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RESUMO

Muitos sistemas complexos são comumente modelados como grafos ponderados de contagem,

onde os nós representam entidades, as arestas modelam as relações entre eles e os pesos das

arestas definem alguma estatística de contagem associada a cada relação. Como dados em

formato de grafo geralmente contêm informações confidenciais, a preservação de privacidade

no compartilhamento desse tipo de dado torna-se uma questão importante. Nesse contexto, a

privacidade diferencial (PD) tornou-se o padrão para o compartilhamento de dados sob fortes

garantias matemáticas. Ao lidar com PD para grafos ponderados, a maioria dos trabalhos

recentes assumem que a topologia do grafo é conhecida. Entretanto, em diversas aplicações do

mundo real, a privacidade da topologia do grafo também precisa ser assegurada. Nesta tese,

pretendemos preencher a lacuna entre o compartilhamento de dados de grafos ponderados de

contagem e privacidade diferencial, considerando tanto a estrutura do grafo quanto os pesos

das arestas como informações privadas. Primeiro adaptamos a definição de PD em grafos

ponderados para levar em consideração a privacidade da estrutura do grafo. Em seguida,

introduzimos uma técnica escalável para adicionar aleatoriamente ruído aos pesos das arestas e

à topologia do grafo. Também aproveitamos a propriedade de pós-processamento da PD para

melhorar a utilidade dos dados, considerando restrições do domínio em grafos. Finalmente,

essas contribuições combinadas são utilizadas como base para o desenvolvimento de duas novas

abordagens para o compartilhamento privado de grafos ponderados de contagem sob as noções de

PD global e local. Experimentos utilizando grafos do mundo real demonstram a superioridade das

nossas abordagens em relação à utilidade sobre técnicas já existentes, permitindo a computação

subsequente de uma variedade de estatísticas no grafo compartilhado com alta utilidade, em

alguns casos comparáveis aos resultados originais.

Palavras-chave: privacidade diferencial; privacidade diferencial local; grafos ponderados de

contagem.



ABSTRACT

Many complex systems are commonly modeled as count-weighted graphs, where nodes represent

entities, edges model relationships between them and edge weights define some counting statistics

associated with each relationship. As graph data usually contain sensitive information, preserving

privacy when releasing this type of data becomes an important issue. In this context, differential

privacy (DP) has become the de facto standard for data release under strong mathematical

guarantees. When dealing with DP for weighted graphs, most state-of-the-art works assume that

the graph topology is known. However, in several real-world applications, the privacy of the

graph topology also needs to be ensured. In this dissertation, we aim to bridge the gap between

DP and count-weighted graph data release, considering both graph structure and edge weights as

private information. We first adapt the weighted graph DP definition to take into account the

privacy of the graph structure. We then introduce a scalable technique to randomly add noise to

the edge weights and to the graph topology. We also leverage the post-processing property of

DP to improve the data utility, considering graph domain constraints. Finally, these combined

contributions are used as the foundation for the development of two novel approaches to privately

releasing count-weighted graphs under the notions of global and local DP. Experiments using

real-world graph data demonstrate the superiority of our approaches in terms of utility over

existing techniques, enabling subsequent computation of a variety of statistics on the released

graph with high utility, in some cases comparable to the non-private results.

Keywords: differential privacy; local-DP; count-weighted graphs.
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1 INTRODUCTION

Graphs, also called networks, are a fundamental tool for understanding the structure

and behavior of complex systems (NEWMAN, 2003). Graphs provide a visual representation

of the connections between the different components of a system. These connections are repre-

sented as nodes (also known as vertices) and edges, which characterize entities and relationships

between them, respectively. The study of networks has applications in a wide range of disci-

plines, including physics, mathematics, computer science, biology, sociology, and economics

(AGGARWAL et al., 2010).

In this context, count-weighted graphs are a type of graph where each edge is

associated with a weight that represents the number of times that edge appears in a dataset.

Count-weighted graphs are useful for analyzing data where there are repeated instances of the

same edge. By assigning a weight to each edge based on its frequency, count-weighted graphs

can provide insights into the importance and frequency of connections between nodes in the

graph. They also have been widely adopted to characterize complex systems in the real world,

such as targeted marketing and advertising (LESKOVEC et al., 2007), information campaigns

through social media (FERRARA et al., 2016; VAROL et al., 2017), analysis of influential

people and the interactions between them (CAMACHO et al., 2020), propagation-based fake

news detection (MATSUMOTO et al., 2021), spread of epidemic disease (MANRÍQUEZ et al.,

2021), detection of social distancing measures violations (SUBAHI, 2021), among others.

For instance, consider a scenario where interactions are recorded by wearable sensors

(HEIKENFELD et al., 2018) in Figure 1. Figure 1a shows a table with interactions among

users at specified timestamps. A count-weighted graph G (Figure 1b) is derived as the result of

groupby/count(∗) in the original table, where nodes correspond to the users and edge weights are

the counts of interactions of the users in contact. Specifically, the edge weights in G define the

frequency associated with each relationship in the original data.

Because count-weighted networks usually contain sensitive information, releasing

this type of data for analysis and statistical purposes without sufficient privacy guarantees may

seriously jeopardize the individual’s privacy. Current laws and regulations on data privacy, such

as General Data Protection Regulation (GPDR) (European Commission, 2018) and Lei Geral

de Proteção de Dados Pessoais (LGPD) (Brazil, 2018) require that individuals are no longer

re-identifiable from released information.

The most straightforward technique to protect individual’s privacy is to naively
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Figure 1 ± Example of interactions recorded by sensors.

(a) Original data (b) Count-weighted graph

Source: Elaborated by the author.

remove the IDs (labels) of users in the dataset. However, it has been shown that this process is

vulnerable to linkage attacks (JI et al., 2016). An illustrative example of privacy leakage when

releasing count-weighted graphs is presented as follows.

Example 1. Consider the count-weighted graph G in Figure 1b. Suppose an attacker knows

the identity of user "e" in G and he/she is not sure whether "d" (say Doug) is the person he/she

knows in the real world. Once the attacker gets the edge weights of this network, he/she can find

there are two unknown people ("d" and " f ") who interact with user "e" sometimes. Although the

labels of all individuals have been removed, such information can still reveal the privacy of user

"d" when publishing its edge weights. Let’s say the attacker knows in the real world that Doug is

the person with the most interaction with the known user "e" in this graph. Then, the attacker

can easily infer that "d" is Doug.

In the past, many privacy techniques were designed with their own requirements to

protect individuals’ privacy when their data are released. K-anonymity (SAMARATI; SWEENEY,

1998; SWEENEY, 2002) is one of the most well-known privacy models that consists of forming

classes of k records. In a class, each record is identical to the other k− 1 records. In other

words, each record can not be linked to an individual with a probability lower than 1/k. From

k-anonymity, other privacy models were proposed to avoid re-identification of individuals in

released datasets, such as l-diversity (MACHANAVAJJHALA et al., 2007), t-closeness (LI et al.,

2007; LI et al., 2009), δ -presence (NERGIZ et al., 2007), among others. However, all of these
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approaches assume that a malicious user has limited background knowledge, which is not true in

real-world situations.

1.1 Differential Privacy

Differential privacy (DP) (DWORK, 2006) has emerged as the de facto standard

notion of privacy for data release. It has been applied in industry (KENTHAPADI et al., 2019)

by companies such as Apple, Google, Uber (CORMODE et al., 2018) and also in the public

sector by U.S. agencies, such as the U.S. Census Bureau (HANEY et al., 2017; ABOWD, 2018;

GARFINKEL et al., 2018). Differential privacy offers a formal definition of privacy with some

interesting properties, such as no computational/informational assumptions about attackers, data

type-agnosticism, and composability (MCSHERRY, 2009). The main idea behind DP is that

a given query is answered by a randomized algorithm that queries the private information and

returns a randomized answer sampled from an output distribution. A randomized algorithm

is also referred to as a mechanism. A mechanism is differentially private if the probability

distribution of the outputs does not change significantly based on the presence or absence of an

individual.

There are two main types of differential privacy in the literature, global differential

privacy (DWORK, 2006), and local differential privacy (LDP) (DUCHI et al., 2013). Under

global DP, there is a trusted curator that collects the original weighted graph and globally adds

noise to achieve differential privacy, i.e., noise is added only once, at the end of the process

before releasing the private graph with third parties. On the other hand, in the LDP setting,

each user has a local noise-adding step before sending the perturbed data to an untrusted curator.

Local differential privacy provides a higher level of privacy since the random perturbation is

performed on the user side, not in the data curator. Whether global or local, differential privacy

ensures statistical guarantees against the inference of private information through the use of

auxiliary information, unlike the traditional privacy models. Because differential privacy is

defined as independent of any auxiliary information assumption, it provides the most rigorous

privacy guarantee for releasing count-weighted graphs.

Many efforts have been made towards differentially private publication of graph

data. In this context, two main types of DP are particularly relevant: edge differential privacy

(edge-DP) (HAY et al., 2009) and node differential privacy (node-DP) (KASIVISWANATHAN

et al., 2013). The essential difference between them lies in the definition of neighboring graphs.
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In the standard DP model, two databases are neighbors if they differ by at most one record. In

the graph context, edge-DP describes two graphs as neighbors if they differ on a single edge. On

the other hand, node-DP defines a pair of graphs to be neighbors if they differ by exactly one

node and its incident edges. Intuitively, edge differential privacy ensures that the output of a DP

algorithm does not reveal the inclusion or removal of a particular edge in the graph, while the

node differential privacy hides the inclusion or removal of a node together with all its adjacent

edges.

When graphs have weighted edges, neither edge-DP nor node-DP models offer

appropriate privacy guarantees. Instead, Sealfon (SEALFON, 2016) introduced DP in the context

of neighboring weight functions and proposed the notion of edge weight-DP. Under this model,

two graphs are said to be neighbors if they have the same structure (topology) and similar weight

functions. In other words, the graph topology is assumed to be public and the private information

to protect are only the edge weights. This assumption was recently adopted by several authors in

the literature (LI et al., 2017; PINOT et al., 2018; WANG; LONG, 2019; TONG et al., 2019;

FAN; LI, 2022).

Wang et al. (WANG et al., 2020) and Ning et al. (NING et al., 2021) proposed new

DP techniques that assume the graph topology is unknown. Both works adopt the following

strategy: first, they propose a method to protect the privacy of the graph topology and then they

superimpose a vector perturbation for the weights on the resulting graph. That is to say, they

compose two distinct notions of differential privacy for graphs: edge-DP to perturb the graph

structure and edge weight-DP to disturb the values of the weights. However, the DP property

satisfied by this composition would need to be established. Thus, no existing DP approach

can correctly handle count-weighted graph release when the topology is unknown. It may be

desirable in many applications, for example, when protecting the presence or absence of an

interaction in a human contact network, or the existence or absence of phone calls, text messages

or emails exchanged between people (see, e.g., the FCC regulations in the U.S. around customer

proprietary network information (Federal Communications Commission, 2018)). In such cases,

only considering the scenario where the graph structure is public is not effective to provide the

desired privacy guarantees.
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1.2 Problem Statement

In this thesis, we investigate the problem of releasing count-weighted graphs under

differential privacy considering both graph topology and edge weights as private information.

In particular, let G = (V,E,ω) be an undirected weighted graph with a vertex set V , an edge

set E, and a weight function ω : V 2→ Z≥0 mapping connections between a pair of vertices

(u,v) to integer weights. Because G is undirected, ω(u,v) = ω(v,u) for every (u,v) ∈ E. We

require consistency between E and ω , such that ω(u,v)> 0 ⇐⇒ (u,v) ∈ E. This means that

edges in E must characterize non-zero weights, whereas the weight of a non-existing edge is

considered to be zero by convention. We assume the set of vertices V are public, i.e., the data

holder/curator can access the node labels of the graph. On the other hand, the presence or

absence of the set of edges E is private, as well as their weights. Then, the objective of this thesis

is to propose techniques to release a count-weighted graph version ÅG with high utility under

differential privacy guarantees.

