D\X for each pair (s, t) ∈ I. Choosing all such paths we construct a collection P satisfying I

in D\X and the result follows.

In the undirected case, the STEINER TREE problem is unlikely to admit a polynomial

kernel parameterized by k and c, with c = n− d (in other words, the size of the solution); a

simple proof for this result can be found in [6, Chapter 15]. Even if we consider a stronger

parameter (that is, d instead of c), dealing with directed graphs may turn the problem much

harder. We also remark that the problem admits a polynomial kernel in the undirected case if the

input graph is planar [81]. It may also be the case for directed graphs.

87

REFERENCES

1 ROBERTSON, N.; SEYMOUR, P. D. Graph minors. XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B, Orlando, v. 63, n. 1, p. 65–110, 1995.

2 FORTUNE, S.; HOPCROFT, J.; WYLLIE, J. The directed subgraph homeomorphism
problem. Theoretical Computer Science, Amsterdam, v. 10, n. 2, p. 111–121, 1980.

3 SLIVKINS, A. Parameterized tractability of edge-disjoint paths on directed acyclic graphs.
SIAM Journal on Discrete Mathematics, Philadelphia, v. 24, n. 1, p. 146–157, 2010.

4 KAWARABAYASHI, K.-i.; KREUTZER, S. The Directed Grid Theorem. In: ACM
SYMPOSIUM ON THEORY OF COMPUTING, 47., 2015, Portland. Proceedings ... New
York: Association for Computing Machinery, 2015. p. 655–664.

5 ROBERTSON, N.; SEYMOUR, P. D. Graph minors. V. Excluding a planar graph. Journal
of Combinatorial Theory, Series B, Orlando, v. 41, n. 01, p. 92–114, 1986.

6 CYGAN, M.; FOMIN, F. V.; KOWALIK, L.; LOKSHTANOV, D.; MARX, D.; PILIPCZUK,
M.; PILIPCZUK, M.; SAURABH, S. Parameterized algorithms. London: Springer, 2015.

7 KARP, R. M. Reducibility among combinatorial problems. In: MILLER, R. E.; THATCHER,
J. W. (orgs.). Complexity of computer computations. New York: Springer US, 1972. p.
85–103.

8 DOWNEY, R. G.; FELLOWS, M. R. Fixed-parameter tractability and completeness ii: On
completeness for W[1]. Theoretical Computer Science, Orlando, v. 141, n. 1, p. 109 – 131,
1995.

9 DREYFUS, S. E.; WAGNER, R. A. The steiner problem in graphs. Networks, Hoboken, v. 1,
n. 3, p. 195–207, 1971.

10 BOUSQUET, N.; DALIGAULT, J.; THOMASSÉ, S. Multicut is FPT. SIAM Journal on
Computing, Philadelphia, v. 47, n. 1, p. 166–207, 2018.

11 MARX, D.; RAZGON, I. Fixed-parameter tractability of multicut parameterized by the size
of the cutset. SIAM Journal on Computing, Philadelphia, v. 43, n. 2, p. 355–388, 2014.

12 GUO, J.; NIEDERMEIER, R.; SUCHÝ, O. Parameterized complexity of arc-weighted
directed steiner problems. SIAM Journal on Discrete Mathematics, Philadelphia, v. 25, n. 2, p.
583–599, 2011.

13 PILIPCZUK, M.; WAHLSTRÖM, M. Directed Multicut is W[1]-hard, even for four
terminal pairs. ACM Transactions on Computation Theory, New York, v. 10, n. 3, p.
13:1–13:18, 2018.

14 FELDMANN, A. E.; MARX, D. The complexity landscape of fixed-parameter directed
steiner network problems. In: INTERNATIONAL COLLOQUIUM ON AUTOMATA,
LANGUAGES, AND PROGRAMMING, 43., 2016, Orlando. Proceedings ... Dagstuhl: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, v. 53, 2016. p. 27:1–27:14.

15 BERTELE, U.; BRIOSCHI, F. Nonserial dynamic programming. Orlando: Academic
Press Inc., 1972.

88

16 HALIN, R. S-functions for graphs. Journal of Geometry, London, v. 8, n. 1, p. 171–186,
1976.

17 CAMPOS, V.; LOPES, R.; MAIA, A. K.; SAU, I. Adapting the Directed Grid Theorem
into an FPT algorithm. In: LATIN AND AMERICAN ALGORITHMS, GRAPHS AND
OPTIMIZATION SYMPOSIUM, 10., 2019, Belo Horizonte. Proceedings ... Belo Horizonte:
Electronic Notes in Theoretical Computer Science, v. 346, 2019. p. 229–240.

