
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE CIÊNCIAS

DEPARTAMENTO DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

RENAN GOMES VIEIRA

CONTRIBUTIONS TO BUG-FIXING TIME ESTIMATION: AN EMPIRICAL STUDY

IN OPEN SOURCE PROJECTS OF APACHE ECOSYSTEM

FORTALEZA

2022

RENAN GOMES VIEIRA

CONTRIBUTIONS TO BUG-FIXING TIME ESTIMATION: AN EMPIRICAL STUDY IN

OPEN SOURCE PROJECTS OF APACHE ECOSYSTEM

Tese apresentada ao Programa de Pós-
Graduação em Ciência da Computação do
Centro de Ciências da Universidade Federal do
Ceará, como requisito parcial à obtenção do tí-
tulo de doutor em Ciência da Computação. Área
de Concentração: Aprendizado de Máquina e
Engenharia de Software.

Orientador: Prof. Dr. João Paulo P. Gomes.

Coorientador: Prof. Dr. Lincoln Souza
Rocha.

FORTALEZA

2022

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

V718c Vieira, Renan Gomes.
 Contributions to bug-fixing time estimation : an empirical study in open source projects of Apache
ecosystem / Renan Gomes Vieira. – 2022.
 120 f. : il. color.

 Tese (doutorado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em
Ciência da Computação , Fortaleza, 2022.
 Orientação: Prof. Dr. João Paulo Pordeus Gomes.
 Coorientação: Prof. Dr. Lincoln Souza Rocha.

 1. Relatórios de bug. 2. Aprendizado de máquina. 3. Estimativa de tempo de correção. 4. Análise
Bayesiana de dados. I. Título.
 CDD 005

RENAN GOMES VIEIRA

CONTRIBUTIONS TO BUG-FIXING TIME ESTIMATION: AN EMPIRICAL STUDY IN

OPEN SOURCE PROJECTS OF APACHE ECOSYSTEM

Tese apresentada ao Programa de Pós-
Graduação em Ciência da Computação
do Centro de Ciências da Universidade
Federal do Ceará, como requisito parcial
à obtenção do título de doutor em Ciência
da Computação. Área de Concentração:
Aprendizado de Máquina e Engenharia de
Software.

Aprovada em: 26/05/2022

BANCA EXAMINADORA

Prof. Dr. João Paulo P. Gomes (Orientador)
Universidade Federal do Ceará (UFC)

Prof. Dr. Lincoln Souza Rocha (Coorientador)
Universidade Federal do Ceará (UFC)

Prof. Dr. César Lincoln Cavalcante Mattos
Universidade Federal do Ceará (UFC)

Prof. Dr. Ajalmar Rêgo da Rocha Neto
Instituto Federal do Ceará (IFCE)

Prof. Dr. Pedro de Alcântara dos Santos Neto
Universidade Federal do Piauí (UFPI)

AGRADECIMENTOS

Aos meus pais e irmãos, Dinha, Valmir, Lucas e Julyanna, pelo apoio incondicional

durante todos esses anos de formação acadêmica. O suporte e presença de vocês é fundamental

em tudo que busco realizar em minha vida.

Aos meus orientadores, João Paulo e Lincoln, pela parceria durante esses anos de

doutorado. Ao mesmo tempo que fui guiado através de nossas reuniões, discussões e aulas,

sempre me senti livre e incentivado para explorar minhas próprias ideias, o que foi determinante

para meu desenvolvimento enquanto pesquisador. Grato pela oportunidade, disponibilidade,

confiança e conhecimento compartilhado.

Aos colaboradores de pesquisa: professor César Lincoln, sempre prestativo e aten-

cioso, que contribuiu de forma significativa em diversas etapas desse projeto; Diego Parente,

que me auxiliou de forma generosa nas pesquisas relacionadas a inferência bayesiana; e aos

pesquisadores Matheus Paixão e Ricardo Britto, que colaboraram na escrita, revisão e concepção

de dois dos artigos científicos desenvolvidos durante o doutorado.

Aos colegas do MDCC: Bustamante, Daniel, Diego Farias, Ernando, e Thiago pelas

diversas discussões (nem sempre) acadêmicas, litros de café compartilhados e momentos de

descontração durante todos esses anos.

Aos diversos amigos e amigas, em especial, Antônio, Dennis Sávio, Eudenia, Mad-

son, e Milaynne. Os inúmeros momentos de companheirismo através de conversas, compartil-

hando experiências ou amenidades, tornaram essa jornada mais leve, principalmente nos seus

momentos mais turbulentos.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001

Meu muito obrigado a todos e todas!

RESUMO

A correção de bugs é um aspecto crucial da manutenção de software. Desenvolvedores e gerentes

precisam lidar com relatórios de bugs que precisam de atenção imediata, apesar dos recursos

limitados. Geralmente, projetos de software usam sistemas de rastreamento de issues como uma

forma de relatar e monitorar tarefas de correção de bugs. Essas fontes de dados tem sido utilizadas

por pesquisadores para conduzir estudos e melhor entender o problema, fornecendo meios para

reduzir custos e aumentar a eficiência na tarefa de correção. Esta tese apresenta três contribuições

para o processo de correção de bugs. A primeira é um conjunto de dados e o seu script de

mineração, junto a uma série de análises e visualizações. Descrevemos o processo de aquisição,

a necessidade de minerar um novo conjunto de dados, além de uma análise sobre alguns campos

de relatórios que usamos nas subsequentes contribuições desenvolvidas. A segunda contribuição

é uma nova abordagem para estimar o tempo de correção do bugs, onde consideramos o conceito

de evolução do relatório de bug. Primeiro, verificamos com que frequência os relatórios de bug

e seus campos são atualizados. A seguir, avaliamos a abordagem usando diferentes métodos

de classificação de aprendizado de máquina, com distintas configurações de saída e técnicas de

balanceamento de classes. Utilizando os melhores modelos testados para os diferentes estágios

da evolução de um relatório, avaliamos se existem diferenças na capacidade de estimativa dos

modelos segundo o estado de um relatório. Reunimos evidências de que os campos dos relatórios

são atualizados com frequência, caracterizando sua a evolução, impactando nas estimativas

dos modelos de predição de tempo de correção. A avaliação dos modelos mostra resultados

promissores ao predizer se um bug será corrigido em menos ou mais de cinco dias, especialmente

nos estados iniciais dos relatórios. A terceira contribuição é um estudo sobre a relação entre o

tempo de correção de bug e três campos: prioridade, links (relação entre relatórios) e code-churn

(relacionado ao patch de correção do bug). Através de análise Bayesiana de dados, avaliamos

dois modelos diferentes - um ‘específico’ para cada conjunto de dados e um ‘hierárquico’

considerando todos os projetos de uma vez. Outros três modelos hierárquicos são explorados

como forma de ilustrar a flexibilidade deste tipo de modelagem. Reunimos evidências de que

relatórios de bug com links e valores maiores de code-churn demandam mais tempo para serem

corrigidos, ao contrário de prioridade que não apresenta influência no tempo de correção.

Palavras-chave: relatórios de bug; aprendizado de máquina; estimativa de tempo de resolução;

Jira Issue Tracking System; análise Bayesiana de dados.

ABSTRACT

Fixing bugs is a crucial aspect of software maintenance. Developers and managers must deal with

many bug reports that need immediate attention despite limited resources and tight deadlines.

Generally, software projects use issue tracking systems to report and monitor bug-fixing tasks.

Several researchers have used this data source to conduct research and better understand the

problem, providing means to reduce costs and improve efficiency in the correction task. This

thesis presents three contributions to the bugs correction process. The first is a dataset and

its mining script, along with a series of analyzes and visualizations. We describe the data

acquisition process, the necessity to mine a new dataset, and provide a deeper analysis of some

reporting fields that we use in the subsequent contributions presented in this thesis. A second

contribution is a new approach to estimating the time to fix bugs. We consider the concept

of bug report evolution to create a dataset containing all investigated report states. First, we

check how often the bug reports and their fields are updated. Next, we evaluate our approach

using different machine learning methods as a classification problem, with a number of output

configurations and class balancing techniques. Using the best models (considering all possible

designs) for the different stages of the evolution of a bug report, we evaluate whether there are

significant differences in the estimation capacity of the models according to the report state. We

gathered evidence that report fields are frequently updated, which characterizes the evolution

of reports, impacting the creation of bugs fixing-time estimation models. The evaluation of

the models shows promising results in predicting whether a bug will be fixed in less or more

than five days, especially in the initial states of the reports. The third contribution is a study on

the relationship between bug correction time and three fields: priority, links (the relationship

between reports), and code-churn (related to the fixing patch associated with the bug report).

Through Bayesian data analysis, we evaluated two different models - one ‘specific’ for each

project and one ‘hierarchical’ considering all projects at once. We also explored three other

hierarchical models to illustrate the flexibility of this type of modeling. Finally, we have gathered

evidence that bug reports with links and higher values of code-churn (above the project’s median)

tend to take longer to fix. On the other hand, the priority level appears to have no significant

influence on the time to fix a bug.

Keywords: bug report; machine learning; resolution time estimation; Jira Tracking Issue System;

Bayesian data analysis.

LIST OF FIGURES

Figure 1 – Customized Jira issue workflow. 20

Figure 2 – Log-transformed bug-fixing time boxplot by project. 26

Figure 3 – Log-transformed bug-fixing time boxplot by category. 26

Figure 4 – Priority distribution. 27

Figure 5 – Example of links in bug reports. 28

Figure 6 – The proportion of different scenarios of links 29

Figure 7 – The number of reports updates histogram . 32

Figure 8 – The number of status changes by reports. 34

Figure 9 – The reports states re-creation process. 40

Figure 10 – Bug reports resolution time calculation. 41

Figure 11 – The train/test 5-fold split method. 52

Figure 12 – Workflow to report RRT evaluation by progress and interval. 59

Figure 13 – Accuracy evaluation by report resolution progress. 60

Figure 14 – Accuracy evaluation by report resolution interval. 60

Figure 15 – Graph ‘specific-model’ representation. 77

Figure 16 – Graph hierarchical model - ‘HM-AP’ representation. 78

Figure 17 – µ posterior distributions - ‘specific-models’, ‘links’ results. 80

Figure 18 – µ0 posterior distributions - ‘HM-AP’, links results. 81

Figure 19 – µ posterior distributions - ‘specific-models’, ‘priority’ results. 82

Figure 20 – µ0 posterior distributions - ‘HM-AP’ model, ‘priority’ results. 84

Figure 21 – µ posterior distributions - ‘specific-models’, ‘code-churn’ results. 85

Figure 22 – µ0 posterior distributions - ‘HM-AP’, ‘code-churn’ results. 86

Figure 23 – Graph hierarchical model - ‘HM-G’ representation. 89

Figure 24 – µ0 posterior distributions - ‘HM-G’, ‘links’ results. 90

Figure 25 – µ posterior distributions - ‘specific-models’, ‘links’ results (55 projects). . . . 106

Figure 26 – µ posterior distributions - ‘specific-models’, ‘priority’ results (55 projects). . 109

Figure 27 – µ posterior distributions - ‘specific-models’, ‘code-churn’ results (55 projects).113

Figure 28 – Prior predictive. 116

Figure 29 – Posterior predictive. 117

Figure 30 – µ0 posterior distributions - ‘HM-G’, ‘priority’ results 118

Figure 31 – µ0 posterior distributions - ‘HM-G’, ‘code-churn’ results. 119

LIST OF TABLES

Table 1 – List of mined projects data. 23

Table 2 – Interval bug-fixing time distribution by category. 25

Table 3 – Most common fields updates in bug reports. 30

Table 4 – Bug reports ‘status’ values. 32

Table 5 – Adjacent matrix of status changes. 33

Table 6 – Attributes used by Zhang et al. (2013). 43

Table 7 – Description of the two ‘sets’ of attributes used in the baseline approach. 44

Table 8 – Filtered dataset information. 47

Table 9 – Dataset features description. 48

Table 10 – Labels distribution. 50

Table 11 – Most common bug reports’ fields updates (10 projects). 52

Table 12 – Baseline results in different data scenarios: attributes Set 1. 54

Table 13 – Baseline results in different data scenarios: attributes Set 2. 55

Table 14 – All projects overall best results. 57

Table 15 – Models results classifying initial states reports. 62

Table 16 – µ posterior distribution summary, ‘specific-models’, ‘links’ results. 80

Table 17 – µ0 posterior distribution summary. ’HM-AP’, ‘links’ results. 81

Table 18 – µ posterior distribution summary, ‘specific-models’, ‘priority’ results. 83

Table 19 – µ0 posterior distribution summary, ‘HM-AP’ model, ‘priority’ results. 83

Table 20 – µ posterior distribution summary, ‘specific-models’, ‘code-churn’ results. . . . 85

Table 21 – µ0 posterior distribution summary, ‘HM-AP’ model, ‘code-churn’ results. . . . 86

Table 22 – µ0 posterior distributions summaries, ‘HM-G’ models, ‘links’ results. 90

Table 23 – Static dataset fields - Jira. 102

Table 24 – Static dataset fields - Git . 103

Table 25 – Changelog dataset fields . 103

Table 26 – Comment-log dataset fields . 104

Table 27 – Commit-log dataset fields . 104

Table 28 – µ posterior distribution summary, ‘specific-models’, ‘No Links’ results (55

projects). 107

Table 29 – µ posterior distribution summary, ‘specific-models’, ‘With Links’ results (55

projects). 108

Table 30 – µ posterior distribution summary, ‘specific-models’, ‘Low Priority’ results

(55 projects). 110

Table 31 – µ posterior distribution summary, ‘specific-models’, ‘Medium Priority’ results

(55 projects). 111

Table 32 – µ posterior distribution summary, ‘specific-models’, ‘High Priority’ results

(55 projects). 112

Table 33 – µ posterior distribution summary, ‘specific-models’, ‘Lower Code-Churn’

results (55 projects). 114

Table 34 – µ posterior distribution summary, ‘specific-models’, ‘Higher Code-Churn’

results (55 projects). 115

Table 35 – µ0 posterior distribution summary from alternative hierarchical models (HM-

G), ‘priority’ results. 119

Table 36 – µ0 posterior distribution summary from alternative hierarchical models (HM-

G), ‘code-churn’ results. 120

LIST OF ABBREVIATIONS AND ACRONYMS

ACC Accuracy

ASF Apache Software Foundation

AUC Area Under the ROC Curve

BDA Bayesian Data Analysis

BFT Bug-Fixing Time

BoW Bag of Words

CC Cluster Centroids

CD Creation Date

CI Confidence Interval

CV Cross-Validation

DRT Defect Resolution Time

F1 F1-Score

HM Hierarchical Model

HMM Hidden Markov Model

ITS Issue Tracking System

KNN K-Nearest Neighbors

LGL Log-Loss

LUD Last Update Date

MAE Mean Absolute error

MCMC Monte Carlo Markov Chain

MLP MultiLayer Perceptron

MRE Mean Relative Error

NB Naive Bayes

OD Original Data

PRC Precision

RCL Recall

RD Resolution Date

RND Random Under-Sampling

RRT Report Resolution Time

SMOTE Synthetic Minority Over-sampling Technique

CONTENTS

1 INTRODUCTION . 12

1.1 Motivation . 13

1.1.1 Dataset Mining . 13

1.1.2 Bug-fixing time estimation . 14

1.1.3 Bayesian data analysis on relation between bug report features and bug-

fixing time . 16

1.2 Objectives . 17

1.3 Publications . 18

1.4 Outline . 18

2 A NEW APACHE BUG-FIXING DATASET 19

2.1 Dataset Preliminaries . 19

2.1.1 Apache Software Foundation and Jira . 19

2.2 Data Collection Methodology . 21

2.3 Dataset Description . 22

2.3.1 Static Perspective . 22

2.3.2 Dynamic Perspective . 22

2.4 Dataset Characterization . 24

2.4.1 Bug-Fixing Time . 24

2.4.2 Priority . 25

2.4.3 Links . 27

2.4.4 The Changelog Dataset . 30

2.4.5 Reports Updates . 31

2.4.6 Status Changes . 31

2.5 Dataset Relevance . 34

2.6 Related Work . 35

3 THE ROLE OF BUG REPORT EVOLUTION IN RELIABLE FIXING

ESTIMATION . 37

3.1 Materials and Methods . 37

3.1.1 A Temporal Dataset of Bug-Fixing Activities and Reports 38

3.1.2 Bug Reports’ Fields Updates and Zhang et al. (2013)’s Work Replication . . 42

3.1.3 Preprocessing steps on the ‘Temporal Dataset‘ to apply our approach 45

3.1.4 Models training methodology . 47

3.1.5 The Train/Test Split Method . 50

3.2 Results . 51

3.2.1 Field Changes Analysis and (ZHANG et al., 2013) replication (baseline) . . 51

3.2.2 Training models with all bug reports states . 56

3.2.3 Models Performance by Group: Progress and Resolution Intervals 58

3.3 Discussion . 63

3.4 Threats to Validity . 65

3.5 Related Works and Comparison . 66

4 BAYESIAN DATA ANALYSIS APPLIED TO BUG REPORTS DATA . . 71

4.1 Bayesian Data Analysis . 71

4.1.1 Bayes in a Nutshell . 72

4.1.2 Hierarchical Models . 74

4.2 Selected Features . 75

4.3 Modeling Process and Models Description 76

4.4 Results . 78

4.4.1 Links . 79

4.4.2 Priority . 82

4.4.3 Code Churn . 84

4.5 Exploring different Hierarchical Models . 87

4.6 Discussion . 90

4.7 Threats to the Validity . 91

4.8 Related Works . 92

5 CONCLUSION AND FUTURE WORKS 94

BIBLIOGRAPHY . 96

APPENDIX A–DATASET FEATURES TABLE 102

APPENDIX B–COMPLETE ‘SPECIFIC-MODEL’ RESULTS 105

APPENDIX C–PREDICTIVE CHECK . 116

APPENDIX D–ALTERNATIVE HIERARCHICAL MODELS 118

12

1 INTRODUCTION

End-users and companies widely adopt open-source software (HAUGE et al., 2010;

LENARDUZZI et al., 2020). As they grow in size and complexity to meet new requirements

and needs, the goal of software quality assurance becomes increasingly more challenging. In

an open-source or corporative context, software developers and engineers use several tools to

improve software development. One of the most commonly used tool (SERRANO; CIORDIA,

2005; BAYSAL et al., 2013) is the Issue Tracking System (ITS), a platform where any software

issue 1 can be registered and traced. There are many ITSs available, namely Bugzilla, YouTrack,

and Jira, among others.

Bug — a colloquial therm for errors or vulnerabilities in software systems (GOUES

et al., 2021) — is a particular type of issue that can hinder software quality. They can be

resource-consuming, leading to costs by order of billions per year and taking on average 50%

of the software developers’ time for finding and fixing them (BRADY, 2013; GOUES et al.,

2021). The cost related to bugs are high, not just because finding and fixing faults increases

the development and testing cost, but also because of the consequences of field failures due to

these bugs (HAMILL; GOSEVA-POPSTOJANOVA, 2017). The bug-fixing activity is one of

the most resource-intensive tasks, and this problem is worsened in large software systems. In

these cases, the number of bug reports can exceed the available project resources (KARIM et

al., 2017). Besides the bug being a problem by itself, the whole process of triaging the bugs to

be fixed is also a time-consuming task. Many questions have been raised regarding bug issues

on ITS for a newly registered bug report, such as “was this bug already registered?” (LAZAR

et al., 2014; EBRAHIMI et al., 2019), “who is the best person to fix this bug?” (GUO et

al., 2011; SHOKRIPOUR et al., 2015), “is this a real bug?” (HERZIG et al., 2013), “is this

report good and does it have enough information?” (ZIMMERMANN et al., 2010), “what is its

priority?” (TIAN et al., 2015), and “how much time is necessary to fix this bug?” (ZHANG et

al., 2013; AL-ZUBAIDI et al., 2017; HABAYEB et al., 2018).

For software that uses an ITS, bug identification is generally recorded at the ITS

itself. Next, a bug triage happens, mainly being a manual2 collaborative step. In the triage, a

bug report will be examined to (i) indicate whether the report contains sufficient or duplicated

information, (ii) assign the bug’s severity and priority, and (iii) define who will be the person
1 An issue can represent a story, a bug, a task, or another issue type in the project.
2 In Mozilla’s (Firefox) case, it is partly automated, see https://hacks.mozilla.org/2019/04/teaching-machines-to-

triage-firefox-bugs/

13

responsible for fixing the bug (ARDIMENTO et al., 2016), also known as the assignee. Other

steps can be applied, such as identifying the component or version of the software affected by the

bug, which can occur between or after the presented ones. Once the assignee proposes a set of

patches that fixes the bug and one is selected, the patch is validated by other developers and then

merged to the code, generally through a commit. The additions of screenshots, comments, and

changes of reports fields are expected from the report creation until its conclusion. The record of

these workflows contains information that can help to understand and improve the bug fixing

process.

This thesis describes the contributions regarding the bug fixing process based on

bug reports records from Jira open-source software. Most of the contributions are related to the

bug fixing time estimation, but we also present contributions to the Jira data acquisition and bug

fixing process.

1.1 Motivation

In this section, we provide the motivations for the three major contributions of this

thesis. We present the motivation of each contribution in the chronological order of obtained

results and as presented in this manuscript in the following sections.

1.1.1 Dataset Mining

Researchers use mining techniques to gather information from ITS to better under-

stand bug reporting, triage, and fixing processes. Lamkanfi et al. (2013) describes the procedure

to collect bug reports from Eclipse and Mozilla tracking systems. Habayeb et al. (2015) work

proposes a Firefox bug report dataset with temporal information (i.e., report fields changes over

time). The Zhu et al. (2016) work describes the dataset mined over Mozilla issue tracking history,

and in Xu e Zhou (2018), the multi-level dataset mining process of the Linux Kernel Patchwork

is shown.

Given the relevance of providing means to improve the bug fixing process, we look

for structured datasets that cover most of the bug reports workflows. Generally, we found that

the proposed datasets lack: i) diversity: most of the proposed datasets regarding bug reports

only contain information of a few projects; ii) completeness: the whole bug fixing process is not

presented. Bug reports are dynamic objects, and generally, the process description is provided in

14

the ITS - the general bug information that changes over time - and the version control system -

the patch that fixes the bug information. None of the founded datasets provide both information.

Given this scenario, we mined a new dataset of bug-fix reports from 10 years of

bug-fixing activity of 55 projects from the Apache Software Foundation (ASF). We have mined

this information from the Jira issue track system concerning two different perspectives of reports

with closed/resolved status: static (the latest version of reports) and dynamic (the changes that

have occurred in reports over time). We also extract information from the commits (if they

exist) that fix such bugs from their respective version-control system (Git). We also provide

a change analysis that occurs in the reports to illustrate and characterize the proposed dataset.

Once the data extraction process is a nontrivial error-prone task, we believe such initiatives could

be helpful to support researchers in further, more detailed investigations. This dataset is the

source for all proposals and analyses presented in this thesis.

1.1.2 Bug-fixing time estimation

Several researchers highlight the importance of providing a bug resolution time

estimation. As pointed out by Al-Zubaidi et al. (2017), the reporters are probably interested in

knowing when a particular bug will be fixed; thus, project managers may need to provide an

estimation time. Such estimations can be critical to their cost planning and release management

in those cases. Similarly, Habayeb et al. (2018) discuss that identifying bugs that would require

a long fixing time right at the beginning of the bug life cycle is useful in several areas of the

software quality process. This information would allow software maintenance to prioritize

their work, improving the development activities on such bugs. In addition, the prediction of

a bug resolution time plays a significant role in project management since it supports resource

allocation and future release planning.

Some proposals use machine learning technics to solve software engineering prob-

lems. In the bug report context, there are works to estimate priority (UMER et al., 2020),

assignee (ALKHAZI et al., 2020), bug fixing time (SHARMA et al., 2019), and bug localization

(RAHMAN et al., 2015) of a bug report. However, different from more traditional data points

observations in a machine learning dataset, bug reports are dynamics examples, i.e., attributes

change over time. For instance, the reported information and the decisions made in the triage

step are error-prone, demanding some update in its fields. The natural evolution of the bug

fixing process requires some updates, as the study of Hu et al. (2014) shows that 37%-44% of

15

bugs have been re-assigned on bug reports of Eclipse and Mozilla, respectively. Our previous

published study (VIEIRA et al., 2019) shows that several changes and additions to bug reports

occur during their life cycle. Our analysis show the existence of changes in a report’s assignee

on 54.63% of the bug reports and description modifications on 18.16%, to mention a few. We

explore this through the text, but we mostly notice that these reports’ fields changes and updates

are overlooked in several works that use bug reports as input. Generally, the last state of a report

is considered, or the research does not clearly define at what moment the reports’ values are

acquired.

Thus, it is evident that reports should not be seen or analyzed only when they are

closed/resolved, when changes and updates in the reports may provide relevant information

regarding the bug fixing process. For instance, a bug report with a high priority, with an

experienced assignee associated with it and several comments and attachments, will probably

take less time to be closed than one with no assignee and no comments. We argue that those

reports’ updates may serve as predictors regarding the reports’ resolution time. Moreover, the

same report in different states over its life cycle may not provide the same information about the

reported bug.

When a manager opens an ITS at a particular timeline for a specific software project,

the ITS may contain bug reports in several states: some recently opened, others are close to

resolution. The reports also present different complexity, priority, and overall information, as the

report fields are updated and changed. Thus, a tool capable of estimating the resolution time for

bug reports regardless of their state in the life cycle could be highly valuable. In this thesis, one

of the contributions is the investigation of the viability of providing such a tool to help software

managers. In contrast to other approaches in the literature, we consider that bug reports are

changeable and evolve, and such changes may impact estimation models.

Given the scenario composed of the relevance of bug report resolution estimation and

the changeable and evolutionary nature of bug reports, we propose a new approach to incorporate

bug reports’ dynamic aspects into the predictive model’s creation. We first show that the fields

updates in bug reports occur and are significant; we evaluate the impact of ignoring the bug

reports updates in the models and propose an approach to incorporate the reports updates into

the model’s training process.

16

1.1.3 Bayesian data analysis on relation between bug report features and bug-fixing time

The data provided in a bug report is, sometimes, the only information available to the

assignee to replicate and patch the bug. Several attributes in a bug report characterize them and

are used to create machine learning models, verify report quality, and better understand the bug

fixing process (KARIM et al., 2017; HOOIMEIJER; WEIMER, 2007). Examples of features

found in the Jira ITS are: importance-related fields as Priority and Severity; the text-related

as Summary, Title and Description; person-related fields as Assignee and Reporter; and

link-related fields that deals with the relationship between reports in an ITS. The information

presented in a bug report is used during the triage process to define how the development team

will deal with it. Understanding how these attributes impact the quality of a bug report to help the

developers in the bug fixing process is useful to build reliable estimation models and suggest bug

reporting process improvements (HOOIMEIJER; WEIMER, 2007; CATOLINO et al., 2019).

The workflow to understand how specific bug report characteristics are related to

others that significantly impact the bug triage process (e.g., bug-fixing time, priority, or report

quality) generally would use some statistical framework. Frequentist statistical approaches have

been the standard tool to provide this type of insight in empirical software engineering (TORKAR

et al., 2021). However, the Bayesian framework is another option that sometimes is over-viewed

primarily because it does not offer out-of-the-box solutions as the statistical tests of the frequentist

framework. Several works have advocated using the Bayesian framework as an alternative to the

more traditional statistical test use. They highlight a fine-grained data model’s building control,

better visual appeal of the results, and the use of additional information as prior, when compared

to the frequentist framework (MCELREATH, 2020; FURIA et al., 2021; GELMAN et al., 2020).

The Bayesian Data Analysis (BDA) characteristics come with a cost: while fre-

quentist statistical approaches provide a group of tests covering several data and assumptions

scenarios, the Bayesian framework requires more detailed attention as we have to build our

models from the bottom up. There are a few steps and attention to details to cover, and there

are some works that describe the process at length in the literature, as Gelman et al. (2020) and

McElreath (2020). In contrast, others have been more active in highlighting the advantages of

using the BDA in empirical software engineering (TORKAR et al., 2021; FURIA et al., 2021).

Besides all the highlights provided by some researchers, one more specific objective

point was crucial to adopt the Bayesian approach in this thesis: we have multiple data sources

in our proposed dataset. As our intention was to provide conclusions about all the 55 projects

17

we mined, hierarchical models (a.k.a. multilevel models) are a potent tool provided by BDA

that helps test hypotheses about the data more generalistic. The counterpoint in the frequentist

statistical approaches is to combine p-values from different statistical test results from different

data sources (HEARD; RUBIN-DELANCHY, 2018). As covered by Furia et al. (2021), there is

not a uniform view about when and how the adjustment of p-values from different statistical tests.

In the same work, the authors show the impact of using different techniques to adjust p-values

and how they change the final conclusions regarding the analysis.

It is important to notice that both frequentist and bayesian analysis provides similar

conclusions when correctly applied (FURIA et al., 2021), but BDA provides a few particularities

that we considerer more appealing. We summarize the motivation to apply BDA as follows:

1. Flexibility to create the models: we have total control of the assumptions regarding the

model and data. As we describe every aspect of the model, this provides a better overview

of the modeling process, allowing a more detailed review and criticism from the peers.

2. Hierarchical models: we mined data from several projects, each one with its particularities.

Hierarchical models provide ways to summarize data from different sources to give us

a more general picture of a similar behavior underlying their idiosyncratic. The use of

hierarchical models serves us as an alternative to possible pitfalls of selection p-values

adjustments.

3. Posterior distributions as results: the outcome of every BDA are posterior and predictive

distributions. These posterior distributions describe our models’ parameters based on our

assumptions and data. The use of prior is an inherent characteristic of BDA. For future

works that perform similar analysis on other bug reports data, our posterior distributions

can be used as priors in their models, creating a chain of knowledge of the same domain

(MCELREATH, 2020; FURIA et al., 2021).

1.2 Objectives

The overall goal of this thesis is to provide contributions over the gaps found in the

literature regarding the bug fix time estimations based on bug reports. To address these points,

we define the following specific objectives that need to be achieved:

– Propose a curated dataset and the mining script to mine bug fixing activities from open-

source in Jira;

– Describe the dataset with a set of visualizations and analysis;

18

– Show the dynamic aspect of bug reports and how they impact the reliability of bug-fixing

time estimators;

– Propose a new approach to deal with the dynamic aspect of bug reports in the bug-fixing

time estimators;

– Compare our proposal with previous proposals of bug-fixing time estimators.

– Describe a practical use of Bayesian statistics in bug report data to show how a set of

features relates to bug fixing time.

1.3 Publications

Vieira, R. G., da Silva A., Rocha L. S., Gomes J. P. P., From reports to bug-fix

commits: A 10 years dataset of bug-fixing activity from 55 apache’s open-source projects.

In: Proceedings of the Fifteenth International Conference on Predictive Models and Data

Analytics in Software Engineering, ACM, New York, NY, USA, PROMISE’19, pp 80–89, DOI

10.1145/3345629.3345639, URL: http://doi.acm.org/10.1145/3345629.3345639

Vieira, R. G., Mattos, C. L. C., Rocha, L. S., Gomes, J. P. P., Paixão, M. H. E.,

(2021) The Role of Bug Report Evolution in Reliable Fixing Estimation. In: Empirical Software

Engineering (Special Edition: Machine Learning Techniques for Software Quality Evaluation)

(final round of revision).

Vieira, R. G., Mesquita D. P. P., Mattos, C. L. C., Britto, R. S., Rocha, L. S., Gomes,

J. P. P., (2022) Bayesian Analysis of Bug-Fixing Time using Report Data. In: Empirical Software

Engineering International Week, September 19–23, 2022, Helsinki, Finland, ESEM ’22.

1.4 Outline

We present the thesis remainder. Chapter 2 contains the details of the acquisition

process, description, and analysis of the proposed dataset. Chapter 3 presents a new approach to

estimate bug fix time based on their reports, considering they natural evolutive process. Chapter

4 describes a practical use of bayesian statistics on bug reports data to relate some features and

the bug fixing time. Finally, Chapter 5 concludes this thesis with final thoughts regarding the

research.

19

2 A NEW APACHE BUG-FIXING DATASET

In this chapter, we describe the process of acquiring the dataset used in this thesis.

We also provide the description and some analysis of the data.

2.1 Dataset Preliminaries

This section provides a brief introduction to Apache Software Foundation, the Jira

issue tracking system, and the Jira’s issue/bug-fix report life cycle. This summary is important to

define more precisely our dataset, the context, and under what organizational rules these bug-fix

reports are created until be considered completed.

2.1.1 Apache Software Foundation and Jira

The Apache Software Foundation (ASF) is a decentralized open-source community

of developers. It is an American non-profit corporation created to support the Apache Software

Projects. Every software produced by the ASF is distributed under the terms of the Apache

License, being all free and open-source. On their official site1, they list more than 350 active

projects distributed over 40 different software categories. We choose projects from ASF as a

target of our study because they are mature, well documented, and widely used by developers to

build new systems, indicating a certain degree of reliability from the developers’ perspective.