1.3 Thesis Hypothesis

The main hypothesis we address in this thesis is stated as follows:

Main Hypothesis. By adopting differential privacy, it is possible to privately release count-

weighted graphs and, at the same time, enable subsequent computation of a variety of statistics

on the released graph with high utility.

We aim to release count-weighted graphs for analysis and statistical purposes with DP

while preserving as much as possible the characteristics of the original graph. We investigate our

central hypothesis by pursuing three specific goals, driven by the following research questions:

Research Question 1 (RQ1): How to establish a new definition of neighboring graphs consider-

ing both graph topology and edge weights as private information?

Existing DP techniques assume the graph topology is known. Consequently, the

perturbation only occurs in the edge weights. This process may incur excessive perturbation

of the weight values since the noise added is proportional to the sensitivity (Section 2.4) and,

in this case, the sensitivity is comparable to the maximum edge weight. Additionally, other

differentially private methods compose two distinct notions of differential privacy for graphs but

do not introduce the DP property satisfied by this composition. Therefore, a new definition of
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neighboring graphs needs to be introduced to consider both graph topology and edge weights as

private information.

Research Question 2 (RQ2): How can we provide a scalable graph perturbation solution?

We can represent a weighted graph as a weighted matrix and add noise to both

zero and non-zero edge weights in the matrix. The noises added in this strategy have a lower

magnitude. However, the computation cost to calculate noisy weights in the entire matrix is

computationally expensive O(|V |2), making this approach efficient only for small to medium-

sized graphs. In this way, a sampling technique may be adopted to avoid materializing all the

edge weights.

Research Question 3 (RQ3): How to keep the graph consistent and avoid introducing bias in

the edge weights after adopting a DP technique to perturb the graph structure?

As mentioned before, differential privacy adds noise to query results before releasing

their outputs. However, this process may affect some domain constraints. For example, when

querying node degrees, a differentially private algorithm must be consistent with the fact that

noisy outputs assume positive integer values. The addition of independent noise, contrarily,

cannot ensure such domain constraint. In addition, after adding noise to the weights, a dense

graph may be produced, i.e., a graph perturbation technique can switch many zero-weighted

edges to positive-weighted edges. If we naively clip all noisy weights below a threshold in

this dense graph, we may introduce too much bias to make the released graph useful. Hence,

adjustment steps may be applied to guarantee the consistency of the graph after perturbation and

improve its utility.

1.4 Contributions

To address the mentioned concerns, we propose two main approaches under the

notions of global and local differential privacy. In our proposed global approach, first, we

privately compute important statistics that provide a good characterization of the original graph,

like node degrees and the sum of all edge weights. Such graph statistics are utilized in the

next steps to improve the accuracy of the released graph. We then adopt a sampling strategy to

perturb the original weighted graph and override the costly operation of materializing all the edge

weights, avoiding scalability problems. Finally, we then include two adjustment steps to recover

as much as possible of the original graph characteristics before its release. Our local approach

works similarly to the global one. The difference is that the perturbation and the adjustment steps
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are performed by each user. Additional steps to guarantee the consistency of the released graph

are included in the curator side.

In particular, the contributions of this thesis are as follows.

1. We introduce a new neighboring weight graphs definition to release weighted graphs via

differential privacy such that both the graph topology and the edge weights are assumed to

be private.

2. We propose a scalable technique using sampling to randomly add noise to the graph

topology based on its number of edges and on its edge weights.

3. We improve the accuracy of the perturbed graph by developing post-processing techniques

to preserve as much as possible the original node degrees and the sum of all edge weights.

4. We introduce a global DP approach using the mentioned contributions and extend it to

propose a new method to release count-weighted graphs under the local differential privacy

setting, where the random perturbation is performed on the user side.

5. We conduct extensive experimental analysis on four real-world weighted graphs to evaluate

the performance of the proposed approaches. We show that our two techniques outperform

state-of-the-art methods and achieve high utility for a variety of statistics on the released

graph. In some cases, the results are very close to the non-private version.

The main contributions described in this thesis are also presented in the following

published papers:

• Felipe T. Brito, Victor A. E. Farias, Cheryl Flynn, Subhabrata Majumdar, Javam C.

Machado, Divesh Srivastava. Global and Local Differentially Private Release of Count-

Weighted Graphs. Proceedings of the ACM on Management of Data (BRITO et al., 2023).

• André L. C. Mendonça, Felipe T. Brito, Javam C. Machado. Privacy-Preserving Techniques

for Social Network Analysis. Anais Estendidos do XXXVIII Simpósio Brasileiro de Bancos

de Dados (MENDONÇA et al., 2023).

• Victor A. E. Farias, Felipe T. Brito, Cheryl Flynn, Javam C. Machado, Subhabrata Majum-

dar, Divesh Srivastava. Local Dampening: Differential Privacy for Non-numeric Queries

via Local Sensitivity. The VLDB Journal (FARIAS et al., 2023).

• Felipe C. Monteiro, Felipe T. Brito, Iago C. Chaves, Javam C. Machado. Compartilhamento

de Dados de Tráfego de Rede Utilizando Privacidade Diferencial. Anais do L Seminário

Integrado de Software e Hardware (MONTEIRO et al., 2023).

• Victor A. E. Farias, Felipe T. Brito, Cheryl Flynn, Javam C. Machado, Subhabrata Majum-
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dar, Divesh Srivastava. Local Dampening: Differential Privacy for Non-numeric Queries

via Local Sensitivity. Proceedings of the VLDB Endowment (FARIAS et al., 2020).

• Bruno C. Leal, Israel C. Vidal, Felipe T. Brito, Juvêncio S. Nobre, Javam C. Machado.

δ -DOCA: Achieving Privacy in Data Streams. International Workshop on Data Privacy

Management (LEAL et al., 2018).

• Eduardo R. D. Neto, André L. C. Mendonça, Felipe T. Brito, Javam C. Machado. PrivLBS:

Uma Abordagem para Preservação de Privacidade de Dados em Serviços Baseados em

Localização. Anais do XXXIII Simpósio Brasileiro de Banco de Dados. (NETO et al.,

2018).

• Rôney Reis C. Silva, Bruno C. Leal, Felipe T. Brito, Vânia M. P. Vidal, Javam C. Machado.

A Differentially Private Approach for Querying RDF Data of Social Networks. Proceedings

of the 21st International Database Engineering & Applications Symposium. (SILVA et al.,

2017).

• André L. C. Mendonça, Felipe T. Brito, Leonardo S. Linhares, Javam C. Machado. DiP-

CoDing: a Differentially Private Approach for Correlated Data with Clustering. Pro-

ceedings of the 21st International Database Engineering & Applications Symposium.

(MENDONÇA et al., 2017).

• Felipe T. Brito, Javam C. Machado. Preservação de Privacidade de Dados: Fundamentos,

Técnicas e Aplicações. Jornadas de atualização em informática (BRITO; MACHADO,

2017).

1.5 Thesis organization

The rest of this thesis is organized as follows. Chapter 2 presents an overview of DP

and introduces a new definition to consider graph topology as private information. Chapter 3

summarizes the literature review on DP for graphs. Chapter 4 introduces our new neighboring

weight graphs definition to release weighted graphs via differential privacy. In this chapter,

we also demonstrate how to create a noisy count-weighted graph via differential privacy and

present our post-processing techniques that are used to improve the accuracy of the released

graph. In Chapter 5 we introduce our global approach to privately release count-weighted graphs

and describe our local method for the graph release problem. Experimental results are given in

Chapter 6. Finally, Chapter 7 concludes the dissertation and points out future work directions.
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2 DIFFERENTIAL PRIVACY

In this chapter, we describe the main concepts of differential privacy that compose

this thesis, highlighting its key principles and core components.

2.1 Motivation

Re-identification attacks, i.e., attacks that aim to infer characteristics of individuals

based on information about them in the data, have become sophisticated over time, posing a

challenge to the effectiveness of privacy protection techniques. Successful attacks (GANTA et

al., 2008; CORMODE et al., 2010; JIN et al., 2010; WONG et al., 2011) on de-identified data

have shown that traditional privacy models, such as k-anonymity, l-diversity, t-closeness and

δ -presence, are vulnerable to several attacks that aim to compromise data privacy.

Because traditional approaches have demonstrated evidence of weaknesses, a new

privacy paradigm has emerged: differential privacy. First presented in 2006, differential privacy

is a formal privacy model originally designed for use on raw data to provide robust privacy

guarantees without depending on an adversary’s background knowledge. Differential privacy is

not a single tool, but rather a paradigm that quantifies and manages privacy violation risks. DP

can be adopted from simple statistical estimations to machine learning (ZHU et al., 2020).

In this context, consider a user who wants to analyze data containing personal

information about individuals. A few examples of users can be researchers, data analysts,

data scientists, and application developers. The analysis performed by these users can range

from simple calculations, such as computing the average age of individuals in the data, to

more complex tasks that involve employing sophisticated modeling and inference techniques.

Regardless of the complexity of the analysis, the fundamental process involves executing a

computation on the input data and generating an output result. This process is illustrated in

Figure 2a and referred to as a real-world setting.

In essence, an analysis protects the privacy of individuals within the data when its

output avoids disclosing any information regarding any particular individual. This intuition is

formalized by differential privacy as a mathematical definition. Consequently, DP can be used

to address the scenario where a specific individual is not in the dataset. Consider the Felipe’s

opt-out setting illustrated in Figure 2b, where the analysis is conducted in the dataset but the

information about Felipe is omitted. Then, his privacy is guaranteed in this hypothetical setting.
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Figure 2 ± An example of analysis (computation) on the input data generating an output result.

(a) Real-world setting.

(b) Felipe’s opt-out setting.

Source: Elaborated by the author.

Note that the real-world setting involves some potential risk to Felipe’s privacy. Since

Felipe’s information is utilized as input for the analysis, there is a possibility that personal details

about him may be exposed in the resulting output. Therefore, differential privacy is designed

to protect Felipe’s privacy in the real-world setting in a way that emulates the level of privacy

protection he would experience in his opt-out setting (WOOD et al., 2018).

2.2 Differential Privacy Definition

In the original definition of differential privacy, private data is viewed as a collection

of records, with each record corresponding to an individual. In essence, differential privacy

promises privacy protection by injecting noise into these records, i.e., modifying the original

data by introducing randomness (DWORK et al., 2006). Let Q be a query function (analysis

or computation) to be evaluated on a dataset D, which holds sensitive information about a set

of individuals. DP is defined by considering a randomized algorithm A that operates on D. It

ensures that the output of A (D) should be similar to Q(D), i.e., with a controlled amount of

random noise added. In other words, the goal of differential privacy is to make A (D) close to

Q(D) as much as possible to ensure data utility, and at the same time A (D) should preserve the

privacy of all the records in the dataset.

In order for the randomized algorithm A to preserve the privacy of all the records in

the dataset, DP establishes the notion of neighboring datasets. It is similar to Felipe’s opt-out

setting. Two datasets (or databases) D and D′ are neighboring if they differ on at most one tuple,
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Figure 3 ± Example of two neighboring datasets of interactions between two users.

Source: Elaborated by the author.

denoted as D∼ D′. It is important to mention that the neighboring relation is symmetric, i.e.,

D∼ D′ is equivalent to D′ ∼ D. Figure 3 illustrates an example of two neighboring datasets of

interactions between two users.

Differential privacy also requires that whether the input is D or D′, the probability of

a given output is nearly the same. This is also denoted as the indistinguishability of neighboring

databases. Intuitively, it states that any answer to a query occurs with similar probability

regardless of the presence or absence of any individual in the database.

More formally, for algorithm A , let Range(A ) be the set of possible outputs of A .

For instance, if A computes the number of records in a dataset, then Range(A ) is equal to the

set of non-negative integers. Then, the definition of differential privacy is stated below:

Definition 1. (ε-Differential Privacy (DWORK, 2006; DWORK et al., 2006)). A randomized

algorithm A satisfies ε-differential privacy, if for any two neighboring datasets D and D′, and

for any possible output O⊆ Range(A ),

Pr[A (D) = O]≤ exp(ε)Pr[A (D′) = O], (2.1)

where Pr[·] denotes the probability of an event.