18 CHEKURI, C.; CHUZHOY, J. Polynomial bounds for the grid-minor theorem. Journal of
the ACM, New York, v. 63, n. 5, p. 40:1–40:65, 2016.

19 CHUZHOY, J.; TAN, Z. Towards tight(er) bounds for the Excluded Grid Theorem.
In: SYMPOSIUM ON DISCRETE ALGORITHMS, 30., 2019, San Diego. Proceedings ...
Philadelphia: Society for Industrial and Applied Mathematics, 2019. p. 1445–1464.

20 FOMIN, F. V.; DEMAINE, E. D.; HAJIAGHAYI, M. T.; THILIKOS, D. M.
Bidimensionality. In: KAO, M. (org.) Encyclopedia of algorithms. New York: Springer US,
2016. p. 203–207.

21 DEMAINE, D.; FOMIN, V.; HAJIAGHAYI, M.; THILIKOS, D. M. Subexponential
parameterized algorithms on bounded-genus graphs and H-minor-free graphs. Journal of the
ACM, New York, v. 52, n. 6, p. 866–893, 2005.

22 ROBERTSON, N.; SEYMOUR, P. D. Graph minors. XXI. Graphs with unique linkages.
Journal of Combinatorial Theory, Series B, Orlando, v. 99, n. 3, p. 583–616, 2009.

23 ROBERTSON, N.; SEYMOUR, P. D. Graph Minors. XXII. Irrelevant vertices in linkage
problems. Journal of Combinatorial Theory, Series B, Orlando, v. 102, n. 2, p. 530–563, 2012.

24 JOHNSON, T.; ROBERTSON, N.; SEYMOUR, P. D.; THOMAS, R. Directed tree-width.
Journal of Combinatorial Theory, Series B, Orlando, v. 82, n. 01, p. 138–154, 2001.

25 LOPES, R.; SAU, I. A relaxation of the Directed Disjoint Paths problem: a global
congestion metric helps. In: INTERNATIONAL SYMPOSIUM ON MATHEMATICAL
FOUNDATIONS OF COMPUTER SCIENCE, 45., 2020, Prague. Proceedings ... Dagstuhl:
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, v. 170, 2020. p. 66:1–66:15.

26 LYNCH, J. F. The equivalence of theorem proving and the interconnection problem. ACM
SIGDA Newsletter, New York, v. 5, n. 3, p. 31–36, 1975.

27 AMIRI, S. A.; KREUTZER, S.; MARX, D.; RABINOVICH, R. Routing with congestion in
acyclic digraphs. Information Processing Letters, Amsterdam, v. 151, 2019.

28 SCHRIJVER, A. Finding k disjoint paths in a directed planar graph. SIAM Journal on
Computing, Philadelphia, v. 23, n. 4, p. 780–788, 1994.

29 CYGAN, M.; MARX, D.; PILIPCZUK, M.; PILIPCZUK, M. The planar Directed
k-Vertex-Disjoint Paths problem is fixed-parameter tractable. In: IEEE SYMPOSIUM ON
FOUNDATIONS OF COMPUTER SCIENCE, 54., 2013, Berkley. Proceedings ... Washington:
IEEE Computer Society, 2013. p. 197–206.

30 BONDY, A.; MURTY, M. R. Graph theory. London: Springer-Verlag, 2008.

89

31 MENGER, K. Zur allgemeinen kurventheorie. Fundamenta mathematicae, Warszawa,
v. 10, n. 1, p. 96–115, 1927.

32 BOYADZHIEV, K. N. Close encounters with the Stirling Numbers of the second kind.
Mathematics Magazine, Washington, v. 85, n. 4, p. 252–266, 2012.

33 DOWNEY, R. G.; FELLOWS, M. R. Parameterized complexity. New York:
Springer-Verlag, 1999.

34 DOWNEY, R. G.; FELLOWS, M. R. Fundamentals of parameterized complexity.
London: Springer-Verlag, 2013.

35 ARNBORG, S.; CORNEIL, D. G.; PROSKUROWSKI, A. Complexity of finding
embeddings in a k-tree. SIAM Journal on Algebraic Discrete Methods, Philadelphia, v. 8,
n. 2, p. 277–284, 1987.

36 BODLAENDER, H. L. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, Philadelphia, v. 25, n. 6, p. 1305–1317, 1996.

37 ROBERTSON, N.; SEYMOUR, P. Graph minors. II. algorithmic aspects of tree-width.
Journal of Algorithms, Orlando, v. 7, n. 3, p. 309–322, 1986.

38 COURCELLE, B. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Information and Computation, Amsterdam, v. 85, n. 1, p. 12–75, 1990.

39 ROBERTSON, N.; SEYMOUR, P.; THOMAS, R. Quickly excluding a planar graph.
Journal of Combinatorial Theory, Series B, Orlando, v. 62, n. 2, p. 323–348, 1994.