Jira2 is a proprietary issue tracking product developed by the Australian Atlassian

Corporation. For a number of open source projects, Atlassian provides the Jira services for

free. By default, the ASF projects adopt Jira as their issue tracking tool. According to the Jira

documentation3, “Issues are the building blocks of any Jira project. An issue could represent a

story, a bug, a task, or another issue type in your project". An issue has several fields4, such

as summary (a brief, one-line synopsis of the issue), description (a detailed issue explanation),

priority (the importance of the issue concerning other issues), type (the type of the issue, e.g.,

“Bug” or “Task”), reporter (the person who created the issue), assignee (the person to whom the

issue is currently assigned), watchers (number of people interested in the issue), status (the issue

current state on Jira workflow), resolution (a record of the issue’s resolution), created (the time
1 https://projects.apache.org/projects.html
2 https://atlassian.com/software/jira
3 https://confluence.atlassian.com/jirasoftwarecloud/working-with-issues-764478424.html
4 https://confluence.atlassian.com/adminjiracloud/issue-fields-and-statuses-776636356.html

20

and date on which the issue was created), and resolved (the time and date on which the issue was

resolved).

Jira workflow defines a set of states and transitions that an issue passes over during

its life cycle. It can be customized to meet organization needs and ensure compliance with their

internal processes. Fig. 1 shows an example of customized Jira workflow, composed of 5 states

(all possible statuses an issue can assume) and 12 transitions (all possible paths an issue can pass

through).

Figure 1 – Customized Jira issue workflow. The Figure shows five reports states and the possible
transitions between them.

To report a bug in the Jira tool, you need to set the issue field Type as a “Bug”

during the issue creation, reaching the OPEN status (Fig. 1). After that, the issue can move to

other states: CLOSED, RESOLVED, or IN PROGRESS. Reaching the CLOSED status, the issue is

considered finished, and the value of Resolution field must be changed to “Fixed”. Similarly,

when the issue transits to RESOLVED status means that a resolution has been taken and is waiting

for the bug reporter verification. At this point, the value of Resolution field can also be changed

to “Fixed”. The status IN PROGRESS means that someone is actively working to fix the bug. For

some reason, an issue can move from CLOSED or RESOLVED to REOPENED status to perform some

update or to revise the solution given to fix the bug.

21

2.2 Data Collection Methodology

The dataset was built through an automated mining process. We use Python 3.7.2

programming language to mine, process, and analyze the dataset. All data came from the official

Jira5 and Git6 repositories from the ASF. First, we started mining information from Jira using

Jira-Python7, a library that facilitates the manipulation of the Jira REST API with Python. In this

stage, we mine issues with type “Bug”, with CLOSED or RESOLVED status, with ”Fixed” resolution

field, and that was created and fixed between 2009-01-01 and 2019-01-02.

To make feasible the tracking between a bug report and the commits performed to fix

this bug, the ASF projects developers adopt, by default, the strategy of specifying the Jira issue

ID in the messages of the commits devoted to resolving the issue. Thus, we use the issues’ ID to

track down and mine the source code changes information from commits that fix the bugs using

Pydriller (SPADINI et al., 2018)8. Then, the script creates the first dataset file we call snapshot.

It is important to notice we verify that there are cases where there is only one commit, more than

one commit, and even no commits containing a Jira issue ID in the commit message. Curiously,

we discovered several cases where one commit is related to several reports. Hence, all these

cases are registered on the dataset.

Next, we used the obtained issues IDs to mine all the changes made in each one of

them during the considered period, creating the change-log dataset. After that, for each issue ID,

we mined all comments posted in the report during the same period, creating the comment-log

dataset file. Additionally, we use the issues IDs to mine all related commits, creating a dataset

with detailed information regarding the bug-fixing commits we call commit-log dataset file.

Finally, it is important to mention that we performed a preprocessing in some issue’s text fields

(issue summary, description, comments, and commit messages) using Python NLTK9 library to

extract and store in the dataset the top 1,000 most frequent words and its respective frequencies.

All the scripts used in the mining process and the full dataset itself can be found in the replication

package10.
5 https://issues.apache.org/jira
6 http://gitbox.apache.org
7 https://jira.readthedocs.io/
8 https://github.com/ishepard/pydriller
9 https://www.nltk.org/
10 https://doi.org/10.6084/m9.figshare.8852084

22

2.3 Dataset Description

The dataset comprises bug reports from 55 projects of ASF. Each project has its own

snapshot, comment-log, commit-log, and change-log file. These projects are distributed

over nine categories: big-data (10), database (8), cloud (6), network-server (6), web-framework

(6), security (3), build-management (4), library (9), and machine learning (3). The project name

list is in Table 1, with additional information as the project category, year of the first release, and

the number of the mined issues for each project. We collected issues regarding two perspectives:

static and dynamic.

2.3.1 Static Perspective

In the static perspective, we collect information from the last version of the bug report

available in the Jira tool with status CLOSED or RESOLVED. We extracted 53 attributes divided into

two major groups for each bug report: the features collected from the report itself (Jira attributes)

and the ones collected from the Git repository (Git attributes). For organization purposes, we

also classified the dataset fields regarding the nature of the information they represent: general

(standard information), text (textual information), time (time-related information), versioning

(system version related information), summation (fields that store counting information), link

(bug dependencies), and source (source code related information). The complete list of static

perspective dataset (snapshot) fields can be found in Appendix A. Most of the names are

self-explanatory, but a complete field description can also be found in the replication package of

this chapter11.

2.3.2 Dynamic Perspective

Every bug report starts with a few standard pieces of information provided by the

author. For instance, some attributes are always created with the report and never change, such

as Key (the report unique identifier) and CreationDate. Other attributes, like Assignee and

Priority, are commonly defined in the report creation, but they are not mandatory and can be

changed during the report lifetime. A few other attributes are hard to input unless a time has

passed after the report creation. Examples are the versions affected by the bug and other related
11 https://figshare.com/articles/dataset/Replication_Package_-_PROMISE_19/8852084/5

https://figshare.com/articles/dataset/Replication_Package_-_PROMISE_19/8852084/5

23

Table 1 – The complete list of mined projects. The table shows the category, the year of the first
release, and the number of mined bugs.

Category Project 1st Release #Bugs

big-data (10)

Hadoop Core 2006 2861
Hadoop Yarn 2012 2090

Hadoop HDFS 2009 3214
Hadoop MapReduce 2009 2210

Flink 2015 3317
Spark 2014 6380
Oozie 2012 1420
Kafka 2013 2404
Storm 2017 1033
Giraph 2018 373

database (8)

Hive 2010 7105
Cassandra 2009 5001

Lucene Core 2006 2004
HBase 2006 6693

ZooKeeper 2006 882
Derby 2006 1083

OpenJPA 2006 653
Phoenix 2006 1564

cloud (6)

Libcloud 2011 229
jclouds 2013 435
Mesos 2013 2558
VCL 2013 425
Helix 2014 188
Ignite 2015 2726

network-server (6)

TomEE 2013 713
Mina 2006 171

Mina FtpServer 2008 66
Mina SSHD 2009 285
Mina Vysper 2010 66

Camel 2009 3232

web-framework (6)

MyFaces 2005 913
Struts 2002 725
Nutch 2012 547

Isis 2013 410
Solr 2006 2249

Tapestry 2009 711

security (3)
Kerby 2006 179

Fortress 2015 76
Syncope 2012 654

build-management (4)

Archiva 2007 320
Ivy 2006 204

MNG 2012 584
Buildr 2009 227

library (9)

Commons Compress 2009 189
Commons Colections 2001 103

Commons IO 2004 103
Commons Math 2004 418
Commons Codec 2003 64
Commons LANG 2002 264

Log4J 2 2014 754
Crunch 2013 292

Tika 2011 762

machine-learning (3)
SystemML 2017 489

Mahout 2010 592
MADlibr 2017 83

24

issues, once new instances of this information may emerge later on in the bug repair process.

The summation attributes type is intrinsically related to the report lifetime as the number of

comments, watchers, and attachments grow as the bug report lifetime pass. The dataset dynamic

perspective represents these moments when the report changes, when new information is added

to the report or a field change, such as status change; priority definition or change; the writing of

a new comment; a new collaborator starts to watch an issue.

The dynamic dataset is composed of three files:

1. changelog: This file stores every modification that ever happened on every Jira report

field.

2. comment-log: This file stores information about each comment related to its report, and

it was also mined from Jira.

3. commit-log: Some bug reports are related to some commit that fixes that bug. This file

stores commit information about each report that has one. The file entries bring detailed

information of each file modified by bug-fix commits and were mined from Github.

All the specific fields of each file can be found in Appendix A.

2.4 Dataset Characterization

This section presents a series of analyses and visualizations to characterize the

dataset. The main goal is to provide a general picture of the bug fixing process based on the

mined projects. Also, the provided analysis will serve as references in future chapters of this

thesis to ground some decisions, approaches, and ideas.

2.4.1 Bug-Fixing Time

We define Bug-Fixing Time (BFT) the interval between the CreationDate and the

ResolutionDate, i.e., BFT = ResolutionDate - CreationDate. Foremost, we want to clarify

that we use ‘Bug Report Resolution Time’, ‘Bug fix effort’ and ‘Bug-fixing time’ as synonymous

in this thesis. In this manuscript context, they mean the same thing: the period when the bug was

first reported until it is finally fixed. However, we know that the ‘Report Resolution Time’ is

more faithful with this definition, but ‘Bug-fixing time’ feels more natural and usual in some

contexts. Thus, we intercalate the terms depending on the context and avoid repetition.

Table 2 shows the frequency distribution for eight BFT intervals. The interval used

25

to group the reports by their resolution time is based on Saha et al. (2015). We choose to group

the projects by category not individually for space concerns. The columns labels meaning are:

‘h’ (hour), ‘d’ (day), and ‘M’ (month).

Table 2 – The interval BFT distribution by category. We present the report’s BFT values in seven
value range groups.

Category BFT ≤ 1h 1h < BFT ≤ 1d 1d < BFT ≤ 7d 7d < BFT ≤ 1M 1M < BFT ≤ 6M 6M < BFT ≤ 12M BFT ≥ 12M

big-data 1112 (4.39%) 4543 (17.96%) 7258 (28.69%) 5733 (22.66%) 4640 (18.34%) 929 (3.67%) 1087 (4.3%)
database 1264 (5.06%) 5250 (21.01%) 7611 (30.46%) 5292 (21.18%) 3893 (15.58%) 869 (3.48%) 806 (3.23%)

cloud 344 (5.24%) 1040 (15.85%) 1448 (22.07%) 1397 (21.29%) 1366 (20.82%) 381 (5.81%) 585 (8.92%)
web-framework 682 (12.28%) 1063 (19.14%) 1078 (19.41%) 866 (15.59%) 1087 (19.57%) 312 (5.62%) 467 (8.41%)
network-server 1172 (25.85%) 1317 (29.05%) 953 (21.02%) 496 (10.94%) 396 (8.74%) 98 (2.16%) 101 (2.23%)

library 422 (14.31%) 657 (22.28%) 589 (19.97%) 441 (14.95%) 487 (16.51%) 150 (5.09%) 203 (6.88%)
build-management 164 (12.28%) 263 (19.7%) 220 (16.48%) 214 (16.03%) 240 (17.98%) 74 (5.54%) 160 (11.99%)
machine-learning 114 (9.79%) 305 (26.2%) 242 (20.79%) 195 (16.75%) 245 (21.05%) 44 (3.78%) 19 (1.63%)

security 220 (24.2%) 265 (29.15%) 204 (22.44%) 121 (13.31%) 64 (7.04%) 27 (2.97%) 8 (0.88%)
All Reports 5494 (7.5%) 14703 (20.06%) 19603 (26.75%) 14755 (20.13%) 12418 (16.94%) 2884 (3.93%) 3436 (4.69%)

Based on Table 2, it is possible to see that the bug fixing time behavior is different

given a software category, but the majority of bugs (83.88%) are fixed between 1 hour and

six months. However, there are a few discrepant things, as 24.2% and 25.85% of security and

network-server bugs, respectively, are fixed in less than an hour, while in categories like big-data,

database and cloud, this value is between 4.39% and 5.24%. This discrepancy also appears on

the BFT ≥ 12M, where the value for the build-management category is 11.99%, while in security

is less than 1%.

Figs. 2 and 3 show the boxplot of the log-transformed (to deal with the skewed data)

bug fixing-time. The reports with effort lower than one hour had their values truncated to ‘1’.

The figures show, once more, that the effort resolution behavior of the reports is different among

categories and projects.

2.4.2 Priority

The Jira ITS provides five default values for priority: trivial, minor, major, critical,

and blocker (by order of priority). Only one project (Cassandra) does not uses the default values

and uses three levels of priority: low, normal, and urgent. Figure 4 uses all projects (except

Cassandra) to present some priority information. The visualization on the left shows the absolute

number of the report with each priority. The projects have a different number of bug reports and

distinct lifespans. For example, some of them have more than 16 years of development (e.g.,

Hadoop and HBase), while others have less than six years of development (e.g., SystemML and

MADlibr). Thus, looking only at the absolute values could present a biased behavior from the

26

VY
SP

ER
TO

M
EE

LA
NG

HA
DO

OP
IG

NI
TE

LO
G4

J2
CO

LL
EC

TI
ON

S
SO

LR
JC

LO
UD

S
M

AT
H

ST
OR

M
YA

RN
CO

M
PR

ES
S

OP
EN

JPA
FL

IN
K

CA
M

EL
HB

AS
E

M
NG

CO
DE

C
DE

RB
Y

M
AD

LI
B

FT
PS

ER
VE

R
HE

LI
X

VC
L

W
W FC IO

NU
TC

H
KA

FK
A

CA
SS

AN
DR

A
CR

UN
CH

HD
FS

M
RM

SP
AR

K
IV

Y
M

YF
AC

ES
TI

KA
HI

VE
DI

RM
IN

A
LI

BC
LO

UD
DI

RK
RB

GI
RA

PH
SS

HD
SY

ST
EM

M
L

IS
IS

SY
NC

OP
E

ZO
OK

EE
PE

R
PH

OE
NI

X
LU

CE
NE

M
ES

OS
BU

IL
DR

M
AP

RE
DU

CE
TA

P5
OO

ZI
E

M
AH

OU
T

Project

2

0

2

4

6

8

BF
T

(L
og

 S
ca

le
)

Figure 2 – Log-transformed bug-fixing time boxplot by project.

ne
tw

ork
-se

rve
r

libr
ary

big
-da

ta
clo

ud

web
-fra

mew
ork

da
tab

ase

bu
ild-

man
ag

em
en

t

mach
ine

-le
arn

ing

sec
uri

ty

Category

2

0

2

4

6

8

BF
T

(L
og

 S
ca

le
)

Figure 3 – Log-transformed bug-fixing time boxplot by category.

27

older projects. We create another visualization displayed on the right. The visualization shows

the average proportion for each priority of all projects. The vertical line presents the standard

deviation.

Trivial Minor Major Critical Blocker
0

10000

20000

30000

40000

No
. o

f R
ep

or
ts

Absolute Values

Trivial Minor Major Critical Blocker
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

Pr
op

or
tio

n

Priority Proportion Average

Figure 4 – Priority distribution. The absolute number of bug reports by priority across all the
projects is on the left. The right visualization shows the average proportion value by priority
across all projects.

The majority of reports present the minor or major priority. It is important to notice

that major is the default value priority when a report is created, which may explain the high

number of reports with this priority. The visualization on the right presents a similar behaviour

when compared to the one on the left, but shows that the trivial, critical, and blocker can present

smaller values, close to 0% in some projects.

2.4.3 Links

Two of the 53 features available in the snapshot.csv file are related to links between

reports: ‘InwardIssueLinks’ and ‘OutwardIssueLinks’. As the names suggest, given a bug report

ri with an ‘Inward Link’ reference to another bug report r j, this indicates that somehow, r j relates

to ri. Similarly, given a bug report ri with an ‘Outward Link’ reference to another bug report r j,

this indicates that somehow, ri relates to r j. These concepts are easy to understand if we model

the bug reports relations as an oriented graph: bug reports as vertices and links as oriented edges.

The link-related fields are string fields in the snapshot.csv file. If it is empty (NaN

or 0), it indicates no link of the specific field (Inward or Outward) type. If not empty, the field

contains a string of unique Keys separated by a line break (if there is more than one link). The

28

keys in the Jira ITS follow the format {project}-{number}. Hence, given the project ‘Spark’,

examples of keys would be SPARK-213 and SPARK-481. It is important to notice that a project

report can reference another project through an issue link. Different types of issues (bugs or

enhancements, for instance) can reference another type of issue.

Fig. 5 explores the possible scenarios around links between bug reports. It shows

seven bug reports of the Spark project in five columns, in order: (i) the Pandas Dataframe12

index; (ii) the bug report unique key; (iii) the Inward links references; (iv) the Outward links

references; (v) the total report number of links.

Figure 5 – Example of links using bug reports from Spark project. There are several scenarios
and types of links in bug reports.

We explore each scenario of bug report regarding how it relates with another report,

using the examples presented in Fig. 5, as follows:

– The bug report ‘SPARK-585’ is a bug report with no association with another report. This

report is an example that represents the first scenario, reports with no links.

– The others six reports represent different cases of reports with links. The bug reports

‘SPARK-1190’ and ‘SPARK-1199’ are two examples of reports with references in both

link fields. Both examples show that a report can have more than one reference in the same

field. These reports are examples of the second scenario, reports with both links types.

– The report ‘SPARK-1825’ is a report with links only in the ’Inward’ field. Notice that it

has two references, an internal reference (to a report in the same project, ‘SPARK-5164’)

and an external reference (to another project, Yarn, ‘YARN-2929’). This report is an

example of the third scenario, reports with references only in the ’Inward’ field.

– The ‘SPARK-694’, ‘SPARK-1493’, and ‘SPARK-1828’ are reports with links references

only in the ‘Outward’ field. The ‘SPARK-694’ references an internal report, while the
12 https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

29

‘SPARK-1493’ has an external reference to the project ‘Calcite’. The ‘SPARK-1828’ has

two references for others issue reports, one internal and another external, ‘Hive’. These

are examples of the fourth scenario, reports with references only in the ‘outward’ field;

– We can also explore these relations by looking only at the reports with links. As shown

in the examples, a report may reference an external project. We can split the reports with

links references into two groups: reports with only internal references and reports with

external references. This is a fifth scenario we also explore in the analysis.

Fig. 5 also shows that each link is associated with a word that describes its nature.

The examples are "Reference", "Duplicate" and "Regression".

Fig. 6 shows the proportion of different links related scenarios of bug reports, as

explained earlier. The visualization is a horizontal stacked bar and presents the proportion of

different link-related scenarios of bug reports.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
VCLLibcloudHelixMina VysperCrunchBuildrMADlibrTomEEFortressIsisMahoutFlinkCommons IOMinaCommons MathCamelMina FtpServerStormCommons CompressMyFacesCommons ColectionsSystemMLSyncopeKerbyLucene CorejcloudsPhoenixCommons CodecIvyGiraphTapestryKafkaCassandraMina SSHDOozieIgniteSparkCommons LANGArchivaNutchHBaseTikaOpenJPAStrutsLog4J 2ZooKeeperMesosSolrHiveHadoop MapReduceHadoop YarnMNGHadoop HDFSHadoop CoreDerby

Proportion of reports with and without Links by Project Without Links Both Links Inward Links Outward links

Figure 6 – The proportion of different scenarios of links between bug reports. Most projects have
more reports with no link than reports with links.

We highlight a few perceptions:

– In all projects, the proportion changes significantly. For example, the ratio of reports with

some link reference varies from more than 60% in Derby down to almost none in VCL.

– Only three projects (Derby, Hadoop Core, and Hadoop HDFS) have more reports with

links than reports with no links.

– The occurrence of reports with both links references occurs less frequently than those with

only one link.

– We also notice that reports with inward references are slightly more usual than reports

30

with outward references for most projects.

2.4.4 The Changelog Dataset

The changelog dataset contains 853,190 entries regarding 63 different types of

changes. The top 15 most common changes are listed in Table 3. The first column is the field

where the change happened. The second column is the number of changes in the specific type

and represents the total changes percentile. The third column is the number of unique bug reports

where the related change type happened since the same type of change can occur in the same

report more than once.

Table 3 – The top 15 most common fields updates in bug reports.
Changed Field Number of Changes Unique Bugs

Status 189552 (22.21%) 73273 (100%)
Fix version 140758 (16.49%) 58255 (79.48%)
Attachment 114998 (13.47%) 41012 (55.95%)
Resolution 84347 (9.88%) 73273 (100%)
Assignee 56077 (6.57%) 40040 (54.63%)

Remoteissuelink 41525 (4.86%) 12827 (17.50%)
Workflow 36766 (4.30%) 23674 (32.30%)

Link 36464 (4.27%) 20843 (28.43%)
Description 21367 (2.50%) 13315 (18.16%)

Version 21232 (2.48%) 10577 (14.43%)
Component 13936 (1.63%) 10119 (13.80%)

Hadoop flags 13887 (1.62%) 13626 (18.59%)
Summary 13003 (1.52%) 10485 (14.30%)
Priority 12317 (1.44%) 10924 (14.90%)

Target version/s 7828 (0.91%) 5237 (7.14%)
Total 417,480 (48.93%) –

A few things are worth being highlighted as we analyze Table 3. First of all, it is

natural that every report has Status and Resolution changes. All of them starts with OPEN

status and concludes with a CLOSED or RESOLVED status; The same thing with the Resolution

field: it starts with a NaN resolution and concludes with a Fixed resolution. It makes sense

that the Status field is where the higher number of changes occurs. The bug report has several

intermediary status states until it gets a CLOSED or RESOLVED status. The Assignee field changes

are the fifth on the list and are present on almost 55% of the report. It is worth investigating

this because the Assignee is a fundamental piece in the bug-fixing process. One can argue that

the bug-fixing process per si starts with the Assignee definition or when there is some kind of

31

response (a comment, a change of a field, etc.) after the bug report creation, once it is hard to

believe that the bug will be fixed if no one is responsible for it. A little more than half of the

reports have some Assignee change, indicating that one is defined when the report is created

and never changes. Another scenario is that the bug is fixed by a person that creates the report

and has never been set as Assignee on the Jira report. The bug can be identified as duplicated

or even that it is not a bug before the Assignee definition step. The last thing to highlight is the

priority changes. Priority is an object of study on several bug report related papers (TIAN et al.,

2013; TIAN et al., 2015; SHARMA et al., 2012; UMER et al., 2018). The relatively low number

of changes (only on 14.90% of the reports) can be evidence that the initial hint, defined on the

bug report creation, is precise.

2.4.5 Reports Updates

We define a report update as the change, addition, or deletion of a report field or

comment. Examples are the creation of a new comment, the change of the report status, priority,

or any other report attribute. Fig 7 shows the distribution of the number of updates, considering

every bug report in the mined dataset. The report updates play a significant role in the next

chapter, so it is necessary to represent more details.

The minimum and maximum values are, respectively, 2 and 595 updates. Other

descriptive statistics are the mode (10), median (16), and the third quartile (25).

2.4.6 Status Changes

The status changes define which phase in the report life cycle a bug report is. As

we can see in Fig. 1, there is a set of standard Jira statuses, but new ones can be created for

a customizable workflow. Table 4 lists all the status values that appear on the dataset Status

field. The first column is the status fields names. The second and third ones are the numbers

of occurrences of a given status in the From and To fields of the dynamic perspective dataset

(changelog), respectively. This means the number of status changes that had originally the

specific status (From) and the number of status changes that changed to the specific status (To).

The fourth column is the number of projects that have at least one report that had the given status

in its lifetime. We also verified six exclusive categories related to two specific projects.

Table 4 shows that the “Open”, “Resolved”, “Closed” and “Reopened” are the most

frequent status values. They are present in all projects of the dataset, being a “From” or a “To”

32

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 >7
0

Number of Updates

0

500

1000

1500

2000

2500

3000

3500

co
un

t

Figure 7 – The number of reports updates histogram. The mode is ten updates and the median
sixteen updates. Most reports have between four and twenty-five updates.

Table 4 – Bug reports possible ‘status’ values. Jira provides a set of standard values, but it is
possible to create customs for a specific project (cases of Mesos and Cassandra).

Status No. on From No. on To No. of Projects
Open 84562 (55) 11280 (40) All Projects

Resolved 36027 (55) 72766 (55) All Projects
Patch Available 41842 (17) 41839 (17) 17 Projects

In Progress 15669 (51) 15669 (51) 51 Projects
Reopened 5465 (55) 5463 (55) All Projects

Closed 1681 (43) 38229 (55) All Projects
Accepted 1998 1998 Mesos Only

Reviewable 1535 1534 Mesos Only
Ready To Review 32 33 Mesos Only
Ready to Commit 611 611 Cassandra Only

Awaiting Feedback 81 81 Cassandra Only
Testing 49 49 Cassandra Only

33

value. The “MESOS” and “CASSANDRA” projects have their own exclusive Status values.

This probably has the same explanation of ”CASSANDRA” priority unique values: these are

exclusive project status values defined by the project company’s bug triage process.

Let S = {S1 = “Open”, S2 = “Resolved”, S3 = “Patch Available”, S4 = “In Progress”,

S5 = “Reopened”, S6 = “Closed”} be a set of status changes of all projects. Table 5 shows the

adjacent matrix of status changes. We remove the exclusive status values occurrences of “Mesos”

and “Cassandra” projects for a more general scenario.

Table 5 – Adjacent matrix of status changes.
To

S1 S2 S3 S4 S5 S6

Fr
om

S1 ¤ ¤ ¤ ¤ ¤ ¤
S2 ¤ ¤
S3 ¤ ¤ ¤ ¤ ¤ ¤
S4 ¤ ¤ ¤ ¤
S5 ¤ ¤ ¤ ¤ ¤
S6 ¤ ¤

An analysis of Table 5 reveals the common behavior of a bug report.

– From “Open” (S1) status, there are changes to all status (include “Open” and “Reopened”),

which is natural since “Open” can be seen as an initial report state. It goes in its majority

to “Patch Available” (42.58%) and to “Resolved” (36.11%), occasionally to “In Progress”

(14.71%) and “Closed” (6.53%).

– From “Resolved” (S2) status, occasionally goes to ”Reopened” (9.55%) and generally to

”Closed” (90.45%) status.

– From “Patch Available” (S3), it generally goes to “Resolved” (70.20%) (which may imply

that the Available Patch is correct) and occasionally goes to “Open” (26.27%) or “In

Progress” (3.43%) status (which may imply that the Available Patch was not correct /

accepted). There is a tiny number of changes to “Patch Available”, “Reopened” and

“Closed”.

– From “In Progress” (S4) status, it goes in its majority to “Resolved” (57.96%) or “Patch

Available” (32.11%) status and occasionally to “Open” (4.32%) or “Closed” (5.11%)

status.

– From “Reopened” (S5) status, it goes in its majority (63.49%) to “Resolved” status,

occasionally to “Patch Available” (17.41%), “Closed” (13.29%) or “In Progress” (5.16%)

34

status.

– From “Closed” (S6) status, almost every change (99.997%) is to “Reopened” status, with a

tiny number (0.003%) of changes to “Resolved” status.

Next, we verify the distribution of status changes on the reports. Fig. 8 shows this

information. We remove the status changes that register the same status for this visualization. As

shown in Table 5 there is a number of redundant status i.e. there is the register of status change,

but the final status is equal to the original status. We use all the projects in this visualization to

see the number of status changes, not the real state status. Most reports (90.03%) have between 1

to 4 status changes.

1 2 3 4 5 6 7 8 9 10 >10
Number of Status Changes

0

5000

10000

15000

20000

25000

co
un

t

17732

28403

15199

4847

3161

1080 998 534 418 184 717

Figure 8 – The number of status changes by reports. The great majority of reports have between
two and four status updates.

2.5 Dataset Relevance

Our dataset provides information about the bug-fix process documentation on ITS.

We believe that the dataset relevance can be justified by a few factors we describe in the following.

The first factor is the number of projects (55 projects), its different categories (9

categories), and release dates (2003-2017). This diversity can lead researchers to find specific

to general differences in the bug-fix process. Several works use ITS reports to understand

35

the bug-fix process better. For example, our proposed dataset can be used to replicate those

studies and confirm or not their evidence once a number of them use fewer projects to assess

their hypothesis (CANFORA et al., 2011; ZHANG et al., 2012; HABAYEB et al., 2018;

AKBARINASAJI et al., 2018). The mining process is not a trivial task, and making the dataset

available is a shortcut for all the researchers who want to better understand the triage and bug-fix

process.

The second factor is its dynamic aspect (i.e., the changes that occurred during the

bug-fix activity). Other works (HABAYEB et al., 2015; XU; ZHOU, 2018) highlight the report

changes relevance once it is not wise to perform a conclusive analysis only on a set of reports

snapshot. However, since our dataset has all the changes and new additions on a report, more

detailed and reliable conclusions can be made.

2.6 Related Work

Several papers propose datasets composed of ITS reports. This section discusses the

works that have a similar approach or goal with our proposal.

Lamkanfi et al. (2013) describe the mining process to collect bug reports of Eclipse

and Mozilla issues tracking systems. They organized a total of 46,884 examples from 4 Eclipse

products (Eclipse Platform, JDT, CDT, and PDE) and 168,024 from 4 Mozilla products (Mozilla

Core, Mozilla Firefox, Mozilla Thunderbird, and Mozilla Bugzilla). The authors set the dataset

focus on the updates or changes of the reports.

Habayeb et al. (2015) propose a Firefox Temporal Defect Dataset with 86,444 bug

reports covering eight years from 2006 to 2014. The work points that generally, researchers have

focused "mostly on analyzing the frequency of the occurrence of defects and their attributes".

This simplistic analysis does not consider the temporal alignment of events that leads to those

changes. Instead, based on a performed exploratory analysis on the dataset, the authors suggest

that their mined data can be used to predict defect proneness or defect sizing and suggest potential

defect fixes as well.

The work presented by Ortu et al. (2015) is probably the most similar to our proposal.

The paper presents a dataset composed of more than 1K projects with more than 700K issues

reports and more than 2 million comments from the issues. All issues are extracted from the

Jira ITS of four open-source ecosystems: Apache Software Foundation, Spring, JBoss, and

CodeHaus. They argue that using the amount of information regarding comments can lead to

36

sentimental and technical analysis. The major point that differs their database from ours is

that they mined all issues (not only bugs as ours). Their dataset does not provide information

regarding source configuration management and does not provide a dynamic perspective of the

reports.

The work developed by Zhu et al. (2016) describes the dataset mined over Mozilla

Issue Tracking History. The dataset contains more than 774,000 issues reported from April

1998 to January 2013, and it is composed of several issues types: defects, feature requests, and

enhancements, among others. The particular thing on this proposal is that it includes multi-extract

(they retrieve data from two channels, a front-end, and back-end, at three different times); and a

multi-level design (Level 0 is the raw data and Level 1 is an after processing standardized data).

Xu and Zhou (XU; ZHOU, 2018) present the Multi-level dataset mining process of

the Linux Kernel Patchwork is shown. The dataset is composed of 665,550 patches information

extracted between December 2008 and December 2017 from the Linux Kernel Mailing list. They

organize the data on three levels: Level 0, the raw data; Level 1 as structure data; and Level 2,

as a further processing result. The authors emphasize reducing researchers’ effort in collecting,

cleaning, and processing after initiatives like these.

37

3 THE ROLE OF BUG REPORT EVOLUTION IN RELIABLE FIXING ESTIMA-

TION

In this chapter, we describe the process to propose and evaluate a new approach to

bug-fixing time estimation models. Given the scenario composed of the relevance of bug report

resolution estimation and the changeable and evolutionary nature of bug reports presented in

the Chapter 1, we investigate three main questions in this chapter. We formalize our research

questions below:

– RQ1: How frequently are the bug reports’ fields updated, and how do these updates

impact models for fixing time estimation? To answer this question, we first analyze the

most common reports’ fields updates of ten open-source projects. Next, we replicate the

seminal work by (ZHANG et al., 2013) (more details about why we select it on Section

3.1.2) using reports in different stages of their evolution. This way, we can verify if the

estimation models present any performance variation when we consider information from

the various possible states of the bug reports.

– RQ2: What is the most promising model configuration to build reliable models for

fixing time estimation considering bug reports at different stages of evolution? To

answer this question, we evaluate three different machine learning models trained with

data from ten Apache software projects. We look at the fixing time estimation capability

as a combination of two perspectives: i) data balancing strategies ii) the estimated label

related to the resolution time. To achieve that, we created a temporal dataset based on our

presented dataset in Chapter 2 and evaluate the estimation models with several metrics.

– RQ3: To what extent is there a moment in the bug report life cycle where a resolution

estimation is more precise? We already discussed (and will further detail in Section

3.1) the idea of bug reports evolution in Chapter 2. To tackle this question, we look at

every report state as an individual and independent report. After training the models with

such approach, we identify when in the report life cycle we obtain the best estimates.

We perform a posterior analysis and get a sense of the difference in the accuracy of the

estimations at the different steps of the bug life cycle.