2.3 Privacy Budget

The parameter ε in Definition 1 is denoted as privacy budget. As discussed before,

differential privacy requires that the output of the analysis remain approximately the same,

regardless of the presence or absence of any individual in the dataset. That is, differential

privacy permits a minor change between the output of the real-world analysis and that of each

individual’s opt-out setting. This minor change is controlled by the privacy budget ε , as shown

in Figure 4. Note that, in Figure 4, Felipe’s data was replaced by X’s data to emphasize that DP

is made simultaneously to all individuals.
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Figure 4 ± The privacy budget control.

Source: Elaborated by the author.

The privacy budget is often a positive real number that controls the level of privacy

preservation algorithm A can provide. A smaller ε corresponds to a stronger privacy-preserving

guarantee. In contrast, a smaller ε also provides lower data utility, since more noise has to

be added. Specifically, when ε = 0, the level of privacy preservation reaches the maximum,

i.e., the real-world differentially private analysis replicates the opt-out setting of all individuals

perfectly. In this case, the randomized algorithm A outputs two outcomes with indistinguishable

distributions. However, the corresponding outputs do not provide any meaningful information

about the dataset.

The setting of ε is a matter of policy, but typically it assumes a "small" value, making

the probability "almost the same" whether the input is D or D′. In this context, the problem of

choosing ε has been studied in the literature (HSU et al., 2014; LI et al., 2016). It has been argued

that setting ε = 0.1 provides quite strong privacy protection, and using ε = 1.0 is also acceptable

in many applications (LEE; CLIFTON, 2011; LI et al., 2016). Setting a privacy budget as large

as ε = 5.0 is adequate only in some cases, for instance, in location-based personalized services

(HONG et al., 2021) or in machine learning algorithms (BAGDASARYAN et al., 2019).

Nevertheless, to define an adequate privacy budget for an application, experts, stake-

holders, and data users have to provide extensive feedback to ensure that the privacy of individuals

is sufficiently protected while maintaining high levels of accuracy in the released information.

That is the case of the U.S. Census Bureau (United States Census Bureau, 2021). After reviewing

feedback from the data user community, the U.S. Census Bureau’s Data Stewardship Executive

Policy Committee (DSEP) selected the settings and parameters for the 2020 Census and approved
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a total privacy budget of ε = 19.61. Therefore, it is still challenging to properly set the privacy

budget in differential privacy.

2.4 Sensitivity

As previously discussed, differential privacy can be achieved by adding an appro-

priate amount of noise to query (analysis) results. Adding excessive noise may hurt data utility

by distorting the accuracy of analysis results, while insufficient noise fails to provide adequate

privacy guarantees. The noise added depends on the global sensitivity of a query Q (DWORK et

al., 2006), as defined next:

Definition 2. (global sensitivity (DWORK et al., 2006)). The global sensitivity of a query Q is

the maximum ℓ1 distance between the outputs of Q on any two neighboring datasets.

∆Q = max
D,D′
∥ Q(D)−Q(D′) ∥1 . (2.2)

The global sensitivity, or simply sensitivity, measures the maximum impact on query

results resulting from the addition or deletion of any record in the dataset. It serves as a crucial

parameter to determine the appropriate magnitude of the added noise. Additionally, it is related

only to the query function and is independent of the dataset. For a query function with low

global sensitivity, only a minimal amount of noise needs to be added to mask the impact on

query results caused by changing one single record. However, when the global sensitivity is high,

a significant level of noise must be added to the output to ensure the privacy guarantee, which

compromises the data utility.

For some query functions, the global sensitivity is easy to compute. For instance,

the global sensitivity for counting queries is 1, since adding or removing one record affects the

output of this query by at most 1. On the other hand, sensitivity for summation queries is not as

simple as it is for counting queries. Suppose we want to query the sum of the ages of people in a

given dataset. The inclusion of a new register in the dataset will increase the result of this query

by the age of the additional individual. That implies the sensitivity, in this case, depends on the

content (age) of the person added. Then, it is desired to assign a specific value to represent the

sensitivity of this query. In this particular domain of age, there exists a reasonable and rational

upper limit on the maximum age that an individual can be. It is plausible to assign, for example,
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the sensitivity is 122 since the oldest person ever lived to be 122 years old (GIBBS; ZAK, 2023).

However, this does not serve as definitive evidence that no individual will ever live to the age of

122. Therefore, in some domains, it can be harder to come up with a reasonable global sensitivity

(NEAR, JOSEPH P. and ABUAH, CHIKÉ, 2023).

2.5 Differentially Private Mechanisms

A randomized algorithm A is also referred to as a mechanism. Mechanisms are

ways of achieving differential privacy. For numeric queries, DP can be achieved by mechanisms

such as the Laplace mechanism (DWORK, 2006), the geometric mechanism (GHOSH et al.,

2012), and the log-laplace mechanism (NY; PAPPAS, 2013). They describe what kind of noise

to use and how much to add.

2.5.1 Laplace Mechanism

The Laplace mechanism is a widely used algorithm to satisfy differential privacy. As

the name of the mechanism suggests, it relies on the Laplace distribution to generate random

values that are added to the true query response. Let x be the noise added to the output of a query

function Q.

Definition 3. (Laplace distribution) The Laplace distribution (centered at 0) with scale b is the

distribution with probability density function:

Lap(x|b) =
1

2b
exp

(

−
|x|

b

)

. (2.3)

Denote Lap(b) the Laplace distribution with scale b. Then, the Laplace mechanism

(DWORK et al., 2006) simply compute Q, and perturb the result with noise drawn from the

Laplace distribution. The scale of the noise is calibrated by the sensitivity ∆Q divided by ε .

Theorem 1. (Laplace mechanism (DWORK et al., 2006)) The Laplace mechanism that adds

noise drawn from Lap(∆Q/ε) satisfies ε-DP.

2.5.2 Geometric Mechanism

The geometric mechanism (GHOSH et al., 2012) is the discrete version of the

Laplace mechanism. Contrary to the previous one, which adds real-valued noise to query
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results, the geometric mechanism adds integer noise from the two-sided geometric distribution

to achieve differential privacy. Because of that, the output value is guaranteed to be an integer.

Another difference is that while the Laplace mechanism provides privacy guarantees for a wide

range of query types, the geometric mechanism specifically focuses on protecting count queries.

This specialization enables the geometric mechanism to improve performance on count queries

compared to the more general Laplace mechanism (GHOSH et al., 2012).

In this thesis, we focus on releasing count-weighted graphs, such as those that are

formed by groupby/count(∗) queries, as shown in Figure 1. Consequently, we adopt the geometric

mechanism to compute counting queries.

Definition 4. (two-sided geometric distribution) A random variable X distributed as a two-sided

geometric distribution has probability mass function:

P(X = x) =
1−α

1+α
α |x| , (2.4)

where 0≤ α ≤ 1.

In particular, when α = e−ε/∆Q , this mechanism is differentially private.

Theorem 2. (geometric mechanism (GHOSH et al., 2012)) The geometric mechanism that adds

independent noise from the two-sided geometric distribution, with α = e−ε/∆Q satisfies ε-DP.

2.5.3 Log-Laplace Mechanism

The mechanisms presented previously are able to add both positive and negative

noise since the distribution of these mechanisms ranges in the interval [−∞, ∞]. However, for

some queries, it is desired the output is positive. For instance, when counting the number of

interactions in a dataset, as illustrated in Figure 1a, it is not meaningful for the result to be

negative. To address this constraint, the log-Laplace mechanism (NY; PAPPAS, 2013) can be

useful to maintain sign consistency between an original real-valued query and the result provided

by the mechanism.

Let Q be a positive valued query. It is assumed there is a K > 0 such that for all

D∼ D′:

Q(D)−Q(D′)

min{Q(D)−Q(D′)}
≤ K . (2.5)
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Hence the mechanism M(D) = log(Q(D)) + Lap(b), where Lap(b) is a Laplace

random variable with mean 0 and b = K
ε is also differentially private.

Theorem 3. (log-Laplace mechanism (NY; PAPPAS, 2013)) The log-Laplace mechanism that

adds noise to the logarithm of Q(D), drawn from Lap(K/ε), satisfies ε-DP.

2.5.4 Exponential Mechanism

Not all queries return numerical values as their output. Hence, McSherry and Talwar

(MCSHERRY; TALWAR, 2007) have proposed the exponential mechanism (EM) to guarantee

differential privacy for categorical queries. Its main idea is to sample an output O from the

output space O according to a utility function u. This function assigns exponentially greater

probabilities to outputs of higher utilities. The choice of u is application-dependent and different

applications lead to distinct utility functions.

Definition 5. (sensitivity of the utility function (MCSHERRY; TALWAR, 2007)). The global

sensitivity of u is given by:

∆u = max
O∈O

max
D,D′neighbors

|u(D,O)−u(D′,O)| (2.6)

Theorem 4. (exponential mechanism (MCSHERRY; TALWAR, 2007)). Given an utility function

u : (D ×O) → Z for a dataset D, the mechanism A that samples an output O ∈ O with

probability proportional to exp( ε.u(D,O)
2∆u

) satisfies ε-DP.

2.6 Differential Privacy Properties

Differentially private algorithms exhibit useful properties of post-processing and

sequential composition. In post-processing, any function applied on the output of a DP algorithm

also satisfies DP. Sequential composition relies on the fact that any sequence of randomized

algorithms that provides DP in isolation, also provides DP in sequence. Both properties are

formally stated as follows:

Theorem 5. (post-processing (DWORK et al., 2006)) Let A be any randomized algorithm such

that A (D) is ε-differentially private, and let f be any function. Then, f (A (D)) also satisfies

ε-DP.
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Theorem 6. (sequential composition (MCSHERRY, 2009)) Let each Ai provide εi-differential

privacy. A sequence of differentially private algorithms Ai(D) provides ∑εi-DP.

When designing a differentially private technique, the aforementioned properties

provide the flexibility to easily combine several DP steps into a DP mechanism.

2.7 Local Differential Privacy

The basic (global) setup of differential privacy involves a trusted curator (third

party) that has access to the original data and globally adds noise to achieve differential privacy.

However, finding a genuinely trusted third party for data collection and processing can be

challenging in practical scenarios. The lack of trusted data curators restricts the applicability of

the centralized differential privacy approach. To address this concern, local differential privacy

(LDP) emerges as an alternative approach that eliminates the need for a trusted data curator

(DUCHI et al., 2013). LDP assumes each user does not trust the third party. Consequently, each

user locally perturbs its data with a differentially private mechanism before sending it to the data

curator. Figure 5 illustrates the difference between global and local DP settings.

Figure 5 ± Distinction between global and local configurations for differential privacy.

Source: Elaborated by the author.

Compared to global DP, local differential privacy is a stronger notion of privacy that

keeps individuals’ sensitive information private even from untrusted data curators. Companies,
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especially those handling sensitive client information, are often reluctant to store real data due

to privacy and security reasons. Storing actual client data poses significant risks in the event

of a security breach or unauthorized access. LDP provides a solution by allowing analysis and

extraction of valuable insights from the data without exposing the raw, identifiable information

(DRECHSLER, 2023).

The formal definition of LDP is stated as:

Definition 6. (ε-local differential privacy (DUCHI et al., 2013)). A randomized algorithm A

satisfies ε-local differential privacy, if for any pair of input values v,v′ ∈ D, and for any possible

output O⊆ Range(A ),

Pr[A (v) = O]≤ exp(ε)Pr[A (v′) = O]. (2.7)

The key difference between LDP and global DP is that a DP mechanism takes all

users’ data D as input and requires the output to be indistinguishable, while local DP takes only

one user’s data v as input and generates noisy responses per user (locally).

2.8 Differential Privacy for Graphs

The fundamental concept of differential privacy relies on the definition of neighboring

datasets. In previous definitions, a neighboring dataset is defined as a dataset obtained by adding

or removing a single record. In the context of graph data, which primarily focuses on the

relationships between individuals, the association between private data and dataset records

becomes less clear.