40 GU, Q.-P.; TAMAKI, H. Improved bounds on the planar branchwidth with respect to the
largest grid minor size. Algorithmica, London, v. 64, n. 3, p. 416–453, 2012.

41 REED, B. Introducing directed tree-width. Electronic Notes in Discrete Mathematics,
Amsterdam, v. 3, p. 222–229, 1999.

42 OLIVEIRA, M. O. An algorithmic metatheorem for directed treewidth. Discrete Applied
Mathematics, Amsterdam, v. 204, p. 49–76, 2016.

43 BODLAENDER, H. L. Treewidth: characterizations, applications, and computations. In:
INTERNATIONAL WORKSHOP ON GRAPH-THEORETIC CONCEPTS IN COMPUTER
SCIENCE, 32., 2006, Bergen. Proceedings ... London: Springer, 2006. p. 1–14.

44 KOSTER, A.; HOESEL, S. van; KOLEN, A. Solving frequency assignment problems via
tree-decomposition. Electronic Notes in Discrete Mathematics, Amsterdam, v. 3, p. 102–105,
1999.

45 COOK, W.; SEYMOUR, P. D. Tour merging via branch-decompositions. INFORMS
Journal on Computing, Catonsville, v. 15, p. 233–248, 2003.

46 GROHE, M.; KAWARABAYASHI, K.-i.; MARX, D.; WOLLAN, P. Finding topological
subgraphs is fixed-parameter tractable. In: ACM SYMPOSIUM ON THEORY OF
COMPUTING, 43., 2011, San Jose. Proceedings ... New York: Association for Computing
Machinery, 2011. p. 479–488.

90

47 KLEINBERG, J. M. Decision algorithms for unsplittable flow and the half-disjoint
paths problem. In: ACM SYMPOSIUM ON THEORY OF COMPUTING, 30., 1998, Dallas.
Proceedings ... New York: Association for Computing Machinery, 1998. p. 530–539.

48 KAWARABAYASHI, K.; KREUTZER, S. An excluded grid theorem for digraphs with
forbidden minors. In: ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 25., 2014,
Portland. Proceedings ... Philadelphia: Society for Industrial and Applied Mathematics, 2014. p.
72–81.

49 JOHNSON, T.; ROBERTSON, N.; SEYMOUR, P. D.; THOMAS, R. Excluding a grid
minor in planar digraphs. Preprint in the computing research repository. 2015. Available at:
https://arxiv.org/abs/1510.00473.

50 HATZEL, M.; KAWARABAYASHI, K.; KREUTZER, S. Polynomial planar Directed Grid
Theorem. In: ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 30., 2019, San
Diego. Proceedings ... Philadelphia: Society for Industrial and Applied Mathematics, 2019. p.
1465–1484.

51 AMIRI, S. A.; KAWARABAYASHI, K.; KREUTZER, S.; WOLLAN, P. The Erdős-Pósa
property for directed graphs. Preprint in the computing research repository. 2016. Available at:
https://arxiv.org/abs/1603.02504.

52 EDWARDS, K.; MUZI, I.; WOLLAN, P. Half-integral linkages in highly connected directed
graphs. In: EUROPEAN SYMPOSIUM ON ALGORITHMS, 25., 2017, Vienna. Proceedings ...
Dagstuhl: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, v. 87, 2017. p. 36:1–36:12.

53 CHEKURI, C.; ENE, A.; PILIPCZUK, M. Constant congestion routing of symmetric
demands in planar directed graphs. In: INTERNATIONAL COLLOQUIUM ON AUTOMATA,
LANGUAGES, AND PROGRAMMING, 43., 2016, Rome. Proceedings ... Dagstuhl: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, v.55, 2016. p. 7:1–7:14.

54 BANG-JENSEN, J.; GREGORY, G. Classes of directed graphs. London: Springer, 2018.

55 FLUM, J.; GROHE, M. Parameterized Complexity Theory. London: Springer, 2006.

56 ERBACHER, R. F.; JAEGER, T.; TALELE, N.; TEUTSCH, J. Directed multicut with
linearly ordered terminals. Preprint in the computing research repository. 2014. Available at:
https://arxiv.org/abs/1407.7498.

57 SEYMOUR, P. D.; THOMAS, R. Graph searching and a min-max theorem for tree-width.
Journal of Combinatorial Theory, Series B, Orlando, v. 58, n. 1, p. 22–33, 1993.

58 MATTHIAS, D.; EMMERT-STREIB, F. Quantitative Graph Theory: Mathematical
Foundations and Applications. Boca Raton: CRC Press, 2014.