3.1 Materials and Methods

This section describes the materials and methods used to address our research

questions. Subsection 3.1.1 explains the dataset used in all the investigation steps, created

38

based on the dataset presented in Chapter 2. In the Subsection 3.1.2, we present the necessary

information to answer RQ1. Subsections 3.1.3 and 3.1.4 present the materials and methods to

answer, respectivaly RQ2 and RQ3. We conclude this section describing in subsection 3.1.5 the

process to create the train/test data partition to train the machine learning models.

3.1.1 A Temporal Dataset of Bug-Fixing Activities and Reports

Using the dataset proposed in Chapter 2, we intend to use the bug report information

from the Jira issue tracking system to answer the research questions. There are several indepen-

dent variables available in the reports, and they can be used to train machine learning models.

All the attributes are described and explained in Appendix A, and the subset that we use in our

experiments are listed in Section 3.1, Table 9.

Most related work in the literature have been dealing with bug fixing time estimation

as a type of effort prediction. The usual effort to be estimated is time itself, but there are other

choices, such as person-hour or code churn. Therefore, the main idea is to model the task as the

necessary effort to fix the bug, i.e., the resource applied to change the code or remove fractions

of code that lead to bugs.

In the current work, we look to model the effort estimation as the bug report resolution

time. Thereby, we have as a dependent variable a derivative attribute from two of the report’s

fields. Thus, we define the Report Resolution Time (RRT) as the difference between the report

resolution date and the report creation date.

Definition 1 Let Creation Date (CD) be the report’s Creation Date and let Resolution Date

(RD) be the report’s Resolution Date. The variable RRT, i.e. the Report Resolution Time, is

defined as RRT = RD - CD.

The dataset original structure proposed in Chapter 2, as it is, limits the potential

of applicability and confidence of possible RRT estimations. It is crucial to notice that the

snapshot files contain the bug reports in their final state, i.e., the values of their fields at the

moment when they are closed. The idea is that if one uses the dataset as presented to estimate

RRT, it may lead to optimistic estimations because the snapshot file contains information of the

bug report last state. Hence, the report features values may contain information not available

when performing the report triage in its initial state. For the rest of this Chapter, the state of a bug

report will be discussed more often. Hence, we formally define the state of a bug report below.

39

Definition 2 A bug report’s state is comprised of its attributes’ set values in a given moment of

the life cycle, right after one or more of its attributes are updated (deleted, changed, or added).

The report initial state is the set of its attributes’ values right after its creation. The report’s

final state is the set of its attributes’ values right after the report is resolved/closed. The report’s

intermediary states are the states between the initial and final state.

Since the snapshot files only contain the final state of each report, it is not logical

to build RRT predictive models using only the reports’ final state, once they only provide data

related to the report’s resolution. For instance, the number of comments and their top words are

cumulative attributes that change and increase during discussions made by the developers. It

would be desirable to have a management tool that estimates the effort for intermediate reports’

states to ensure that for each state exists an associated RRT.

The complete dataset does not contain all states of each report. However, it provides

the necessary information to obtain them. Every state of each report can be re-created from the

three other files of the dataset: snapshot, changelog and commentslog. We wrote a Python

script that, for each report in the snapshot file, re-creates the report’s state for every change and

update that ever happens in the report’s life cycle. Fig. 9 summarizes such a re-creation process.

The correspondent pseudo-code is presented in Algorithm 1 and described as follows. In Line 1,

we define a structure to store all the reports’ states re-created by the script. In Line 2, we get

each final report state at a given time from the snapshot.csv file to re-create its previous states.

In Line 3, we include the selected report state into the temporal_dataset structure since it is

the final state report. In Lines 4 and 5, we get all the changes and comments corresponding to

the current report. In Line 6, we group the report fields’ changes and comments additions that

co-occur or occur with a small difference in time (5 seconds) in the same structure and call it an

update. Each update is what defines the difference between two states. In Line 7, we order the

updates by date and time in a descending way, so the last updates are on the top of the structure.

Hence, we are re-creating the states in decreasing order (from the final state report to the initial

state report). We start the process by using the final report state sn (given at Line 2), where n

represents the number of states that the report has. Next, we re-create the previous report states

down to the initial state (sn−1,sn−2, ...,s1). In Line 8, we perform a simple attribution to set the

current state to be used to re-create the previous state. In Line 9, we go through each report

update to re-create the previous report states. In Line 10, a new report state is re-created. A new

report state si−1, is re-created using the current state report si and the current update variable

40

from Line 9. This method undoes the updates (registered in the update variable) that made the

report goes from its state si−1 to its state si. In Line 11, we include the recently re-created report

state in the temporal_dataset. In Line 12, we update the last created report state to be used to

build the previous report state. In Line 15, we add a new column RRT to the dataset, which is

calculated as detailed in Definitions 1 and 3.

snapshot.csv

F
in

al
 S

ta
te

B

ug
 R

ep
or

t

changelog.csv

Report ID

create_dataset_script.py

Get a report

G
et

 a
ll

ch
an

ge
s

w
ith

 t

he
 R

ep
or

t I
D

Create new
 reports

 G
et all com

m
ents info

 w
ith the R

eport ID

commentslog.csv
Figure 9 – The temporal dataset of bug-fixing activities and the reports states re-creation process.

Here, we want to highlight a crucial aspect to understand our approach. In the

temporal_dataset, we have several bug reports in different states. From now on, to train

the machine learning models, we will consider every report, regardless of its state, as an

independent report. When we create the temporal_dataset, we can use every report (initial,

intermediate, or final report states) as individual patterns to train machine learning models. We

argue that if the actual report field values are enough to predict when it will be closed/resolved,

the models will provide different estimations with different reports’ states. Every report state has

its attributes (fields) values and an RRT value associated. Thus, we expand the idea of RRT to

each report state as follows, already using the idea of a report state as an independent report.

41

Algorithm 1 Temporal Reports Dataset Builder Script
Require: snapshot.csv,changelog.csv,commentlog.csv

1: temporal_dataset = []
2: for final_report_state in snapshot.csv do
3: temporal_dataset.append(final_report_state)
4: comments = get_comments_by_key(final_report_state.key) #from commentlog.csv
5: changes = get_changes_by_key(final_report_state.key) #from changelog.csv
6: group_of_updates = group_by_datetime(comments, changes)
7: group_of_updates = group_of_updates.order_by_datetime()
8: current_state = final_report_state
9: for update in group_of_updates do

10: new_state = delta_state(current_state, updates)
11: temporal_dataset.append(new_state)
12: current_state = new_state
13: end for
14: end for
15: temporal_dataset = calculates_RRT(temporal_dataset)
16: return temporal_dataset

Final)State)
Bug)Report

Intermediary)States)
))))))Bug)Reports

Initial)State)
Bug)Report

Bug)Report)Lifetime

))))Original)Report)
Final)Resolution)Date

Original)Report)
)Creation)Date

Report)
State)1

Report)
State)2

Report)
State)n-1

Report)
State)n)

Bug)Report)Resolution)Time

Report)State)1

Report)State)2

Report)State)n-1

Report)State)n (none)

A)moment)when)the)report)is)updated,
)))a)Last)Update)Date)(LUD)

(RRT)=))RD)-)CD)

(IRRT)=)RD)-)LUD)

(IRRT)=)RD)-)LUD)

(=)0)

Figure 10 – Bug reports resolution time calculation. The RRT is calculated based on the current
state of the report.

42

Definition 3 The calculation of each report RRT depends on its state type (as seen in Definition

2):

– The RRT of an Inital State Bug Report is calculated as the RRT established on Definition

1.

– The RRT of an Intermediate State Bug Report is calculated as follows: let ri be a

Intermediate State Bug Report, with i indicading the state that this report represents.

The existence of ri implies that a previous report state r
(i−1) exists, which can be another

Intermediate State Bug Report or an Inital State Bug Report. For ri to exist, a set of

fields in report state r
(i−1) was updated at some moment of the bug report life cycle. Let

the Last Update Date (LUD) be the update moment. The RRT of an Intermediate State

Bug Report is defined as RRT = RD - LUD.

– The RRT of a Final State Bug Report is defined as an Intermediate State Bug Report.

However, it has a particularity: the LUD value represents the moment when the report is

closed (i.e., there is a change of the status to closed/resolved). Thus, if LUD = RD, then

RRT = 0.

The above definition can be interpreted as a simple variation of Definition 1: every

time the report is updated, a new report (state) is created. Hence, the LUD can be seen as the CD

of a new state report. Another way to look at the RRT calculation is that a bug report RRT is the

time that will take to resolve the current report state. Fig. 10 summarizes the definition.

3.1.2 Bug Reports’ Fields Updates and Zhang et al. (2013)’s Work Replication

For the bug reports’ fields updates analysis, we use the changelog.csv file of each

project to list the fifteen most common fields updates. We also verify how often previously

proposed approaches to the report resolution estimation task use those attributes. We select the

following related work: Zhang et al. (2013), Assar et al. (2016), Al-Zubaidi et al. (2017) and

Habayeb et al. (2018). Those and other related papers that deal with bug-fixing time estimation

are summarized in Section 3.5. The approaches mentioned above are also candidates to be

compared with our approach, using temporal dataset. The main reason to select them are: (i)

the similarity with our approach and (ii) the impact factors of their publication site. However,

three of them present some shortcomings when analyzed. Assar et al. (2016) conclude that their

approach does not present good results and is not applicable. Al-Zubaidi et al. (2017) models the

problem as a regression task, while we model it as a classification task. The work by Habayeb et

43

al. (2018) uses several attributes that we cannot calculate due to dataset differences. Hence, we

only consider the work by Zhang et al. (2013) as a comparison baseline. Nevertheless, we still

consider the other three works when analyzing the field updates.

The work developed by Zhang et al. (2013) uses a K-Nearest Neighbors (KNN)

algorithm with a set of standard report’s attributes. Table 6 lists their names, descriptions, and if

it is present or not in the dataset proposed in our dataset.

Table 6 – Attributes used by Zhang et al. (2013).
Attribute Name Description Present or Equivalent on Our Dataset
Submitter The bug report submitter. Equivalent to Reporter

Owner The developer who is responsible for resolving the bug Equivalent to Assignee
Severity The severity of a bug report No
Priority The priority of a bug report Yes

ESC Indicator of whether the bug is reported by end users or by the QA team. No
Category The category of the problem No
Summary A short description of the problem. Yes

We only use a subset of the original attributes, as our dataset does not contain all

of them, as shown in Table 6. This is a limitation of the Jira platform that does not provide

these missing attributes by default. In the data pre-processing step, the Submitter and Owner

are encoded using the one-hot encoding. The work by Zhang et al. (2013) uses the standard

Euclidean distance for most of the attributes in the KNN algorithm, except for the Priority,

Severity, and Summary, which have specific representations. The Jira platform, by default,

considers five levels of priority: Trivial, Minor, Major, Critical, and Blocker. They are encoded

in an ordinal way, with numbers from 1 to 5. The Summary field is a set of words after the

removal of stopwords. Hence, based on the baseline work, the functions used to compute the

difference between two priorities, dp(Pa,Pb), and two summaries, ds(Sa,Sb), are given by

dp(Pa,Pb) = ∣Pa−Pb∣ ×0.2. (3.1)

ds(Sa,Sb) = 1− ∣Sa∩Sb∣
∣Sa∪Sb∣

. (3.2)

Both Equations 3.1 and 3.2 are adaptations from the work by Zhang et al. (2013).

Equation 3.1 was adjusted because the original paper’s projects have four priority levels, while

in the Jira platform, the reports have five. The function represents a weighted distance between

two priorities (e.g. Trivial bug reports are closer to minor than to Blocker ones). In Equation

3.2, the original paper uses another set of words WC in the equation. They represent the set of

standard words extracted from pre-defined category labels, but the text does not detail how those

words are selected. Hence, we chose to remove it as both proposals (the original and Equation

3.2) have the same idea to measure the text similarity.

44

There are four attributes used to train the models using the baseline approach, and

we call them Set 1. We also define a second set of attributes, Set 2, composed by eleven attributes.

This Set 2 is similar to those we use in our approach. We use those new attributes to verify if

they could improve the results. Concomitantly, it also provides a more fair way to compare our

approach to the baseline. The Table 7 presents the list of attributes for each Set.

Table 7 – Description of the two ‘sets’ of attributes used in the baseline approach.
Set of Attributes List of Features

Set 1 Summary, Priority, Reporter, and Assignee

Set 2
Summary, Priority, Reporter, Assignee, Comments,
Description, NoAffectsVersions, NoComponents,

NoAttachments, TotalLinks, and NoAttachedPatches

We draw three experiments for each set of attributes to test our hypotheses using the

baseline approach (ZHANG et al., 2013). 1) In the first experiment, we train and test using only

the final state reports (EXP1); 2) in the second experiment, we train and test using only the initial

state reports (EXP2); 3) in third experiment, we train using final state reports and test with initial

state reports (EXP3). In the first and second experiments, we intend to verify if the results are

different depending on the state used to train the model. They also provide a baseline method to

compare with our approach. For the third experiment, given that there is a difference depending

on the state used to train the model, we want to verify if such a scenario is still applicable in

practice (i.e. it does not matter to train using the last state reports as long as the models are able

to estimate good results using the initial reports). It is worth noting that the RRT as established

in Definition 3 is not used in this round of experiments. The RRT is independent of the state

(initial or final), being the actual RRT as established in Definition 1. Also, to avoid ambiguity,

we highlight that the three EXP use the same train/test splits and sizes. For each project, we

first created a 5-fold partition using the reports’ ID (e.g., we do not look at the report features at

this point). For each report, through its unique ID, we recovered the values of the attributes to

train and test the models depending on how each EXP is defined. We discuss and describe this

process at length in subsection 3.1.5.

For each one of the ten projects dataset, we train the models for each experiment

setting and calculate the average accuracy and f-measure by considering a 5-fold cross-validation.

The work Zhang et al. (2013) uses the concept of a time unit to separate the reports between

two classes. A project’s time unit is the median of its report resolution time. The original

approach presented by Zhang et al. (2013) tests five different thresholds to split the data: 0.1,

45

0.2, 0.4, 1, and 2-time units. For instance, consider a hypothetical project with a median report

resolution time of seven days. If we train a model by splitting the data with the 0.1-time unit,

the model predicts if the report will take more than 0.7 days (approximately 16,8 hours) to be

resolved. Splitting the data with the 0.2-time unit predicts if the report will take more than

1.4 days (approximately 33,6 hours) to be resolved. When considering the 1-time unit, if a

given report will take more than seven days to be resolved, and so on. We include in the list

of thresholds to split the data in five and ten days thresholds. We do this because these are the

values we use to split the data in our approach (more on why we choose these thresholds can be

found in subsection 3.1.4). Thus, it will help us to compare both solutions (our approach and the

baseline approach).

3.1.3 Preprocessing steps on the ‘Temporal Dataset‘ to apply our approach

For our approach, we chose to use the temporal dataset process creation on 10

of the 55 projects from the original dataset, namely: Hadoop Core, Hadoop Yarn, Hadoop

HDFS, Hadoop MapReduce, Lucene, Flink, Solr, Zookeeper, Kafka and Spark. The project

selection criteria are project maturity (years of development) and the number of bug reports.

After applying the previously described script to each of the project’s datasets we have the

data to train the machine learning models. A few aspects guide us to select these ten specific

projects. Each dataset project to be used in our approach increases the time and computational

power dramatically. Creating the temporal dataset of each project is time-consuming. Hence, the

temporal datasets’ size considerably increases compared to the snapshot file, which contains only

the final state report (see Table 8). This also increases the time to train the models, as we train

different machine learning models in different configurations (to be explored in Subsection 2.5).

We had to compromise the number of projects to fit the computational power we had available.

On the other hand, this number of projects allows us to do a fine-grained analysis of the results

as we did in the following sections.

We also perform three filters on the snapshot.csv file (the file that contains the

final state reports, used to create the Temporal Dataset) to remove reports that contain at least

one of the following characteristics: 1) no related commit; 2) RRT = 0; 3) reports with two or

fewer states. We argue that these reports do not represent the traditional bug workflow, that

would be: bug discovery, report the bug, the bug-fixing process being discussed and documented

in the report (with updates on the report), the report is closed/resolved and associated with

46

a commit that contains the code to fix the bug. An in-depth analysis would be essential to

characterize these reports with some anomalous behavior. However, we have a few hypotheses.

For instance, a report created and resolved/closed instantly (RRT = 0) was probably registered

only for documentation purposes. The reports without commit could be reported by accident.

Another hypothesis would be that one notices that the reported case is not a bug, a duplicated or

resolved one during the report triage. To minimize the chances of using reports that may fall into

one of these cases, we chose to use only the ones that present strong evidence that has passed by

a bug’s natural workflow.

To check the viability of these filters, we randomly selected 30 reports (in the subset

of removed reports by the filters) from each project for a total of 300 bug reports. We analyzed

each of them in the Jira platform in its original format (raw data). We look for evidence that the

reports represent one of the cases we suggest: not a bug, duplicated or reported by documentation

proposes. We call these bugs ‘non-traditional bug reports’. Their counterpart we call “normal

bugs”. Considering all the 300 reports, we gathered evidence that 240 of them falls into one of

the cases: duplicated bug, not a bug, reported by documentation proposes (already fixed), already

fixed by previous versions, imported from another source (the discussion and original report was

made in GitHub or mail list, not in Jira), stale bugs (reported a long time ago and already fixed

in posterior versions), reported with a solution (the patch that solves the problem was uploaded

in minutes after the report creation, between 2 to 5 minutes, indicating that the reporter founded

the bug, creates the report and already upload a patch, that eventually was accepted), typos and

documentation bugs (that do not demands a commit). The great majority of the normal bugs fall

in the cases with reports with no commit. In some cases like Hadoop Core, they are old bug

reports (from 2008/2009), or there was a comment indicating that the fixing commit was not

associated. Finally, we provide a complete table with the analyzed reports and a commentary

about them in the replication package1.

Table 8 presents some of the dataset characteristics. The first column has the names

of the projects. The second, the number of reports on the original snapshot file, as proposed

in the original dataset. In the third column, we have the number of reports after applying the

creation process, as described in Section 3.1.1. The fourth, fifth, and sixth columns show the

number of reports caught by the three filters explained above. “Selected Reports” shows the

number of unique reports selected from the snapshot.csv file. The last column presents the
1 https://zenodo.org/record/5338495#.YS0bdVtv9H4

https://zenodo.org/record/5338495#.YS0bdVtv9H4

47

total numbers of states created from the Selected Reports.

Table 8 – Projects datasets information after applying filters to remove ‘non-traditional’ bug
reports.

Project
No. of Reports
(snapshot file)

No. of Reports
(temporal dataset)

RRT = 0
No Commit
Associated

No. of States
≤ 2

Selected
Reports

All Reports States
(temporal dataset)

Flink 3317 31290 659 928 137 2188 (65.96%) 25915
Hadoop

Core
2861 44717 65 705 0 2116 (73.96%) 36794

Hadoop
HDFS

3214 55852 53 666 0 2525 (78.56%) 46845

Hadoop
Mapreduce

2210 34021 64 866 0 1311 (59.32%) 22967

Hadoop
Yarn

2090 41946 12 103 0 1983 (94.88%) 40355

Kafka 2404 21489 61 462 19 1891 (78.66%) 17952
Lucene 2004 21943 182 153 14 1671 (83.38%) 19935

Solr 2249 25101 161 255 32 1821 (80.96%) 22431
Spark 6380 49438 66 604 101 5640 (88.40%) 45127

Zookeeper 882 16823 22 107 4 755 (85.60%) 15384

The original snapshot.csv file contains 53 attributes, but we only use a subset of

these alongside some attribute variations. Table 9 shows each of the 18 attributes we employ

and their description. We selected those attributes based on two reasons: 1) they are easy to

compute; 2) they are effortless attributes, which is ideal for a first proposal. Since the final goal

is a program that estimates the report resolution time at any moment of its life cycle, the model

could benefit from easy computing and acquiral of report features. From a machine learning

perspective, we usually train the initial models with simple and easy to compute attributes.

Afterward, we will try more complex models, algorithms and attributes. We also transform the

textual fields ‘Comments’, ‘Description’, and ‘Summary’, in features using Bag of Words (BoW)

technique, and trained models logistic and neural networks models using three different sets of

features: i) only the textual information as BoW; ii) only the ones presented in Table 9; iii) and a

hybrid approach, where we use the combination of both features groups. For all projects and

models, the best results were acquired using only the ones presented in Table 9 (these results can

be found in the replication package). For future works, we intend to perform a more detailed

analysis of the textual fields and evaluate the relevance of the textual fields with different Natural

Language Processing techniques.

3.1.4 Models training methodology

We choose three machine learning methods to create models using the temporal

dataset: logistic regression, MultiLayer Perceptron (MLP), and Gaussian process. For the

48

Table 9 – Dataset features description.
Attribute Name Description Possible Values Addition Information

NoAttachedPatches
Number of patches

attached to the report
N Same idea of the original

NoAttachments
Number of files

attached to the report
N Same idea of the original

NoComments
Number of comments

in the report
N Same idea of the original

Priority Report priority label encoding

{1,2,3,4,5}, meaning,
respectivily, Trivial,

Minor, Major, Critical
and Blocker

Original priority field
values mapping of the
original dataset values;

Status
Inform the report status in

a one-hot-encoding representation.

{0,1}, the features are ‘Open’,
‘In Progress’, ‘Reopened’, ‘Resolved’,

‘Patch Available’ and ‘Closed’.

Status field one-hot-encoding
of the original dataset values;

NoAffectedVersions
Number of system versions

affected by the bug
N

A simplification of the original
dataset “AffectsVersions” field.

HasAssignee
Inform if the report has
a associated assignee

{0,1}
Binary attribute derivated

from the “Assignee” field in
the original dataset.

NoComponents
Number of components

affected by the bug
N

Binary attribute derivated
from the “Components” field

in the original dataset.

NoDescriptionTopWords
Number of Top 1000 most frequent
words of a bug detailed description

N
A simplification of the original
dataset “DescriptionTopWords”

field.

UniqueNoDescriptionTopWords
Number of unique Top 1000 most
frequent words of a bug detailed

description
N

A simplification of the original
dataset “DescriptionTopWords”

field.

NoSummaryTopWords
Number of Top 1000 most
frequent words of a brief
one-line bug summary

N
A simplification of the original
dataset “SummaryTopWords”

field.

UniqueNoSummaryTopWords
Number of unique Top 1000 most
frequent words of a brief one-line

bug summary
N

A simplification of the original
dataset “SummaryTopWords”

field.

NoCommentsTopWords
Number of Top 1000 most frequent
words of a bug detailed summary

N
A simplification of the original
dataset “CommentsTopWords”

field.

UniqueNoCommentsTopWords
Number of Top 1000 most frequent
words of a bug detailed summary

N
A simplification of the original
dataset “CommentsTopWords”

field.

TotalLinks
The number of other

issue reports linked to the report.
N

A aggregation of the original dataset
“InwardIssueLinks” &

“OutwardIssueLinks” fields.

DSLU Days Since the Last report Update N

- Created on the temporal
dataset process creation.

- The report’s idle time between
a previous and a current state

NumberOfUpdates
Number of updated fields since

the last report state
N

- Created on the temporal
dataset process creation.

- Represents the number of features
with different values bettween
a previous and a current state

State Report State number N
- Created on the temporal
dataset process creation.

Progress
Actual report state divided by the

number of report states
{0...1} Used in results analysis

ResolutionTimeInDays The report resolution time in days. N
- Dependent variable that the

models try to predict;

49

logistic regression we use the sklearn2. For the Gaussian process model, we use the GPFlow3

implementation. For the MLP, we consider the Keras library4. All models were trained using a

5-fold data partition to perform cross-validation. More details on how we perform this partition

in subsection 3.1.5

We test different choices for two model configurations, namely: output format (i.e.,

the way to estimate the RRT, y in machine learning terms); and how to deal with class imbalance

(to use or not minority class over-sampling or majority class under-sampling). For the output

format, we evaluate two ways to estimate the RRT: “two labels (threshold = 5 days)”, where

the reports are grouped by in two intervals: [0,5[, [5, inf]; and “two labels (threshold = 10

days)”, where the reports are grouped by in two intervals: [0,10[, [10, inf]. The numbers inside

the intervals are the real RRT calculated as explained in Definitions 1 and 3. The idea to test

two thresholds is to verify the model’s viability to help estimate in short or medium/long-term

releases. Seven and fourteen days seem to be a natural choice, as they are the most common

period sizes of sprints. We tested several thresholds (5, 7, 10, 14, and 15 days) in a previous

round of experiments using logistic regression (the complete results table can be found in the

replication package). The results indicate that smaller thresholds present better results than more

significant thresholds. We choose five and ten days to present the best results overall without

losing the idea to verify the model’s viability to help estimate in short or medium/long-term

releases. Also, five and ten days can be seen as one or two weeks in terms of business/working

days. We show the label distribution for each project in Table 10.

We summarize our models as follows. We combine the three aforementioned models,

two ways to model the RRT, and four approaches to deal with the class imbalance (two under-

sampling methods, over-sampling or none), which results in 24 (3×2×4 = 24) classification

models for each project. We use the following rule to refer to each model — [model] [y_format]

[balance_data] — where:

– model: ‘logreg’ for logistic regression, ‘gp’ for gaussian process and ‘nn’ for neural

networks (MLP).

– y_format: ‘two_labels_5’ for the two intervals RRT estimation with threshold=5 and

‘two_labels_10’ for the two intervals RRT estimation with threshold=10.

– data: The use or not of class balancing strategies. Original Data (OD) means using the
2 https://scikit-learn.org/
3 https://www.gpflow.org/
4 https://keras.io/

50

Table 10 – Labels distribution. The table shows the number of reports, by projects, of each
specific RRT interval.

Threshold = 5 days Threshold = 10 days
[0, 5[[5, inf] [0, 10[[10, inf]

Flink 14769 11146 17814 8101
Hadoop Core 19867 16927 24137 12657

Hadoop HDFS 26173 20672 32005 14840
Lucene 14103 5832 15522 4413

Hadoop Mapreduce 12306 10661 14994 7973
Spark 26753 18374 32076 13051

Hadoop Yarn 21749 18606 27001 13354
Zookeeper 5643 9741 7134 8250

Kafka 9116 8836 11174 6778
Solr 11688 10743 13531 8900

original data, Synthetic Minority Over-sampling Technique (SMOTE) (CHAWLA et al.,

2002) implies the use of oversampling of minority classes. Cluster Centroids (CC) implies

the use of Cluster Centroids to under-sampling the majority classes, while RND implies

the use of random under-sampling of majority classes data points.

For instance, a model named ‘logreg_two_labels_5_SMOTE’ indicates a logistic

regression model with SMOTE used to over-sample the minority class, and used to predict if a

given report will take more or less than 5 days to be resolved/closed.

The machine learning methods parameters used to train the models are as follows.

For the logistic regression, we use the library default values. For the MLP, we tested a few

architectures and noticed that two hidden layers with 128 neurons each performed better. For

the gaussian process models, due to the dataset sizes, we use a stochastic variational inference

procedure (HENSMAN et al., 2013).

3.1.5 The Train/Test Split Method

In this subsection, we explain in detail how we create the folds to train and test the

models. Initially, we have two rounds of experiments. The first one is the baseline approach,

where we train the data using the work of Zhang et al. (2013), in three different reports’ states

scenarios (EXP 1, 2, and 3). The second one is our approach, where we use all states in several

machine learning configurations (models, class split days threshold, and data balance strategies).

Before any round of experiments, we split each data project in 5-folds. However, we

51

must respect two constraints when creating the train/test folds partitions:

– The different states (data points) of a report must be at the same fold partition (i.e., given a

report, all its states must be at train fold partition OR test fold partition, exclusively).

– Different reports have a different number of states, some with more updates and others

with fewer updates. We must monitor how reports with several states impact the models’

performance and avoid that groups of reports with several updates end up in the same train

or test split. This may cause the over-representation of a report to surpass the influence in

the model of reports with a fewer number of updates.

We use the following strategy to respect both restrictions:

– For each project, we first sort all bug reports by their number of states in non-decreasing

order. It gives us a list-like data structure with the reports with a higher number of updates

at the beginning of the structure and the ones with fewer updates at the end.

– We split the sorted list of reports into buckets of reports, each bucket containing five reports

maximum, following the order of reports presented in the list-like data structure.

– Each bucket index a report by a number k ∈ {1,2,3,4,5}. The index of the report indicates

the partition/fold where the report goes into.

Following this strategy, we attend to both restrictions and maintain the size of each

partition comparable. For ’Restriction 1’, when using 5-fold (Cross-Validation (CV)) to train the

models, a model k is trained with all folds but k, and it is tested with the fold k. Hence, different

states of the same report are never into distinct train/test folds; for ’Restriction 2’, once we split

the ordered report into buckets, each bucket contains a group of reports with a similar number

of updates. Hence, each fold contains an approximated representation of different categories

of reports (reports with several updates and the ones with fewer updates). The size of each CV

partition can be found in the replication package, where we show that each fold has a comparable

size. We summarize the process in Fig. 11, which contains a real values example of the process

applied to the project Spark.

3.2 Results

3.2.1 Field Changes Analysis and (ZHANG et al., 2013) replication (baseline)

Table 11 shows the most common field changes in bug reports of the ten projects

we investigate. Each column contains the information for a specific project, while each line

52

0001 SPARK-4105 78
0002 SPARK-26265 69
0003 SPARK-13747 63
0004 SPARK-25206 61
0005 SPARK-4452 57
0006 SPARK-19644 46
0007 SPARK-23390 46
0008 SPARK-16321 46
0009 SPARK-3633 43
0010 SPARK-10474 43
....
5636 SPARK-3946 3
5637 SPARK-3952 3
5638 SPARK-2403 3
5639 SPARK-5840 3
5640 SPARK-2861 3

Report IDindex States

Bucket 1

1 SPARK-4105 78
2 SPARK-26265 69
3 SPARK-13747 63
4 SPARK-25206 61
5 SPARK-4452 57

1 SPARK-19644 46
2 SPARK-23390 46
3 SPARK-16321 46
4 SPARK-3633 43
5 SPARK-10474 43

Bucket 2

1 SPARK-3946 3
2 SPARK-3952 3
3 SPARK-2403 3
4 SPARK-5840 3
5 SPARK-2861 3

Bucket 1128

...

CV Partition 1

1 SPARK-4105 78
1 SPARK-19644 46
 ...
1 SPARK-3946 3

CV Partition 2

2 SPARK-26265 69
2 SPARK-23390 46
 ...
2 SPARK-3952 3

CV Partition 3

3 SPARK-13747 63
3 SPARK-16321 46
 ...
3 SPARK-2403 3

CV Partition 4

4 SPARK-25206 61
4 SPARK-3633 43
 ...
4 SPARK-5840 3

CV Partition 5

5 SPARK-4452 57
5 SPARK-10474 43
 ...
5 SPARK-2861 3

Figure 11 – The train/test 5-fold split method. The Figure presents an applied example using
data from the Spark project.

represents a feature in the bug reports. The values in the Table show percentile representation

of all project’s bug reports with at least one field update. The Table is presented as a simplified

heatmap, where the values relate to gray’s intensity in each cell, with four groups of values:

0-25%, 25-50%, 50-75%, and 75%-100%. Next to each field name, we indicate the related work

that uses the field (or some attribute derived from it) according to the following symbols: ☀
represents our approach; Zhang et al. (2013) ⧫; Assar et al. (2016) ●; Al-Zubaidi et al. (2017) ∎.

We do not indicate the work by Habayeb et al. (2018) because their approach does not use the

fields’ values but their changes, as it uses a Hidden Markov Model.

Table 11 – Top bug reports’ fields updates of 10 selected projects. The table shows a simplified
heatmap highlighting the most common field updates.

Flink
Hadoop

Core
Hadoop
HDFS

Hadoop
Mapreduce

Hadoop
Yarn Kafka Lucene Solr Spark Zookeeper

Assignee☀⧫ 42.24% 51.28% 45.02% 53.08% 51.24% 50.00% 43.16% 62.21% 87.54% 67.01%
Attachment☀ 14.32% 95.77% 97.57% 93.94% 98.80% 34.23% 83.58% 74.70% 4.70% 81.07%
Component☀ 26.08% 22.96% 17.36% 16.56% 9.42% 5.40% 6.23% 9.69% 10.55% 9.75%

Description☀∎ 14.50% 17.13% 19.66% 12.49% 23.35% 19.97% 9.53% 15.56% 28.01% 11.56%
Link☀ 11.28% 53.58% 52.30% 40.63% 45.12% 21.38% 17.96% 39.08% 25.03% 31.41%

Priority☀⧫ 9.19% 11.15% 11.29% 14.03% 15.79% 12.15% 4.79% 7.24% 15.11% 14.40%
Summary☀⧫ ● 7.23% 21.71% 26.60% 14.30% 34.88% 10.73% 8.08% 16.10% 15.66% 9.41%

Version☀ 10.97% 30.55% 30.49% 30.72% 19.14% 10.32% 11.28% 14.05% 11.10% 20.52%

The most common fields updates depend on the project. We notice that the fields

Assignee, Attachment, and Link, and are commonly updated. Other fields, such as Summary,

Priority and Description, are used in two or more approaches, but they have a lower number

53

of updates when compared to the previously mentioned fields. We consider several attributes in

our approach that are present in the most common field updates. This justifies our interest in

working with fields values of different moments of the reports’ life cycle.