To apply differential privacy to graphs, it is necessary to establish a definition for

neighboring graphs and understand the privacy semantics associated with each choice. Consider

G = (V,E) to be a graph with a vertex set V and an edge set E. Edges are undirected pairs

(u,v) such that u,v ∈ V . In this context, there are two main settings of neighboring graphs:

edge differential privacy (edge-DP) (HAY et al., 2009) and node differential privacy (node-DP)

(KASIVISWANATHAN et al., 2013).
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2.8.1 Edge Differential Privacy

The initial adaptation of differential privacy to graphs follows a mathematical formu-

lation similar to the definition used for tabular data. Neighboring graphs are defined as graphs

that differ by a single "record". Then, one can produce a neighboring graph G′ from G by either

adding/removing an edge in E, or by adding/removing an isolated node in V . Figure 6 shows an

example of neighboring graphs in the edge differential privacy setting.

Figure 6 ± An example of three neighboring graphs in the edge differential privacy setting. (a)
original graph. (b) neighboring graph by removing edge (a,c). (c) neighboring graph by

removing edge (a,b). (d) neighboring graph by adding a new edge (b,d).

(a)

(b) (c) (d)

Source: Elaborated by the author.

Definition 7. (ε-edge differential privacy (HAY et al., 2009)). A randomized algorithm A

satisfies ε-edge differential privacy, if for any pair of graphs G = (V,E) and G′ = (V ′,E ′), such

that |V ⊕V ′|+ |E⊕E ′|= 1 and for any possible output O⊆ Range(A ),

Pr[A (G) = O]≤ exp(ε)Pr[A (G′) = O]. (2.8)

An algorithm that ensures edge differential privacy offers protection against the

disclosure of individual edges. In certain applications, this level of privacy assurance may be

reasonable. However, there are scenarios where it becomes desirable to extend privacy protection
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beyond individual edges, i.e., when the primary focus of the analysis or application is on nodes

themselves.

2.8.2 Node Differential Privacy

The node-level differential privacy aims to limit inference about the existence or

absence of a node in a graph. Node differential privacy provides protection to the nodes as well

as to their adjacent edges. If G and G′ differ in only one node and its adjacent edges, we have

the concept of node differential privacy. Figure 7 exemplifies neighboring graphs in the node

differential privacy setting.

Figure 7 ± An example of three neighboring graphs in the node differential privacy setting. (a)
original graph. (b) neighboring graph by removing node a. (c) neighboring graph by removing

node b. (d) neighboring graph by removing node c.

(a)

(b) (c) (d)

Source: Elaborated by the author.

Definition 8. (ε-node differential privacy (KASIVISWANATHAN et al., 2013)). A randomized

algorithm A satisfies ε-node differential privacy, if for any pair of graphs G = (V,E) and

G′ = (V ′,E ′), such that |V ⊕V ′| = 1 and E⊕E ′ = {(u,v)|u ∈ (V ⊕V ′) or v ∈ (V ⊕V ′)}, and

for any possible output O⊆ Range(A ),

Pr[A (G) = O]≤ exp(ε)Pr[A (G′) = O]. (2.9)
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Node differential privacy is much harder to achieve than edge differential privacy

by definition, since it may be infeasible to design algorithms that are both node-differentially

private and that provide accurate graph analysis.

2.9 Summary

In this chapter, we provided the key concepts of differential privacy that compose

this thesis. We first motivated the advent of differential privacy and then defined it formally. We

discussed the importance of the privacy budget parameter and the sensitivity in differentially

private mechanisms. We presented the main mechanisms existing in the literature and those we

employed in this thesis. Later, we discussed some theorems that allow us to apply differential

privacy in this thesis and we introduced the notion of local differential privacy. Finally, we

demonstrated the main notions of neighboring graphs to adopt differential privacy on graph data.
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3 LITERATURE REVIEW

In this chapter, we review related efforts made in the last years towards the differen-

tially private release of graph data. Various algorithms that satisfy the DP definition have been

developed to release only specific graph statistics. We present them in Section 3.1. Another

set of techniques aims to release the entire graph and enable subsequent evaluation of a variety

of statistics. Such works are introduced in Section 3.2. Additionally, global DP techniques are

most frequent in the literature when compared to the local-DP setting. Consequently, we review

general studies on local differential privacy and graphs in Section 3.3. Finally, Section 3.4 details

studies in the field of differential privacy applied to weighted graphs.

3.1 DP release of graph statistics

Many works have investigated the problem of querying certain graph statistics,

such as degree distribution, subgraph counting, and clustering coefficient, under both edge

and node differential privacy (NISSIM et al., 2007; HAY et al., 2009; KARWA et al., 2011;

KASIVISWANATHAN et al., 2013; BLOCKI et al., 2013; ZHANG et al., 2015; DAY et al.,

2016; CHENG et al., 2018; DING et al., 2018).

3.1.1 Edge differential privacy

Under the edge-DP model, (HAY et al., 2009) proposed a constraint inference-based

technique to release degree sequences via DP mechanisms. The authors adapted the definition of

differential privacy to graph-structured data and were the first to introduce the notion of edge-DP.

The proposed method is based on adding noise to the degree counts of each node. Specifically, for

each node, a small amount of Laplacian noise is added to its true degree count. The authors also

performed a post-processing step on the noisy answers to infer a more accurate result. An issue

with constraint inference is that the degree sequence can not be graphical, i.e., it is not possible

to construct a graph without loops or multiple edges between the same pair of vertices with that

particular degree sequence. To overcome this, (KARWA; SLAVKOVI ÂC, 2012) introduced an

optimization step after constraint inference. The authors propose a novel approach to generate

synthetic graphs that satisfies DP by using a probabilistic model based on the graphical degree

sequence, i.e., a vector that describes the degree distribution of a graph. They also included an

additional post-processing step to ensure that the released degree sequence is graphical.
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(NISSIM et al., 2007) presented the notion of local sensitivity and studied the

problem of privately estimating the number of triangles in a graph. The authors observe that

traditional definitions of sensitivity could be overly conservative, leading to algorithms that add

more noise than necessary to achieve a given level of privacy. They proposed a new definition

of sensitivity that takes into account the smoothness of the function being computed, denoted

smooth sensitivity, resulting in algorithms that could achieve the same level of privacy with less

added noise. The smooth sensitivity of a function is defined as the maximum change in its output

when a single input is changed.

(KARWA et al., 2011) extended the results of smooth sensitivity to privately release

other graph statistics, such as k-stars and k-triangles. Specifically, the authors gave an algorithm

for computing the smooth sensitivity of the number of k-stars on a given input graph and used a

different approach, based on the local sensitivity, to give a differentially private algorithm for

releasing k-triangle counts. In the k-triangle counting algorithm, they first find a differentially-

private estimate of the local sensitivity for the specified k and release the query answer plus

random noise with an expected magnitude proportional to this estimate.

In addition, the ladder function (ZHANG et al., 2015) was used to achieve high

accuracy with efficient time complexities. This approach effectively combines the concept of

local sensitivity at distance t, from the smooth sensitivity framework (NISSIM et al., 2007)

with the exponential mechanism. The local sensitivity of a function at distance t quantifies the

maximum local sensitivity among all graphs that can be formed by either adding or deleting up

to t edges. In the ladder framework, the local sensitivity at distance t is used to directly derive

a quality function that can be used to instantiate the exponential mechanism. They adopt the

exponential mechanism to sample the most suitable answer for subgraph queries. The authors

focused on counting the following graph statistics using local sensitivity at distance t: triangles,

k-stars, k-triangles, and k-cliques.

(CHENG et al., 2018) studied the problem of frequent subgraph mining under

differential privacy. They proposed a two-phase differentially private technique called DFG. In

the first phase, DFG includes a binary estimation method and a conditional exponential strategy

to privately identify frequent subgraphs from the input graphs. In the second phase, in order to

calculate the noisy support of each identified frequent subgraph, the authors proposed a noisy

support computation approach, which includes a count accumulation method and an error-aware

path construction technique.
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3.1.2 Node differential privacy

In node-DP setting, (KASIVISWANATHAN et al., 2013) discussed several differen-

tially node-private algorithms for analyzing the accuracy of real networks, that is, algorithms

whose output distribution does not change significantly when a node and all its adjacent edges

are added to a graph. The main idea behind their techniques is to project the input graph onto the

set of graphs with a maximum degree below a certain threshold. However, the challenge of this

approach is that the projection operation may be very sensitive to a change of a single node in

the original graph. Additionally, this technique suffers from high local sensitivity, especially in

dense graphs.

(DAY et al., 2016) propose two approaches based respectively on aggregation and

cumulative histogram to publish the degree distribution. Both approaches adopt a new graph

projection method that is based on an edge-addition process. The authors proved that publishing

a degree histogram from the projected graph has sensitivity 2θ +1, and publishing a cumulative

degree histogram has sensitivity θ +1, where θ is a parameter that bounds the maximum degree

in the graph. This process transforms a graph into a θ -degree-bounded graph. The optimal

choice of θ depends both on the dataset and on the privacy budget. In both approaches, the

authors also use an additional post-processing step to improve the accuracy of the histograms.

(DING et al., 2018) presented a mechanism that can be used for releasing distribu-

tions of triangle count, cumulative triangle count, and local clustering coefficient. Usually, large

graphs present high sensitivity for queries involving degrees due to the maximum degree of a

graph being high. To overcome this issue, the authors propose a novel graph projection method

that can be used to obtain an upper bound for sensitivity in different distributions. They proved

that when publishing a triangle count distribution with threshold θ , an upper-boundary 4θ +1

of global sensitivity can be achieved. They also extended their method to the local clustering

coefficient and publish these coefficients by dividing them into groups.

3.2 DP release of entire graph

All of the mentioned techniques in Section 3.1 focus on specific subgraph statistics.

However, it is important to point out DP techniques to privately release the entire graph structure

and enable subsequent evaluation of a variety of statistics. These works are described as follows.
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3.2.1 Edge differential privacy

Differentially private release of the entire graph in the centralized DP model has

also been studied extensively in recent years. The main advantage of these approaches is that

they are agnostic to the analysis in the sense that one can compute any statistics on the released

graph. In this scenario, Pygmalion (SALA et al., 2011) aimed to release the graph topology

under edge-DP by extracting a graph’s detailed structure into private dK-graph (MAHADEVAN

et al., 2006) and then generating a synthetic graph. (WANG; WU, 2013) subsequently proposed

an improvement in the utility of dK-graph model by calibrating noise based on the smooth

sensitivity. The authors first derived from the original graph various parameters (i.e., degree

correlations) and used them in the dK-graph model, ensuring edge differential privacy on the

learned parameters to generate graphs.

A different approach (XIAO et al., 2014) that adopts the Hierarchical Random Graph

(HRG) model (CLAUSET et al., 2006) was introduced to release network data. The authors

observed that, by estimating the connection probabilities between nodes, the noise scale enforced

by DP could be reduced. Classical graph models are construed by considering the observed

edges while HRG uses the connection probabilities between vertices to form dendrograms. An

example of dendrograms from a given input graph is illustrated in Figure 8.

Figure 8 ± An example of an original graph and two dendrograms.

Source: (XIAO et al., 2014).

Additionally, some approaches focus on perturbing the original adjacency matrix,

which allows for representing a graph and adopting matrix perturbation strategies. (CHEN et al.,

2014) presented a density-based exploration and reconstruction (DER) mechanism to release the

adjacency matrix of a graph. However, both HRG and DER have quadratic time complexity in
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terms of number of nodes. Top-m filter (TmF) (NGUYEN et al., 2015) was proposed to remedy

scalability problems in previous work. It adds Laplace noise to each cell in the adjacency matrix

and uses an idea similar to High-pass Filter (CORMODE et al., 2012) to avoid the materialization

of the noisy adjacency matrix.

Recently, (IFTIKHAR et al., 2020) developed a micro aggregation-based framework

for graph anonymization which perturbs graphs by adding noise to the distributions of the original

graphs. In particular, the authors propose a distance-constrained algorithm for approximating

dK-distributions of a graph via micro aggregation within the proposed framework. PBCN

(HUANG et al., 2020) was also developed to release noisy graphs under edge-DP, which is a

combination of many techniques: clustering, pre-processing, disturbing degree sequence for

edge noise addition, graph reconstruction, and post-processing.