59 KRATSCH, S.; PILIPCZUK, M.; PILIPCZUK, M.; WAHLSTRÖM, M. Fixed-parameter
tractability of multicut in directed acyclic graphs. SIAM Journal on Discrete Mathematics,
Philadelphia, v. 29, n. 1, p. 122–144, 2015.

60 CHEN, J.; LIU, Y.; LU, S.; O’SULLIVAN, B.; RAZGON, I. A fixed-parameter algorithm
for the directed feedback vertex set problem. Journal of the ACM, New York, v. 55, n. 5, p.
21:1–21:19, 2008.

https://arxiv.org/abs/1510.00473
https://arxiv.org/abs/1603.02504
https://arxiv.org/abs/1407.7498

91

61 CAYLEY, A. On the analytical forms called trees. American Journal of Mathematics,
Baltimore, v. 4, n. 1, p. 266–268, 1881.

62 BELL, E. T. Exponential polynomials. Annals of Mathematics, Princeton, v. 35, n. 2, p.
258–277, 1934.

63 KREUTZER, S.; ORDYNIAK, S. Digraph decompositions and monotonicity in digraph
searching. Theoretical Computer Science, Amsterdam, v. 412, n. 35, p. 4688–4703, 2011.

64 GANIAN, R.; HLINĚNÝ, P.; KNEIS, J.; LANGER, A.; OBDRŽÁLEK, J.; ROSSMANITH,
P. Digraph width measures in parameterized algorithmics. Discrete Applied Mathematics,
Amsterdam, v. 168, p. 88–107, 2014.

65 BEZÁKOVÁ, I.; CURTICAPEAN, R.; DELL, H.; FOMIN, F. Finding detours is
fixed-parameter tractable. SIAM Journal on Discrete Mathematics, Philadelphia, v. 33, n. 4, p.
2326–2345, 2016.

66 BONAMY, M.; KOWALIK, L.; NEDERLOF, J.; PILIPCZUK, M.; SOCALA,
A.; WROCHNA, M. On directed feedback vertex set parameterized by treewidth. In:
INTERNATIONAL WORKSHOP ON GRAPH-THEORETIC CONCEPTS IN COMPUTER
SCIENCE, 44., 2018, Cottbus. Proceedings ... London: Springer, 2018. p. 65–78.

67 BERGOUGNOUX, B.; EIBEN, E.; GANIAN, R.; ORDYNIAK, S.; RAMANUJAN, M. S.
Towards a polynomial kernel for Directed Feedback Vertex Set. Algorithmica, London, v. 83,
n. 5, p. 1201–1221, 2021.

68 GIANNOPOULOU, A. C.; KAWARABAYASHI, K.; KREUTZER, S.; KWON, O. The
Directed Flat Wall Theorem. In: ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS,
13., 2020, Salt Lake City. Proceedings ... Philadelphia: Society for Industrial and Applied
Mathematics, 2020. p. 239–258.

69 DORN, F.; FOMIN, F. V.; LOKSHTANOV, D.; RAMAN, V.; SAURABH, S. Beyond
bidimensionality: parameterized subexponential algorithms on directed graphs. Information
and Computation, Amsterdam, v. 233, p. 60–70, 2013.

70 THOMASSEN, C. Highly connected non-2-linked digraphs. Combinatorica, London,
v. 11, n. 4, p. 393–395, 1991.

71 EDWARDS, K.; MUZI, I.; WOLLAN, P. Half-integral linkages in highly connected
directed graphs. In: European Symposium on Algorithms (ESA), 25., 2017. [S. l.: s. n.]. p.
36:1–36:12.

72 KAWARABAYASHI, K.; KOBAYASHI, Y.; KREUTZER, S. An excluded half-integral grid
theorem for digraphs and the Directed Disjoint Paths problem. In: ACM SYMPOSIUM ON
THEORY OF COMPUTING, 46., 2014, San Jose. Proceedings ... New York: Association for
Computing Machinery, 2014. p. 70–78.

73 JONES, M.; LOKSHTANOV, D.; RAMANUJAN, M. S.; SAURABH, S.; SUCHÝ, O.
Parameterized complexity of Directed Steiner Tree on sparse graphs. SIAM Journal on
Discrete Mathematics, Philadelphia, v. 31, n. 2, p. 1294–1327, 2017.

74 MÖLLE, D.; RICHTER, S.; ROSSMANITH, P. Enumerate and expand: improved
algorithms for connected vertex cover and tree cover. Theory of Computing Systems, London,
v. 43, n. 2, p. 234–253, 2008.

92

75 CHOR, B.; FELLOWS, M.; JUEDES, D. W. Linear kernels in linear time, or how to save
k colors in O(n2) steps. In: INTERNATIONAL WORKSHOP ON GRAPH-THEORETIC
CONCEPTS IN COMPUTER SCIENCE, 30., 2004, Bad Honnef. Proceedings ... London:
Springer, 2004. p. 257–269.