Given that field updates occur in several bug reports, how do those changes impact

the time fix estimation models’ reliability? We address this question in the experiments described

in Subsection 3.1.2. Table 12 shows the obtained results. As follows, we recap the experimental

scenarios. 1) First experiment: we train and test using only the final state reports (EXP1);

2) Second experiment: we train and test using only the initial state reports (EXP2); 3) Third

experiment: we train using final state reports and test with initial state reports (EXP3). The first

column in Table 12 indicates the threshold used to split the data into two classes. The number

in parentheses represents the time unit in days. The other three columns show the Accuracy

(ACC) and F1-Score (F1) for the three data experiments. The best results are in boldface. It

is important to note that the classes are not balanced for all the models, except when the time

unit threshold is equal to one. Thus, the F1 values are of main concern. We tested several

unit values (as presented in the baseline paper), but we only show three of them due to space

constraints. They are the unit values corresponding to the 5 and 10 days (the thresholds we use

in our approach) and the 1 unit value, representing each project’s RRT median value. For those

interested in checking all the values, we refer the reader to the replication package, where we

present the values for all thresholds.

A few points can be verified after analyzing the results. First, as the time unit

increases, the models’ performance decrease. Second, the results present little variation for the

different scenarios. Such behavior probably occurs because the attributes used in this approach

present a low field change rate. Priority varies between 4% and 16% and reporter does

not appear in the most common changes. Assignee (between 42% and 87%) and Summary

(between 7% and 34%) present higher change rates, but the low results variation may indicate

that they are not very relevant for the models. It is intriguing that for some projects, such as

Hadoop Core, Hadoop HDFS, and Spark, the best results are obtained in the EXP3 scenario. One

hypothesis is that the low rate of the attributes’ updates may not significantly impact the models’

results. Hence, to verify how the approach performs in a scenario with attributes containing

more historical updates, Table 13 shows the results using Set 2 (see Table 7). The experiment

uses the same data unit splits and data scenarios but with different attributes. The best results are

highlighted in boldface.

54

Table 12 – Baseline results in different data scenarios: attributes Set 1.
EXP1 EXP2 EXP3

Threshold ACC F1 ACC F1 ACC F1
Flink

Unit_0.698 (5 days) 0.5658 0.6265 0.5740 0.6446 0.5603 0.6284
Unit_1 (7.17 days) 0.5791 0.5492 0.5645 0.5529 0.5476 0.5320
Unit_1.4 (10 days) 0.5736 0.4618 0.5759 0.4750 0.5521 0.4288

Hadoop Core
Unit_0.723 (5 days) 0.5387 0.5666 0.5539 0.5871 0.5586 0.6030
Unit_1 (6.92 days) 0.5312 0.4914 0.5355 0.5100 0.5487 0.5364

Unit_1.45 (10 days) 0.5614 0.4179 0.5591 0.4391 0.5605 0.4613
Hadoop HDFS

Unit_0.759 (5 days) 0.5901 0.6097 0.5968 0.6267 0.5949 0.6319
Unit_1 (6.58 days) 0.5945 0.5603 0.5881 0.5707 0.5909 0.5834

Unit_1.52 (10 days) 0.6067 0.4770 0.5976 0.4960 0.5885 0.4929
Kafka

Unit_0.638 (5 days) 0.6060 0.6580 0.6034 0.6629 0.5912 0.6586
Unit_1 (7.83 days) 0.5875 0.5595 0.6008 0.5916 0.5711 0.5647

Unit_1.28 (10 days) 0.5970 0.5189 0.6060 0.5556 0.5843 0.5283
Lucene

Unit_1 (1.79 days) 0.5464 0.5342 0.5368 0.5170 0.5368 0.5161
Unit_2.79 (5 days) 0.6242 0.3866 0.6074 0.3467 0.6206 0.3402

Unit_5.58 (10 days) 0.6708 0.2663 0.6786 0.2714 0.6882 0.2657
Mapreduce

Unit_0.55 (5 days) 0.6003 0.6663 0.6133 0.6869 0.5828 0.6627
Unit_1 (9.08 days) 0.5858 0.5525 0.5797 0.5678 0.5485 0.5173
Unit_1.1 (10 days) 0.5759 0.5238 0.5683 0.5384 0.5332 0.4804

Solr
Unit_0.591 (5 days) 0.5524 0.5982 0.5524 0.6037 0.5371 0.5926
Unit_1 (8.46 days) 0.5458 0.5199 0.5420 0.5255 0.5310 0.5121

Unit_1.18 (10 days) 0.5491 0.5012 0.5338 0.4923 0.5343 0.4864
Spark

Unit_1 (4.4 days) 0.5887 0.5573 0.5661 0.5458 0.5287 0.5668
Unit_1.14 (5 days) 0.5881 0.5320 0.5674 0.5184 0.5273 0.5467

Unit_2.27 (10 days) 0.6415 0.3918 0.6248 0.3771 0.5445 0.3909
Yarn

Unit_0.612 (5 days) 0.5951 0.6536 0.6001 0.6665 0.5789 0.6518
Unit_1 (8.17 days) 0.5754 0.5491 0.5724 0.5511 0.5573 0.5527

Unit_1.22 (10 days) 0.5890 0.5254 0.5855 0.5265 0.5633 0.5250
Zookeeper

Unit_0.227 (5 days) 0.7152 0.8165 0.7192 0.8188 0.7272 0.8283
Unit_0.455 (10 days) 0.6371 0.7212 0.6424 0.7289 0.6265 0.7264

Unit_1 (22 days) 0.5589 0.5340 0.5404 0.5361 0.5258 0.5147

55

Table 13 – Baseline results in different data scenarios: attributes Set 2.
EXP1 EXP2 EXP3

Threshold ACC F1 ACC F1 ACC F1
Flink

Unit_0.698 (5 days) 0,5813 0,6431 0,5731 0,6455 0,5425 0,5970
Unit_1 (7.17 days) 0,5777 0,5622 0,5731 0,5769 0,5553 0,5276
Unit_1.4 (10 days) 0,5823 0,5067 0,5795 0,5259 0,5603 0,4642

Hadoop Core
Unit_0.723 (5 days) 0,6077 0,6395 0,5728 0,6176 0,4976 0,4414
Unit_1 (6.92 days) 0,6011 0,5854 0,5685 0,5669 0,5208 0,4021

Unit_1.45 (10 days) 0,6040 0,5212 0,5756 0,4972 0,5496 0,3613
Hadoop HDFS

Unit_0.759 (5 days) 0,6701 0,6979 0,6059 0,6470 0,5438 0,5071
Unit_1 (6.58 days) 0,6653 0,6587 0,6016 0,6023 0,5117 0,2599

Unit_1.52 (10 days) 0,6562 0,5807 0,6048 0,5287 0,5671 0,2218
Kafka

Unit_0.638 (5 days) 0,6076 0,6555 0,6156 0,6776 0,5907 0,6540
Unit_1 (7.83 days) 0,6013 0,5790 0,6023 0,6064 0,5595 0,5606

Unit_1.28 (10 days) 0,6129 0,5504 0,6076 0,5792 0,5759 0,5251
Lucene

Unit_1 (1.79 days) 0,5907 0,5760 0,5326 0,5321 0,5153 0,4981
Unit_2.79 (5 days) 0,6362 0,4428 0,5901 0,3868 0,5948 0,3820

Unit_5.58 (10 days) 0,6834 0,3499 0,6427 0,2875 0,6409 0,3107
Mapreduce

Unit_0.55 (5 days) 0,6446 0,7066 0,6011 0,6810 0,4722 0,4370
Unit_1 (9.08 days) 0,6293 0,6095 0,5607 0,5587 0,5210 0,3295
Unit_1.1 (10 days) 0,6232 0,5873 0,5652 0,5506 0,5340 0,3283

Solr
Unit_0.591 (5 days) 0,6200 0,6710 0,5513 0,6084 0,5019 0,4953
Unit_1 (8.46 days) 0,5931 0,5935 0,5316 0,5273 0,5129 0,4340

Unit_1.18 (10 days) 0,5914 0,5748 0,5272 0,5045 0,5239 0,4285
Spark

Unit_1 (4.4 days) 0,5832 0,5607 0,5640 0,5588 0,5220 0,5524
Unit_1.14 (5 days) 0,5894 0,5431 0,5569 0,5275 0,5184 0,5320

Unit_2.27 (10 days) 0,6383 0,4160 0,5950 0,3837 0,5477 0,3818
Yarn

Unit_0.612 (5 days) 0,6289 0,6921 0,5683 0,6431 0,4962 0,5036
Unit_1 (8.17 days) 0,6132 0,6052 0,5527 0,5426 0,5119 0,4174

Unit_1.22 (10 days) 0,6092 0,5740 0,5507 0,5047 0,5179 0,3808
Zookeeper

Unit_0.227 (5 days) 0,7046 0,8033 0,7073 0,8085 0,6305 0,7426
Unit_0.455 (10 days) 0,6649 0,7409 0,6371 0,7267 0,5722 0,6573

Unit_1 (22 days) 0,5854 0,5808 0,5483 0,5507 0,5325 0,5039

56

With more attributes, the results are different. It is noticeable that the new attributes

improve the models’ results for all the cases. In all projects, there is a significant performance

drop in the EXP3 scenario. This shows that the initial and final reports are different enough

to drop the model’s performance, which indicates that bug reports’ updates impact the model

performance in all projects. In all unit values, EXP1 and EXP2 consistently present considerable

higher values compared to the EXP3.

We can now address our first research question RQ1: How frequent are the bug

reports’ fields updates, and how these updates impact fixing estimation models? Answer:

We verify that bug reports fields’ updates are common across the ten different projects and impact

fixing estimation models in all projects we test. The use of inappropriate report states (i.e. last

states reports) to train the models can provide more optimistic results (between 0.01 to 0.4 in

F1 absolute values, depending on the project and threshold values) than using the initial report

states.

3.2.2 Training models with all bug reports states

Table 14 shows the five-folds average results for the best models configuration of

each machine learning algorithm applied individually for each project, using the temporal dataset,

respectively: Flink, Hadoop Core, Hadoop HDFS, Lucene, Hadoop Mapreduce, Spark, Hadoop

Yarn, Zookeeper, Kafka, and Solr. We evaluate the models using five metrics: Log-Loss (LGL),

accuracy (ACC), f1-measure score (F1), Precision (PRC), and Recall (RCL). We highlight the

best results in boldface for each project and use them to perform the analysis and answer the

RQs.

We acquire the best results by classifying the reports into two classes, with five days

threshold (Logistic regression, Neural Network, and Gaussian Process present similar metrics’

values for the majority of projects). As one can see, all the best models, expect Zookeeper, use

some data balancing strategy. For six projects, the cluster-centroids under-sampling technique

presents the best results, while for two other projects, the random under-sampling presents

the best values. For Hadoop HDFS, Hadoop Mapreduce, Kafka, and Spark projects, Gaussian

Process provides the best results, using an under-sampling approach. For Hadoop Mapreduce

and Hadoop Core, Flink, Lucene and Solr projects, the Logistic Regression using some under-

sampling approach presents the best results. The neural networks present best results for the

projects Yarn and Zookeeper, using an over-sampling technique and the original data, respectively.

57

Table 14 – All projects overall best results.
Model ACC F1 PRC RCL LGL ROC
flink_logreg_two_labels_5_CC 0.5737 0.5800 0.5026 0.6863 0.6608 0.6476
flink_gp_two_labels_5_SMOTE 0.6139 0.5530 0.5519 0.5621 0.6513 0.6627
flink_nn_two_labels_5_SMOTE 0.5852 0.5536 0.5164 0.6028 0.6587 0.6179
hadoop_logreg_two_labels_5_CC 0.6054 0.5756 0.5691 0.5828 0.6648 0.6412
hadoop_gp_two_labels_5_CC 0.5748 0.5727 0.5394 0.6534 0.6793 0.6326
hadoop_nn_two_labels_5_OD 0.6053 0.5157 0.5891 0.4643 0.6617 0.6362
hdfs_logreg_two_labels_5_RND 0.6124 0.5661 0.5592 0.5733 0.6532 0.6542
hdfs_gp_two_labels_5_CC 0.5725 0.5945 0.5134 0.7161 0.6968 0.6446
hdfs_nn_two_labels_5_SMOTE 0.5857 0.5425 0.5280 0.5590 0.6524 0.6106
lucene_logreg_two_labels_5_RND 0.6114 0.4720 0.3921 0.5956 0.6581 0.6417
lucene_gp_two_labels_5_RND 0.3786 0.4562 0.3131 0.8897 0.7545 0.6041
lucene_nn_two_labels_5_CC 0.5123 0.3620 0.2933 0.4741 0.9287 0.5001
mapreduce_logreg_two_labels_5_CC 0.6100 0.6053 0.5702 0.6455 0.6529 0.6626
mapreduce_gp_two_labels_5_CC 0.5569 0.6255 0.5295 0.8259 0.6894 0.6564
mapreduce_nn_two_labels_5_SMOTE 0.5945 0.5876 0.5566 0.6258 0.8741 0.6407
spark_logreg_two_labels_5_RND 0.6416 0.6228 0.5450 0.7269 0.6159 0.7107
spark_gp_two_labels_5_CC 0.5776 0.6284 0.4897 0.8784 0.6708 0.6905
spark_nn_two_labels_5_SMOTE 0.6530 0.6075 0.5635 0.6600 0.6412 0.7115
yarn_logreg_two_labels_5_CC 0.5929 0.5707 0.5554 0.5881 0.6626 0.6398
yarn_gp_two_labels_5_CC 0.6069 0.5677 0.5768 0.5762 0.6604 0.6540
yarn_nn_two_labels_5_SMOTE 0.5861 0.5832 0.5456 0.6321 0.6426 0.6257
zookeeper_logreg_two_labels_5_OD 0.6557 0.7723 0.6639 0.9266 0.6306 0.6356
zookeeper_gp_two_labels_5_OD 0.6317 0.7731 0.6339 0.9920 0.7034 0.6148
zookeeper_nn_two_labels_5_OD 0.6589 0.7764 0.6626 0.9404 0.6258 0.6406
kafka_logreg_two_labels_5_CC 0.6426 0.6643 0.6175 0.7192 0.6144 0.7075
kafka_gp_two_labels_5_RND 0.6337 0.6738 0.6052 0.7756 0.6288 0.7057
kafka_nn_two_labels_5_SMOTE 0.6351 0.6552 0.6105 0.7165 0.6300 0.7023
solr_logreg_two_labels_5_CC 0.6000 0.6092 0.5718 0.6530 0.6650 0.6407
solr_gp_two_labels_5_RND 0.5717 0.5466 0.5910 0.5920 0.6834 0.6437
solr_nn_two_labels_5_SMOTE 0.5998 0.5943 0.5758 0.6173 0.6769 0.6413

Notably, some models metrics (accuracy, precision, recall or log-loss) can perform somewhat

better than the selected models. Nevertheless, we prefer to choose the models with higher F1

due to the data imbalance nature (see Table 10).

It is also noticeable that for the majority of the projects, the best results are not ideal

for a real-world application scenario, i.e., the models could not be used in the Jira platform to

perform reasonable estimations with the presented accuracy of around 0.55 ∼ 0.65 and f-measure

around 0.47 ∼ 0.77. The only two projects that provide some interesting results are Kafka and

Zookeeper with f-measure higher than 0.67 and recall values above 0.77.

In this scenario, we can address our second research question RQ2: What is the

most promising model configuration to build reliable models for fixing time estimation con-

sidering bug reports at different stages of evolution? Answer: with our set of experiments and

58

data attributes, we verify a pattern where the most promising way to model the selected projects

bug reports, taking into account their evolution, is the five-day threshold binary classification

reports using an appropriate data balancing technique.

3.2.3 Models Performance by Group: Progress and Resolution Intervals

We use the following strategy to address RQ3. After the 5-fold training phase using

the temporal dataset, we obtain five models for each configuration. Then we use each test set

with its corresponding k-fold model after selecting the best model configuration, which gives

us five accuracy values, one for each test set. Next, we calculate the average model accuracy

for each group. We group the reports in two different ways: i) by their percentile of overall

resolution time progress, and ii) by six different intervals, namely, [0,5[, [5,10[, [10,15[, [15,20[,

[20,25[, and [25, inf] days. To calculate the report progress, we divide its current state (equal to

the number of reports/changes until its current state plus one) by the report states’ total number,

which gives a value between 0 and 1. Since we have the true resolution interval of each report,

the interval calculation group can be obtained directly. We expect that such progress information

will enable an overall view. The intervals provide us another level of granularity since we classify

reports with RRT ranges from a few days up to more than a hundred days. For instance, there

are reports with RRT values greater than 100 and others with lesser than 5. Thus, the reports’

performance over specific RRT intervals may indicate tendencies difficult to notice only from

the progress information. Fig. 12 summarizes the whole process. Figures 13 and 14 shows the

accuracy values for each project for the two reports groups. We use the models in boldface (i.e.

the best models in terms of F1-measure values) in the result’s Table 14, to perform the analysis.

The Fig. 13 shows, by project, how good the accuracy of the selected models

(highlighted in the results tables) is to estimate the report resolution time by its evolution

progress. In other words, the progress tells us how close the classified report state is to its initial

state (when it was opened, with smaller evolution progress values) or to its final state (when

it was closed, higher evolution progress values). When we analyze the Fig. 13 we notice a

particular behavior: the estimations start with values around 0.7 and 0.9 in progress 0.1, they

drop with the report progress increases and raise close to the progress 1. The only exception

is Lucene, which starts with an accuracy value above 0.6 and increases until reaching values

close to 0.8 at progress 1. This behavior varies in intensity depending on the project. The

better performance on reports close to resolution is due probably one reason: the report’s status

59

dataset

5-fold split

model 1 model 2 model 3 model 4 model 5

A `model k` is trained with all folds but k;
 the k fold is used for test

1) Group test split samples by: progress (1) and interval (2);
2) Evaluate the model performance for each group;
3) Calculate the models mean accuracy;
4) Create visualizations;

by progress by interval

a
cc a
cc

Figure 12 – Workflow to report RRT evaluation by progress and interval.

attribute to be classified. The status attributes are very descriptive attributes since its one-hot

encoding representation contains the values “closed” and “resolved”, which means these reports

mostly will have RRT = 0. We say mostly because sometimes a report is re-opened, which may

indicate that the report was wrongly closed. Furthermore, sometimes the project manager must

perform a confirmation step, changing the report status from resolved to closed, delaying the

final report resolution. Thus, these are two attributes that are highly correlated with the report

resolution, but they depend on each report’s evolutional context. Once we are dealing with each

report independently, the models do not have this evolutional context, making the final report’s

accuracy not perfect. The good accuracy in these close-to-the-final states reports is not that

interesting in real-world scenarios. On the other hand, we see that 0.1 progress values present

slightly higher values than the posterior ones (except 1.0 values, explained earlier). We propose

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Progress

0.0

0.2

0.4

0.6

0.8
Ac

cu
ra

cy

Projects
Flink
Hadoop Core
Hadoop HDFS
Lucene
Hadoop Mapreduce
Spark
Hadoop Yarn
Zookeeper
Kafka
Solr

Figure 13 –Accuracy evaluation by report resolution progress. The intermediate reports’ accuracy
is lower than the accuracy of initials and finals states reports.

[0,5[[5,10[[10,15[[15,20[[20,25[[25,inf]
Resolution Interval (Days)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Projects
Flink
Hadoop Core
Hadoop HDFS
Lucene
Hadoop Mapreduce
Spark
Hadoop Yarn
Zookeeper
Kafka
Solr

Figure 14 – Accuracy evaluation by report resolution interval. The most difficult reports to
classify in most projects are those with RRT in the interval between zero and five days.

to build models that predict the RRT at any moment of the report life cycle. However, if we can

provide reasonable estimations at the initial or a set of initial reports states (for instance, up to

n initial states), the further estimations for future reports states becomes unnecessary since the

61

following estimations could be calculated based on the initial one.

We cannot say that all initial state reports are present at the 0.1 progress group

because it depends on each bug report’s number of states. For instance, a report with five

states may have its initial state in the 0.2 progress group. However, this tendency raises another

question: how good are the models to predict the initial report state? This is an interesting subject

to evaluate because of two reasons: the RRT value of an initial state is the real report RRT (see

Definition 1), once the posterior states RRT are based on the initial one; and if one can predict

with a good rate the initial reports, we can use this estimation, and the estimations of the posterior

states become unnecessary. To answer this question, we perform another analysis and verify

the accuracy for each model/project in the first five states reports. Table 15 shows the model’s

performance classifying all reports (same as the selected models at Tables 14) and classifying

the first up to fifth report states. The states values are cumulative, so ’state one’ results represent

the evaluation only of the initial report state, ‘up to 2’ results for the initial and the second report

state, ‘up to 3’, the initial, second, and third state, and so on so forth.

The values in Table 15 show that the models present higher f-measure and recall

values predicting the initials reports than when predicting all reports. We see a decrease in the

accuracy values and precision in some projects, but, again, due to data imbalance, we prefer to

look at the f-measure.

Those are promising results. We have a set of models using simple attributes to

predict RRT of initial states with an F1 around 0.63 up to 0.87. The only exception is the

project Lucene, which does not provide a significant improvement in the first three states. In

this scenario, we do not have problems with the report’s evolution (i.e., fields changes and

addition) and a set of attributes easy to compute. It is also essential to notice that our approach

presents better results when estimating the fixing resolution time using the initial states when

compared with the best results presented in the baseline approach (EXP2 and EXP3, Table 13).

These results also create room for a few insights that we will raise in the Discussion section.

Nevertheless, for now, we can answer our third research question RQ3: To what extent is there

a moment in the bug report life cycle where a resolution estimation is more precise? Answer:

with our set of experiments and data attributes, we verify a pattern where the most promising

way to predict the selected projects bug reports bug-fixing time is at their initial states, with

better results than when we try to predict all states.

To conclude the analysis, the Fig. 14, shows the models’ accuracy in a few RRT

62

Table 15 – Models results classifying initial states reports.
Project Up to state ACC F1 Precision Recall
Flink 1 0.5941 0.7126 0.5857 0.9099

2 0.5961 0.7062 0.5873 0.8861
3 0.5722 0.6975 0.5564 0.9345
4 0.5645 0.6834 0.5572 0.8839
5 0.5807 0.7017 0.5707 0.9108

All States 0.5737 0.5800 0.5026 0.6863
Hadoop Core 1 0.5499 0.6815 0.5441 0.9158

2 0.5594 0.6880 0.5552 0.9096
3 0.5951 0.7244 0.5979 0.9222
4 0.5868 0.7115 0.5856 0.9113
5 0.5304 0.6575 0.5220 0.8929

All States 0.6054 0.5756 0.5691 0.5828
Hadoop HDFS 1 0.5640 0.6798 0.5531 0.8864

2 0.5667 0.6882 0.5561 0.9088
3 0.5655 0.6797 0.5610 0.8682
4 0.5586 0.6856 0.5529 0.9069
5 0.5767 0.6890 0.5723 0.8733

All States 0.5725 0.5945 0.5134 0.7161
Lucene 1 0.5323 0.4469 0.3474 0.6291

2 0.5124 0.4540 0.3428 0.6782
3 0.5555 0.4430 0.3765 0.5420
4 0.5821 0.4740 0.4085 0.5706
5 0.4946 0.4955 0.3698 0.7534

All States 0.6114 0.4720 0.3921 0.5956
Hadoop Mapreduce 1 0.6166 0.7479 0.6176 0.9487

2 0.5689 0.7087 0.5622 0.9584
3 0.6023 0.7417 0.6003 0.9704
4 0.6269 0.7632 0.6294 0.9693
5 0.6057 0.7450 0.6008 0.9805

All States 0.5569 0.6255 0.5295 0.8259
Spark 1 0.5199 0.6339 0.4757 0.9500

2 0.5141 0.6307 0.4775 0.9302
3 0.5164 0.6356 0.4849 0.9222
4 0.5072 0.6327 0.4719 0.9596
5 0.4922 0.6229 0.4623 0.9547

All States 0.5776 0.6284 0.4897 0.8784
Hadoop Yarn 1 0.6009 0.7159 0.6349 0.8206

2 0.6873 0.7782 0.6729 0.9227
3 0.6677 0.7577 0.6548 0.8990
4 0.6673 0.7592 0.6555 0.9021
5 0.6262 0.7261 0.6218 0.8723

All States 0.5861 0.5832 0.5456 0.6321
Zookeeper 1 0.7479 0.8545 0.7488 0.9951

2 0.7338 0.8442 0.7342 0.9933
3 0.7048 0.8251 0.7049 0.9952
4 0.7853 0.8780 0.7834 0.9989
5 0.7010 0.8220 0.7024 0.9914

All States 0.6589 0.7764 0.6626 0.9404
Kafka 1 0.5904 0.7028 0.5588 0.9471

2 0.6195 0.6274 0.6524 0.6046
3 0.6544 0.7101 0.6491 0.7846
4 0.6371 0.7227 0.6325 0.8431
5 0.6380 0.7330 0.6101 0.9181

All States 0.6337 0.6738 0.6052 0.7756
Solr 1 0.5907 0.6931 0.5771 0.8700

2 0.5795 0.6628 0.5702 0.7954
3 0.5891 0.6982 0.5704 0.9003
4 0.6010 0.7071 0.5914 0.8815
5 0.5916 0.6719 0.5783 0.8078

All States 0.6000 0.6092 0.5718 0.6530

63

intervals. For the majority of the projects, the worst results occur in reports with RRT between

0 and 5 days, with higher values in the others intervals. The only exceptions are the projects

‘Lucene’ and ‘Hadoop Core’: both start with accuracy values around 0.6 at first internal, with

some variations until they reach the same 0.6 value at the last interval. The ‘Lucene’ presents a

smother variation, with ‘Hadoop Core’ being more erratic as the interval values increase. Besides

that, we do not see any other trend.

3.3 Discussion

The main question we want to explore with our results is the impact of bug report

fields changes and updates on reliably building bug fixing estimation models. We introduce the

idea of bug report evolution and changes as bug report states. First, we verify how often the

bug reports fields are updated and partially replicate a previous approach (ZHANG et al., 2013)

to check how it performs with the bug reports evolution and serve as a comparative baseline

to our approach. We verify that the bug reports fields updates impact the models’ reliability

in different levels, in all projects. In our approach, we considered every state as a unique and

independent report to train the models. After selecting the most promising machine learning

models, we can verify their performance based on how close the best-classified reports are from

their creation or resolution date. Our results present evidence that the reports’ updates have an

impact on the model’s performance. This is important because we verify that few studies do not

take the reports changes into account when building machine learning models for this problem

(more in the Related Work and Comparison sections).

We first train the models and found the best configuration for our data. The Gaussian

processes and logistic regression perform better in four projects data each, while the neural

network, in two projects. The binary classification with a threshold of five days presents the best

results. All the best models use some data balance strategy (over-sampling or under-sampling),

except in project Zookeeper. After selecting the most promising results, we can discuss the

impact of reports’ evolution. To the best of our knowledge, this is the first work concerning

report time-fixing estimation to compare these ways of grouping the reports. Also, we were not

able to find other approaches using Gaussian processes for this problem. When we look at the

results, it is noticeable that the best results are not ideal for a real-world application scenario due

to their low metrics values (f-measure and precision around 0.5 ∼ 0.7), even though these are

values approximated to the ones presented in the literature.

64

The best results for all the projects are the binary classifications with the five-day

threshold, using data balance strategies. This is a good indicator because if we think about the

software development process in terms of sprints, it usually takes small chunks of time, like one

or two weeks. In these scenarios, we can see the models being used to estimate sets of bugs

that will probably be fixed within a sprint. We see that the neural networks, generally, perform

worst than the other two machine learning algorithms. Neural networks have a high dependency

on hyper-parameters (ZHANG et al., 2017; ZHANG et al., 2019), and we do not perform an

extensive hyper-parameters search, mostly because of the dataset sizes. This research looks at the

consistency between the models rather than the best models’ higher values. If all models perform

similarly in terms of metrics, we can argue that we reach the dataset and attributes limit. Once

we better understand the reports’ evolution impact on the models, we want to train models with a

hyper-parameters optimization. Through the results, we conclude that the chosen attributes may

not be good enough to provide reasonable estimations.

For future work, we intend to use more attributes that carry some evolutional content

of previous reports (e.g, previous values of selected fields) and some attributes with more

insightful meaning of the textual fields.Techniques that benefit from the data’s evolutional

nature (e.g Markov chains and Long short-term memory neural nets) could also be interesting

approaches to explore.

After selecting the best models, we can explore the impact of the reports’ changes on

the models’ performance. The results indicate that the best results are acquired when classifying

the initial states reports compared to intermediary states reports. Up to five reports updates, we

have higher F1, and recall in nine of the ten projects compared to classifying all reports’ states.

This seems counter-intuitive because it is reasonable to believe that any field updates in the

report should provide more information to the models. Further research is needed to establish the

reason for this behavior, but we have a few hypotheses to explore. The first one is regarding the

independent way we consider every report’s state. The performance drop can indicate that a past

evolutional context is necessary, at least using our chosen attributes. The attributes as they are in

any report states seem to be not enough to provide consistent estimations. The second one is

related to the reports’ idle time between updates. All selected projects are open-source software,

and the bug fixing process and reports can be looser when compared to commercial software. In

a previous dataset analysis, we verify that the time between updates can surpass days or months

in some reports. This may also occur due to low priorities reports, but we intend to verify if this

65

is the case in the future. Once again, without an evolutional context, this could negatively impact

the models’ predictions. Once the initial reports have little to none evolutional context, this could

also explain why their predictions perform better. The results also open the possibility to train

models only with the initial set of reports once they perform better and make more sense in the

bug-time-fixing process. To conclude the reflections regarding the results, we raise a hypothesis

on why the performance drop in intermediary reports. Given the best results being at the initial

states, the idea that posterior reports have a smaller RRT and inferior performance may indicate

that they are not too much different from their previous states. We consider every update (or a set

of updates in a small window of time) as a unique state, and each one of these updates impacts

equality in the bug RRT decreases. However, some updates may have more (or even a real)

impact on the RRT decrease compared to others. For instance, a new comment probably does not

have the same impact as an attachment in the bug RRT estimator. The idea is to characterize an

‘impactful update’ that changes the original RRT estimation, defining when new updates bring

new and relevant information to the bug report. This could reduce the number of states, focusing

on those different from each other, improving the quality of the data, hence the results.

In this chapter, we look at the bug-fixing time as the information to be estimated and

how the bug report evolution impacts reliable estimators. However, notice that this question can

be applied in others bug report features to be estimated: priority, assignee, duplicated bugs and

bug localization, all of those explored using bug reports in previous works (LAZAR et al., 2014;

EBRAHIMI et al., 2019; GUO et al., 2011; SHOKRIPOUR et al., 2015; TIAN et al., 2015). It

would be essential in future works to explore how these bug reports updates impact the other

features estimators, once in this research, we gathered evidence that it has a significant impact in

bug-fixing time.

3.4 Threats to Validity

In this section, we list some threats to the validity of our research method. We

organize threats into four groups: conclusion validity, internal validity, construct validity, and

external validity, as suggested by the work of Wohlin et al. (2012).

A threat to conclusion validity would be few decisions regarding the adopted method-

ology. When we train the models, we lose evolutional information and relation between the

report’s states, with each state being considered an independent report. However, this approach

allows inferring the bug fixing time of any report without any previous information about its

66

past field values. This approach is straightforward to implement and less resource-demanding.

Nonetheless, we know that this level of independence between reports’ states may not represent

a real-world scenario, leading us to inferior results. However, we choose this approach to see its

viability due to its simplicity. As we discuss, we verify that the reports’ evolution does impact

the model’s performance metrics. For future work, we intend to use more attributes that carry

information about previous states or even use models dealing with temporal changes over states.

A threat to internal validity is that the original data acquisition and the script to

create the temporal dataset are susceptible to bugs. However, we take special care to use visual

tools to visualize the results and minimize bugs chances in the datasets’ creation and mining

scripts. Another threat is the reports years’ range, where few reports dated from 2009. We cannot

measure the cultural bug fixing tasks difference over the years. In other words, we do not know

if an older bug report can represent or is similar to the most recent ones. If the process changed

or improved over time, fixing a bug with similar reports in different years can be discrepant.

As a threat to construct validity, we consider the best models as those with higher

f-measure values due to data imbalance. However, depending on the context or project, it may be

interesting that some class error does not have the same impact as the other one. For instance, let

us consider the binary classification with a five-day threshold (class zero for less and class one

for more than five days to fix). A misclassified class zero report may not necessarily mean that

one could not fix the bug in less than five days. Maybe in the specific week, there were too many

bug reports or less available programmers in the specific week to fix the bug. The bug could be

a simple, low priority bug, competing for resources with other more urgent and complex bugs,

leading to its fix delay. Once again, the bug report evolution context can play an essential role in

the error analysis and it seems as a promising avenue for future work.