3.2.2 Node differential privacy

Due to the difficulty in obtaining high-utility private mechanisms when releasing

the entire graph, there is just one recent work (JIAN et al., 2021) related to node differential

privacy when compared to edge-DP. The authors proposed a node perturbation algorithm to

achieve node-DP by randomly adding and removing nodes. It first randomly removes each node

in the input graph independently with probability p. Then it generates a random number k, which

follows a geometric distribution with success probability q. Next, it randomly adds k nodes into

the graph, such that each of these k nodes is connected to every existing node with a probability

of 0.5. After this step, the number of nodes in the result graphs would be indistinguishable if the

input graphs are neighboring graphs. The authors also presented an edge perturbation algorithm

that provides privacy guarantees by perturbing edges and adding nodes. It introduces significantly

less noise than the previous one for measures such as the global clustering coefficient.

3.3 Graph Privacy and LDP

Under the local DP model, LDPGen (QIN et al., 2017) was initially proposed to

privately generate synthetic graphs. The main idea is to capture the structure of the original

graph, by incrementally identifying and refining clusters of connected nodes. To do so, LDPGen

iteratively partitions nodes into groups, collects information on node-to-group connectivity under

local differential privacy, and clusters nodes according to such information. After obtaining such
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node clusters, LDPGen applies a graph generation model that utilizes such clusters to generate a

representative synthetic graph. In this context, (GAO et al., 2018) also proposed a technique to

generate synthetic graphs with local-DP. The authors adopted HRG to capture local features and

release a synthetic graph. Additionally, the authors grouped the nodes with similar local features

by designing two heuristic methods . They also showed the grouping algorithm could enhance

the privacy level without the loss of too much information.

(SUN et al., 2019) presented a technique to privately release some graph statistics,

such as triangles, three-hop paths, and k-clique counts under LDP. The main idea is that, instead

of collecting information directly, which could demand an excessive amount of noise to cover

the worst-case scenarios, the data curator first asks each node in the graph about the minimum

amount of noise necessary to protect the node’s local subgraph.

(YE et al., 2020b) applied randomized response mechanism to the adjacency matrix

by local perturbation to guarantee local-DP. However, it introduces high value of bias in the

triangle counts. In addition, Ye et al (YE et al., 2020a) presented LF-GDPR, a graph metric

estimation framework for general graph analysis. It designs an LDP solution for local perturba-

tion, collector-side aggregation, and calibration. Recently, (IMOLA et al., 2021) presented novel

algorithms for counting subgraphs with LDP that use an additional round of interaction between

users and the data curator. The authors improved recent results for both triangle and k-star count

queries.

3.4 DP Release of Weighted Graphs

When graphs have weighted edges, the aforementioned edge and node differential

privacy models may not offer appropriate privacy guarantees. Instead, a more suitable setting

is to adapt the differential privacy definition in the context of weighted graphs. This section

provides a detailed review of the latest development in DP techniques for weighted graphs. It is

divided into two main categories: (1) works that assume the graph topology is known and (2)

works that consider graphs with unknown topology.

3.4.1 Public graph topology

The DP setting for weighted graphs was first formally introduced by (SEALFON,

2016). Under this model, the graph topology (V,E) is assumed to be public, and the private
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information consists only of the edge weights. This new notion is related to the existence of some

settings (e.g. road networks) in which the structure of the graph is intrinsic, and the information

to be protected is carried by the edge weights. A set of recent works (SEALFON, 2016; LI et al.,

2017; PINOT et al., 2018; TONG et al., 2019; WANG; LONG, 2019; FAN; LI, 2022) considered

this model for differentially private analysis in weighted graphs. They are described as follows.

3.4.1.1 Shortest paths and distances release with differential privacy

(SEALFON, 2016) aimed to release weighted shortest paths between pairs of nodes

and approximate distances between all pairs of nodes without revealing sensitive information

about the edge weights.

Initially, he proposed theoretical foundations for considering weight differential

privacy on a graph. It assumes that individuals possess influence over the edge weights. As a

result, two weight functions are considered neighbors if their l1 distance is equal to or less than

one. A more formalized definition of this DP setting is presented in Section 4.

For the problem of privately releasing shortest paths, the author presented a robust

reconstruction-based lower bound, showing that it is not possible to release a short path between

a pair of vertices with additive error better than Ω(|V |), under differential privacy. This lower

bound is obtained by reducing the problem of reconstructing many of the rows of a database

to the problem of finding a path with low error. The author also showed that an algorithm that

utilizes the Laplace mechanism comes close to achieving this bound. Specifically, the author

provided a theoretical analysis showing that the weight of the path released by the proposed

algorithm is greater by at most O(k log|V |)/ε , where the minimum-weight path between a pair

of vertices s, t consists of at most k edges. Additionally, since k < |V |, the author showed that

the weight of the released path is O(|V | log|V |)/ε greater than optimal.

Considering the problem of releasing weighted shortest paths between all pairs of

nodes with DP, the author argued that standard techniques outputs error O(|V | log|V |)/ε for each

differentially private query. On the other hand, he obtained improved algorithms for two special

classes of graphs: (1) trees and (2) graphs with bounded edge weights. Particularly, for trees

he proposed a recursive algorithm that releases all-pairs distances with error O(log2.5|V |)/ε .

Conversely, for bounded-weight graphs, he demonstrated that a subset of vertices, from the

original one, can be obtained such that distances between all pairs of vertices in this subset be

sufficient to estimate distances between all pairs of vertices in V . Consequently, the proposed
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Figure 9 ± An example of a tree partitioned into three heavy paths. A unique color is assigned to
every heavy path.

Source: (FAN; LI, 2022).

method can release distances between all pairs of vertices with relatively small errors.

(FAN; LI, 2022) revisited the problem of privately releasing approximate distances

between all pairs of nodes and recently improved Sealfon’s results. The authors first divided a

tree into disjoint heavy paths. In a heavy path, each non-leaf node selects one branch, i.e., the

edge to the child that has the largest depth. The selected edges form a heavy path. Figure 9

exemplifies three heavy paths in the input tree. Since the tree is decomposed into a set of paths,

some edges may not be included in any one of the heavy paths produced during this method.

The authors also argued that the unique path between any pair of vertices intersects

at most log|V | heavy paths. They also proved that releasing approximate all-pairs distances

is equivalent to releasing several subqueries of heavy paths. For example, in Figure 9, the

shortest path between s and t can be decomposed into sub-paths inside disjoint heavy paths.

Finally, for trees with depth h, they proposed a new algorithm to release all-pairs distances each

with error O((log1.5 h).(log1.5 |V |))/ε , compared to the previous additive error O(log2.5|V |)/ε

(SEALFON, 2016).

For bounded-weight graphs, the authors also outperformed Sealfon’s results. They

discussed that some graphs can be modeled as grid graphs, e.g. the graph representing Manhattan,

which is composed of horizontal streets and vertical avenues. This fact enables the division of
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Figure 10 ± An example of a weighted graph.

Source: (LI et al., 2017).

the graph into blocks and then it helps to separate the distances into different types: distances

between those vertices in each block; distances between pairs of vertices on the boundary of

blocks; and distances not included in the previous cases. Then, the authors present a method to

release all-pairs distances on general grid graphs with low error.

3.4.1.2 Differential privacy in weighted social networks based on histograms

(LI et al., 2017) presented a merging barrels and consistency inference (MBCI)

approach to releasing weighted graphs under DP guarantees. Initially, they proposed to build a

histogram of edge weights, denoted merging barrels, to reduce the noise added to the weights.

Consequently, they apply the Laplace mechanism to the groups of edges in the histogram, instead

of the weights directly. They argued that simply merging all barrels (edge weights) with the same

count into one group may violate differential privacy. Then, the authors proposed a technique to

achieve k-indistinguishability to guarantee that these groups require the same amount of noise.

Then, groups are said to satisfy k-indistinguishability for an integer k ≥ 1, if the number of

groups with the same amount of barrels is greater than or equal to k. For instance, consider the

weighted graph in Figure 10 and the range of weights limited in the range 1− 25. Note that

ω(V1,V2) = ω(V2,V3) = 6, and ω(V4,V5) = ω(V5,V6) = 10. If k = 2, ω(V1,V2) and ω(V2,V3)

can be merged into one group, as ω(V4,V5) and ω(V5,V6) into another one. Thus, there are

two merged groups and the noise added to them is Lap( (25−1)/2
ε ) = Lap(12

ε ). If k = 3, there

are no merged groups and the noise added to each barrel in the histogram is Lap(24
ε ). Suppose

ω(V2,V5) = 13, instead of 5. If k = 2 or k = 3 three merged groups are present in both cases.

For larger k there are no merged groups.

Finally, the authors propose an algorithm to keep most of the shortest paths un-

changed. This step is performed according to the original order of the edge-weight sequence. It

is important to mention that this process is only based on the known order, without accessing the
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Figure 11 ± An example of segmentation in a social network with 34 nodes and 78 edges.

Source: (WANG; LONG, 2019).

private dataset. Hence, there is no privacy leakage.

(WANG; LONG, 2019) proposed a modified algorithm to reduce the error introduced

by MBCI strategy. They proposed lifted merging barrels and consistency inference (LMBCI)

that divides the original weighted graph into several sub-graphs via segmentation. The proposed

segmentation algorithm is mainly focused on the network structure and does not involve the

change of any edge weight. It is divided into four main steps: (1) a node clustering method based

on the number of common neighbors; (2) a grouping approach based on the node clustering

results; (3) an establishment of the sub-graphs from the grouping results; and (4) the result of the

sub-graph segmentation. An example of this segmentation process is shown in Figure 11. These

nodes are divided into the group with the same shape. As a result, there are five sub-graphs after

the segmentation.

Finally, the authors adopted the MBCI algorithm for each sub-graph. Theoretical

analyses and experimental results showed that LMBCI keeps most of the shortest paths unchanged

and improved the accuracy of the published graph. However, the introduced errors in both MBCI

and LMBCI techniques are relatively high. Low errors are achieved only for ε > 20, making

these approaches inefficient.

3.4.1.3 Differentially-private clustering-based approaches for weighted graphs

(PINOT et al., 2018) presented a differentially private method for node clustering

in weighted graphs. Initially, the authors presented theoretical explanations to support the

utilization of the Minimum Spanning Tree (MST) algorithm as a clustering algorithm. MST

represents a useful summary of the graph, making it a cost-effective and intuitive representation.
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For clustering purposes, it has the characteristic of helping the retrieval of non-convex shapes

(GRYGORASH et al., 2006). The authors then studied how to incorporate privacy constraints

in the DBMSTClu (MORVAN et al., 2017), an MST-based clustering algorithm existing in the

literature.

Since the traditional DBMSTClu algorithm only takes weights from (0,1], the authors

introduced two normalizing parameters τ and p to ensure lower and upper bounds, respectively,

to the weights that fit within DBMSTClu needs. The authors also proposed a weight-release

mechanism, that takes normalized weights, transforms them to a new scale s, and adds noise

drawn from Lap(0,s). They proved that this weight-release mechanism is ε-differentially private.

Then, Pinot et al presented a solution named PTClust that privately outputs clustering partitions.

To do so, initially, a differentially private spanning tree topology is produced. Afterward, a

randomized version of the edge weights is released using the proposed weight-release mechanism.

Finally, the obtained weights are given as input to the DBMSTClu algorithm that performs the

clustering partition. Evaluating the accuracy of this method, the authors concluded that it does

not deteriorate the final clustering partition.

Another work that discusses the enhancement of privacy in weighted graph clustering

is carried out by (CHEN et al., 2022). Specifically, the authors studied the k-median and k-center

problems based on the shortest path with weight-differential privacy, which aims to divide the

set of vertices in a graph into k clusters in order to minimize both the average and maximum

distance between each vertex and its respective cluster center.

For the k-median problem, the authors considered its equivalent form and equiva-

lently reformulated it into the submodular maximization problem (KRAUSE; GOLOVIN, 2014).