76 BASAVARAJU, M.; FRANCIS, M. C.; RAMANUJAN, M. S.; SAURABH, S. Partially
polynomial kernels for Set Cover and Test Cover. SIAM Journal on Discrete Mathematics,
Philadelphia, v. 30, n. 3, p. 1401–1423, 2016.

77 DUH, R.; FÜRER, M. Approximation of k-Set Cover by semi-local optimization. In: ACM
SYMPOSIUM ON THE THEORY OF COMPUTING, 29., 1997, El Paso. Proceedings ... New
York: Association for Computing Machinery, 1997. p. 256–264.

78 ARAÚJO, J.; CAMPOS, V. A.; LIMA, C. V. G. C.; SANTOS, V. F.; SAU, I.; SILVA, A.
Dual parameterization of Weighted Coloring. Algorithmica, London, v. 82, n. 8, p. 2316–2336.

79 CHITNIS, R.; HAJIAGHAYI, M.; MARX, D. Fixed-parameter tractability of directed
multiway cut parameterized by the size of the cutset. SIAM Journal on Computing,
Philadelphia, v. 42, n. 4, p. 1674–1696, 2013.

80 KRATSCH, S.; PILIPCZUK, M.; PILIPCZUK, M.; WAHLSTRöM, M. Fixed-parameter
tractability of multicut in directed acyclic graphs. SIAM Journal on Discrete Mathematics,
Philadelphia, v. 29, n. 1, p. 122–144, 2015.

81 PILIPCZUK, M.; PILIPCZUK, M.; SANKOWSKI, P.; LEEUWEN, E. J. V. Network
sparsification for steiner problems on planar and bounded-genus graphs. ACM Transactions on
Algorithms, New York, v. 14, n. 4, p. 53:1–53:73, 2018.

93

APPENDIX A – LIST OF DEFINITIONS

Arboreal Decomposition: An arboreal decomposition β of a digraph D is a triple (R,X ,W)

where R is an arborescence,X = {Xe : e∈E(R)},W = {Wr : r∈V (R)}, andX ,W are collections

of sets of vertices of D (called bags) such that

(i) W is a partition of V (D) into non-empty sets, and

(ii) if e ∈ E(R), then
⋃
{Wr : r ∈V (R) and r > e} is Xe-guarded.

We also say that r is a leaf of (R,X ,W) if r has out-degree zero in R.

Brambles in digraphs: A bramble B = {B1, . . . ,B`} in a digraph D is a family of strongly

connected subgraphs of D such that if {B,B′} ⊆ B then V (B)∩V (B′) 6= /0 or there are edges in D

from V (B) to V (B′) and from V (B′) to V (B). A hitting set of a bramble B is a set C⊆V (D) such

that C∩V (B) 6= /0 for all B ∈ B. The order of a bramble B, denoted by ord(B), is the minimum

size of a hitting set of B. The bramble number of a digraph D, denoted by bn(D), is the the

maximum k such that D admits a bramble of order k.

Bypassing vertices and sets: Let D be a graph and v∈V (D). We refer to the following operation

as bypassing v: delete v from D and, for each u ∈ N−(v) add one edge from u to each vertex

w ∈ N+(v). We denote by D/v the graph generated by bypassing v in D. For a set of vertices

B ⊆ V (D), we denote by D/B the graph generated by bypassing, in D, all vertices of B in an

arbitrary order.

Butterfly contraction and butterfly minors: Let D be a digraph. An edge e from u to v of D

is butterfly contractible if e is the only outgoing edge of u or the only incoming edge of v. By

butterfly contracting e in D, we obtain a digraph D′ with vertex set V (D′) =V (D)\{u,v}∪ xu,v,

where xu,v is a new vertex, and E(D′) = E(D)\{e}. Every incidence of an edge f ∈ E(D′) to u

or v in D becomes an incidence to xu,v in D′. If D′ is generated from a subgraph of D by a series

a butterfly contractions, we say that D′ is a butterfly minor of D.

Congested vertex and blocking collection: Let (D, I,k,d,s) be an instance of DEDP. For

X ⊆ V ∗(D), we define IX as the subset of I that is blocked by X , that is, there are no paths

from s to t in D\X for every (si, ti) ∈ IX . We say that a vertex v ∈V ∗(D) is an (I,s)-congested

vertex of D if |I{v}| ≥ s+ 1. The blocking collection of I is the collection {B1, . . . ,Bk} where

Bi = {v ∈V ∗(D) | (si, ti) ∈ I{v}}, for i ∈ [k]. We say that D is clean for I and that (D, I,k,d,s) is

a clean instance if there are no congested vertices in V ∗(D). When I and s are clear from the

context, we drop them from the notation.