The original dataset comprises projects from nine categories for external validity, and

all projects are open source. The selected projects cover three categories: ‘big-data’, ‘database’

and ‘web-framework’. Thus, we cannot generalize the results for commercial software and

software from others categories.

3.5 Related Works and Comparison

It is hard for us to compare with other researchers’ approaches due to the unique way

we deal with the reports states. A few works discuss the reports changes, but not in the same way

we propose here, and all of them use different sets of models, reports’ attributes, and different

67

datasets. Nonetheless, we look at all the most relevant papers with the same objective that we

find in literature and propose a discussion regarding the points we believe are comparable. We

look primarily at three points on each related work: the model’s f-measure since it is a metric that

appears in most papers; the moment in the reports’ states in their life cycle that the models and

predictions are made; the set of attributes used to build the models and how complicated/hard

are to acquire them.

The most similar to our work is probably the paper of Habayeb et al. (2018). The

work uses a dataset composed of Firefox bug reports from 2006 to 2014. The authors model the

problem as a binary classification problem: a long time (slow) report to fix, or a short time (fast)

report to fix. They highlight the fact that their work is one of the first that deals with this question,

taking into account the temporal sequence and changes of the bug reports. They compare their

proposal with a RRT model (ZHANG et al., 2013), test several variations of the Hidden Markov

Model (HMM), different train/test set sizes, and HMM temporal sequences length variations. As

observation set, they use information about the reporting, assignment, comments, priority, among

others. The models are evaluated by precision, recall, f-measure and accuracy metrics and present

better results in comparison to previous proposals. The authors have a similar argument related

to the importance of the report’s temporal changes. They perform several experiments regarding

the report life cycle moments to predict the fixing time, using a Firefox dataset. The most similar

experiment to our approach is when they try to classify the initial reports with the first week’s

updates. The models present an average f-measure of 0,671, a smaller, but comparable value than

the best results present in Table 15. Their proposal considers the evolutionary aspect of reports

and uses easy to compute attributes (a set of possible report fields and state changes, not their

values). However, we question the threshold value used in their approach. The authors use the

bug report’s median bug-fixing time by year as the threshold to set it as slow or fast. Even if it is a

common strategy in other papers (HOOIMEIJER; WEIMER, 2007; KIM; WHITEHEAD, 2006),

we question how this separation could be viable for significant median values. For instance,

for the years 2007, 2008, and 2009, the Firefox dataset’s median value is 194, 230, and 203,

respectively. In a context to plan and estimate software releases, smaller fixed threshold values

(i.e., 5, 10, 15 days) are more appropriate. Another case is that the year median bug-fixing time

is a posteriori information, is only knowable after the year’s end. How to build models to predict

bug reports opened in the current year, for instance? What threshold to use in these cases? We

argue that using a smaller predetermined threshold value is more suitable because of the points

68

mentioned above.

Thung (2016) propose an automatic prediction method of bug fixing effort. In that

paper, however, the effort is code churn size, the number of lines of code that is either added,

deleted, or modified to fix the bug. The author uses 1,029 bug reports from Hadoop-common

and strut2 projects to evaluate his approach. The authors model the problem as a classification

task, labeling bug fixing efforts into “high” and “low” categories. The 40 lines code churn size

is the threshold used to define in which category a bug is. The features used to train a Support

Vector Machine model are the textual content that appears in the summary and description fields

of bug reports. The work compares the approach to the baseline model that classifies every bug

as a low effort bug (i.e., the majority label) and present positive results. The research presents

a 0.612 area under the ROC curve (Area Under the ROC Curve (AUC)) using both datasets to

train the model, but it uses the last and closed report states information.

Assar et al. (2016) use clustering techniques to group bug reports through the

description field. The paper works as a conceptual replication of the work by (RAJA, 2013) and

an evaluation of the proposed method prediction accuracy. Along with the work by Weiss et al.

(2007), this is one of the few papers that relies exclusively on the textual fields to come up with

a prediction model. Given a new report, they predict its Defect Resolution Time (DRT) as the

mean DRT of the most similar report cluster. The textual values extracted from the description

are from the closed/resolved reports. It is impossible to say how different the report’s initial

descriptions are from the final because we do not have access to the datasets’ historical data.

As presented in Vieira et al. (2019), we could use an estimation that updates in the description

field occur 18.16% of the mined Jira bug reports. The work concludes that the approach is not

suitable for practical use due to poor results. In summary, the authors show that a straightforward

clustering approach based on term-frequency in bug reports descriptions is not able to predict

defect resolution time with reliable accuracy. This example serves as another case where these

report’s fields updates are not taken into account.

Al-Zubaidi et al. (2017) propose a multi-objective search-based approach to estimate

issue resolution time. The search is oriented by two contrasting objectives: maximizing the

model accuracy and minimizing the model complexity. In this case, their approach works for

any issue, not only for bugs. A genetic programming approach is followed to search for a

better symbolic regression model. They compare their best model with Case-based Reasoning

(WEISS et al., 2007), Random Forest, and Linear Regression. Their model the problem as

69

a regression one and show better results than random guessing, mean and median estimation,

and case-based reasoning. Their approach also outperforms other machine learning methods,

like linear regression and random forest. They use a small set of report fields (type - bug, task,

improvement -, priority, reporter’s reputation, title and description text, and their readability

through the Gunning fog readability metric). They argue that the selected ones are likely to

exist from the report creation, as the reporter, issue type, and the number of words in description

and title. This shows the same concern we have about the difference between fields at the

initial and final report states. They use datasets of five Jira projects (8.260 issues): Hadoop

Common, HDFS, Yarn and Mapreduce, and MESOS. We cannot compare results with this

approach since it has a broader scope (all issues, not only bugs) and different metrics, since we

propose classification models and their regression models. However, the model’s Mean Absolute

error (MAE) high values (from 17.8 up to 33.35) may indicate that the approach is not reliable for

practical purposes, even though their approach outperforms naive baselines and state-of-the-art

techniques.

Hamill e Goseva-Popstojanova (2017) investigate two points regarding the bug fix

task: 1) an analysis on the effort needed to fix software faults and the factors that affect it;

and 2) an analysis on the prediction of the level of fix implementation effort based on the

information provided in the software change requests. The paper text uses the term “fault”, but

from the context we can say that it is equivalent to bugs. The paper considers 1,200 failures/bugs

extracted from the change tracking system of a large NASA mission. They are used to train three

classification models to estimate the effort level of the fix implementation: Naive Bayes (NB),

Decision Tree, and PART, a rule induction method based on partial decision trees. They use the

ZeroR learner, a classifier that always predicts the majority class for any given sample. They

evaluate the models with accuracy and show that their models did significantly better than the

baseline.

Zhang et al. (2013) propose a Markov-based (Discrete Time Markov Chain model)

method to predict the number of bugs that will be fixed in the future and other methods to different

estimations. The dataset used is composed of three CA Technologies projects, a commercial

corporation. The features used by the model are submitter, owner, severity, priority, ESC (if the

bug is reported by end-users or by the QA team), category, and summary. The paper outlines

highlights of the three proposed models. The first, a Markov model-based that shows a 3.72%

Mean Relative Error (MRE) when predicting the number of fixed bugs in the future. The second

70

one, a Monte Carlo method for predicting the total time to fix a given number of bugs with a

6.45% MRE; and a KNN-based method to classify a particular bug as a slow or quick fix with

an average weighted F-measure 72.45%. This work is replicated with an open-source software

project, namely Firefox, by the authors AKBARINASAJI et al. in their work Akbarinasaji et

al. (2018). The paper describes the same methodology, models, and methods of the original

work. The proposed Firefox Markov based model to predict the number of fixed bugs in three

consecutive months obtain a 1.70% MRE; The Monte Carlo simulation, to predict the fixing time

for a given number of bugs achieve a 0.2% MRE; and the KNN-base model classifies the time

for fixing bugs into slow and quick with a 62.69% f-measure.

Bhattacharya e Neamtiu (2011) investigate the correlation between various dependent

variables (namely, number of developers, severity, attachments, and dependencies) and the bug-

fix time. They define the developer’s reputation and verify its correlation with the bug-fix time

as well. The work’s conclusion, acquired after a univariate regression test, indicates that the bug

mentioned above reports do not exhibit a high correlation with bug-fix time. They suspect that

successful predictions made in prior works can be justified by the problem known as “optimistic

bias” in machine learning. The authors suggest that to avoid an optimistic bias problem in future

works, researchers should train models with larger datasets and choose multiple applications to

verify the model generalization power.

A few papers discuss the temporal and evolutive report changes but never as the

main study object. The papers that use the summary and description fields, for instance, do

not take into account possible changes that these fields might have. Even the state or the exact

moment when the report and its features are collected generally is not evident during the dataset

description. In the present work, we highlight our concern with this inherent characteristic of the

bug reports life cycle.

Another noticeable thing is the relatively small variation on machine learning meth-

ods on the majority of the papers. Most works evaluate only a small number of models. In our

case, we aim to diversify our experiments with a variety of models. For instance, we include in

our evaluations neural networks models and gaussian processes, choices that is rarely (if ever)

seen in this kind of problem, maybe due to the usually small sized datasets.

71

4 BAYESIAN DATA ANALYSIS APPLIED TO BUG REPORTS DATA

This chapter describes the BDA applied to all projects of our proposed dataset in

Chapter 2. The main goal of this chapter is to study the relation between selected bug reports

features and the bug fixing time. We choose bayesian data analysis to drawn our conclusion.

We formalize the research questions we intend to explore in this Chapter as follows.

RQ1: How the existence of links in bug reports impacts the BFT? Some bug reports are related

to others (see Section 2.4). This relation can assume different forms as blocked or duplicates

(for instance, bug report A is blocked / duplicated by another bug report B). In this RQ, we want

to explore how these relations between bug reports impact the bug fixing time. RQ2: How the

priority level of a bug report impacts the BFT? Every bug report has an associated priority value.

Priority is a very explored feature in bug reports research field (ALMHANA et al., 2020; TIAN

et al., 2015; UMER et al., 2018) and in this RQ, we intend to understand its role in the BFT.

RQ3: How the code-churn size of fixing commits relates to the BFT? Bug-fix commits are those

bringing the changes that fix a reported bug. Thus, computing the code-churn size related to

a fixing commit is possible. To answer this research question, we first group the bug reports

into two categories: (i) reports with low code-churn values and (ii) reports with high code-churn

values (the threshold is the project’s code-churn median value). Next, we evaluate if the average

BFT of both groups is significantly different.

We now present the Chapter remainder. Section 4.1 presents an introductory theoret-

ical foundation of Bayesian statistics. In Section 4.2, we discuss the selected features and how

we create data groups to fit the proposed models. Section 4.3 presents the adopted process to

construct and describe the models. Section 4.4 presents the results after computing the posterior

distributions of the proposed models. In Section 4.5, we explore different hierarchical models

compositions and discuss the results. We conclude this Chapter with Section 4.6, where we

discuss the results and point to future directions, list the Threats to the Validity in Section 4.7

and the Related Works in Chapter 4.8.

4.1 Bayesian Data Analysis

In this section, we present an introduction to the BDA concepts. While we cover most

of the BDA ideas applied in this chapter, we suggest additional sources for a more detailed and

complete explanation of the subject (GELMAN et al., 2020; MCELREATH, 2020; GELMAN et

72

al., 2013; KRUSCHKE, 2015).

BDA is a statistical framework concerned with practical methods for making infer-

ences from data using probability models for quantities we observe and for quantities about

which we wish to learn (GELMAN et al., 2013). The simplified idea is that BDA takes a

question in the form of a model and uses logic to produce an answer in the form of probability

distributions (MCELREATH, 2020). This logic can be divided into two ideas: the first is that

Bayesian inference is the reallocation of credibility (or formally, probability) across possibilities.

The second one is that the possibilities over which we allocate probability are parameter values

in meaningful mathematical models (KRUSCHKE, 2015).

The bayesian workflow includes the three major steps: model building, inference, and

model checking/improvement (GELMAN et al., 2020). These steps are not applied as a straight

and linear process but rather as an interactive and incremental methodology. Usually, there are

several model proposals, where we inferred from them to check their viability, which may demand

some improvement. However, it is important to highlight that even if we linearly present them as

follows, the back-and-forth in these steps is very common and highly recommended (GELMAN

et al., 2020; MCELREATH, 2020; KRUSCHKE, 2015).

4.1.1 Bayes in a Nutshell

Bayes 101. Bayesian inference is a statistical framework that allows us to update

our subjective belief on the value of a variable of interest θ —or an effect— when faced with

new data y. We start off by expressing our belief as a prior distribution p(θ) over the set Θ

of possible values for θ . Then, we assume an observation model p(y∣θ), and consequently a

likelihood function that we can use to re-evaluate our opinion on θ . We refer to our updated

belief as the posterior distribution and compute it using the Bayes’ rule:

p(θ ∣y) = p(θ)p(y∣θ)
∫Θ p(θ ,y)p(y)dθ

. (4.1)

The first step in Bayesian modeling is to choose likelihood function p(y∣θ), i.e., an

observation model. Choosing an appropriate likelihood requires analyzing the nature of the

data y. For instance, if our observations are numbers of system failures in a given time interval,

p(⋅∣θ) should have non-negative integer support — the most common choice for count being

Poisson distribution Pois(λ), governed by the parameter λ . If the data represent some natural or

biological phenomena, commonly these cases are well represented (MCELREATH, 2020) by

73

using a Gaussian Distribution N(µ,σ2), with the mean µ and variance σ2 parameters. Then,

we must choose a prior. In the case of a likelihood Pois(λ), we must choose a prior p(λ), which

means the plausibility of the values that λ can assume before the data is observed. In case of

a N(µ,σ2), we must choose priors p(µ) and p(σ2). Ideally, we can use previous analyzes

and observations or specific domain knowledge to define informative priors. In cases where

it is impossible to provide informative priors, we must at least ensure that the priors cover a

reasonable value range or, conversely, rule out unusual value ranges as highly unlikely (FURIA

et al., 2021). These types of priors are called weak or weakly informative. We can test several

priors and perform a sensitivity analysis to check which one best fits our data (GELMAN et al.,

2020). Generally, our hypotheses may not be represented by a single parameter θ in real-world

scenarios. A hypothesis h takes the form of a mathematical model with several parameters, and

we want to estimate them for a more precise representation of the hypotheses, considering the

uncertainty about their values.

Computational methods. Once we have a model, the next step is making the

inference. We must fit the model, which means we have to compute the posterior distribution

p(θ ∣y). However, doing so analytically is often challenging since it requires computing the

denominator of Bayes’ rule, which is usually intractable. For simple cases with a small number of

parameters, one can use grid or quadratic approximation to calculate the posterior (MCELREATH,

2020). Nonetheless, the weapon of choice for most Bayesians are Monte Carlo Markov Chain

(MCMC) sampling methods, such as sequential Monte Carlo and Hamiltonian Monte Carlo

(GELMAN et al., 2020). In this chapter, we evaluate models that are computed using MCMC.

Hypothesis testing. The posterior distribution encapsulates all information we have

gathered on θ , subjective or not, and we can use it to probe any hypothesis. For instance, we can

evaluate the probability that θ > a taking the expected value of the indicator function 1[⋅ > a],
i.e.:

p(θ > a) = ∫
θ∈Θ

1[θ > a]p(θ ∣y)dθ .

Unfortunately, computing exact integrals over the posterior are often intractable. However, given

a set of MCMC samples S = {θ (k=1)}K , we can approximate the expected value of any function

g of θ as:

Ep(θ ∣y)[g(θ)] = ∫
θ∈Θ

g(θ)p(θ ∣y)dθ ≈ 1
K

K
∑
k=1

g(θ (k)).

74

Simulating novel data. We can easily simulate novel data with the posterior samples

in our hands. We do so by sampling from:

∫
θ∈Θ

p(y⋆,θ ∣y) = p(y⋆∣θ)p(θ ∣y)dθ ,

which using MCMC samples resumes to repeating the following process: i) pick a sample θ (k)

from S; ii) sample from our observation model conditioned on θ (k), i.e., p(y⋆∣θ (k)). Once the

simulated data is drawn for a model that describes well our data’s generative process, it should

look similar to the observed data (GELMAN et al., 2013), as any discrepancy between the

sample data and the observed data indicates potential failings in the proposed model.

4.1.2 Hierarchical Models

The structure of data in a specific domain can indicate some relation or connection

between the parameters of the model (GELMAN et al., 2013). Consider the example of our

selected dataset composed of 55 open source projects, all coming from the Apache Ecosystem,

with all reports mined from Jira ITS. For instance, it might be reasonable to expect that these

projects, coming from the same source, may present similar behavior in terms of types of bugs

or the time to fix them, among other similarities. In this case, we can define in our model that the

estimates of the parameter θi, representing the average time to fix a bug in a project i, are drawn

from a prior distribution (conditioned by a parameter θ0), also representing the average time to

fix a bug, but considering all projects behavior.

The advantage of this kind of approach, called Hierarchical or Multi-level models, is

that they are less inclined to underfit or overfit the data when compared to single-level models,

dealing better with the imbalance in sampling and better modeling between variance among

groups and individuals (MCELREATH, 2020). From an intuitive point of view, this mechanism

allows for transferring information between different projects. This also will enable projects

with fewer data to borrow strength from inferences in more mature projects. Besides allowing

us to estimate the parameters θ of each project, hierarchical modeling also provides us with a

distribution over the global parameter θ0 — in our case, the global average BFT —, which is

more suitable for generalization results.

75

4.2 Selected Features

We choose to analyze three bug reports features: i) links; ii) priority; iii) code-churn.

This analysis aims to verify how these features relate to the bug resolution time. Given a project,

for each feature, we create groups of reports based on the specific criteria of the selected feature

values:

– For ‘links’, we split the data into two groups: the group of reports with links (Rwl) and the

group with no links (Rnl). As presented in Subsection 3.1.3, there are several scenarios of

links in the reports. However, for this first round of analysis, we choose only to consider

the existence or not of some link.

– For ‘priority’, we split the data into three groups: the group of reports with trivial-minor

priority (low priority, Rl p), the group with major priority (medium priority, Rmp) and the

group with critical-blocker priority (high priority, Rhp). This group of the lower and higher

priorities values is justified for two major reasons: the Cassandra project uses three levels

of priority (low, normal, and urgent), and some smaller projects do not contain examples

of reports with all priorities. With this grouping strategy, we can deal with all the projects

simultaneously.

– For ‘code-churn’, we define it as the sum of added and removed lines in this context. We

split the data into two groups: reports with higher code-churn values (Rhcc) and reports

with lower code-churn size (Rlcc). Given a project, the threshold to split both groups is the

median code-churn of its bug reports.

We justify the interest in studying the relation between bug fix time with each one of

the features as follows. The relation (links) between issue reports seems to be overlooked by

papers that study bug reports. For instance, with a quick search for papers with keywords such as

‘bug reports’, ‘links’, ‘relationship’, ’Jira reports’, we only were able to find three papers that deal

explicitly with relations in bug reports (BORG et al., 2013; TOMOVA et al., 2018; THOMPSON

et al., 2016). Also, none of the proposals that use machine learning techniques to estimate fixing

time consider the relationship between reports as features (See Section 3.5). Links can represent

several types of relation, as presented in Fig. 5. It is reasonable to believe that a blocked report

will only be fixed after the blocker report is resolved, implying some interference of a report over

another. Other types of relationships, as duplicated, are also an indication that fixing one report

can impact considerably other ones.

On the other hand, the priority is an objective of the study in several papers that deal

76

with similar data and are almost used in all predictive models as features. However, it is never

clear how a bug report priority is directly related to a bug fixing time. An argument that the

priority is a measure of importance or urgency, hence asks for more attention and rapid responses.

However, priority carries no information about the complexity of the bug (i.e., a minor bug may

be more complex than a simple but blocker bug). With this analysis, we intend to bring some

light to the matter.

Code-churn is a widespread metric in software engineering research. However, it is

post-bug fix information: it is only known after the bug resolution. So, how does this information

on the relation between code churn size and bug fixing time improve the bug fixing process? We

argue that once the bug is located in a class, function, or file, one could use prior information

about the code churn values in this specific bug location to estimate (along with the report

information) the time to fix the bug.

4.3 Modeling Process and Models Description

The analysis starts with two proposed models as hypotheses to explain the generative

data process. Given a feature, we fit both models for each one of its groups. After that, we

compare the adverse groups’ µ posterior distribution to draw our conclusions. For instance, for

the ‘links’ analysis, we first fit a model using Rnl data and then another model using the Rwl data.

Then we use each model’s µ posterior distribution to verify the difference between both groups.

We first define some sets, distributions, and variables that we use to describe the

models:

– days / d: The time to fix the bugs in days, as non-negative real numbers. For all models,

we considerer log(days) ∼ N(µ,σ2), as days can not assume negative numbers.

– G: the groups of bug fixing time in days. The groups of data are G = {Rnl,Rwl,Rl p,Rmp,

Rhp,Rlcc,Rhcc}, as presented in subsection 4.2.

– P: The set of all projects. P = {p1, ..., p55}, each pi being one of the projects presented in

Table 1.

– N ∼ (µ,σ2): The Normal distribution, defined the parameters mean µ and variance σ2

– Inv-Gamma(α,β) / Γ−1: The Inverse Gamma distribution, defined by parameters α and

β . Usually, the Inverse Gamma is used as prior for the variance in BDA.

The first model is a specific model, where we fit using only one project data at a time.

We use a weakly informative prior for all parameters. The following model, described in as an

77

equation 4.2 and graphically in Fig. 15 is called ‘specific-model’.

µ ∼N (0,2) ,

σ
2 ∼ Inv-Gamma(3,3) ,

log(days) ∼N (µ,σ2) .

(4.2)

µ

µ0 σ2
0

σ
2

α β

log(d)

N Γ
−1

N

Figure 15 – Specific Model representation. Weakly informative priors are used for parameters µ

and σ2 with values µ0 = 0; σ2 = 2; α = 3; β = 3.

Using this model, we fit a total of 385 models: 110 for links (for each of the 55

projects, we fit a model using Rwl data and another using Rnl data), 110 for code-churn (for each

of the 55 projects, we fit a model using Rlcc data and another using Rhcc data) and 165 for priority

(for each of the 55 projects, we fit a model using Rl p data, another using Rmp and another using

Rhp).

The second model is a Hierarchical Model (HM), where we fit all projects data at

once. We also use a weakly informative prior for all proposed models. We have a µ0 representing

the parameter to estimate for all projects population, while we have one µi to describe each

project pi. The following model is called ’HM-AP,’ and it is described in equation 4.3 and

graphically in Fig. 16.

µ0 ∼N (0,2) , σ
2
0 ∼ Inv-Gamma(3,3) ,

σ
2
i ∼ Inv-Gamma(3,3) ,∀pi ∈ P,

µi ∼N (µ0,σ
2
0) ,∀pi ∈ P,

log(daysi) ∼N (µi,σ
2
i) ,∀i ∈ P.

(4.3)

78

µ0

µa σ2
a

σ
2
0

αa βa

µi σ
2
i

α β

log(di)

N Γ
−1

N
Γ
−1

N

∀i ∈ P

Figure 16 – Hierarchical Model - HM-AP representation. Weakly informative priors are used for
paramters µ0, µi, σ2

0 , and σ2
i . Values are µa = 0; σ2

a = 2; αa = α = 3; βa = β = 3.

Using the ‘HM-AP’, we fit a total of seven models: two for links (one using Rwl data

of all projects and another using Rnl data of all projects), two for code-churn (one using Rlcc and

another using Rgcc data of all projects) and three for priority (same logic as previous, Rl p, Rmp,

and Rhp data of all projects). The proposed hierarchical model intends to capture the global bug

report behavior based on the particular data of each project. ‘HM-AP’ assumes that there is no

other similarity aspect between the projects besides they all are bug reports.

4.4 Results

With all models defined, we use Stan, specifically PyStan1 which is a Python interface

to Stan, a package for Bayesian inference. Stan is a state-of-the-art platform for statistical

modeling and high-performance statistical computation. The computation goes as presented in

4.1: we compute the posterior distribution p(µ,σ2) using MCMC for each model, given the data

presented in G. After that, we compare the opposite µ posterior distributions for each feature

group using five summarizations: the Maximum a Posteriori µMAP estimator (the most plausible

value for the estimator µ); the Lower (CIL) and Upper (CIU) value of the 95% Confidence

Interval (CI, also known as Uncertainty, Credible, or Compatibility Interval); the probability of a
1 https://pystan.readthedocs.io/en/latest/

79

group having a greater average fixing-time than the other (4.4); and the expected value of the

difference between both bug-fixing time groups (4.5), as presented in the following equations

f1(a,b) ∶ 1 if a > b, 0 otherwise,

E[f1(a,b)] = ∫
∞

−∞
∫
∞

−∞

f1(a,b)p(a)p(b)dadb.
(4.4)

f2(a,b) ∶ a−b,

E[f2(a,b)] = ∫
∞

−∞
∫
∞

−∞

f2(a,b)p(a)p(b)dadb.
(4.5)

We present the results visually through the µ posterior distributions for each data

group, the µMAP represented by a dotted line, and the Confidence Interval (CI) by the filled area

under the curve. We also present the numeric values with an associated table for each proposed

model, the summarization tables, along with the values obtained using the equations 4.4 and 4.5.

The results are grouped by feature and similarly presented in the following subsec-

tions. First, we show the results using the ‘specific-model’ of only four projects, due to size

constrain, but also to offer some divergent scenarios regarding the possible conclusions about the

difference between the groups of features. The complete posterior distribution visualisations and

summarization tables for all 55 projects can be found in the Appendix B.

4.4.1 Links

The Fig. 17 shows four projects ‘specific-models’ marginal µ posterior distributions,

while Table 16 the distribution summarization.

The conclusions differ based on the project we analyze. For Derby project results,

the difference between both groups is evident, with the reports with links taking more time to

be fixed than those with no links. In Hadoop Map/Reduce, we also see a similar behavior but

with some overlap of both distributions. In Oozie, we see an inverse behavior: reports with no

links present higher bug fixing time than those with links. Finally, the Lang project shows no

difference between both groups. While most projects present a behavior similar to Derby and

Hadoop Mapreduce (see appendix B), it is hard to conclude the real impact of links in the report

bug fixing time taking each project individually. The results give us a general picture of each

project’s behavior but do not help us to verify a bug reports global behavior.

As the project’s analysis does not help to answer our research question, this justifies

using hierarchical models to summarize the population’s behavior of bug reports. We present

80

5 10 15 20 25 30 35
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Derby

10 12 14 16 18 20
0.0

0.1

0.2

0.3

0.4

Hadoop Mapreduce

10 15 20 25
0.00

0.05

0.10

0.15

0.20

0.25

Oozie

0 5 10 15 20 25 30
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Lang

p()

De
ns

ity

No Links W/ Links

Figure 17 – µ posterior distributions - ‘specific-models’, ‘links’ results. The average bug fixing
time of reports with no links vs. those with links. The conclusions diverge depending on the
selected project.

Table 16 – µ posterior distribution summary, ‘specific-models’, ‘links’ results.
No Links (a)

Project CIL CIU µ̂MAP E[F1(a,b)] E[F2(a,b)]
Derby 7.24 11.35 8.86 -16.93 0.00
Lang 6.87 15.10 9.88 -0.68 0.46

Mapreduce 10.92 14.35 12.44 -2.55 0.04
Oozie 18.97 25.04 21.60 8.07 1.00

W/ Links (b)
Project CIL CIU µ̂MAP E[F1(b,a)] E[F2(b,a)]
Derby 21.55 31.08 25.46 16.93 1.00
Lang 5.52 19.45 9.08 0.68 0.54

Mapreduce 13.01 17.45 14.85 2.55 0.96
Oozie 10.79 17.29 13.27 -8.07 0.00

81

the µ0 posterior distributions obtained using the ‘HM-AP’ in Fig. 18 and the summarization in

Table 17.

5 10 15 20 25
p(0)

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

No Links
W/ Links

Figure 18 – µ0 posterior distributions - ‘HM-AP’, ‘links’ results. The average bug fixing time of
all reports with no links vs. all reports with links. The results indicates that bugs with links take
more time to be fixed than their counterparts.

Table 17 – µ0 posterior distribution summary. ’HM-AP’, ‘links’ results.
No Links (a)

CIL CIU µ0MAP E[F1(a,b)] E[F2(a,b)]
5.63 8.41 6.78 -9.76 0.00

W/ Links (b)
CIL CIU µ0MAP E[F1(b,a)] E[F2(b,a)]

13.20 20.59 16.25 9.76 1.00

The results show a significant difference between both average bug fixing times,

where reports with links (group ’a’) need more time to be fixed than reports with no link (group

’b’). The expected difference between both groups is 9.76 days, suggesting that bugs with links

tend to take 2.4 more times to be fixed than those with no links. The probability of group ’b’

is greater than group ’a’ is 1. In this context, we answer our RQ1: considering the posterior

distribution of µ0 for groups of reports with links and no links, along with their summarization,

we gather evidence that the bugs with links tend to need approximately 2.4 times to be fixed when

82

compared to reports with no links.

4.4.2 Priority

The Fig. 19 shows four projects ‘specific-models’ µ posterior distributions, while

Table 18 the distributions summarization. Once again, as presented in the results for links, we

selected four different scenarios of possible conclusions.

10 15 20 25 30 35 40 45
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Zookeeper

3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

2.5

HBase

4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0
Hadoop HDFS

5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

0.25

Oozie

p()

De
ns

ity

Low Prio. Medium Prio. High Prio.

Figure 19 – µ posterior distributions - ‘specific-models’, ‘priority’ results. The average bug
fixing time of three reports priority levels. The conclusions diverge depending on the selected
project.

Depending on the selected project, the conclusions diverge. For Zookeeper, the

distributions are majority overlapped, indicating little significant difference between the three

groups. The data from HBase presents a very distinct behavior for each group, with the order

of bug-fixing time being low, medium, and high priority. For both HDFS and Oozie, only one

group presents a more distinct behavior when compared with the other two. In HDFS, bugs with

low priority take less time than bugs with medium and high priority, both presenting very similar

estimators values for µ . With Ozzie, we also notice a similarity between low and high priority

83

Table 18 – µ posterior distribution summary, ‘specific-models’, ‘priority’ results.
Low Priority (a)

Project CIL CIU µMAP E[F1(a,b)] E[F1(a,c)] E[F2(a,b)] E[F2(a,c)]
HBase 2.85 3.61 3.20 -0.84 -2.46 0.00 0.00
HDFS 3.85 5.42 4.55 -4.11 -4.65 0.00 0.00
Oozie 7.78 15.64 11.01 -11.84 1.18 0.00 0.67

Zookeeper 16.45 30.69 21.79 1.21 -2.51 0.60 0.31

Medium Priority (b)
Project CIL CIU µMAP E[F1(b,a)] E[F1(b,c)] E[F2(b,a)] E[F2(b,c)]
HBase 3.78 4.36 4.06 0.84 -1.62 1.00 0.00
HDFS 7.87 9.62 8.62 4.11 -0.54 1.00 0.29
Oozie 20.11 26.27 22.72 11.84 13.01 1.00 1.00

Zookeeper 17.64 26.38 21.16 -1.21 -3.73 0.40 0.19

High Priority (c)
Project CIL CIU µMAP E[F1(c,a)] E[F1(c,b)] E[F2(c,a)] E[F2(c,b)]
Hbase 5.01 6.43 5.63 2.46 1.62 1.00 1.00
HDFS 7.72 10.93 9.06 4.65 0.54 1.00 0.71
Oozier 6.71 14.64 9.49 -1.18 -13.01 0.33 0.00

Zookeeper 18.97 33.31 24.73 2.51 3.73 0.69 0.80

bugs, while reports with medium priority take more fixing time. As presented in the results with

links, it is hard to conclude the real impact of priority in the report bug fixing time, taking each

project individually.

We use the hierarchical ‘HM-AP’ to draw our conclusions for the priority group. The

µ0 bug reports population posterior distributions is presented in Figure 20 and the summarization

in Table 19.

Table 19 – µ0 posterior distribution summary, ‘HM-AP’ model, ‘priority’ results.
Low Priority (a)

CIL CIU µ̂MAP E[F1(a,b)] E[F1(a,c)] E[F2(a,b)] E[F2(a,c)]
6.53 10.04 8.03 -0.37 -0.12 0.39 0.47

Medium Priority (b)
CIL CIU µ̂MAP E[F1(b,a)] E[F1(b,c)] E[F2(b,a)] E[F2](b,c)
6.93 10.50 8.31 0.37 0.25 0.61 0.58

High Priority (c)
CIL CIU µ̂MAP E[F1(c,a)] E[F1(c,b)] E[F2(c,a)] E[F2(c,b)]
6.41 10.57 7.92 0.12 -0.25 0.53 0.42

The results suggest that the difference between the groups of reports with distinct

84

4 6 8 10 12 14
p(0)

0.0

0.1

0.2

0.3

0.4

De
ns

ity
Low Prio.
Medium Prio.
High Prio.