The authors then presented a greedy differentially private algorithm that provides the best approx-

imation guarantee for this problem. They first calculate the real shortest path distance between

any two vertices, then apply the exponential mechanism directly to the objective functions. In

this case, the objective functions are indirectly determined by the edge weights. Then, they did

not focus on calculating the private edge weights for every edge. Chen et al argued that the larger

the number of vertices, the larger the number of evaluations of the objective functions. It makes

difficult the adoption of their solution in large-sized graphs. In order to overcome this issue,

the authors applied a sampling technique (MIRZASOLEIMAN et al., 2015) to reduce the time

complexity from O(k|V |) to O(ln k ln k
β
|V |), where β is an approximation constant.

For the k-center problem, the authors described a similar process. They provided the
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best approximation guarantee to this problem using a greedy differentially private algorithm and

improved the number of evaluations of the objective functions, also adopting the same sampling

technique.

3.4.2 Unknown graph topology

These aforementioned works do not consider the scenario where the graph structure

is not known. It leads to incurring excessive noise on the edge weights since the sensitivity

can be as large as the maximum edge weight of the graph. To overcome this, Log-laplace

mechanism (NY; PAPPAS, 2013) may be applied in the graph context (HANEY et al., 2017). It

is suitable to maintain sign consistency between an original query and the result, which is the

case of DP release of count-weighted graphs. Truncation techniques (HARDT; ROTH, 2012;

KASIVISWANATHAN et al., 2013) can also be adopted to reduce the sensitivity of weighted

graphs. The main idea is to limit the value of the maximum edge weight by truncating all the

weights below a certain threshold. However, more sophisticated techniques were proposed

recently (WANG et al., 2020; NING et al., 2021) to address the private release of weighted

graphs problem. They are more related to this thesis and are presented in the next subsections.

3.4.2.1 Differential privacy for weighted network based on probability model

(WANG et al., 2020) were the first to propose a new DP technique that assumes the

graph topology is not public. The authors introduced a differentially private stochastic block

model algorithm, named SSN (Sufficient Statistic Noisy), to protect the privacy of the network

topology. A stochastic block model (HOLLAND et al., 1983) is a generative model for random

graphs that has a tendency to generate graphs with communities. Vertices belonging to the same

community exhibit comparable structural roles and establish connections with vertices from

other groups according to a shared distribution. The main idea of this work is to add noise to the

parameters that produce the stochastic block model and, from this model, generate a network

that is close (in expectation) to the original one.

During the learning process of the model, an expectation±maximization (EM) algo-

rithm is typically used to find the maximum likelihood estimation. To satisfy differential privacy,

the authors argued that a straightforward approach is to add Laplace noise to the parameters

directly in each iteration during the learning process. However, this method has the potential to

generate a substantial amount of noise and exhibit poor performance. To solve that problem, the
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authors adopted a variational Bayesian EM (VBEM) technique to compute the model parameters

and obtain the differentially private stochastic block model.

Next, the authors developed a differential privacy method for weighted networks

denoted VB-WNDP. This approach utilizes the concept of SSN to protect the privacy of the

network topology and creates a probability model to privately release the entire weighted network.

The authors claimed that the communities have similar distributions of weights. Consequently,

the authors computed an approximation to the posterior distribution with differential privacy and

obtained a synthetic weighted network.

3.4.2.2 Differential privacy protection on weighted graph in wireless networks

(NING et al., 2021) also proposed a technique to privately release both the edge

weights and the graph structure in wireless networks. Initially, the authors presented the notion

of a graph dataset, which is basically a set composed of multiple subgraphs. The frequency of an

edge is the number of times an edge appears in each subgraph. Then, the authors applied the

Laplace mechanism to the edge frequency. In the second step, the authors generated a perturbed

graph by taking into account the computed noisy edge frequencies. The graph generation process

starts by adding edges with the highest frequencies. The authors considered that there is a certain

degree of relationship between nodes and reasonable rules of graph generation were designed.

After getting the perturbed graph sets, the authors designed the edge weight protec-

tion algorithm, including a privacy budget division strategy. Because the technique proposed in

the previous steps aims to process each graph in a graph set, the protection of the edge weights is

viewed as a protection of the edge weights sequence. As a result, the privacy budget needs to be

divided. Thus, the privacy budget used in each edge weight sequence is |Ei|
|E| ε , where |E| is the

total number of edges in the entire graph and |Ei| is the number of edges in each subgraph.

Finally, the perturbed edge weights are integrated into the releasing process of the

graph, and frequent subgraphs are mined. In the mining process, the Laplace mechanism and

the exponential mechanism of differential privacy are used to protect the graph structure, and

then the data utility is improved. It is worth mentioning that the privacy budget is divided into 4

parts: ε1,ε2,ε3 and ε4. The ε1 is used to perturb the graph dataset, ε2 is used to perturb the edge

weights, ε3 and ε4 are used to perturb the graph structure in the process of frequent subgraph

mining. The authors allocated the privacy budget proportion as follows: ε1:ε2:ε3:ε4 = 2:3:2:3.
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3.5 Summary

In this chapter, we reviewed the existing works on DP applied in the graph context.

The works presented in Section 3.1 focus on specific queries and are not directly suitable to

answer any subsequent graph evaluation under differential privacy guarantees. On the other

hand, Section 3.2 introduced works that aim to release the entire graph. The main advantage

of these approaches is that they are agnostic to the analysis in the sense that one can compute

any statistics on the perturbed graph. However, none of the presented works tackles the problem

of directly releasing weighted graphs. Local differentially private approaches, i.e., stronger DP

techniques, were discussed in Section 3.3. We presented techniques designed to release either

graph statistics or the entire graph. Despite that, no existing local-DP methods are developed to

privately release weighted graphs.

Section 3.4 described the latest developments in the context of DP for weighted

graphs. Some works assumed that the graph structure is known and considered only the edge

weights as private information. This fact is not always true for some real-world situations. Some

authors proposed new DP techniques that assume the graph topology is unknown, but they work

superimposing a vector perturbation for the weights (using edge weight differential privacy)

after perturbing the graph structure (using edge-DP). Consequently, these approaches compose

two distinct notions of differential privacy for graphs and the DP property satisfied by this

composition would need to be established.

Different from previous studies, we aim to release the entire weighted graph under

differential privacy guarantees to enable subsequent computation of a variety of statistics. We

introduced a new notion of edge-weight differential privacy and propose two new approaches,

based on the two main notions of differential privacy (global-DP and local-DP), to guarantee

the privacy of both graph structure and edge weights in the released graph. In particular, we

privately compute significant statistics that offer a comprehensive description of the original

graph. Subsequently, we employ a sampling technique to perturb the original weighted graph,

eliminating the need to materialize all edge weights and mitigating scalability issues. We also

add adjustment steps to recover as much as possible of the original graph characteristics before

its release.



52

Table 1 summarizes the existing works on DP for graphs. It compares the purpose

of release, the differentially private graph model, the way in which the methods preserve the

privacy of the graph structure, and the type of setting (global-DP or local-DP).

Table 1 ± Summary of existing works on DP for graphs.

Work Purpose of Release Graph DP Model Graph Structure Global-DP Local-DP
(NISSIM et al., 2007)

(HAY et al., 2009)
(KARWA et al., 2011)

(KARWA; SLAVKOVI ÂC, 2012)
(ZHANG et al., 2015)
(CHENG et al., 2018)

Graph statistics Edge-DP
Protected by

Edge-DP
✓

(KASIVISWANATHAN et al., 2013)
(DAY et al., 2016)
(DING et al., 2018)

Graph statistics Node-DP
Protected by

Node-DP
✓

(SALA et al., 2011)
(WANG; WU, 2013)
(XIAO et al., 2014)
(CHEN et al., 2014)

(NGUYEN et al., 2015)
(IFTIKHAR et al., 2020)

(HUANG et al., 2020)

Entire graph Edge-DP
Protected by

Edge-DP
✓

(JIAN et al., 2021) Entire graph Node-DP
Protected by

Node-DP
✓

(SUN et al., 2019)
(YE et al., 2020b)

(IMOLA et al., 2021)
Graph statistics Edge-DP

Protected by
Edge-DP

✓

(QIN et al., 2017)
(GAO et al., 2018)
(YE et al., 2020a)

Entire graph Edge-DP
Protected by

Edge-DP
✓

(SEALFON, 2016)
(LI et al., 2017)

(PINOT et al., 2018)
(WANG; LONG, 2019)

(CHEN et al., 2022)
(FAN; LI, 2022)

Graph statistics Edge-Weight-DP Public knowledge ✓

(WANG et al., 2020)
(NING et al., 2021)

Entire graph Edge-Weight-DP

Protected by
the composition
of two distinct
notions of DP

✓

This thesis Entire graph Edge-Weight-DP

Protected by

new definition of

Edge-weight-DP

✓ ✓

Source: Elaborated by the author.
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4 DIFFERENTIAL PRIVACY FOR COUNT-WEIGHTED GRAPHS

In this chapter, we explore the fundamental concepts and provide formal definitions

related to differential privacy in the context of weighted graphs. We first present the weighted

DP model existing in the literature and present our new notion of neighboring weight graphs that

consider both edge weights and graph topology to be private information. Then we show how to

efficiently perturb a weighted graph based on the proposed definition and using the geometric

mechanism of differential privacy. Finally, we present some post-processing techniques to

improve the accuracy of the perturbed graph by preserving as much as possible the original graph

characteristics.

4.1 Edge-weight Differential Privacy

The two main alternatives that consider applying differential privacy on graphs (edge

and node differential privacy) are not well suited to weighted graphs. In general, it is not possible

to release, e.g. shortest paths, with meaningful utility under edge-DP or node-DP, since changing

a single edge can significantly change the distances in the graph. For example, removing a single

edge between two arbitrary nodes may increase the distance between them from 1 to ∞, when

this removal disconnects the graph. Even if the graph remains connected, the removal of an

edge may jeopardize distances between nodes. This inadequacy inspired Sealfon (SEALFON,

2016) to propose a new notion of differential privacy for graphs, denoted edge-weight differential

privacy.

4.1.1 Edge-weight DP for graphs with known topology

As mentioned before, Sealfon was the first to formally introduce the differential

privacy framework for weighted graphs. It starts by defining neighboring weight functions in the

context of weighted graphs. Let G = (V,E,ω) be an undirected weighted graph with a vertex set

V , an edge set E, and a weight function ω : V 2→ R
+ mapping connections between a pair of

vertices (u,v) to weights in G.

Definition 9. (neighboring weight functions (SEALFON, 2016)) Two weight functions ω , ω ′ :

V 2→ R
+ are neighboring, denoted ω ∼ ω ′, if:

||ω−ω ′||1 := ∑
u,v∈V

|ω(u,v)−ω ′(u,v)| ≤ 1. (4.1)



54

Two graphs G and G′ are neighbors if they have the same set of vertices and edges,

and if their weight functions differ in one unit.

Definition 10. (neighboring weight graphs (SEALFON, 2016)) Let G = (V,E,ω) and G′ =

(V ′,E ′,ω ′) be two weighted graphs, G and G′ are neighbors if V =V ′, E = E ′ and ω ∼ ω ′.

As previously stated, several works in the literature utilize these definitions in their

studies (LI et al., 2017; PINOT et al., 2018; WANG; LONG, 2019; CHEN et al., 2022; FAN; LI,

2022).

4.1.2 Edge-weight DP for graphs with unknown topology

In contrast to the formulation of Sealfon, which considered two graphs to be neigh-

bors if they have the same graph topology and similar weight functions, we consider both the

graph structure and the edge weights as private information. To the best of our knowledge, this

thesis is the first to formalize a new definition for edge weight differential privacy tailored for

graphs with unknown topology.

Our new definition aims to bridge the gap between differential privacy and count-

weighted graph data release, based on the mentioned constraints. In addition, it aims to answer

our Research Question 1: How to establish a new definition of neighboring graphs considering

both graph topology and edge weights as private information?

For some real-world applications, the assumption that the graph topology is public is

misleading. For example, when protecting the presence or absence of interactions in a human

contact network, or the existence or absence of phone calls, text messages, or the presence or

absence of a co-authorship in a paper. These kinds of interactions are not covered by Sealfon’s

definitions in terms of privacy. Once an edge is already known, any differentially private

mechanism will not change the presence or absence of that interaction, i.e., only considering

the scenario where the graph topology is publicly known is not effective to provide the desired

privacy guarantees.