94

Cylindrical grid: A cylindrical grid of order k is a digraph formed by the union of k disjoint

cycles C1, . . . ,Ck and 2k disjoint paths P1, P2, . . ., P2k where

1. for i ∈ [k],V (Ci) = {vi,1,vi,2, . . . ,vi,2k} and E(Ci) = {(vi, j,vi, j+1 | j ∈ [2k − 1])} ∪

{(vi,2k,vi,1)},

2. for i ∈ {1,3, . . . ,2k−1}, E(Pi) = {(v1,i,v2,i),(v2,i,v3,i), . . . ,(vk−1,i,vk,i)}, and

3. for i ∈ {2,4, . . . ,2k}, E(Pi) = {(vk,i,vk−1,i),(vk−1,i,vk−2,i), . . . ,(v2,i,v1,i)}.

Directed tree-width: Let (R,X ,W) be an arboreal decomposition of a digraph D. For a vertex

r ∈V (R), we denote by width(r) the size of the set Wr ∪ (
⋃

e∼r Xe). The width of (R,X ,W) is

the least integer k such that, for all r ∈ V (R), width(r) ≤ k+1. The directed tree-width of D,

denoted by dtw(D), is the least integer k such that D has an arboreal decomposition of width k.

Havens in digraphs: Let D be a digraph. A haven of order k in D is a function β assigning to

every set Z ⊆V (D), with |Z| ≤ k−1, the vertex set of a strong component of D\Z in such way

that if Z′ ⊆ Z ⊆V (D) then β (Z)⊆ β (Z′). The haven number of a digraph D, denoted by hn(D),

is the maximum k such that D admits a haven of order k.

(i)-splits: An (i)-split S of P is a collection formed by a set {Q j | j ∈ [i]} of subpaths of P,

a subpath Pi of P, a set of brambles {B j | j ∈ [i]}, a set of vertices {a j | j ∈ [i]}, and a set of

vertices Xi such that

1. for j ∈ [i], vertex a j is the sucessor in P of the last vertex of Q j, and, if j ≤ i−1, the first

vertex of Q j+1 is the sucessor in P of vertex a j,

2. for j ∈ [i], ord(B j)≥ bk/2c,

3. for j ∈ [i], B j ⊆ BT and V (Q j) is a hitting set of B j,

4. Pi is the subpath of P from the sucessor in P of the last vertex of Qi to the last vertex of P,

and

5. Xi =
⋃

j∈[i](V (Pj)∪{a j}), and

ord(B(Xi))≥ g(k)− i
(⌊

k
2

⌋
+1
)
.

95

Itinerary: Let Γ be an instance of DEDP with Γ = (D, I,k,c,s), A⊆V (D), and IA be the set

of all request sets on D which are contained in A. For an integer w, a (Γ,w)-itinerary for A is a

function fA : IA×N→{0,1} such that fA(I′,c′) = 1 if and only if

(i) k′ ≤ (w+1) · k, for k′ = |I′|;

(ii) c′ ≤ c; and

(iii) the instance (D[A], I′,k′,c′,s) of DEDP is positive.

Limited collections: Let I be a request set in a digraph D with |I|= k and P be a collection of

paths satisfying I. We say that P is (k,w,S)-limited, for some S⊆V (D), if D(P)⊆ D[S] and for

every w-guarded set S′ ⊆ S, the digraph induced by V (D(P))∩S′ has at most (w+1) · k weak

components.

Non-terminal vertices: Let (D, I,k,d,s) be an instance of DEDP. For a digraph D′ such that

V (D′)⊆V (D), we define V ∗(D′) =V (D′)\ (S(I)∪T (I)).

(T,r)-Balanced separators and (k,r)-linked sets: Let D be a digraph, T ⊆ V (D), and r be

a non-negative integer. We say that a set Z ⊆ V (D) is a (T,r)-balanced separator if for every

strong component C of D\Z, we have |T ∩V (C)| ≤ r. If the minimum size of a (T,r)-balanced

separator is at least k+1, we say that T is (k,r)-linked.

Requests and satisfying collections: Let D be a digraph and P be a collection of paths of D. A

request in D is a pair of vertices of D. For a request set I = {(s1, t1),(s2, t2), . . . ,(sk, tk)}, we say

that the vertices {s1,s2, . . . ,sk} are source vertices and that {t1, t2, . . . , tk} are target vertices, and

we refer to them as S(I) and T (I), respectively. We say that P satisfies I if P = {P1, . . . ,Pk} and

Pi is a path from si to ti, for i ∈ [k].