Figure 20 – µ0 posterior distributions - ‘HM-AP’ model, ‘priority’ results. The overlap and
similarities between the posterior distributions indicate a low priority influence on the BFT.

priority is unclear. For example, although there are different levels of uncertainty interval across

the µ distributions, the µMAP values are very similar. The average difference time between the

groups (E[F1] values) is small. In this context, we answer the RQ2: considering the posterior

distribution of µ for groups of reports with low, medium, and high priority, along with their

summarization, we gather evidence that the bug’s priorities do not have a significant impact in

the bug-fixing time.

4.4.3 Code Churn

The Fig. 21 shows four projects ‘specific-models’ marginal µ posterior distributions,

using the code-churn data groups, while Table 20 the distributions summarization. Once again,

as presented in the results for previous features, we selected four different scenarious of possible

conclusions.

The code-churn results present similar behavior as presented in the links results. For

example, Flink and Crunch results show that patches with higher code-churn take more time to

be fixed than those with smaller code-churn sizes. However, in Flink, the difference is evident,

while Crunch presents a significant overlap. Maven project presents an inverse behavior, with

85

4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Flink

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Crunch

2 4 6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Maven

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Buildr

p()

De
ns

ity
Lower CC Higher CC

Figure 21 – µ posterior distributions - ‘specific-models’, ‘code-churn’ results. The average BFT
of bugs patches with higher vs. lower code-churn values. The conclusions diverge depending on
the selected project.

Table 20 – µ posterior distribution summary, ‘specific-models’, ‘code-churn’ results.
Lower Code-Churn (a)

Project CIL CIU µMAP E[F1(a,b)] E[F2(a,b)]
Buildr 4.10 14.08 6.82 -0.26 0.47
Crunch 1.03 2.11 1.43 -0.44 0.14
Flink 4.04 5.12 4.54 -3.60 0.00

Maven 4.56 10.30 6.52 3.95 1.00

Higher Code-Churn (b)
Project CIL CIU µMAP E[F1(a,b)] E[F2(a,b)]
Buildr 4.24 14.28 7.24 0.26 0.53
Crunch 1.42 2.60 1.91 0.44 0.86
Flink 7.31 9.07 8.13 3.60 1.00

Maven 2.10 4.40 2.98 -3.95 0.00

86

patches with higher values of code-churn taking less time to be fixed than the smaller ones. In

Buildr, the values for estimator µ are almost identical. Once again, the particular nature of each

project shows dissonant conclusions.

We fit another ‘HM-AP’ to draw our conclusions for code-churn group. The marginal

µ0 bug reports population posterior distributions of is presented in Fig. 22 and the summarization

in Table 21.

0 2 4 6 8 10 12 14
p(0)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity

Lower CC
Higher CC

Figure 22 – µ0 posterior distributions - ‘HM-AP’, ‘code-churn’ results. The average BFT of all
reports with lower vs. all reports with higher code-churn values. The results indicate that bugs
with higher code-churn patches values demand time to be fixed than their counterparts.

Table 21 – µ0 posterior distribution summary, ‘HM-AP’ model, ‘code-churn’ results.
Lower Code-Churn

Model CIL CIU µ0MAP E[F1(a,b)] E[F2(a,b)]
All Projects 4.20 6.31 5.09 -4.78 0.00

Higher Code-Churn
Model CIL CIU µ0MAP E[F1(b,a)] E[F1(b,a)]

All Projects 7.89 12.42 9.83 4.78 1.00

The results show a significant difference between both average bug fixing times,

where reports patches with higher code-churn values (group ‘a’) need more time to be fixed than

87

reports patches with smaller code-churn values (group ‘b’). The expected difference between

both groups is 4.78 days, suggesting that bugs of the group ‘a’ take double the time to be fixed

than those of group ‘b’. The probability of group ‘b’ is greater than group ‘a’ is 1. In this context,

we answer our RQ3: considering the posterior distribution of µ0 for groups of reports with

higher and smaller code-churn values, along their summarization, we gather evidence that the

bugs reports paths with greater code-churn values tend to need approximately 5 more days (the

double of time) to fixed compared to bugs reports paths with smaller code-churn values.

4.5 Exploring different Hierarchical Models

The ‘HM-AP’ model considers that all projects come from the same distribution with

mean µ0. However, hierarchical models allow us to consider more information regarding other

data particularities, for instance, the existence of other subgroups in the data. A straightforward

example in the case of our dataset is the projects’ categories. Based on the idea that projects of

the same category are more similar in terms of bug-fix time and types of bugs, we can add this

assumption to the model composition.

The category is only one example of how we can arrange the data into a tree-like

structure that models similarities between the projects. However, one can propose another

hypothesis, as long they are appropriate to the data domain. This section explores three different

ways to structure the data: category, maturity (years of existence), and the number of reported

bugs. This subsection’s objective is to show the hierarchical models’ flexibility and how we can

explore different data generation processes.

This subsection follows a similar structure of previous Subsection 4.3 and 4.4. We

first describe the new groups of data, the models, and the results (the posterior distribution and

summarization table) obtained by fitting the models with ’links’ data. We also perform the same

analysis with ’priority’ and ’code-churn’ data, which can be found in the Appendix C.

First, we define the new subgroups of data:

– C: The set of projects grouped by category. C = {C1, ...,C9}, each Ci representing a set of

projects in the same category, as presented in Table 1.

– Y: The set of projects grouped by maturity. Y ={Y2009,Y2010−2012,Y2013−2015}, three groups

of projects defined by the year that contains the first bug report recorded in the Jira ITS.

The groups are:

– Y2009: {‘Lang’, ‘Zookeeper’, ‘Nutch’, ‘Dirmina’, ‘Vysper’, ‘Hadoop Mapreduce’,

88

‘Tap5’, ‘Dirkrb’, ‘SSHD’, ‘Compress’, ‘Hadoop HDFS’, ‘Solr’, ‘Myfaces’, ‘MRM’,

‘Codec’, ‘MNG’, ‘Derby’, ‘Ivy’, ‘Lucene’, ‘Camel’, ‘Tika’, ‘Mahout’, ‘Cassandra’,

‘Hadoop Core’, ‘Math’, ‘VCL’, ‘Hbase’, ‘Hive’, ‘IO’, ‘FTPserver’, ‘Collections’,

‘Buildr’, ‘Openjpa’, ‘WW’};

– Y2010−2012: {‘Yarn’, ‘Log4j2’, ‘Libcloud’, ‘Syncope’, ‘Giraph’, ‘Oozie’, ‘Madlib’,

‘Tomee’, ‘Crunch’, ‘Helix’, ‘Kafka’, ‘Isis’, ‘Spark’, ‘Mesos’};

– Y2013−2015: {‘Flink’, ‘Systemml’, ‘Jclouds’, ‘FC’, ‘Storm’, ‘Phoenix’, ‘Ignite};

– Q: The set of projects grouped by size (number of bug reports), where the groups division

is defined by quartils. Q= {Q
[0,q1],Q]q1,q2],Q]q2,q3],Q]q3,100]}, each index i representing

the interval where each project is in the quartils division.

Considering one of these groups at a time, we can create three new hierarchical

models. Using the same design from the ‘HM-AP’, we add another level to the model considering

new data clusters. Let G be a generic symbol that can be replaced by any of the groups C, Y ,

or Q. The new models set a new level regarding group G parameters (µG,∀G ∈ G), between

parameters about the population (µ0) and specific projects (µi). All models follow the same

structure presented in (4.6) and Figure 23:

µ0 ∼N (0,2) , σ
2
0 ∼ Inv-Gamma(3,3)

σ
2
G ∼ Inv-Gamma(3,3) ,∀G ∈ G

σ
2
i ∼ Inv-Gamma(3,3) ,∀pi ∈ P

µG ∼N (µ0,σ
2
0) , ∀G ∈ G

µi ∼N (µG,σ
2
G) ∀pi ∈ P, ∀G ∈ G ∣ pi ∈G

log(daysi) ∼N (µi,σ
2
i) ,∀pi ∈ P

(4.6)

All proposed hierarchical models intend to capture the global bug report behavior

based on the detailed data of each project. However, each one evaluates a different hypothesis on

the generative data process. ‘HM-AP’ assumes that there is no other similarity aspect between

the projects besides they all are bug reports. The other HMs add another layer of information,

suggesting clusters of similarity that can help the modeling data process. The ‘HM-C’ is a

natural suggestion of another information that aggregates groups of projects. For example, one

hypothesis to explain why category would matter in terms of bug reports fixing time is, as they

deal with the same domain, their bugs can be more similar, hence taking an approximated time to

be fixed. The ‘HM-Q’ model can represent a hypothesis of more complex projects that presents

89

N Γ
−1

µ0 σ
2
0

N Γ
−1

µG σ
2
G

N Γ
−1

µi σ
2
i

N

log(di)

µa σ2
a k0 θ0

kG θG

ki θi

∀G ∈ G
∀pi ∈ P∣ pi ∈G

Figure 23 –Hierarchical Model ‘HM-G’- Graph representation for projects considering subgroups
G of projects, where G can be replaced by C, Y , or Q.

more bugs and can have a similar process to triage that would impact the fixing time. Finally, the

‘HM-Y’ would verify the viability of older projects by providing similar, more robust conduct

regarding the bug fixing process.

Figure 24 shows the µ0 posterior distribution of each alternative hierarchical model.

Table 22 presents the summarization of each model.

All models suggest that reports with links have a greater fixing time than those

without links. However, there is more uncertainty about the differences between the values of µ0

of both reports groups, especially when compared with the results using the model ‘HM-AP’. The

result obtained using model HM-C shows that the distinction between both groups is more evident

when compared with models HM-Q and HM-Y , which present a more prominent overlapping

between the distributions. However, the E[F2] function values indicate a high probability of

reports with links demanding more time to be fixed.

90

0 10 20 30
0.00

0.05

0.10

0.15

0.20

HM-

0 10 20 30 40
0.000

0.025

0.050

0.075

0.100

0.125

HM-

0 10 20 30 40
0.000

0.025

0.050

0.075

0.100

0.125

0.150

HM-

p(0)

De
ns

ity
No Links W/ Links

Figure 24 – µ0 posterior distributions - ‘HM-G’, ‘links’ results. The three models indicate that
bugs with links demand higher BFT, but with less confidence than the results obtained with
model ‘HM-AP’.

Table 22 – µ0 posterior distributions summaries, ‘HM-G’ models, ‘links’ results.
No Links (a)

Model CIL CIU µMAP E[F1(a,b)] E[F2(a,b)]
HM-C 3.49 11.36 5.90 -9.11 0.03
HM-Q 1.60 14.32 4.58 -7.08 0.18
HM-Y 1.56 13.76 4.22 -6.14 0.19

W/ Links (b)
Model CIL CIU µMAP E[F1(b,a)] E[F2(b,a)]
HM-C 8.03 26.94 14.28 9.11 0.97
HM-Q 2.98 32.40 9.29 7.08 0.82
HM-Y 2.72 29.59 8.64 6.14 0.81

4.6 Discussion

This Chapter presents an analysis of the interplay between the three bug report

features - links, priority, and bug-fixing code churn size - and the bug-fixing time. We use the

BDA workflow on the data of 55 open source projects from the Apache ecosystem. We propose

two models as the hypothesis for the data generation process. Based on the obtained results, we

gather evidence that priority plays no role in the bug fix time. In contrast, bug reports with higher

values of code churn and bugs reports that relate to other bugs need at least, on average, double

the time to be fixed compared to their counterparts.

Regarding the results, we highlight a few points. First, the relationship between bug

reports seems to be overlooked, which appears to be wasted potential for deeper analysis and

BFT predictive models. We look to use Graph Neural Network (ZHOU et al., 2018) to verify

how these relations can improve the state-of-art estimation results in future works. The results

91

regarding code-churn can also be an exciting addition to BFT estimation when used with bug

localization strategies. To conclude the analysis of the results, the priority not having much

evidence of being impactful on the BFT may not discard it entirely from being used in predictive

models, as it can be related to other features. The priority seems to provide some contextual

information about the situation of an open bug compared to other ones. Priority may play a role

when the context of the specific report is known, which is rarely the case in several papers. For

instance, a newly reported high-priority bug (blocker, critical) can take more time to be fixed if it

competes for resources with several other high-priority bugs. The same report could be fixed

early in a scenario of several low-priority bugs. Also, it can be related to other responses in the

platform as response-time from other developers, the number of comments and watches, or the

time to review proposed patches. Exploring these hypotheses seems to be an exciting path to

understanding the priority role in the bug fixing process.

4.7 Threats to the Validity

The threats to the validity of our investigation are discussed using the four threats

classification (conclusion, construct, internal, and external validity) presented by WOHLIN et

al. (WOHLIN et al., 2012).

Conclusion Validity the main threats to this validity concern the choices we made

in the modeling process: the weakly prior and the likelihood function. Regarding the first choice,

Bayesian statistics results benefit from using more representative prior, ideally from a different

data source (i.e., bug reports from other projects or posterior from previous analysis). However,

even if we don’t use data from other projects, we perform a sensitivity analysis to provide a

reasonable prior based on earlier studies that deal with bug-fixing time. For example, some

studies from Weiss et al. (2007), Akbarinasaji et al. (2018) suggest that bugs are generally fixed

in a few days, while other studies show that some bugs can take months or even years to be

considered fixed (SAHA et al., 2014). We provide a broad enough prior distribution to consider

these cases. The expected bug-fixing time value is close to 2∼3 days (most common cases) but

also allows the model to contemplate instances with hundreds of days (although these cases are

less plausible, represented in the prior). Appendix C provides two sensitivity analyses to cover

the two threats. We show that the selected parameters, distributions, and likelihood functions are

appropriate: a predictive analysis of the prior and an analysis of how well a log-normal fits the

log-BFT of most projects.

92

Internal Validity The existence of other features that can be highly correlated with

the analyzed features and that can be the actual causal effect of the bug-fixing time. For instance,

we show that reports with links present higher BFT. However, our analysis does not consider

other features (e.g., the number of comments and the existence of attached patches) that can be

highly correlated with the presence of links and are the actual cause of higher BFT. We argue that

the number of analyzed projects and bug reports — more than 70.000 reports from 55 projects —

mitigate the chances of these correlations propagating thought all projects.

Construct Validity In the ‘links’ analysis, we had to ignore the types of relations

between reports, only considering the existence of a link. This simplifies the investigation

because we are not able to indicate which type of link really impacts and how much it impacts

the BFT. However, we had to perform this simplification due to the size of a few projects, as

some of them do not have enough data to perform this level of type-of-links groups granularity.

External Validity All projects are open-source from the Apache ecosystem, indicat-

ing some source of low generalization capability. However, we argue that the sample contains 55

projects from nine categories (big-data, database, machine learning, and library, to cite some),

with different maturity levels, some of them dated from 2002 and others from 2018. We mine

the dataset, providing diversity, which allows us to generalize the results with more certainty.

4.8 Related Works

Hooimeijer e Weimer (2007) discuss the process of modeling bug reports quality.

The authors present a descriptive model of bug report quality based on 27,000 bug reports for the

Mozilla Firefox projects. The analysis shows that the presence of an attachment tends to lead to

higher values of bug-fixing time, while the comment count suggests that bugs that receive more

attention get fixed faster. The self-reported severity (value given in the bug report creation) also

plays a role in bug fixing.

Zimmermann et al. (2010) investigates the quality of bug reports from the perspective

of developers. To find out which features and elements matter the most, they asked several

developers from Apache, Eclipse, and Mozilla projects to perform two tasks: i) a survey on bug

reports important information and ii) rate the quality of bug reports on a five-point Likert scale

(from very poor to very good). The analysis of the 466 responses revealed that most developers

consider steps to reproduce, stack traces, and test cases as helpful. The authors also show that

bug reports containing stack traces get fixed sooner, and those easier to read have lower lifetimes.

93

The study of Soltani et al. (2020) aims to establish the significance of bug report

elements. The authors interviewed 35 developers to gain insights into the importance of various

contents in bug reports, followed by a survey applied to 305 developers. Based on the acquired

data from these moments, the authors conclude that the essential elements are crash description,

reproducing steps or test cases, and stack traces. They also evaluate the quality of bug reports

of the 250 most popular projects on Github. Their analysis shows that crash reproducing steps,

stack traces, fix suggestions, and user contents, have a statistically significant impact on bug

resolution times between 76% to 33% of the projects.

Sasso et al. (2016) describes what makes a satisficing (a neologism combining the

verbs to satisfy and to suffice) a bug report. The authors proposed a questionnaire to an open-

source community. The authors gather the perception of how difficult it is to provide distinct

kinds of information during the bug report record. They also mined content from Bugzilla and

Jira to understand what users and developers collect and provide during the bug reporting. Based

on more than 650,000 bug reports and the results from the questionnaire, the authors evaluate

how the completeness of standard and project-specific attributes in a bug report related to its

lifetime, similar to the BFT concept in our study. Finally, they highlight that number of words in

the description and the summary are more correlated are the features that impact the prediction

the most.

None of the presented studies evaluate the relationship between report links, priority

and code-churn size, and the BFT. Also, none of them use Bayesian statistics or incorporate

previous results from other studies into their analysis. For instance, the studies Zimmermann et

al. (2010), Soltani et al. (2020), Sasso et al. (2016) apply a similar methodology when using

surveys and questionnaires, and Zimmermann et al. (2010), Soltani et al. (2020) conclude similar

things. This is a good example where studies using data on the same subject and trying to

answer similar research questions can benefit from using previous results as priors for their study.

If the results were modeled using Bayes statistics, providing a conclusion based on posterior

distributions, one could continually use previous results to gather more evidence of previous

findings. Also, none of the founded related work seems to present the impact of the analyzed

features (i.e., the average impact in days of the existence or non-existence of an specific feature)

numerically.

94

5 CONCLUSION AND FUTURE WORKS

This thesis presents three contributions regarding the bug reports process and fix-time

estimation. The first is a public dataset composed from bug reports of 55 Apache Software

Foundation projects. We describe the mining process and the tools we used. The dataset is

presented in two perspectives: the static, composed by the last state snapshot of each report, and

the dynamic, composed by every change and update that occurs on each report. We also discuss

a characterizing analysis of some report characteristics. The presented data is used in the other

two thesis contributions.

The second contribution is a study on how field updates impact the bug-fix time

prediction using machine learning models. Based on the previously proposed dataset, we create

a new dataset based on the final reports’ state and their previous fields’ changes and updates. We

test several configurations to build different models: three machine learning algorithms (logistic

regression, neural network, and Gaussian process), the use or not of data balance (use of original

data, oversampling or undersampling), and different days thresholds to classify the bug reports

as 1) more or less than five days to be fixed (two classes); 2) more or less than ten days to

be fixed (two classes). The best f-measure values (we also present log-loss, accuracy, recall,

and precision) are acquired using classification models, predicting the bug reports as more or

less than five days to be fixed. Neural networks, linear regression, and Gaussian processes all

present moderately similar results. However, Gaussian Processes outperforms the others in four

projects (Hadoop MapReduce, Hadoop HDFS, Kafka, and Spark). For four other projects, linear

regression presents the best results (Hadoop Core, Flink, Lucene, and Sol). The neural networks

provide the best results for two projects, Hadoop Yarn and Zookeeper. Our approach uses the

bug reports as patterns to train machine learning models, but with a particularity. The bug reports

have changes and updates in their fields, from creation to resolution. We consider that for each

field addition or update during its lifetime, we have a new report with more information and

a shorter bug-fix time. This allows us to have more data and verify how the reports’ updates

impact the models’ prediction capacity. Our experiments show that field updates impact the

models’ performance. We get the best results when predicting the resolution time at the initial

report states (close to data creation), suitable for a practical scenario, and at the final report states.

The results vary depending on the project. For the initial report’s best estimations, we acquire

f-measures between 0.63 up to 0.87, depending on the project. Our approach also outperforms

the baseline work Zhang et al. (2013) using different sets of attributes and is also comparable to

95

similar works with other data. All selected attributes are easy to compute and understand, ideal

for a real-world use scenario.

The third contribution are the results of a Bayesian Data Analysis on bug report data.

We propose two models as the hypothesis to the data generation process and verify how ‘links’,

‘priority’ and ‘code churn’, all features present in the bug reports, are related to the BFT. Based

on the obtained results, we gather evidence that priority plays no role in the bug fix time. In

contrast, bug reports with higher values of code churn and bugs reports that relate to other bugs

(with links) need at least double the time to be fixed compared to reports with smaller code churn

values and those with no links.

We look to improve the three contributions in future works. Using the mining script,

we can continually mine new bug reports from 2019 and posterior years to evaluate the approach

proposed in the Chapter 3, also being able to evaluate new recorded bug reports in real time. We

see opportunities to improve the bug fixing estimation approach results looking for means to

define an impactful report update. As we consider every change and comment in the report as

a new state, it can introduce several similar and noisy data, as a change of a specific field may

be more impactful in the resolution time than others. The idea is to identify the updates that

meaningfully modify the report information and content, demanding a new fix time estimation.

Another oportunity is to estimate intervals of bug fixing time, not the classes. Some probabilistics

models (as Gaussian process) provides a distribution of the value to be estimated as output.

This can be used to suggest plausible intervals, not only point estimation. Finally, another

idea to explore is the use of contextual information about others reports. The hyphoteses is to

evaluate how a set of bug reports in the same window of time impacts one each other in therms

of priorization and resolution.

For the BFT results, we intend to provide a hierarchical model at the project level. In

this thesis, we fit two models (three for priority) for each project and feature using the ‘specific

model’. Using all project data in one single model, we can identify more reliable results. Also,

we partialy explore the idea of alternative hierarchical models. In the future works, it is possible

to provide new hierachical models and look for ways to select the ones that best fit the bug

reporting process. Another ideia is propose a regression analysis and provide a more thoughtful

view of all features, not only the selected in this thesis, and how they relate to the bug fix time.

96

BIBLIOGRAPHY

AKBARINASAJI, S.; CAGLAYAN, B.; BENER, A. Predicting bug-fixing time:
A replication study using an open source software project. Journal of Systems
and Software, v. 136, p. 173 – 186, 2018. ISSN 0164-1212. Disponível em: http:
//www.sciencedirect.com/science/article/pii/S0164121217300365. Acesso em: 12 de set. de
2019.

AL-ZUBAIDI, W. H. A.; DAM, H. K.; GHOSE, A.; LI, X. Multi-objective search-based
approach to estimate issue resolution time. In: Proceedings of the 13th International
Conference on Predictive Models and Data Analytics in Software Engineering. New
York, NY, USA: Association for Computing Machinery, 2017. (PROMISE), p. 53–62. ISBN
9781450353052. Disponível em: https://doi.org/10.1145/3127005.3127011. Acesso em: 02 de
ago. de 2019.

ALKHAZI, B.; DISTASI, A.; ALJEDAANI, W.; ALRUBAYE, H.; YE, X.; MKAOUER, M. W.
Learning to rank developers for bug report assignment. Applied Soft Computing, v. 95, p.
106667, 2020. ISSN 1568-4946. Disponível em: https://www.sciencedirect.com/science/article/
pii/S1568494620306050. Acesso em: 10 de dez. de 2020.

ALMHANA, R.; FERREIRA, T.; KESSENTINI, M.; SHARMA, T. Understanding and
characterizing changes in bugs priority: The practitioners’ perceptive. In: 2020 IEEE 20th
International Working Conference on Source Code Analysis and Manipulation (SCAM).
[S. l.: s. n.], 2020. p. 87–97.

ARDIMENTO, P.; BILANCIA, M.; MONOPOLI, S. Predicting bug-fix time: Using standard
versus topic-based text categorization techniques. In: CALDERS, T.; CECI, M.; MALERBA, D.
(Ed.). Discovery Science. Cham: Springer International Publishing, 2016. p. 167–182. ISBN
978-3-319-46307-0.

ASSAR, S.; BORG, M.; PFAHL, D. Using text clustering to predict defect resolution time:
A conceptual replication and an evaluation of prediction accuracy. Empirical Softw. Engg.,
Kluwer Academic Publishers, USA, v. 21, n. 4, p. 1437–1475, ago. 2016. ISSN 1382-3256.
Disponível em: https://doi.org/10.1007/s10664-015-9391-7. Acesso em: 03 de mar. de 2020.

BAYSAL, O.; HOLMES, R.; GODFREY, M. W. Situational awareness: Personalizing issue
tracking systems. In: Proceedings of the 2013 International Conference on Software
Engineering. [S. l.]: IEEE Press, 2013. (ICSE ’13), p. 1185–1188. ISBN 9781467330763.

BHATTACHARYA, P.; NEAMTIU, I. Bug-fix time prediction models: Can we do better?
In: Proceedings of the 8th Working Conference on Mining Software Repositories. New
York, NY, USA: Association for Computing Machinery, 2011. (MSR ’11), p. 207–210. ISBN
9781450305747. Disponível em: https://doi.org/10.1145/1985441.1985472. Acesso em: 01 de
out. de 2019.

BORG, M.; PFAHL, D.; RUNESON, P. Analyzing networks of issue reports. In: 2013 17th
European Conference on Software Maintenance and Reengineering. [S. l.: s. n.], 2013. p.
79–88.

BRADY, F. Cambridge University report on cost of software faults, Press release, 2013.
2013. Disponível em: http://www.prweb.com/releases/2013/1/prweb10298185.htm. Acesso em:
02 de jan. de 2020.

http://www.sciencedirect.com/science/article/pii/S0164121217300365
http://www.sciencedirect.com/science/article/pii/S0164121217300365
https://doi.org/10.1145/3127005.3127011
https://www.sciencedirect.com/science/article/pii/S1568494620306050
https://www.sciencedirect.com/science/article/pii/S1568494620306050
https://doi.org/10.1007/s10664-015-9391-7
https://doi.org/10.1145/1985441.1985472
http://www.prweb.com/releases/2013/1/prweb10298185.htm

97

CANFORA, G.; CECCARELLI, M.; CERULO, L.; PENTA, M. D. How long does a bug
survive? an empirical study. In: 2011 18th Working Conference on Reverse Engineering. [S.
l.: s. n.], 2011. p. 191–200. ISSN 2375-5369.

CATOLINO, G.; PALOMBA, F.; ZAIDMAN, A.; FERRUCCI, F. Not all bugs are
the same: Understanding, characterizing, and classifying bug types. Journal of
Systems and Software, v. 152, p. 165–181, 2019. ISSN 0164-1212. Disponível em:
https://www.sciencedirect.com/science/article/pii/S0164121219300536. Acesso em: 06 de jul.
de 2019.

CHAWLA, N. V.; BOWYER, K. W.; HALL, L. O.; KEGELMEYER, W. P. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, v. 16, p. 321–357,
2002.

EBRAHIMI, N.; TRABELSI, A.; ISLAM, M. S.; HAMOU-LHADJ, A.; KHANMOHAMMADI,
K. An hmm-based approach for automatic detection and classification of duplicate bug reports.
Information and Software Technology, v. 113, p. 98 – 109, 2019. ISSN 0950-5849. Disponível
em: http://www.sciencedirect.com/science/article/pii/S095058491930117X. Acesso em: 24 de
abr. de 2020.

FURIA, C. A.; FELDT, R.; TORKAR, R. Bayesian data analysis in empirical software
engineering research. IEEE Transactions on Software Engineering, v. 47, n. 9, p. 1786–1810,
2021.

GELMAN, A.; CARLIN, J.; STERN, H.; DUNSON, D.; VEHTARI, A.; RUBIN,
D. Bayesian Data Analysis, Third Edition. Taylor & Francis, 2013. (Chapman
& Hall/CRC Texts in Statistical Science). ISBN 9781439840955. Disponível em:
https://books.google.com.br/books?id=ZXL6AQAAQBAJ. Acesso em: 17 de set. de 2021.

GELMAN, A.; VEHTARI, A.; SIMPSON, D.; MARGOSSIAN, C. C.; CARPENTER, B.; YAO,
Y.; KENNEDY, L.; GABRY, J.; BüRKNER, P.-C.; MODRáK, M. Bayesian Workflow. 2020.

GOUES, C. L.; PRADEL, M.; ROYCHOUDHURY, A.; CHANDRA, S. Automatic program
repair. IEEE Software, v. 38, n. 4, p. 22–27, 2021.

GUO, P. J.; ZIMMERMANN, T.; NAGAPPAN, N.; MURPHY, B. “not my bug!” and
other reasons for software bug report reassignments. In: Proceedings of the ACM 2011
Conference on Computer Supported Cooperative Work. New York, NY, USA: Association
for Computing Machinery, 2011. (CSCW ’11), p. 395–404. ISBN 9781450305563. Disponível
em: https://doi.org/10.1145/1958824.1958887. Acesso em: 02 de fev. de 2019.

HABAYEB, M.; MIRANSKYY, A.; MURTAZA, S. S.; BUCHANAN, L.; BENER, A. The
firefox temporal defect dataset. In: 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories. [S. l.: s. n.], 2015. p. 498–501. ISSN 2160-1852.

HABAYEB, M.; MURTAZA, S. S.; MIRANSKYY, A.; BENER, A. B. On the use of hidden
markov model to predict the time to fix bugs. IEEE Transactions on Software Engineering,
v. 44, n. 12, p. 1224–1244, Dec 2018. ISSN 2326-3881.

HAMILL, M.; GOSEVA-POPSTOJANOVA, K. Analyzing and predicting effort associated
with finding and fixing software faults. Information and Software Technology, v. 87, p. 1 –
18, 2017. ISSN 0950-5849. Disponível em: http://www.sciencedirect.com/science/article/pii/
S0950584917300290. Acesso em: 27 de nov. de 2020.

https://www.sciencedirect.com/science/article/pii/S0164121219300536
http://www.sciencedirect.com/science/article/pii/S095058491930117X
https://books.google.com.br/books?id=ZXL6AQAAQBAJ
https://doi.org/10.1145/1958824.1958887
http://www.sciencedirect.com/science/article/pii/S0950584917300290
http://www.sciencedirect.com/science/article/pii/S0950584917300290

98

HAUGE, O.; AYALA, C.; CONRADI, R. Adoption of open source software in
software-intensive organizations - a systematic literature review. Inf. Softw. Technol.,
Butterworth-Heinemann, USA, v. 52, n. 11, p. 1133–1154, nov. 2010. ISSN 0950-5849.
Disponível em: https://doi.org/10.1016/j.infsof.2010.05.008. Acesso em: 5 de jan. de 2019.

HEARD, N. A.; RUBIN-DELANCHY, P. Choosing between methods of combining
p
-values. Biometrika, v. 105, n. 1, p. 239–246, 01 2018. ISSN 0006-3444. Disponível em:
https://doi.org/10.1093/biomet/asx076. Acesso em: 10 de ago. de 2021.

HENSMAN, J.; FUSI, N.; LAWRENCE, N. D. Gaussian processes for big data. In: Proceedings
of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence. [S. l.: s. n.], 2013.
p. 282–290.

HERZIG, K.; JUST, S.; ZELLER, A. It’s not a bug, it’s a feature: How misclassification
impacts bug prediction. In: Proceedings of the 2013 International Conference on Software
Engineering. [S. l.]: IEEE Press, 2013. (ICSE ’13), p. 392–401. ISBN 9781467330763.

HOOIMEIJER, P.; WEIMER, W. Modeling bug report quality. In: Proceedings of the
Twenty-Second IEEE/ACM International Conference on Automated Software Engineering.
New York, NY, USA: Association for Computing Machinery, 2007. (ASE ’07), p. 34–43. ISBN
9781595938824. Disponível em: https://doi.org/10.1145/1321631.1321639. Acesso em: 19 de
dez. de 2020.

HU, H.; ZHANG, H.; XUAN, J.; SUN, W. Effective bug triage based on historical bug-fix
information. In: 2014 IEEE 25th International Symposium on Software Reliability
Engineering. [S. l.: s. n.], 2014. p. 122–132. ISSN 2332-6549.

KARIM, M. R.; IHARA, A.; YANG, X.; IIDA, H.; MATSUMOTO, K. Understanding key
features of high-impact bug reports. In: 2017 8th International Workshop on Empirical
Software Engineering in Practice (IWESEP). [S. l.: s. n.], 2017. p. 53–58.

KIM, S.; WHITEHEAD, E. J. How long did it take to fix bugs? In: Proceedings of the 2006
International Workshop on Mining Software Repositories. New York, NY, USA: Association
for Computing Machinery, 2006. (MSR ’06), p. 173–174. ISBN 1595933972. Disponível em:
https://doi.org/10.1145/1137983.1138027. Acesso em: 21 de out. de 2020.

KRUSCHKE, J. Doing Bayesian Data Analysis (Second Edition). Boston: Academic Press,
2015.

LAMKANFI, A.; PÉREZ, J.; DEMEYER, S. The eclipse and mozilla defect tracking dataset: A
genuine dataset for mining bug information. In: 2013 10th Working Conference on Mining
Software Repositories (MSR). [S. l.: s. n.], 2013. p. 203–206. ISSN 2160-1860.