To address this limitation, we adapt the notion proposed by Sealfon for neighboring

weight functions (Definition 9) and provide a new definition for neighboring weight graphs with

unknown topology. Let G = (V,E,ω) be an undirected count-weighted graph with a vertex set V ,

an edge set E, and a weight function ω : V 2→ Z≥0 mapping connections (interactions) between

a pair of vertices (u,v) to weights in G. The pair (u,v) ∈ E if vertices u and v share a common
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Figure 12 ± An example of three neighboring weight graphs. (a) original graph. (b) neighboring
graph by changing ω(a,c) by one unit. (c) neighboring graph by removing edge (a,b) with

weight one. (d) neighboring graph by adding a new edge (b,d) with weight one.

(a)

(b) (c) (d)

Source: Elaborated by the author.

edge, and (u,v) does not belong to E, otherwise. If (u,v) /∈ E then ω(u,v) = 0. Because G is

undirected, ω(u,v) = ω(v,u). We formally define neighboring weight functions with unknown

topology next.

Definition 11. (neighboring weight functions with unknown topology) Two weight functions ω ,

ω ′ : V 2→ Z≥0 are neighboring, denoted ω ∼ ω ′, if:

||ω−ω ′||1 := ∑
u,v∈V

|ω(u,v)−ω ′(u,v)|= 1. (4.2)

Definition 11 differs from Definition 9 in the sense that now weights can assume

zero values and, since we are working with count-weighted graphs, weights are also integers.

Then, two graphs G and G′ are said to be neighboring if they have the same set of vertices and if

the weight functions differ in one unit.

Definition 12. (neighboring weight graphs with unknown topology) Let G = (V,E,ω) and

G′ = (V ′,E ′,ω ′) be two weighted graphs, G and G′ are neighbors if V =V ′ and ω ∼ ω ′.

Figure 12 shows an example of three neighboring weight graphs for unknown

topology from a given weighted graph. Under this new definition, neighboring weight graphs
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differ in one edge weight unit and can also differ in one edge, as in the edge-DP model (HAY

et al., 2009). This is the case where ω(u,v) = 0 in G, and ω ′(u,v) = 1 in its neighbor G′, or

vice versa. In this example, (u,v) /∈ E(G), but (u,v) ∈ E(G′). As a consequence, we can see this

definition as a relaxation of the traditional edge-DP model. We could establish an extension to

the edge-weight differential privacy for unknown topology that allows neighboring graphs to

differ by more than a single unit of edge weight, introducing a parameter k. In this k-edge weight

DP, weighted graphs are neighbors if ||ω−ω ′||1 ≤ k. Let ∆W the maximum weight of a graph

G. If k = ∆W , then the k-edge weight DP model is equivalent to the traditional edge-DP, since

the set of neighboring graphs under the k-edge weight DP is a superset of the neighbors under

edge-DP. If 1 < k < ∆W , then k-edge weight prevents the disclosure of aggregate properties of

any subset of k units of edge weights. It is worth mentioning that, in our setting, we assume both

nodes are public knowledge and k = 1, as stated in Definition 12.

According to the concepts mentioned previously, the formal definition of differential

privacy for count-weighted graphs, considering edges and edge weights as private information,

can be described as:

Definition 13. (ε-edge weight differential privacy. A randomized algorithm A satisfies ε-edge

weight differential privacy, if for any pair of graphs G = (V,E,ω) and G′ = (V ′,E ′,ω ′), such

that G and G′ are neighboring weight graphs and for any possible output O⊆ Range(A ),

Pr[A (G) = O]≤ exp(ε)Pr[A (G′) = O]. (4.3)

We can also define LDP in the context of count-weighted graphs when the topology

is unknown. Let γv = [ω(v,u1), ...,ω(v,un)] be a node v’s neighbor weight list. For instance, in

Figure 12a, node c’s neighbor weight list is γc = [4,3,4]. Note that, if there is no edge (v,ui) in

the graph, ω(v,ui) = 0. Then, edge weight local differential privacy is defined as follows.

Definition 14. (ε-edge weight local differential privacy). A randomized algorithm A satisfies

ε-edge weight local differential privacy, if for any two neighboring weight lists γv and γ ′v, such

that γv and γ ′v only differ in one unit of weight, and for any possible output O of A ,

Pr[A (γv) = O]≤ exp(ε)Pr[A (γ ′v) = O]. (4.4)

4.2 Count-Weighted Graph Perturbation

Given that we have established DP to address count-weighted graphs with unknown

topology, we can apply this new notion to perturb an input graph G and produce a noisy weighted
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Figure 13 ± A naive approach example of a count-weighted graph perturbation via the geometric
mechanism, where black edges denote non-zero edges and grey edges correspond to edges with

weight equal to zero.

Source: Elaborated by the author.

graph version G̃. We consider G as a sparse graph, which implies that non-existing edges have

weights equal to 0. A naive approach consists of perturbing all edge weights, i.e., both non-zero

and zero values via the geometric mechanism. Figure 13 illustrates an example of this process.

The drawback of this approach is that it incurs quadratic computational cost since

the number of perturbed values is equal to |V |(|V |−1)
2 . In this context, filtering and sampling

techniques are commonly used to deal with sparse data (DUFFIELD et al., 2005; DUFFIELD

et al., 2007; CORMODE et al., 2012). In short, filters usually prune away parts of the data

while sampling randomly selects a subset of elements from the input data. In this thesis, we

adopt a sampling strategy to avoid the materialization of all zero edge weights because filter

techniques, such as High Pass Filter (CORMODE et al., 2012), tend to introduce additional bias

when compared to sampling approaches. Its objective is to provide a response to our Research

Question 2: How can we provide a scalable graph perturbation solution?

In particular, we propose a similar idea to the Priority Sampling (PS) method

(DUFFIELD et al., 2007) to efficiently compute a noisy graph G̃. This technique is suitable to

generate a sample of fixed size with solid accuracy properties. Additionally, in this thesis, we

assume the size of the sample is given by the number of expected edges Åm in the noisy weighted

graph G̃. More details about how to obtain this number are discussed in Chapter 5.

The intuition of priority sampling is that the weights with high noisy values are most

likely to correspond to non-zero edge weights in the original graph. So it is important to include

them in the perturbed graph. On the other hand, weights with low noisy values should also be
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added, but with probability proportional to their noisy values. Cormode et al (CORMODE et al.,

2012) also proposed a sampling strategy based on priority sampling to perturb count queries in

sparse data. Different from them, we adopt a one-sided priority sampling, i.e., non-positive noisy

values have no probability to be in the sample.

Priority sampling is defined as follows: for each noisy edge weight ω̃(u,v) is

assigned a priority Puv =
ω̃(u,v)

ruv
, where ruv is a uniform random variable chosen from the range

(0,1]. Assuming all priorities are distinct, the priority sample of size Åm consists of the Åm edge

weights of highest priority. An associated threshold τ > 0 is the ( Åm + 1)th priority. Then ω̃(u,v)

is sampled if:

Puv =
ω̃(u,v)

ruv
> τ ⇐⇒ ruv <

ω̃(u,v)

τ
. (4.5)

Since ruv is uniform over (0,1], the probability of including the edge (u,v) in G̃ is

given by:

puv = min

(

ω̃(u,v)

τ
,1

)

+

, (4.6)

where (y)+ = max(y,0).

Note that the noisy weights with high magnitude (ω̃(u,v) > τ) are included in G̃

with probability 1, whereas non-positive noisy weights have probability 0 to be included in G̃.

Subsequently, we perturb the non-zero weights separately from the zero ones.

Algorithm 1 describes the proposed perturbation process for weighted graph. Initially,

for every existing edge (u,v) in G, we apply geometric noise with α = e−ε to ω(u,v) and add it

to G̃ with probability puv (lines 2-5). For the non-existing edges, we first compute the expected

number of zero edges, denoted m0, that are included in G̃ (line 6). The total number of zeros

is given by
(n(n−1)

2
− Åm

)

and the probability to be added in G̃ is estimated as
α(1−ατ)

τ(1−α2)
(Theorem 7). In line 7, to prevent any bias, we flip a coin to decide whether to round m0 up or

down.

Theorem 7. Let S be the set of zero edges included in G̃. The probability of a zero edge (u,v) be

included in G̃ is given by:

Pr[(u,v) ∈ S] =
α(1−ατ)

τ(1−α2)
. (4.7)

The proof of Theorem 7 is deferred to the Appendix A.
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Algorithm 1: Graph Perturbation
Input :A graph G = (V,E,ω), number of expected edges Åm and a privacy budget ε

Output :A perturbed graph G̃ = (V, Ẽ, ω̃)
1 G̃← /0,α ← e−ε

2 foreach (u,v) ∈ E do
3 ω̃(u,v)← ω(u,v)+Geometric_Mechanism(α) // applying geometric

mechanism to every existing edge

4 add edge (u,v) to G̃ with prob. puv = min( ω̃(u,v)
τ ,1)+.

5 end

6 m0←
(

n(n−1)
2 − Åm

)

α(1−ατ )
τ(1−α2)

// computing the expected number of zero

edges

7 flip a coin to decide m0← ⌈m0⌉ or ⌊m0⌋ // avoiding introducing bias

8 while m0 > 0 do
9 uniformly at random pick an edge (u,v) /∈ E(G)

10 if (u,v) /∈ E(G̃) then
11 add (u,v) to G̃ and draw the value of ω̃(u,v) from the distribution

Pr[ω̃(u,v) = w | (u,v) ∈ S] given by:

12
τ(1−α)2αw−1

1−ατ , if w≥ τ

13
w(1−α)2αw−1

1−ατ , if 0 < w < τ

14 m0← m0−1
15 end
16 end
17 return G̃

In line 9 we uniformly at random pick an edge (u,v) /∈ E(G) and verify it was not

included yet (line 10). Finally, in line 11 we add (u,v) to G̃ and draw this new edge value from

the probability distribution function Pr[ω̃(u,v) = w|(u,v) ∈ S], which is given by:

Pr[ω̃(u,v) = w | (u,v) ∈ S] =
Pr[(u,v) ∈ S | ω̃(u,v) = w]Pr[ω̃(u,v) = w]

Pr[(u,v) ∈ S]
. (4.8)

Substituting the probabilities in the above equation, we have:

Pr[ω̃(u,v) = w | (u,v) ∈ S] =
min

(

w
τ ,1

)

+

1−α
(1+α)α

w

α(1−ατ )
τ(1−α2)

. (4.9)

If w≥ τ:

Pr[ω̃(u,v) = w | (u,v) ∈ S] =

1−α
(1+α)α

w

α(1−ατ )
τ(1−α2)

=
τ(1−α)2αw−1

1−ατ
. (4.10)

If 0 < w < τ:
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Pr[ω̃(u,v) = w | (u,v) ∈ S] =

w
τ

1−α
(1+α)α

w

α(1−ατ )
τ(1−α2)

=
w(1−α)2αw−1

1−ατ
. (4.11)

Figure 14 shows a detailed example of the graph perturbation phase. First, the

geometric mechanism is applied to the non-zero edges. Then, edges are filtered based on the

τ parameter. Finally, m0 is computed, and three new edges are added to the released perturbed

graph.

Figure 14 ± A count-weighted graph perturbation example with τ = 3 that produces three new
edges: (a,b),(a,d) and (b,d).

Source: Elaborated by the author.

It is important to mention that, in practice, τ is unknown. In order to choose a good

value for τ , we first pick a sample of size m′ = β Åm, considering β is small and > 1. We use our

initial guess for τ to draw a corresponding priority sampling. We then reduce the sample size

to Åm by picking the Åm largest priorities and retaining the ( Åm + 1)th priority, i.e., the associated

threshold τ (CORMODE et al., 2012).