T -brambles: Let D be a digraph and T ⊆V (D) with |T |= 2k−1. The T -bramble BT of D is

defined as BT = {B⊆ D | B is induced, strongly connected, and |V (B)∩T | ≥ k}.

s-viable sets: Let D be a graph, I be a request set with I = {(s1, t1), . . . ,(sk, tk)}, and s be an

integer. We say that a set X ⊆V (D) is s-viable for I if there is a collection of paths P satisfying

I such that each vertex of X occurs in at most s paths of P . We also say that P is certifying X .

Well-linked sets: Let D be a digraph and A⊆V (D). We say that A is well-linked in D if, for all

disjoint X ,Y ⊆ A with |X |= |Y |, there are |X | vertex-disjoint paths from X to Y in D. The order

of a well-linked set A is |A|. We denote by wlink(D) the size of a largest well-linked set in D.

Z-guarded sets: Let D be a digraph, Z ⊆V (D), and S⊆V (D)\Z. We say that S is Z-guarded if

there is no directed walk in D\Z with first and last vertices in S that uses a vertex of D\ (Z∪S).

96

APPENDIX B – COLLECTION OF OTHER WORKS

We include abstracts of other works obtained during the Ph.D.

1. An extended abstract of the work entitled “Characterizing networks with multiple arc-

disjoint branching flows”, which is currently under review.

2. The full version of the work entitled “Coloring problems on bipartite graphs of small

diameter” is available in the Electronic Journal of Combinatorics (E-JC), volume 28 (2),

2021, and at CoRR abs/2004.11173.

3. An extended abstract of the work entitled “Edge-disjoint branchings in temporal graphs” is

available in Proceedings of the 31st International Workshop on Combinatorial Algorithms

(IWOCA), volume 12126 of LNCS, pages 112-125, 2020. The full version is currently

under review, and a preprint is available at CoRR abs/2002.12694.

https://arxiv.org/abs/2004.11173
https://arxiv.org/abs/2002.12694

Characterizing networks with multiple arc-disjoint branching flows∗

Cláudio Carvalho1 Jonas Costa1 Cláudia Linhares Sales1 Raul Lopes1

A. Karolinna Maia1 Nicolas Nisse2

1Departamento de Computação, Universidade Federal do Ceará, Brasil
2Université Côte d’Azur, Inria, CNRS, I3S, Sophia-Antipolis, France

Abstract

An s-branching flow f in a network N = (D,u), such that u is the capacity function, is a flow that
reaches every vertex in V (D)\{s} from s while loosing exactly one unit of flow in each vertex other than
s. It is known that the hardness of the problem of finding k arc-disjoint s-branching flows in a network
N is linked to the capacity u of the arcs in N : for fixed c, the problem is solvable in polynomial time
if every arc has capacity n − c and, unless the Exponential Time Hypothesis (ETH) fails, there is no
polynomial time algorithm for it for most other choices of the capacity function when every arc has the
same capacity. The hardness of a few cases remains open. We further investigate a property depending
on k and the capacity function that aims to characterize networks admitting k arc-disjoint s-branching
flows. Such property is a generalization of similar result when all arcs have capacity n − 1, based on
Edmonds’ branching theorem. We show that, although in general this property doesn’t offer a complete
characterization, it characterizes particular cases of networks containing k arc-disjoint s-branching flows.
For such positive cases, we also remark that there are polynomial-time algorithms to find the arc-disjoint
flows, if they exist.

∗This work is partly funded by FUNCAP Pronem 4543945/2016, CNPq project 304831/2017-4, STIC-AmSud project GA-
LOP and the french Agence Nationale de la Recherche under contract Digraphs ANR-19-CE48-0013-01.
Emails: claudio@lia.ufc.br, jonascosta@lia.ufc.br, linhares@lia.ufc.br, raul@alu.ufc.br, karolmaia@ufc.br, nicolas.nisse@inria.fr

1

Coloring Problems on Bipartite Graphs
of Small Diameter∗

Victor A. Campos1 Guilherme C. M. Gomes2 Allen Ibiapina3 Raul Lopes1
Ignasi Sau4 Ana Silva3

1Departamento de Computação, Universidade Federal do Ceará, Fortaleza, Brazil
2Departamento de Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

3Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, Brazil
4LIRMM, Université de Montpellier, CNRS, Montpellier, France

Abstract

We investigate a number of coloring problems restricted to bipartite graphs with bounded diameter.
First, we investigate the k-List Coloring, List k-Coloring, and k-Precoloring Extension prob-
lems on bipartite graphs with diameter at most d, proving NP-completeness in most cases, and leaving
open only the List 3-Coloring and 3-Precoloring Extension problems when d = 3.