LAZAR, A.; RITCHEY, S.; SHARIF, B. Improving the accuracy of duplicate bug report
detection using textual similarity measures. In: Proceedings of the 11th Working Conference
on Mining Software Repositories. New York, NY, USA: Association for Computing
Machinery, 2014. (MSR 2014), p. 308–311. ISBN 9781450328630. Disponível em:
https://doi.org/10.1145/2597073.2597088. Acesso em: 12 de out. de 2019.

LENARDUZZI, V.; Taibi, D.; Tosi, D.; Lavazza, L.; Morasca, S. Open source software
evaluation, selection, and adoption: a systematic literature review. In: 2020 46th Euromicro

https://doi.org/10.1016/j.infsof.2010.05.008
https://doi.org/10.1093/biomet/asx076
https://doi.org/10.1145/1321631.1321639
https://doi.org/10.1145/1137983.1138027
https://doi.org/10.1145/2597073.2597088

99

Conference on Software Engineering and Advanced Applications (SEAA). [S. l.: s. n.],
2020. p. 437–444.

MCELREATH, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan.
2nd. ed. [S. l.]: Chapman and Hall/CRC, 2020.

ORTU, M.; DESTEFANIS, G.; ADAMS, B.; MURGIA, A.; MARCHESI, M.; TONELLI,
R. The jira repository dataset: Understanding social aspects of software development. In:
Proceedings of the 11th International Conference on Predictive Models and Data Analytics
in Software Engineering. New York, NY, USA: ACM, 2015. (PROMISE ’15), p. 1:1–1:4. ISBN
978-1-4503-3715-1. Disponível em: http://doi.acm.org/10.1145/2810146.2810147. Acesso em:
03 de jan. de 2019.

RAHMAN, S.; GANGULY, K. K.; SAKIB, K. An improved bug localization using structured
information retrieval and version history. In: 2015 18th International Conference on
Computer and Information Technology (ICCIT). [S. l.: s. n.], 2015. p. 190–195.

RAJA, U. All complaints are not created equal: text analysis of open source software defect
reports. Empirical Software Engineering, v. 18, n. 1, p. 117–138, Feb 2013. ISSN 1573-7616.
Disponível em: https://doi.org/10.1007/s10664-012-9197-9. Acesso em: 05 de out. de 2019.

SAHA, R. K.; KHURSHID, S.; PERRY, D. E. An empirical study of long lived bugs. In: 2014
Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE). [S. l.: s. n.], 2014. p. 144–153.

SAHA, R. K.; KHURSHID, S.; PERRY, D. E. Understanding the triaging and fixing
processes of long lived bugs. Inf. Softw. Technol., Butterworth-Heinemann, Newton,
MA, USA, v. 65, n. C, p. 114–128, set. 2015. ISSN 0950-5849. Disponível em:
http://dx.doi.org/10.1016/j.infsof.2015.03.002. Acesso em: 06 de nov. de 2019.

SASSO, T. D.; MOCCI, A.; LANZA, M. What makes a satisficing bug report? In: 2016 IEEE
International Conference on Software Quality, Reliability and Security (QRS). [S. l.: s. n.],
2016. p. 164–174.

SERRANO, N.; CIORDIA, I. Bugzilla, itracker, and other bug trackers. IEEE Software, v. 22,
n. 2, p. 11–13, 2005.

SHARMA, M.; BEDI, P.; CHATURVEDI, K. K.; SINGH, V. B. Predicting the priority of a
reported bug using machine learning techniques and cross project validation. In: 2012 12th
International Conference on Intelligent Systems Design and Applications (ISDA). [S. l.: s.
n.], 2012. p. 539–545. ISSN 2164-7143. Acesso em: 17 de set. de 2019.

SHARMA, M.; KUMARI, M.; SINGH, V. B. Multi-attribute dependent bug severity and
fix time prediction modeling. International Journal of System Assurance Engineering
and Management, v. 10, n. 5, p. 1328–1352, Oct 2019. ISSN 0976-4348. Disponível em:
https://doi.org/10.1007/s13198-019-00888-5. Acesso em: 17 de nov. de 2019.

SHOKRIPOUR, R.; ANVIK, J.; KASIRUN, Z. M.; ZAMANI, S. A time-based approach to
automatic bug report assignment. J. Syst. Softw., Elsevier Science Inc., USA, v. 102, n. C, p.
109–122, abr. 2015. ISSN 0164-1212. Disponível em: https://doi.org/10.1016/j.jss.2014.12.049.
Acesso em: 06 de fev. de 2020.

http://doi.acm.org/10.1145/2810146.2810147
https://doi.org/10.1007/s10664-012-9197-9
http://dx.doi.org/10.1016/j.infsof.2015.03.002
https://doi.org/10.1007/s13198-019-00888-5
https://doi.org/10.1016/j.jss.2014.12.049

100

SOLTANI, M.; HERMANS, F.; BÄCK, T. The significance of bug report elements. Empirical
Software Engineering, v. 25, n. 6, p. 5255–5294, Nov 2020. ISSN 1573-7616. Disponível em:
https://doi.org/10.1007/s10664-020-09882-z. Acesso em: 09 de out. de 2021.

SPADINI, D.; ANICHE, M.; BACCHELLI, A. PyDriller: Python framework for mining
software repositories. In: Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering - ESEC/FSE 2018. New York, New York, USA: ACM Press, 2018. p. 908–911.
ISBN 9781450355735. Disponível em: http://dl.acm.org/citation.cfm?doid=3236024.3264598.
Acesso em: 07 de fev. de 2019.

THOMPSON, C. A.; MURPHY, G. C.; PALYART, M.; GAšPARIC, M. How software
developers use work breakdown relationships in issue repositories. In: 2016 IEEE/ACM 13th
Working Conference on Mining Software Repositories (MSR). [S. l.: s. n.], 2016. p. 281–285.

THUNG, F. Automatic prediction of bug fixing effort measured by code churn size. In:
Proceedings of the 5th International Workshop on Software Mining. New York, NY,
USA: Association for Computing Machinery, 2016. (SoftwareMining 2016), p. 18–23. ISBN
9781450345118. Disponível em: https://doi.org/10.1145/2975961.2975964. Acesso em: 23 de
jan. de 2020.

TIAN, Y.; LO, D.; SUN, C. Drone: Predicting priority of reported bugs by multi-factor analysis.
In: 2013 IEEE International Conference on Software Maintenance. [S. l.: s. n.], 2013. p.
200–209. ISSN 1063-6773.

TIAN, Y.; LO, D.; XIA, X.; SUN, C. Automated prediction of bug report priority
using multi-factor analysis. Empirical Softw. Engg., Kluwer Academic Publishers,
USA, v. 20, n. 5, p. 1354–1383, out. 2015. ISSN 1382-3256. Disponível em: https:
//doi.org/10.1007/s10664-014-9331-y. Acesso em: 29 de nov. de 2020.

TOMOVA, M. T.; RATH, M.; MäDER, P. Poster: Use of trace link types in issue tracking
systems. In: 2018 IEEE/ACM 40th International Conference on Software Engineering:
Companion (ICSE-Companion). [S. l.: s. n.], 2018. p. 181–182.

TORKAR, R.; FURIA, C. A.; FELDT, R.; NETO, F. Gomes de O.; GREN, L.; LENBERG, P.;
ERNST, N. A. A method to assess and argue for practical significance in software engineering.
IEEE Transactions on Software Engineering, p. 1–1, 2021.

UMER, Q.; LIU, H.; ILLAHI, I. Cnn-based automatic prioritization of bug reports. IEEE
Transactions on Reliability, v. 69, n. 4, p. 1341–1354, 2020.

UMER, Q.; LIU, H.; SULTAN, Y. Emotion based automated priority prediction for bug reports.
IEEE Access, v. 6, p. 35743–35752, 2018. ISSN 2169-3536.

VIEIRA, R.; SILVA, A. da; ROCHA, L.; GOMES, J. a. P. From reports to bug-fix commits: A
10 years dataset of bug-fixing activity from 55 apache’s open source projects. In: Proceedings
of the Fifteenth International Conference on Predictive Models and Data Analytics in
Software Engineering. New York, NY, USA: ACM, 2019. (PROMISE’19), p. 80–89. ISBN
978-1-4503-7233-6. Disponível em: http://doi.acm.org/10.1145/3345629.3345639. Acesso em:
17 de nov. de 2019.

https://doi.org/10.1007/s10664-020-09882-z
http://dl.acm.org/citation.cfm?doid=3236024.3264598
https://doi.org/10.1145/2975961.2975964
https://doi.org/10.1007/s10664-014-9331-y
https://doi.org/10.1007/s10664-014-9331-y
http://doi.acm.org/10.1145/3345629.3345639

101

WEISS, C.; PREMRAJ, R.; ZIMMERMANN, T.; ZELLER, A. How long will it take to fix this
bug? In: Fourth International Workshop on Mining Software Repositories (MSR’07:ICSE
Workshops 2007). [S. l.: s. n.], 2007. p. 1–1. ISSN 2160-1860.

WOHLIN, C.; RUNESON, P.; HST, M.; OHLSSON, M. C.; REGNELL, B.; WESSLN, A.
Experimentation in Software Engineering. [S. l.]: Springer Publishing Company, Incorporated,
2012. ISBN 3642290434.

XU, Y.; ZHOU, M. A multi-level dataset of linux kernel patchwork. In: 2018 IEEE/ACM 15th
International Conference on Mining Software Repositories (MSR). [S. l.: s. n.], 2018. p.
54–57. ISSN 2574-3864.

ZHANG, F.; KHOMH, F.; ZOU, Y.; HASSAN, A. E. An empirical study on factors impacting
bug fixing time. In: 2012 19th Working Conference on Reverse Engineering. [S. l.: s. n.],
2012. p. 225–234. ISSN 2375-5369.

ZHANG, H.; GONG, L.; VERSTEEG, S. Predicting bug-fixing time: An empirical study
of commercial software projects. In: 2013 35th International Conference on Software
Engineering (ICSE). [S. l.: s. n.], 2013. p. 1042–1051. ISSN 1558-1225.

ZHANG, X.; CHEN, X.; YAO, L.; GE, C.; DONG, M. Deep neural network hyperparameter
optimization with orthogonal array tuning. In: GEDEON, T.; WONG, K. W.; LEE, M. (Ed.).
Neural Information Processing. Cham: Springer International Publishing, 2019. p. 287–295.
ISBN 978-3-030-36808-1.

ZHANG, X.; YAO, L.; HUANG, C.; SHENG, Q. Z.; WANG, X. Intent recognition in smart
living through deep recurrent neural networks. In: LIU, D.; XIE, S.; LI, Y.; ZHAO, D.;
EL-ALFY, E.-S. M. (Ed.). Neural Information Processing. Cham: Springer International
Publishing, 2017. p. 748–758. ISBN 978-3-319-70096-0.

ZHOU, J.; CUI, G.; ZHANG, Z.; YANG, C.; LIU, Z.; SUN, M. Graph neural networks:
A review of methods and applications. CoRR, abs/1812.08434, 2018. Disponível em:
http://arxiv.org/abs/1812.08434. Acesso em: 01 de out. de 2021.

ZHU, J.; ZHOU, M.; MEI, H. Multi-extract and multi-level dataset of mozilla issue tracking
history. In: 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR). [S. l.: s. n.], 2016. p. 472–475.

ZIMMERMANN, T.; PREMRAJ, R.; BETTENBURG, N.; JUST, S.; SCHROTER, A.; WEISS,
C. What makes a good bug report? IEEE Transactions on Software Engineering, v. 36, n. 5, p.
618–643, Sep. 2010. ISSN 2326-3881.

http://arxiv.org/abs/1812.08434

102

APPENDIX A – DATASET FEATURES TABLE

Static Perspective

We present the dataset attributes in this appendix. Tables 23 and 24 shows the static

dataset features, as discussed in Chapter 2.

Table 23 – Static dataset fields - Jira.
From Type Field

Jira (30)

General (10)

Project
Owner

Manager
Category

Key
Priority
Status

Reporter
Assignee

Components

Link (2)
InwardIssueLinks
OutwardIssueLinks

Summation (4)

NoComments
NoWatchers

NoAttachments
NoAttachedPatches

Text (3)
SummaryTopWords

DescriptionTopWords
CommentsTopWords

Time (8)

CreationDate
ResolutionDate

FirstCommentDate
LastCommentDate

FirstAttachmentDate
LastAttachmentDate

FirstAttachedPatchDate
LastAttachedPatchDate

Versioning (2)
AffectsVersions

FixVersions

103

Table 24 – Static dataset fields - Git
From Type Field

Git (24)

Text (1) CommitsMessagesTopWords
Versioning (1) HasMergeCommit

Summation (3)
NoCommits
NoAuthors

NoCommitters

Time (4)

AuthorsFirstCommitDate
AuthorsLastCommitDate

CommittersFirstCommitDate
CommittersLastCommitDate

Source (15)

NonSrcAddFiles
NonSrcDelFiles
NonSrcModFiles
NonSrcAddLines
NonSrcDelLines
SrcAddFiles
SrcDelFiles
SrcModFiles
SrcAddLines
SrcDelLines
TestAddFiles
TestDelFiles
TestModFiles
TestAddLines
TestDelLines

Dynamic Perspective

The Tables 25, 26, and 27 show the features in the dynamic files of the dataset.

Table 25 – Changelog dataset fields
Field From Type

Jira (9)

General (6)

Project
Manager
Category

Key
Author
Field

Time (1) ChangeDate

Text (2)
From
To

104

Table 26 – Comment-log dataset fields
Field From Type

Jira (7)
General (5)

Project
Manager
Category

Key
Author

Time (1) CommentDate
Text (1) Content

Table 27 – Commit-log dataset fields
Field From Type

Jira (4) General (4)

Project
Manager
Category

Key

Git (18)

Versioning (2)
CommitHash

IsMergeCommit

General (2)
Author

Committer

Time (2)
AuthorDate

CommitterDate
Text (1) CommitMessageTopWords

Source (11)

FileName
FilePath

ChangeType
IsSrcFile
IsTestFile
AddLines
DelLines
NoMethods

LoC
CyC

NoTokens

105

APPENDIX B – COMPLETE ‘SPECIFIC-MODEL’ RESULTS

This appendix presents the complete results obtained using the ‘specific-model’ in

each project independently. Fig. 25 and Tables 28 and 29 present the µ posterior distributions

and their summarizations, for ‘links’ results.

The first thing to notice is no standard behavior across all projects. However, in

most projects, there is a trend that the reports with links have a higher resolution time value.

There are extreme cases where the oppositive occurs, as in Madlib and Oozie, and cases where

the difference between both groups is not as evident as Systemml, Helix, and Lang. For most

projects, the uncertainty about the true value of µ is higher in reports with links compared to the

values of reports with no links. This can be justified as all projects, except Derby, have more

reports with no links than reports with links (see Fig. 6).

Fig. 26 and Tables 30, 31, and 32 present the µ posterior distributions and their

summarizations, for ‘priority’ results.

Similar to the links, there is no standard behavior across all projects. The only

consistent thing between all the projects is that the variance of µ for medium priority is smaller

than the other priorities group. This can be justified as most reports have a medium priority.

Once again, the results give us a general picture of each project’s behavior but do not help us to

verify a bug reports global behavior.

Finally, Fig. 27 and Tables 33, and 34 present the µ posterior distributions and their

summarizations, for ‘code-churn’ results.

The observations are very similar to the results from ‘links’. In most projects, there is

a trend that the reports with the above code churn median have a higher resolution time value than

those with the below code churn median value. There are extreme cases where the oppositive

occurs, as in SSHD and Maven, and cases where the difference between both groups is not as

evident as Commons IO, FORTRESS, and Commons Collections. Once again, the results give

us a general picture of each project’s behavior but do not help us to verify a bug reports global

behavior.

106

0 20 40 60
0.00

0.05

0.10

0.15

Buildr

2 3 4 5
0

1

2

3

4

5
Camel

5.0 7.5 10.0 12.5 15.0 17.5
0.0

0.5

1.0

1.5

2.0

2.5
Cassandra

0 50 100 150 200
0.00

0.05

0.10

0.15

Commons Codec

0 20 40 60 80 100
0.00

0.02

0.04

0.06

Commons Collections

0 5 10 15 20 25
0.0

0.1

0.2

0.3

0.4

Commons Compress

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.5

1.0

1.5

2.0

Crunch

5 10 15 20 25 30 35
0.0

0.1

0.2

0.3

0.4
Derby

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5
Directory Kerberos

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

MINA

0 50 100 150
0.00

0.05

0.10

0.15
FORTRESS

5 10 15 20
0.0

0.5

1.0

1.5
Flink

0 10 20 30 40 50 60
0.00

0.05

0.10

0.15

0.20

0.25
FtpServer

5 10 15 20
0.0

0.2

0.4

0.6
Giraph

6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Hadoop Core

4 6 8
0

1

2

3

4
HBase

6 8 10 12
0.00

0.25

0.50

0.75

1.00

1.25
Hadoop HDFS

0 20 40 60 80
0.00

0.05

0.10

0.15

Apache Helix

6 8 10 12
0.0

0.5

1.0

1.5

2.0

2.5

Hive

5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.00

0.25

0.50

0.75

1.00

1.25
Ignite

0 25 50 75 100 125 150
0.00

0.02

0.04

0.06

0.08

0.10
Commons IO

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

Isis

0 20 40 60 80 100 120
0.000

0.025

0.050

0.075

0.100

Ivy

0 10 20 30 40
0.0

0.1

0.2

0.3
jclouds

10 20 30 40
0.0

0.2

0.4

0.6

0.8
Kafka

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20
Commons Lang

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5
Libcloud

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8
Log4j 2

2 4 6 8 10 12
0

1

2

3
Lucene

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20

Apache MADlib

0 10 20 30 40 50
0.0

0.2

0.4

0.6
Mahout

10 12 14 16 18 20
0.0

0.1

0.2

0.3

0.4

Hadoop Map/Reduce

0 10 20 30 40 50
0.0

0.2

0.4

0.6

Commons Math

10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

Mesos

5 10 15 20
0.0

0.2

0.4

0.6

Maven

0 20 40 60 80
0.00

0.05

0.10

0.15
Archiva

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

MyFaces

0 20 40 60
0.0

0.1

0.2

0.3

Nutch

10 15 20 25
0.00

0.05

0.10

0.15

0.20

0.25
Oozie

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20

OpenJPA

5 10 15 20
0.00

0.25

0.50

0.75

1.00

1.25
Phoenix

5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

Solr

4 6 8 10 12 14
0

1

2

3

Spark

0 10 20 30 40 50
0.0

0.1

0.2

0.3

MINA SSHD

10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8
Apache Storm

1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

Syncope

2 4 6 8
0.0

0.2

0.4

0.6

0.8

SystemML

20 40 60 80 100
0.00

0.05

0.10

0.15

Tapestry 5

10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4
Tika

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6
TomEE

0 50 100 150 200 250
0.00

0.02

0.04

0.06

0.08
VCL

0 5 10 15 20
0.0

0.1

0.2

0.3

VYSPER

10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

Struts 2

6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

Hadoop Yarn

10 20 30 40 50 60 70
0.00

0.05

0.10

0.15

0.20

0.25

ZooKeeper

p()

De
ns

ity
No Links W/ Links

Figure 25 – µ posterior distributions - ‘specific-models’, ‘links’ results, for all 55 projects.
The average bug fixing time of reports with no links vs. those with links. The results diverge
depending on the selected project.

107

Table 28 – µ posterior distribution summary, ‘specific-models’, ‘No Links’ results (55 projects).
No Links (a)

Project CIL CIU µMAP E[F1(a,b)] E[F2(a,b)]
Buildr 7.29 16.72 10.15 -4.50 0.36
Camel 1.47 1.79 1.62 -2.00 0.00

Cassandra 4.10 4.70 4.38 -10.88 0.00
Commons Codec 1.72 12.63 3.92 -34.23 0.05

Commons Collections 9.89 34.91 17.29 -0.91 0.53
Commons Compress 3.70 7.37 5.07 -2.01 0.30

Crunch 1.21 1.95 1.52 -3.65 0.00
Derby 7.24 11.35 8.86 -16.93 0.00

Directory Kerberos 2.21 5.32 3.29 -31.37 0.00
MINA 8.16 23.39 13.92 -12.19 0.20

FORTRESS 3.60 14.98 6.50 -22.71 0.09
Flink 5.62 6.62 6.14 -8.72 0.00

FtpServer 3.11 10.21 4.80 -4.47 0.38
Giraph 3.36 5.84 4.36 -4.40 0.01

Hadoop Core 5.09 6.54 5.75 -3.26 0.00
HBase 2.96 3.38 3.15 -4.63 0.00

Hadoop HDFS 5.06 6.35 5.66 -4.21 0.00
Apache Helix 8.28 18.42 11.88 1.85 0.68

Hive 4.90 5.47 5.19 -5.73 0.00
Ignite 5.78 6.98 6.28 -8.07 0.00

Commons IO 6.05 23.66 10.89 -8.82 0.29
Isis 4.01 7.08 5.21 -12.11 0.01
Ivy 10.10 24.00 14.51 -25.72 0.03

jclouds 7.69 12.75 9.80 -9.44 0.01
Kafka 7.55 9.36 8.37 -19.82 0.00

Commons Lang 6.87 15.10 9.88 -0.68 0.46
Libcloud 3.23 6.34 4.29 -2.18 0.43
Log4j 2 3.62 5.68 4.53 -11.41 0.00
Lucene 1.87 2.38 2.12 -5.27 0.00

Apache MADlib 11.18 26.38 15.92 13.69 0.99
Mahout 4.45 7.24 5.68 -15.01 0.00

Hadoop Map/Reduce 10.92 14.35 12.44 -2.55 0.04
Commons Math 2.82 5.09 3.62 -19.88 0.00

Mesos 12.71 16.47 14.54 -24.77 0.00
Maven 2.40 4.99 3.45 -7.98 0.00
Archiva 9.93 21.24 14.02 -21.71 0.00
MyFaces 3.37 5.05 3.99 -5.23 0.00

Nutch 6.96 11.35 8.69 -33.15 0.00
Oozie 18.97 25.04 21.60 8.07 1.00

OpenJPA 11.05 17.77 13.64 -8.06 0.03
Phoenix 4.34 5.59 4.95 -8.53 0.00

Solr 5.25 7.02 6.02 -11.12 0.00
Spark 3.75 4.20 3.96 -6.92 0.00

MINA SSHD 5.05 9.82 6.84 -12.22 0.01
Apache Storm 7.64 9.60 8.63 -10.95 0.00

Syncope 1.10 1.64 1.35 -1.19 0.01
SystemML 2.88 4.56 3.59 -0.20 0.45
Tapestry 5 13.19 22.24 16.88 -31.33 0.00

Tika 6.17 10.08 7.88 -22.20 0.00
TomEE 2.58 5.20 3.55 -5.00 0.10

VCL 26.69 46.43 35.09 -33.03 0.24
VYSPER 1.35 6.81 2.63 0.81 0.72
Struts 2 11.25 18.35 14.40 -12.74 0.00

Hadoop Yarn 6.83 8.50 7.58 -3.54 0.00
ZooKeeper 14.16 20.10 16.72 -28.41 0.00

108

Table 29 – µ posterior distribution summary, ‘specific-models’, ‘With Links’ results (55 projects).
With Links (b)

Project CIL CIU µMAP E[F1(b,a)] E[F2(b,a)]
Buildr 3.82 40.61 11.01 4.50 0.64
Camel 2.86 4.54 3.51 2.00 1.00

Cassandra 13.54 17.17 15.39 10.88 1.00
Commons Codec 5.70 119.45 21.60 34.23 0.95

Commons Collections 5.11 54.14 13.54 0.91 0.47
Commons Compress 2.69 15.41 5.74 2.01 0.70

Crunch 2.71 8.97 4.58 3.65 1.00
Derby 21.55 31.08 25.46 16.93 1.00

Directory Kerberos 10.00 86.07 25.18 31.37 0.99
MINA 7.61 63.74 19.43 12.19 0.80

FORTRESS 4.99 87.60 19.11 22.71 0.91
Flink 12.17 17.99 14.53 8.72 1.00

FtpServer 1.01 37.36 4.94 4.47 0.62
Giraph 5.24 13.83 8.13 4.40 0.99

Hadoop Core 8.01 10.16 8.97 3.26 1.00
HBase 7.02 8.61 7.73 4.63 1.00

Hadoop HDFS 8.83 11.00 9.82 4.21 1.00
Apache Helix 1.61 33.38 5.37 -1.85 0.32

Hive 10.13 11.70 10.89 5.73 1.00
Ignite 12.20 16.94 14.26 8.07 1.00

Commons IO 4.70 59.68 13.39 8.82 0.70
Isis 7.03 37.14 14.14 12.11 0.99
Ivy 17.72 82.94 32.73 25.72 0.97

jclouds 11.75 29.91 17.81 9.44 0.99
Kafka 23.21 34.11 27.57 19.82 1.00

Commons Lang 5.52 19.45 9.08 0.68 0.54
Libcloud 0.79 23.28 3.69 2.18 0.56
Log4j 2 11.34 21.99 15.71 11.41 1.00
Lucene 5.56 9.69 7.30 5.27 1.00

Apache MADlib 0.71 11.25 2.08 -13.69 0.01
Mahout 11.39 34.27 18.18 15.01 1.00

Hadoop Map/Reduce 13.01 17.45 14.85 2.55 0.96
Commons Math 12.10 41.51 20.54 19.88 1.00

Mesos 33.29 46.10 38.47 24.77 1.00
Maven 7.90 16.25 10.90 7.98 1.00
Archiva 22.05 57.00 34.84 21.71 1.00
MyFaces 5.98 13.69 8.73 5.23 1.00

Nutch 27.95 60.20 40.16 33.15 1.00
Oozie 10.79 17.29 13.27 -8.07 0.00

OpenJPA 15.06 31.22 21.02 8.06 0.97
Phoenix 10.47 17.04 13.25 8.53 1.00

Solr 14.61 20.14 17.26 11.12 1.00
Spark 9.76 12.06 10.83 6.92 1.00

MINA SSHD 10.03 34.61 17.49 12.22 0.99
Apache Storm 14.39 26.10 19.65 10.95 1.00

Syncope 1.54 3.98 2.36 1.19 0.99
SystemML 2.30 5.88 3.55 0.20 0.55
Tapestry 5 30.43 72.88 45.84 31.33 1.00

Tika 21.22 42.10 29.38 22.20 1.00
TomEE 2.81 20.24 6.35 5.00 0.90

VCL 8.11 185.85 45.60 33.03 0.75
VYSPER 0.21 11.32 0.90 -0.81 0.28
Struts 2 18.81 37.55 26.18 12.74 1.00

Hadoop Yarn 9.81 12.71 11.07 3.54 1.00
ZooKeeper 35.01 57.39 44.14 28.41 1.00

109

0 10 20 30 40 50 60
0.00

0.05

0.10

0.15

Buildr

0 1 2 3 4 5 6
0

1

2

3

4
Camel

3 4 5 6 7 8
0.0

0.5

1.0

1.5
Cassandra

0 10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

0.25

Commons Codec

0 25 50 75 100 125 150
0.00

0.02

0.04

0.06

0.08
Commons Collections

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

Commons Compress

0 1 2 3 4
0.0

0.5

1.0

1.5

Crunch

0 10 20 30 40 50 60
0.00

0.05

0.10

0.15

0.20

0.25
Derby

0 20 40 60 80 100
0.0

0.1

0.2

0.3

Directory Kerberos

0 10 20 30 40 50 60
0.00

0.05

0.10

0.15

MINA

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4
FORTRESS

4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Flink

0 5 10 15 20 25 30 35
0.00

0.05

0.10

0.15

0.20
FtpServer

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

0.4

0.5

Giraph

4 6 8 10
0.0

0.2

0.4

0.6

0.8

Hadoop Core

3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

2.5

HBase

4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0
Hadoop HDFS

0 10 20 30 40 50 60
0.00

0.05

0.10

0.15

Apache Helix

6 7 8 9 10
0.0

0.5

1.0

1.5

2.0

Hive

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.2

0.4

0.6

0.8

Ignite

0 20 40 60 80
0.00

0.02

0.04

0.06

0.08
Commons IO

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

Isis

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

Ivy

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

0.25

jclouds

0 5 10 15 20 25
0.0

0.2

0.4

0.6

Kafka

0 5 10 15 20 25
0.0

0.2

0.4

0.6
Commons Lang

0 5 10 15 20 25
0.0

0.1

0.2

0.3

0.4

Libcloud

0 5 10 15 20 25
0.0

0.1

0.2

0.3

0.4

0.5
Log4j 2

0 1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

2.5
Lucene

0 20 40 60 80
0.000

0.025

0.050

0.075

0.100

Apache MADlib

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

0.4
Mahout

5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

0.5

Hadoop Map/Reduce

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

Commons Math

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

Mesos

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5
Maven

0 10 20 30 40 50
0.00

0.02

0.04

0.06

0.08

0.10
Archiva

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

MyFaces

0 5 10 15 20 25 30 35
0.00

0.05

0.10

0.15

0.20
Nutch

5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

0.25
Oozie

0 20 40 60 80
0.00

0.05

0.10

0.15

0.20

OpenJPA

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0
Phoenix

0 2 4 6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5
Solr

4 5 6
0.0

0.5

1.0

1.5

2.0
Spark

0 10 20 30 40
0.0

0.1

0.2

0.3

MINA SSHD

5.0 7.5 10.0 12.5 15.0 17.5
0.0

0.2

0.4

0.6
Apache Storm

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5
Syncope

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0
SystemML

0 10 20 30 40 50
0.00

0.05

0.10

0.15

Tapestry 5

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

Tika

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

0.4

0.5
TomEE

0 10 20 30 40 50 60 70
0.00

0.05

0.10

0.15

VCL

0 10 20 30 40
0.0

0.2

0.4

0.6

VYSPER

0 10 20 30 40
0.00

0.05

0.10

0.15

Struts 2

4 6 8 10 12
0.0

0.2

0.4

0.6

Hadoop Yarn

10 20 30 40
0.00

0.05

0.10

0.15

ZooKeeper

p()

De
ns

ity
Low Prio. Medium Prio. High Prio.

Figure 26 – µ posterior distributions - ‘specific-models’, ‘priority’ results, for all 55 projects.
The average BFT of three priority levels: low, medium, and high. The results diverge depending
on the selected project.

110

Table 30 – µ posterior distribution summary, ‘specific-models’, ‘Low Priority’ results (55
projects).

Low Priority (a)
Project CIL CIU µMAP E[F1(a,b)] E[F1(a,c)] E[F2(a,b)] E[F2(a,c)]
Buildr 8.25 39.87 15.73 10.09 11.41 0.91 0.89
Camel 1.76 2.42 2.03 0.34 -0.56 0.96 0.23

Cassandra 4.41 5.42 4.93 -1.85 0.30 0.00 0.70
Commons Codec 1.28 23.22 3.68 -2.96 4.74 0.32 0.82

Commons Collections 6.05 63.38 15.95 7.17 -11.07 0.65 0.36
Commons Compress 3.57 14.42 6.58 3.12 -14.18 0.87 0.08

Crunch 0.79 2.70 1.30 -0.28 0.46 0.27 0.77
Derby 10.12 18.28 13.28 -5.22 -8.86 0.03 0.11

Directory Kerberos 0.74 6.87 1.90 -2.40 -23.09 0.11 0.05
MINA 1.36 14.05 3.39 -14.55 -7.77 0.01 0.13

FORTRESS 0.57 6.05 1.42 -9.20 -2.70 0.01 0.32
Flink 4.79 6.79 5.58 -0.86 -2.97 0.09 0.00

FtpServer 1.37 18.21 3.82 -0.28 - 0.40 -
Giraph 3.41 10.38 5.89 1.27 2.95 0.73 0.89

Hadoop Core 5.37 7.82 6.53 -1.25 -0.59 0.06 0.27
HBase 2.85 3.61 3.20 -0.84 -2.46 0.00 0.00

Hadoop HDFS 3.85 5.42 4.55 -4.11 -4.65 0.00 0.00
Apache Helix 2.68 24.18 7.09 -1.66 -11.66 0.33 0.12

Hive 7.00 9.22 7.96 1.28 0.96 0.99 0.90
Ignite 8.06 14.25 10.76 2.39 5.31 0.94 1.00

Commons IO 3.38 26.97 7.48 -3.04 -1.83 0.33 0.47
Isis 4.77 10.13 6.84 1.80 2.12 0.84 0.82
Ivy 5.05 21.63 9.20 -9.91 -12.76 0.06 0.19

jclouds 6.05 20.13 10.55 0.45 -0.08 0.51 0.50
Kafka 13.31 22.37 16.70 5.24 11.27 0.99 1.00

Commons Lang 6.31 19.23 10.08 0.08 9.94 0.49 1.00
Libcloud 2.26 8.58 4.09 0.10 -0.16 0.49 0.56
Log4j 2 2.63 6.96 4.14 -2.61 -7.70 0.04 0.00
Lucene 2.95 4.80 3.66 1.49 0.45 1.00 0.71

Apache MADlib 7.94 23.34 12.66 -0.84 4.65 0.45 0.77
Mahout 3.21 7.05 4.54 -2.86 -0.53 0.03 0.44

Hadoop Map/Reduce 13.46 22.53 17.22 2.09 9.80 0.79 1.00
Commons Math 2.03 5.61 3.08 -2.90 -1.07 0.02 0.40

Mesos 22.37 39.93 28.94 6.98 21.94 0.94 1.00
Maven 3.99 16.05 7.47 3.26 -6.12 0.87 0.15
Archiva 5.08 22.08 9.72 -9.31 -6.86 0.06 0.18
MyFaces 3.31 8.36 4.77 0.43 3.03 0.59 0.99

Nutch 10.66 20.53 14.84 2.55 0.34 0.78 0.55
Oozie 7.78 15.64 11.01 -11.84 1.18 0.00 0.67

OpenJPA 9.58 23.53 13.97 1.04 -23.09 0.58 0.02
Phoenix 4.51 9.47 6.36 0.73 1.59 0.69 0.84

Solr 6.34 9.36 7.54 -2.61 -0.82 0.01 0.31
Spark 4.23 5.24 4.70 -0.97 0.61 0.00 0.96

MINA SSHD 1.94 6.54 3.33 -7.57 -8.66 0.00 0.06
Apache Storm 9.97 15.70 12.26 3.20 5.40 0.98 1.00

Syncope 1.45 3.37 2.05 0.85 1.43 0.96 0.98
SystemML 2.65 9.88 4.45 1.97 1.50 0.86 0.74
Tapestry 5 17.65 41.69 25.77 5.54 19.56 0.78 1.00

Tika 5.88 13.94 8.48 -4.18 0.60 0.06 0.59
TomEE 0.99 7.44 2.27 -1.03 -1.62 0.24 0.24

VCL 19.52 53.16 29.12 -5.06 28.40 0.30 1.00
VYSPER 1.50 25.27 4.55 6.61 0.98 0.93 0.57
Struts 2 12.48 25.72 16.72 0.50 4.75 0.54 0.82

Hadoop Yarn 5.38 8.37 6.78 -3.48 -1.41 0.00 0.09
ZooKeeper 16.45 30.69 21.79 1.21 -2.51 0.60 0.31

111

Table 31 – µ posterior distribution summary, ‘specific-models’, ‘Medium Priority’ results (55
projects).