Some of these results are obtained through a proof that the Surjective C6-Homomorphism problem
is NP-complete on bipartite graphs with diameter at most four. Although the latter result has been
already proved [Vikas, 2017], we present ours as an alternative simpler one. As a byproduct, we also get
that 3-Biclique Partition is NP-complete. An attempt to prove this result was presented in [Fleischner,
Mujuni, Paulusma, and Szeider, 2009], but there was a flaw in their proof, which we identify and discuss
here.

Finally, we prove that the 3-Fall Coloring problem is NP-complete on bipartite graphs with diam-
eter at most four, and prove that NP-completeness for diameter three would also imply NP-completeness
of 3-Precoloring Extension on diameter three, thus closing the previously mentioned open cases.
This would also answer a question posed in [Kratochvíl, Tuza, and Voigt, 2002].

∗This work is partly supported by FUNCAP/CNPq/Brazil Project PRONEM PNE-0112-00061.01.00/16, CAPES-PRINT In-
stitutional Internationalization Program, process 88887.468331/2019-00, French projects DEMOGRAPH (ANR-16-CE40-0028),
ESIGMA (ANR-17-CE23-0010), ELIT (ANR-20-CE48-0008), and UTMA (ANR-20-CE92-0027), FUNCAP/CNPq/Brazil,
Project PRONEM PNE-0112-00061.01.00/16, CNPq Universal 401519/2016-3 and 437841/2018-9, CNPq Produtividade
304576/2017-4.
Emails: victoitor@ufc.br, gcm.gomes@dcc.ufmg.br, allen.ibiapina@alu.ufc.br, raul@alu.ufc.br, ignasi.sau@lirmm.fr,
anasilva@mat.ufc.br.

1

Edge-Disjoint Branchings in Temporal Digraphs∗

Victor Campos1 Raul Lopes1 Andrea Marino2 Ana Silva3

1Departamento de Computação, Universidade Federal do Ceará, Brazil
2Dipartimento di Sistemi, Informatica, Applicazioni, Università degli Studi di Firenze, Firenze, Italy

3Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, CE, Brazil

Abstract

A temporal digraph G is a triple (G, γ, λ) where G is a digraph, γ is a function on V (G) that tells us
the time stamps when a vertex is active, and λ is a function on E(G) that tells for each uv ∈ E(G) when
u and v are linked. Given a static digraph G, and a subset R ⊆ V (G), a spanning branching with root
R is a subdigraph of G that has exactly one path from R to each v ∈ V (G). In this paper, we consider
the temporal version of Edmonds’ classical result about the problem of finding k edge-disjoint spanning
branchings respectively rooted in given R1, · · · , Rk. We introduce and investigate different definitions
of spanning branchings, and of edge-disjointness in the context of temporal digraphs. A branching B is
vertex-spanning if the root is able to reach each vertex v of G at some time where v is active, while it
is temporal-spanning if each v can be reached from the root at every time where v is active. On the
other hand, two branchings B1 and B2 are edge-disjoint if they do not use the same edge of G, and are
temporal-edge-disjoint if they can use the same edge of G but at different times. This lead us to four
definitions of disjoint spanning branchings and we prove that, unlike the static case, only one of these
can be computed in polynomial time, namely the temporal-edge-disjoint temporal-spanning branchings
problem, while the other versions are NP-complete, even under very strict assumptions.

∗Partially supported by FUNCAP/CNPq/Brazil, Project PRONEM PNE-0112-00061.01.00/16, CNPq Universal
401519/2016-3/ Produtividade 304576/2017-4, MIUR under PRIN Project n. 20174LF3T8 AHeAD (Efficient Algorithms for
HArnessing Networked Data), and by the University of Florence under Project GRANTED (GRaph Algorithms for Networked
TEmporal Data).
Emails: victoitor@ufc.br, raul@alu.ufc.br, andrea.marino@unifi.it, anasilva@mat.ufc.br.

1

	Title page
	Acknowledgements
	Resumo
	Abstract
	List of symbols
	Summary
	Overview
	Definitions and Preliminaries
	Parameterized complexity
	Formal definitions

	Tree-width
	Arboreal decompositions and directed tree-width
	List of problems

	Adapting the directed grid Theorem into an FPT algorithm
	Preliminaries
	Brambles and the Directed Grid Theorem
	Finding a cylindrical grid

	Balanced separators and arboreal decompositions
	Computing (T,r)-Balanced Separators in FPT time
	An FPT algorithm for approximate arboreal decompositions

	Brambles and well-linked systems of paths
	Brambles in digraphs of large directed tree-width

	Finding P and A
	Concluding remarks

	The Disjoint enough paths problem
	Preliminaries
	Hardness results for DEDP
	Algorithms for DEDP
	An XP algorithm with parameters k and dtw(D)
	Algorithms for the dual parameterization

	Concluding remarks

	References
	List of definitions
	Collection of other works