Medium Priority (b)
Project CIL CIU µMAP E[F1(b,a)] E[F1(b,c)] E[F2(b,a)] E[F2(b,c)]
Buildr 5.96 14.90 9.26 -10.09 1.33 0.09 0.67
Camel 1.55 1.92 1.73 -0.34 -0.91 0.04 0.08

Cassandra 6.20 7.31 6.75 1.85 2.15 1.00 1.00
Commons Codec 3.11 24.96 7.77 2.96 7.70 0.68 0.93

Commons Collections 8.46 29.03 14.70 -7.17 -18.22 0.35 0.24
Commons Compress 3.09 6.61 4.48 -3.12 -17.30 0.13 0.02

Crunch 1.38 2.31 1.73 0.28 0.74 0.73 0.91
Derby 15.93 22.27 18.81 5.22 -3.64 0.97 0.35

Directory Kerberos 3.08 7.92 4.73 2.40 -20.71 0.89 0.09
MINA 10.85 32.85 18.31 14.55 6.76 0.99 0.80

FORTRESS 5.16 21.35 9.57 9.20 6.49 0.99 0.88
Flink 5.89 7.29 6.50 0.86 -2.11 0.91 0.00

FtpServer 3.27 11.96 5.82 0.28 - 0.60 -
Giraph 3.72 6.51 4.75 -1.27 1.68 0.27 0.84

Hadoop Core 6.92 8.66 7.72 1.25 0.66 0.94 0.78
HBase 3.78 4.36 4.06 0.84 -1.62 1.00 0.00

Hadoop HDFS 7.87 9.62 8.62 4.11 -0.54 1.00 0.29
Apache Helix 7.50 17.57 10.76 1.66 -10.00 0.67 0.13

Hive 6.43 7.13 6.77 -1.28 -0.32 0.01 0.26
Ignite 7.62 9.35 8.36 -2.39 2.92 0.06 1.00

Commons IO 5.91 28.97 11.67 3.04 1.21 0.67 0.60
Isis 3.34 7.84 5.07 -1.80 0.32 0.16 0.60
Ivy 12.70 32.89 19.08 9.91 -2.86 0.93 0.50

jclouds 8.41 14.28 11.20 -0.45 -0.53 0.49 0.49
Kafka 10.68 13.63 11.97 -5.24 6.04 0.01 1.00

Commons Lang 7.32 16.87 10.95 -0.08 9.86 0.51 1.00
Libcloud 2.98 6.58 4.45 -0.10 -0.25 0.51 0.57
Log4j 2 5.55 8.67 6.97 2.61 -5.09 0.96 0.05
Lucene 2.02 2.62 2.28 -1.49 -1.04 0.00 0.09

Apache MADlib 7.88 26.14 12.89 0.84 5.49 0.55 0.78
Mahout 5.77 10.12 7.44 2.86 2.32 0.97 0.85

Hadoop Map/Reduce 13.61 17.84 15.46 -2.09 7.71 0.21 1.00
Commons Math 4.54 8.72 6.37 2.90 1.83 0.98 0.79

Mesos 20.56 26.22 23.07 -6.98 14.96 0.06 1.00
Maven 3.90 7.03 5.17 -3.26 -9.38 0.13 0.01
Archiva 14.01 29.85 20.08 9.31 2.45 0.94 0.66
MyFaces 4.04 6.04 4.94 -0.43 2.60 0.41 1.00

Nutch 8.89 16.89 11.59 -2.55 -2.21 0.22 0.33
Oozie 20.11 26.27 22.72 11.84 13.01 1.00 1.00

OpenJPA 11.26 18.30 13.82 -1.04 -24.12 0.42 0.01
Phoenix 5.22 6.73 5.81 -0.73 0.86 0.31 0.81

Solr 8.89 11.96 10.18 2.61 1.79 0.99 0.87
Spark 5.29 6.09 5.67 0.97 1.57 1.00 1.00

MINA SSHD 7.80 15.89 10.55 7.57 -1.10 1.00 0.51
Apache Storm 8.12 10.85 9.37 -3.20 2.20 0.02 0.97

Syncope 1.15 1.77 1.38 -0.85 0.58 0.04 0.91
SystemML 2.77 4.34 3.37 -1.97 -0.46 0.14 0.44
Tapestry 5 16.68 29.95 21.73 -5.54 14.03 0.22 1.00

Tika 10.49 16.90 13.40 4.18 4.78 0.94 0.92
TomEE 2.82 5.98 3.95 1.03 -0.58 0.76 0.43

VCL 27.43 52.45 35.76 5.06 33.47 0.70 1.00
VYSPER 0.63 3.59 1.27 -6.61 -5.62 0.07 0.13
Struts 2 13.53 23.02 17.34 -0.50 4.24 0.46 0.82

Hadoop Yarn 9.13 11.42 10.09 3.48 2.07 1.00 0.99
ZooKeeper 17.64 26.38 21.16 -1.21 -3.73 0.40 0.19

112

Table 32 – µ posterior distribution summary, ‘specific-models’, ‘High Priority’ results (55
projects).

High Priority (c)
Project CIL CIU µMAP E[F1(c,a)] E[F1(c,b)] E[F2(c,a)] E[F2(c,b)]
Buildr 1.76 24.78 5.02 -11.41 -1.33 0.10 0.33
Camel 1.54 4.33 2.36 0.56 0.91 0.77 0.92

Cassandra 3.60 5.77 4.46 -0.30 -2.15 0.30 0.00
Commons Codec 0.20 12.01 1.24 -4.74 -7.70 0.18 0.07

Commons Collections 3.90 104.72 19.23 11.07 18.22 0.63 0.75
Commons Compress 5.81 49.07 16.28 14.18 17.30 0.92 0.98

Crunch 0.39 2.38 0.82 -0.46 -0.74 0.23 0.09
Derby 11.26 40.30 18.78 8.86 3.64 0.89 0.65

Directory Kerberos 2.88 84.70 13.07 23.09 20.71 0.95 0.91
MINA 3.82 32.00 9.10 7.77 -6.76 0.87 0.20

FORTRESS 0.42 20.13 1.95 2.70 -6.49 0.68 0.12
Flink 7.46 10.00 8.64 2.97 2.11 1.00 1.00

FtpServer - - - - - - -
Giraph 1.00 8.22 2.30 -2.95 -1.68 0.11 0.16

Hadoop Core 5.77 8.62 6.84 0.59 -0.66 0.73 0.22
HBase 5.01 6.43 5.63 2.46 1.62 1.00 1.00

Hadoop HDFS 7.72 10.93 9.06 4.65 0.54 1.00 0.71
Apache Helix 8.45 44.00 18.49 11.66 10.00 0.88 0.87

Hive 6.23 8.03 7.09 -0.96 0.32 0.10 0.74
Ignite 4.68 6.47 5.50 -5.31 -2.92 0.00 0.00

Commons IO 1.97 40.31 7.44 1.83 -1.21 0.53 0.39
Isis 1.93 10.45 3.88 -2.12 -0.32 0.18 0.40
Ivy 5.44 63.80 17.49 12.76 2.86 0.81 0.50

jclouds 5.59 21.35 9.57 0.08 0.53 0.50 0.50
Kafka 4.95 7.30 5.96 -11.27 -6.04 0.00 0.00

Commons Lang 0.45 3.80 1.03 -9.94 -9.86 0.00 0.00
Libcloud 0.88 14.46 2.76 0.16 0.25 0.44 0.42
Log4j 2 6.64 20.14 10.79 7.70 5.09 0.99 0.95
Lucene 2.02 5.22 3.04 -0.45 1.04 0.29 0.91

Apache MADlib 0.55 43.61 3.64 -4.65 -5.49 0.22 0.21
Mahout 2.53 10.15 4.36 0.53 -2.32 0.56 0.15

Hadoop Map/Reduce 6.52 9.47 7.74 -9.80 -7.71 0.00 0.00
Commons Math 1.25 11.98 2.98 1.07 -1.83 0.60 0.21

Mesos 6.61 10.25 8.18 -21.94 -14.96 0.00 0.00
Maven 6.79 27.78 12.64 6.12 9.38 0.85 0.99
Archiva 8.81 34.45 15.43 6.86 -2.45 0.82 0.34
MyFaces 1.35 3.94 2.09 -3.03 -2.60 0.01 0.00

Nutch 8.30 23.84 13.19 -0.34 2.21 0.45 0.67
Oozie 6.71 14.64 9.49 -1.18 -13.01 0.33 0.00

OpenJPA 19.23 68.84 34.33 23.09 24.12 0.98 0.99
Phoenix 3.47 7.18 4.98 -1.59 -0.86 0.16 0.19

Solr 6.27 11.52 8.06 0.82 -1.79 0.69 0.13
Spark 3.68 4.58 4.09 -0.61 -1.57 0.04 0.00

MINA SSHD 3.45 31.50 8.37 8.66 1.10 0.94 0.49
Apache Storm 5.71 9.02 7.01 -5.40 -2.20 0.00 0.03

Syncope 0.34 1.82 0.70 -1.43 -0.58 0.02 0.09
SystemML 1.68 7.94 3.42 -1.50 0.46 0.26 0.56
Tapestry 5 4.32 15.14 7.33 -19.56 -14.03 0.00 0.00

Tika 4.22 15.48 7.73 -0.60 -4.78 0.41 0.08
TomEE 2.09 9.41 4.10 1.62 0.58 0.76 0.57

VCL 0.90 13.88 2.89 -28.40 -33.47 0.00 0.00
VYSPER 0.89 27.43 3.49 -0.98 5.62 0.43 0.86
Struts 2 7.18 23.31 12.06 -4.75 -4.24 0.18 0.18

Hadoop Yarn 6.87 9.56 8.04 1.41 -2.07 0.91 0.01
ZooKeeper 18.97 33.31 24.73 2.51 3.73 0.69 0.80

113

0 5 10 15 20
0.00

0.05

0.10

0.15

Buildr

1.0 1.5 2.0 2.5
0

1

2

3

4

Camel

4 6 8 10
0.0

0.5

1.0

1.5

2.0

Cassandra

0 20 40 60 80 100
0.00

0.05

0.10

0.15
Commons Codec

0 20 40 60 80
0.00

0.02

0.04

0.06

Commons Collections

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

0.4
Commons Compress

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.5

1.0

1.5
Crunch

10 20 30 40 50
0.0

0.1

0.2

0.3
Derby

0 2 4 6 8
0.0

0.2

0.4

0.6

Directory Kerberos

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20

0.25

MINA

0 10 20 30 40
0.000

0.025

0.050

0.075

0.100

0.125
FORTRESS

4 6 8 10
0.00

0.25

0.50

0.75

1.00

1.25

Flink

0 5 10 15 20 25
0.00

0.05

0.10

0.15

0.20
FtpServer

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8
Giraph

4 6 8 10 12 14
0.00

0.25

0.50

0.75

1.00

1.25

Hadoop Core

2 3 4 5 6 7
0

1

2

3

4
HBase

2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.5

1.0

1.5

Hadoop HDFS

0 10 20 30 40 50 60
0.00

0.05

0.10

0.15

0.20
Apache Helix

4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

Hive

4 6 8 10 12 14
0.00

0.25

0.50

0.75

1.00

1.25
Ignite

0 10 20 30 40 50 60
0.00

0.02

0.04

0.06

0.08

Commons IO

2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4
Isis

0 20 40 60 80
0.00

0.05

0.10

0.15
Ivy

5 10 15 20 25 30
0.0

0.1

0.2

0.3

jclouds

2.5 5.0 7.5 10.0 12.5 15.0
0.00

0.25

0.50

0.75

1.00

1.25

Kafka

0 5 10 15 20 25 30 35
0.0

0.1

0.2

0.3
Commons Lang

0 2 4 6 8
0.0

0.2

0.4

0.6

Libcloud

5 10 15
0.0

0.2

0.4

0.6

0.8
Log4j 2

1 2 3 4 5
0

1

2

3
Lucene

0 10 20 30 40
0.00

0.05

0.10

0.15

Apache MADlib

2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

0.4

0.5
Mahout

5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.2

0.4

0.6

Hadoop Map/Reduce

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.2

0.4

0.6

Commons Math

10 20 30 40
0.00

0.05

0.10

0.15

0.20

0.25

Mesos

2.5 5.0 7.5 10.0 12.5
0.0

0.2

0.4

0.6

Maven

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20
Archiva

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

MyFaces

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

0.25

Nutch

5 10 15 20 25
0.0

0.1

0.2

0.3

0.4

0.5

Oozie

10 20 30 40
0.00

0.05

0.10

0.15

0.20

OpenJPA

2 4 6 8 10
0.00

0.25

0.50

0.75

1.00

1.25
Phoenix

4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

Solr

3 4 5 6 7 8
0

1

2

3

4
Spark

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25
MINA SSHD

6 8 10 12 14 16
0.0

0.2

0.4

0.6

Apache Storm

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.5

1.0

1.5

2.0

Syncope

1 2 3 4 5
0.00

0.25

0.50

0.75

1.00

SystemML

5 10 15 20 25 30 35
0.00

0.05

0.10

0.15
Tapestry 5

2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

0.4
Tika

2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

TomEE

0 20 40 60 80
0.00

0.02

0.04

0.06

0.08

VCL

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

VYSPER

10 20 30 40
0.00

0.05

0.10

0.15

Struts 2

5.0 7.5 10.0 12.5 15.0 17.5
0.00

0.25

0.50

0.75

1.00

Hadoop Yarn

10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

0.25
ZooKeeper

p()

De
ns

ity
Lower CC Higher CC

Figure 27 – µ posterior distributions - ‘specific-models’, ‘code-churn’ results, for all 55 projects.
The average bug fixing time of reports lower code-churn values vs. higher code-churn values. The
results diverge depending on the selected project, but there is a tendency that higher code-churn
values patches demand more time to be fixed.

114

Table 33 – µ posterior distribution summary, ‘specific-models’, ‘Lower Code-Churn’ results (55
projects).

Lower Code-Churn (a)
Project CIL CIU µMAP E[F1(a,b)] E[F2(a,b)]
Buildr 4.10 14.08 6.82 -0.26 0.47
Camel 1.25 1.61 1.42 -0.68 0.00

Cassandra 3.32 4.01 3.66 -5.30 0.00
Commons Codec 1.42 16.40 3.53 -16.84 0.07

Commons Collections 8.31 42.58 17.09 4.76 0.67
Commons Compress 2.58 6.80 4.21 -3.55 0.05

Crunch 1.03 2.11 1.43 -0.44 0.14
Derby 8.66 13.90 10.88 -22.59 0.00

Directory Kerberos 1.06 3.47 1.85 -1.02 0.18
MINA 1.22 7.96 2.57 -4.05 0.19

FORTRESS 3.28 22.01 7.33 1.87 0.62
Flink 4.04 5.12 4.54 -3.60 0.00

FtpServer 1.49 12.33 3.65 -1.52 0.29
Giraph 2.00 3.97 2.71 -2.78 0.00

Hadoop Core 3.43 4.59 3.95 -7.77 0.00
HBase 2.18 2.55 2.35 -4.13 0.00

Hadoop HDFS 3.34 4.21 3.73 -8.58 0.00
Apache Helix 3.48 11.84 5.71 -25.61 0.00

Hive 4.13 4.70 4.42 -5.09 0.00
Ignite 4.09 5.32 4.66 -6.60 0.00

Commons IO 5.70 31.91 11.72 3.93 0.68
Isis 3.29 7.39 4.83 -0.76 0.31
Ivy 5.64 17.00 9.10 -26.55 0.00

jclouds 3.29 7.64 4.86 -8.91 0.00
Kafka 3.66 4.85 4.19 -8.50 0.00

Commons Lang 3.95 9.39 5.87 -9.24 0.00
Libcloud 1.14 3.75 1.88 -1.75 0.06
Log4j 2 2.47 4.42 3.23 -7.44 0.00
Lucene 1.41 1.95 1.63 -1.86 0.00

Apache MADlib 4.42 14.20 7.25 -8.14 0.06
Mahout 2.82 5.95 3.88 -3.66 0.01

Hadoop Map/Reduce 5.50 7.89 6.56 -7.51 0.00
Commons Math 2.12 4.64 3.03 -7.02 0.00

Mesos 7.89 13.82 10.00 -15.36 0.00
Maven 4.56 10.30 6.52 3.95 1.00
Archiva 4.84 12.97 7.61 -12.90 0.00
MyFaces 2.50 4.23 3.19 -2.80 0.00

Nutch 5.64 11.61 7.77 -10.75 0.00
Oozie 5.96 8.92 7.26 -11.76 0.00

OpenJPA 8.17 15.23 10.82 -11.11 0.00
Phoenix 2.77 3.98 3.28 -3.76 0.00

Solr 4.70 6.61 5.48 -6.10 0.00
Spark 2.57 2.97 2.75 -4.31 0.00

MINA SSHD 6.89 15.72 10.37 3.48 0.89
Apache Storm 6.22 8.47 7.19 -4.85 0.00

Syncope 0.88 1.54 1.11 -0.82 0.01
SystemML 1.63 2.94 2.13 -1.25 0.02
Tapestry 5 10.72 21.75 15.16 -2.66 0.27

Tika 4.48 8.44 5.92 -2.83 0.05
TomEE 1.93 4.71 2.87 0.12 0.56

VCL 12.94 30.89 18.81 -25.15 0.00
VYSPER 0.53 4.95 1.25 -0.77 0.33
Struts 2 9.62 18.10 12.59 -8.58 0.02

Hadoop Yarn 4.49 5.79 5.08 -9.86 0.00
ZooKeeper 12.60 19.12 15.36 -15.58 0.00

115

Table 34 – µ posterior distribution summary, ‘specific-models’, ‘Higher Code-Churn’ results (55
projects).

Higher Code-Churn (b)
Project CIL CIU µMAP E[F1(b,a)] E[F2(b,a)]
Buildr 4.24 14.28 7.24 0.26 0.53
Camel 1.84 2.38 2.09 0.68 1.00

Cassandra 8.21 9.73 8.90 5.30 1.00
Commons Codec 5.03 60.60 14.45 16.84 0.92

Commons Collections 6.39 31.52 12.23 -4.76 0.33
Commons Compress 4.60 12.44 7.13 3.55 0.95

Crunch 1.42 2.60 1.91 0.44 0.86
Derby 27.48 40.75 32.97 22.59 1.00

Directory Kerberos 1.54 5.47 2.74 1.02 0.82
MINA 1.80 20.85 5.03 4.05 0.80

FORTRESS 2.62 18.14 5.84 -1.87 0.38
Flink 7.31 9.07 8.13 3.60 1.00

FtpServer 3.26 11.82 5.92 1.52 0.71
Giraph 3.95 7.85 5.28 2.78 1.00

Hadoop Core 10.31 13.30 11.73 7.77 1.00
HBase 6.02 6.99 6.46 4.13 1.00

Hadoop HDFS 10.99 13.78 12.36 8.58 1.00
Apache Helix 19.30 51.11 29.86 25.61 1.00

Hive 8.93 10.09 9.47 5.09 1.00
Ignite 10.07 12.59 11.15 6.60 1.00

Commons IO 3.85 24.31 8.39 -3.93 0.31
Isis 3.82 8.32 5.50 0.76 0.69
Ivy 20.32 61.40 34.15 26.55 1.00

jclouds 9.68 19.85 13.62 8.91 1.00
Kafka 11.19 14.45 12.73 8.50 1.00

Commons Lang 9.13 25.06 14.91 9.24 0.99
Libcloud 2.39 6.22 3.53 1.75 0.94
Log4j 2 8.12 13.88 10.25 7.44 1.00
Lucene 3.00 4.10 3.50 1.86 1.00

Apache MADlib 8.65 27.71 14.89 8.14 0.94
Mahout 5.73 10.52 7.51 3.66 0.99

Hadoop Map/Reduce 11.96 16.56 13.68 7.51 1.00
Commons Math 6.79 14.65 10.02 7.02 1.00

Mesos 18.79 34.79 25.02 15.36 1.00
Maven 2.10 4.40 2.98 -3.95 0.00
Archiva 12.39 33.04 19.59 12.90 1.00
MyFaces 4.62 7.80 6.01 2.80 1.00

Nutch 12.93 26.80 17.80 10.75 1.00
Oozie 16.05 22.52 18.91 11.76 1.00

OpenJPA 16.80 29.51 21.83 11.11 1.00
Phoenix 6.03 8.36 7.06 3.76 1.00

Solr 10.02 13.53 11.60 6.10 1.00
Spark 6.58 7.58 7.05 4.31 1.00

MINA SSHD 4.40 11.12 6.49 -3.48 0.11
Apache Storm 10.32 14.16 11.78 4.85 1.00

Syncope 1.50 2.61 1.96 0.82 0.99
SystemML 2.61 4.51 3.37 1.25 0.98
Tapestry 5 12.60 25.13 17.77 2.66 0.73

Tika 6.51 12.09 8.94 2.83 0.95
TomEE 1.71 4.98 2.59 -0.12 0.44

VCL 30.54 65.96 42.58 25.15 1.00
VYSPER 0.78 6.62 1.86 0.77 0.67
Struts 2 15.93 29.71 20.48 8.58 0.98

Hadoop Yarn 13.42 16.76 14.98 9.86 1.00
ZooKeeper 24.70 38.66 31.11 15.58 1.00

116

APPENDIX C – PREDICTIVE CHECK

In this appendix, we provide two predictive checkings: on the prior and on the

posterior distribution. The analysis objective is to ensure that the prior provides plausible values

for BFT and that the posterior predictive provides generated data approximated to the original

data.

Prior Predictive Check

The Fig. 28 shows the generated data for days (in a log scale). Both intervals are

based on previous work (WEISS et al., 2007; AKBARINASAJI et al., 2018; SAHA et al., 2014)

that suggests that bugs are generally fixed in a few days (two or three), while others can take

months or even years to be considered fixed. The prior predictive and their CI show a broad

enough to contemplate both scenarios.

10 5 0 5 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

De
ns

ity

log(days) (, 2); (0, 2); 2 InvGamma(3, 3)
CI2.5%= 0.006 days;
CI97.5%= 169.04 days;

Figure 28 – Prior predictive. Data generated using the µ and σ2 priors distributions. The prior
(in a log-scale) is broad enough to provide values between 0.006 and 169 days.

Posteriori Predictive Check

Fig. 29 shows the generated data for days of the ‘specific-model’ applied for each

of the 55 analyzed projects. The visualizations provide the model generated data -y⋆ - and the

projects’ original data - y. While the original data follows a bimodal distribution in some cases,

the predictive seems to contemplate most of the project’s data behavior, indicating a good fit to

the project’s data.

117

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15
Solr

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

MINA SSHD

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

Syncope

15 10 5 0 5 10 15
0.000

0.025

0.050

0.075

0.100

0.125

VYSPER

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15
Mesos

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15
Isis

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

Hadoop Map/Reduce

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

0.20

Crunch

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

0.20
VCL

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

Ignite

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

ZooKeeper

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15
Mahout

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

SystemML

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15
Log4j 2

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

Cassandra

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

Hadoop HDFS

15 10 5 0 5 10 15
0.000

0.025

0.050

0.075

0.100

0.125

Buildr

15 10 5 0 5 10 15
0.000

0.025

0.050

0.075

0.100

0.125

Tika

15 10 5 0 5 10 15
0.000

0.025

0.050

0.075

0.100

0.125

TomEE

15 10 5 0 5 10 15
0.000

0.025

0.050

0.075

0.100

0.125

Commons Collections

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15
Struts 2

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

jclouds

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

Camel

15 10 5 0 5 10 15
0.000

0.025

0.050

0.075

0.100

0.125

FORTRESS

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

Hadoop Core

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

Phoenix

15 10 5 0 5 10 15
0.000

0.025

0.050

0.075

0.100

0.125
MINA

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15
Libcloud

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15
Archiva

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

0.20

0.25
Hive

15 10 5 0 5 10 15
0.000

0.025

0.050

0.075

0.100

0.125

Ivy

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

0.20

Apache Storm

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15
Commons Math

15 10 5 0 5 10 15
0.000

0.025

0.050

0.075

0.100

0.125
Commons Codec

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15
Tapestry 5

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

Giraph

15 10 5 0 5 10 15
0.000

0.025

0.050

0.075

0.100

0.125

Commons IO

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15
Commons Lang

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

Nutch

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

0.20

0.25
Oozie

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

MyFaces

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

0.20
Hadoop Yarn

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

0.20
Apache MADlib

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

Lucene

15 10 5 0 5 10 15
0.000

0.025

0.050

0.075

0.100

0.125

Maven

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

HBase

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

0.20
Spark

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

Directory Kerberos

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

Commons Compress

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

Derby

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

0.20
Flink

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

OpenJPA

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

Kafka

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

FtpServer

15 10 5 0 5 10 15
0.00

0.05

0.10

0.15
Apache Helix

y (, 2); (0, 2); 2 InvGamma(3, 3)

De
ns

ity

Figure 29 – Posterior predictive. We notice that the model-generated data distribution (y⋆, in
orange) is very close to the original data distribution (y, in blue) for most projects.

118

APPENDIX D – ALTERNATIVE HIERARCHICAL MODELS

This appendix presents the alternative hierarchical models for ‘priority’ and ’code-

churn’ data. We already show the results for ‘link’ in section 4.5, where we also describe the

models.

Priority

The Fig. 30 shows the three alternative hierarchical models µ0 posterior distributions

using the ‘priority’ data. Table 35 presents the posterior distributions summarization.

0 10 20 30
0.00

0.05

0.10

0.15

HM-

0 10 20 30
0.00

0.02

0.04

0.06

0.08

0.10

0.12

HM-

0 10 20 30
0.000

0.025

0.050

0.075

0.100

0.125

HM-

p(0)

De
ns

ity

Low Prio. Medium Prio. High Prio.

Figure 30 – µ0 posterior distributions - ‘HM-G’, ‘priority’ results

All models indicate no significant difference between the priority groups. For

example, the average difference between the groups is always smaller than 1 (E[F1] in Table 35),

and the probability of one group having a greater BFT than another is always close de 50%.

Code-Churn

The Fig. 31 shows the three alternative hierarchical models µ0 posterior distributions

using the ‘code-churn’ data. Table 36 presents the posterior distributions summarization.

All models indicate that bugs with higher code-churn values take more time to

fix than those with smaller ones. However, there is more uncertainty about the difference

between the groups compared to the ‘HM-AP’ model results, presented in Fig. 22 and Table 21.

The average difference between the groups is always greater than 3 (E[F1] in Table 36). The

119

Table 35 – µ0 posterior distribution summary from alternative hierarchical models (HM-G),
‘priority’ results.

Low Priority (a)
Model CIL CIU µ0MAP E[F1(a,b)] E[F1(a,c)] E[F2(a,b)] E[F2(a,c)]
HM-C 3.85 13.22 6.90 -0.53 -0.60 0.43 0.43
HM-Q 1.84 16.93 5.22 -0.20 -0.78 0.48 0.45
HM-Y 1.75 16.37 4.82 -0.22 0.26 0.48 0.52

Medium Priority (b)
Model CIL CIU µ0MAP E[F1(b,a)] E[F1(b,c)] E[F2(b,a)] E[F2(b,c)]
HM-C 4.25 13.84 7.27 0.53 -0.07 0.56 0.49
HM-Q 1.85 17.56 5.20 0.20 -0.58 0.51 0.47
HM-Y 1.80 16.25 4.97 0.22 0.48 0.52 0.54

High Priority (c)
Model CIL CIU µ0MAP E[F1(c,a)] E[F1(c,b)] E[F2(c,a)] E[F2(c,b)]
HM-C 4.14 14.25 7.40 0.60 0.07 0.57 0.50
HM-Q 1.95 19.25 5.64 0.78 0.58 0.55 0.53
HM-Y 1.63 15.48 4.90 -0.26 -0.48 0.48 0.46

0 5 10 15 20 25
0.00

0.05

0.10

0.15

0.20

0.25

0.30
HM-

0 10 20 30
0.00

0.05

0.10

0.15

0.20
HM-

0 10 20 30
0.00

0.05

0.10

0.15

0.20

HM-

p(0)

De
ns

ity

Lower CC Higher CC

Figure 31 – µ0 posterior distributions - ‘HM-G’, ‘code-churn’ results.

120

Table 36 – µ0 posterior distribution summary from alternative hierarchical models (HM-G),
‘code-churn’ results.

Lower CC (a)
Model CIL CIU µ0MAP E[F1(a,b)] E[F2(a,b)]
HM-C 2.68 8.40 4.47 -3.86 0.10
HM-Q 1.26 11.21 3.46 -3.73 0.23
HM-Y 1.20 10.49 3.37 -3.37 0.23

Higher CC (b)
Model CIL CIU µ0MAP E[F1(b,a)] E[F2(b,a)]
HM-C 4.53 15.48 8.21 3.86 0.90
HM-Q 2.18 20.77 6.12 3.73 0.77
HM-Y 1.99 19.01 5.63 3.37 0.76

probabilities of associated higher code-churn bug patches demanding more time to be fixed than

lower code-churn values patches are always greater than 70%.

	Title page
	Agradecimentos
	Resumo
	Abstract
	List of abbreviations and acronyms
	Sumário
	Introduction
	Motivation
	Dataset Mining
	Bug-fixing time estimation
	Bayesian data analysis on relation between bug report features and bug-fixing time

	Objectives
	Publications
	Outline

	A New Apache Bug-Fixing Dataset
	Dataset Preliminaries
	Apache Software Foundation and Jira

	Data Collection Methodology
	Dataset Description
	Static Perspective
	Dynamic Perspective

	Dataset Characterization
	Bug-Fixing Time
	Priority
	Links
	The Changelog Dataset
	Reports Updates
	Status Changes

	Dataset Relevance
	Related Work

	The Role of Bug Report Evolution in Reliable Fixing Estimation
	Materials and Methods
	A Temporal Dataset of Bug-Fixing Activities and Reports
	Bug Reports' Fields Updates and Zhang2013's Work Replication
	Preprocessing steps on the `Temporal Dataset` to apply our approach
	Models training methodology
	The Train/Test Split Method

	Results
	Field Changes Analysis and Zhang2013 replication (baseline)
	Training models with all bug reports states
	Models Performance by Group: Progress and Resolution Intervals

	Discussion
	Threats to Validity
	Related Works and Comparison

	Bayesian Data Analysis applied to bug reports data
	Bayesian Data Analysis
	Bayes in a Nutshell
	Hierarchical Models

	Selected Features
	Modeling Process and Models Description
	Results
	Links
	Priority
	Code Churn

	Exploring different Hierarchical Models
	Discussion
	Threats to the Validity
	Related Works

	Conclusion and Future Works
	Bibliography
	Dataset Features Table
	Complete `specific-model' Results
	Predictive Check
	Alternative Hierarchical Models