4.3 Post-processing to improve graph utility

Post-processing techniques can be employed to improve the utility of the resulting

graph after the perturbation process. This approach is guaranteed to provide differential privacy

since any function applied to an output of a DP algorithm also satisfies DP (Theorem 5). The

goal in this phase is to answer our Research Question 3: How to keep the graph consistent and

avoid introducing bias in the edge weights after adopting a DP technique to perturb the graph

structure?
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In this thesis, we focus on privately querying two main statistics: (1) node degrees,

and (2) sum of all edge weights. The idea is to use them to improve the accuracy of the released

weighted graph. In particular, node degrees characterize the structure and behavior of networked

systems and help specialists understand how the users interact with each other (NEWMAN,

2003). This metric is also useful for other graph-related studies, such as the number of edges,

centrality measures, clustering coefficients, and egocentric analysis.

The second statistic, sum of edge weights, aims to preserve the original number of

records since each unit of weight corresponds to one record in the original data (Figure 1a).

This metric also avoids introducing bias in the final released set of edge weights. As discussed

earlier, to avoid scalability problems, we perturb the entire graph using a sampling strategy.

However, it may introduce some bias in the edge weights and consequently reduce the utility

of the released weighted graph. Another reason to query the mentioned statistics is that both

present low sensitivity, as described as follows.

Theorem 8. For any neighboring weight graphs with unknown topology G and G’ that differ in

one unit of weight,

||deg(V (G))−deg(V (G′))||1 ≤ 2. (4.12)

The proof of Theorem 8 is deferred to the Appendix A.

Theorem 9. For any neighboring weight graphs with unknown topology G and G’ that differ in

one unit of weight,

|| ∑
u,v∈E(G)

ω(u,v)− ∑
u,v∈E(G′)

ω(u,v)||1 = 1. (4.13)

The proof of Theorem 9 is also deferred to the Appendix A.

Algorithm 2 shows the steps for differentially private release of the mentioned graph

statistics.

Original node degrees D are initially perturbed (line 3) via the geometric mechanism

with α1 = e−ε1/2. Note that the noisy sum of node degree values may be odd, which makes

the subsequent adjustment in Section 4.3.1 infeasible. To remedy this problem, we randomly

select a node (line 5), and flip a coin to determine whether to add or subtract 1 to vi (line 6).

This step avoids introducing bias in the result. In line 8, because noisy degrees D̃ may assume

negative values, we post-process them to avoid it. We adopt Algorithm 4 with input D̃ and
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Algorithm 2: Statistics Extraction
Input :A graph G = (V,E,ω), privacy budgets ε1 and ε2

Output :Noisy degrees ÅD and noisy sum of all edge weights Ås
1 α1← e−ε1/2, α2← e−ε2

2 D← deg(V (G))
3 D̃← D+Geometric_Mechanism(α1) // applying geometric mechanism to

the degrees

4 if ∑
n
i=1 D̃i is odd then

5 uniformly at random select a value vi in D̃i

6 flip a coin to determine whether to add or subtract 1 to vi // avoiding

introducing bias

7 end
8 ÅD← Post−processing_Projection(D̃,∑n

i=1 D̃i) // preserving the noisy sum

of all node degrees and guaranteeing all nodes have positive

degrees

9 s← ∑u,v∈E(G)ω(u,v)

10 Ås← s+Geometric_Mechanism(α2) // applying geometric mechanism to the

sum of all edge weights

11 return ÅD, Ås

constant c = ∑
n
i=1 D̃i. This step is discussed in detail in Section 4.3.2, but the main idea of this

post-processing step is to preserve the noisy sum of all node degrees and, at the same time,

guarantee that all nodes have positive degrees, i.e., they satisfy this domain constraint.

The next statistic privately obtained is the sum of the weights of all edges in the

graph. In line 10, a noise is added to this statistic using the geometric mechanism with α2 = e−ε2 .

Finally, the algorithm returns the noisy degrees ÅD and the noisy sum of all edge weights Ås. Both

values ÅD and Ås are used in the degrees adjustment and weights adjustment steps, respectively, to

improve graph utility.

4.3.1 Degrees Adjustment

The post-processing step for degrees adjustment aims to modify the degree values,

obtained from the graph perturbation phase, as close as possible to the original node degrees.

To this end, we use the privately queried estimate of original values ÅD. We propose a two-step

algorithm in order to create a graph G∗ with adjusted node degrees from G̃. It is described in

Algorithm 3.

The core idea of the first algorithm step is to swap the edges such that the node

degrees of G∗ are as close as possible of G̃ while preserving the edges with higher weights

value. Initially, in order to adjust the node degrees according to ÅD, we create an empty graph G∗
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Algorithm 3: Degrees Adjustment

Input :A graph G̃ = (V,E,ω), an array of node degrees ÅD
Output :Degrees adjusted graph G∗

1 G∗← /0
2 sort E(G̃) in descending order of weight
3 foreach (u,v) ∈ E(G̃) do
4 if ÅD(u)> 0 and ÅD(v)> 0 then
5 add edge (u,v) to G∗ with weight ω(u,v) // preserving the edges with

higher weights value

6 ÅD(u)← ÅD(u)−1
7 ÅD(v)← ÅD(v)−1
8 end
9 realize the graph G∗ following the remaining ÅD // swapping edges such that the

node degrees of G∗ are as close as possible of G̃

10 return G∗

(line 1). Then, for each edge (u,v) in G̃, following the descending order of weight, we verify

if the degrees in ÅD, related to both nodes u and v, are greater than 0 (line 4). If this condition

is satisfied, we add (u,v) to G∗ and decrease one unit of degree in ÅD for each corresponding

node u and v (lines 5-7). It means the edge (u,v) does not violate the insertion in G∗, because

according to the expected degrees ÅD, there is still some space for the edge addition. Note that

the first algorithm step is maximal in the sense that no more edges with higher weights can be

included in G∗ without decreasing any node degree below 0.

The second step (line 9) consists of realizing the graph G∗, i.e., generate a random

graph with a given degree distribution. In our case, the degree distribution is set as the remaining

ÅD. We adopt an algorithm that implements an efficient Markov chain based on edge swaps,

with a mixing time which depends on the degree distribution (HASTINGS, 1970; KARRER;

NEWMAN, 2011). This algorithm iterates through all the edges in the network and tries to

swap its target or source with the target or source of another edge. We used the implementation

available in graph-tool package (PEIXOTO, TIAGO P., 2014) which runs in O(|E|+ |V |) time.

4.3.2 Weights Adjustment

Recall the main advantage of priority sampling is that it addresses edge weights

with high values and does not neglect small ones. At the same time, PS algorithm generates a

sample of fixed size Åm. However, priority sampling introduces bias in the weights when the data

distribution is skewed. Another case of bias introduction occurs when querying node degrees.
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The addition of independent noise from DP mechanisms cannot ensure that all node degrees

are perturbed to positive values. A remarkably simple solution to project query results to the

positive integer space is to clip values that lie outside the allowed region Z>0. However, it clearly

introduces bias to the post-processed output. Therefore, this step aims to avoid introducing bias

to the weights in the graph perturbation phase. Additionally, it is also designed to guarantee that

all nodes have positive degrees when this type of query is executed, e.g. Algorithm 2 line 8.

Denote a query by q ∈ Q ⊆ R
n, and K be a set of constraints which hold among

the true answers. The proposed post-processing technique takes the randomized output of the

query (q̃) and aims to find a feasible solution Åq that (i) minimizes squared l2-distance to the noisy

answer q̃, and (ii) satisfies the constraints in K . We focus on two constraints in particular: (1)

positive integer outputs, since the studied count-weighted graphs are drawn in this domain; (2)

the entire output should be summed up to a constant c, which aims to avoid introducing bias and

preserve original data characteristics.

We now formally discuss the underlying optimization problem. Our goal is to find

the closest solution to q̃ that satisfies the constraints in K :

min
Åq∈K
|| Åq− q̃||22 s.t. K =

{

Åq ∈ Z>0

∣

∣

∣

n

∑
i=1

Åqi = c

}

, (PA)

where c ∈ Z>0 is a constant.

Problem PA refers to "closest" as measured in squared l2 norm. To solve this

optimization problem, we use projected gradient descent (PGD), rather than a commercial solver

that would not scale to large graphs. Due to its efficiency and simplicity, PGD is one of the

most popular approaches for solving constrained optimization. Each iteration in PGD consists of

a descent step from the traditional gradient descent method followed by a projection onto the

feasible set K . Particularly, when the least-squares objective is strongly convex, PGD is known

to converge very quickly (VU; RAICH, 2021).

Algorithm 4 describes the PGD algorithm to solve problem PA.

In line 1, we start from the initial solution x(0) = q̃ (the closest solution at this point).

The gradient step performs the update g(i+1)← x(i)−2η
(

x(i)−x(0)
)

since the gradient of squared

l2 norm is given by

∇ Åq || Åq− q̃||22 = 2( Åq− q̃). (4.14)
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Algorithm 4: Post-processing Projection
Input : Array q̃ = (v1, ...,vn), target sum c, step size η , number of steps t

Output :Minimum squared l2 solution x(t)

1 x(0)← q̃

2 for i ∈ {0,1, ..., t−1} do
3 g(i+1)← x(i)−2η

(

x(i)− x(0)
)

// gradient step

4 x(i+1)←Πc

(

g(i+1),x(i)
)

// projection

5 end
6 return x(t)

The projection Πc takes into account the computed gradient g(i+1), the result from

the step before x(i) and the constant c to project the output back to

K Πc(g
(i+1),x(i)) = max(g(i+1)−λ ,1). (4.15)

Intuitively the projection works as follows: we subtract the same scalar

λ =
∑

n
j=1 x

(i)
j − c

n
(4.16)

to every entry in g(i+1) and clip the values outside the region Z>0. This operation aims to find

the number of values missing in ∑
n
j=1 x

(i)
j to achieve the desired sum c. It is distributed uniformly

among all n entries in g(i+1). Both gradient and projection operations are performed for each

iteration until the given number of steps t (lines 2-5). Finally, we output the minimum squared l2

solution x(t).

4.4 Computational Cost

The computational cost of the graph perturbation phase (Algorithm 1) consists of

the time to process the edges in E in the original graph and the time to upgrade the m0 new

edges, which implies in expected time O(|E|), since m0 ≤ |E|. The running time complexity

of Algorithm 2 is O(|V |.t) since it includes the post-processing projection to adjust node de-

grees. Constant t is the number of steps in the post-processing projection. Algorithm 3 runs

in O(|E|.log(|E|)) because it sorts the edges in descending order of weights. As discussed

earlier, the graph realization step also in Algorithm 3 has complexity O(|E|+ |V |). Finally, the

complexity of the weights adjustment in Algorithm 4 is given by the post-processing projec-

tion on edge weights, which is O(|E|.t). Therefore, the overall complexity of our approach is

O(|E|.t + |E|.log(|E|)).
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4.5 Summary

This chapter discussed the fundamental concepts and formal definitions related

to differential privacy within count-weighted graphs. Initially, we motivated why traditional

graph DP models, such as node and edge differential privacy, do not offer appropriate privacy

guarantees, and why a new model is required. Then, we introduced the existing weighted DP

model found in the literature and we discussed its limitations. We also presented our definition

of neighboring weight graphs with unknown topology, in order to release weighted graphs via

differential privacy considering that both the graph topology and the edge weights as private

information.

Since we have established a new definition to address count-weighted graphs with

unknown topology, we demonstrated an efficient graph perturbation technique based on a

sampling strategy that does not materialize zero edge weights when the geometric mechanism is

performed. Our method keeps weights in the perturbed graph with high noisy values, since they

are most likely to correspond to non-zero edge weights in the original one, and also adds low

noisy weight values with probability proportional to their weights.

Additionally, we improved the utility of the perturbed graph by developing post-

processing techniques to preserve as much as possible the original node degrees and the sum of all

edge weights. In particular, for node degrees adjustment, we proposed an algorithm to swap edges

such that the node degrees of the adjusted graph is as close as possible to the perturbed one. In the

weights adjustment step, we proposed and solved an optimization problem to avoid introducing

bias in the weights and to preserve some original graph characteristics. Finally, we proved that

our methods, when run in sequence, have an overall complexity O(|E|.t + |E|.log(|E|)).
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5 GLOBAL AND LOCAL DIFFERENTIALLY PRIVATE APPROACHES

In this chapter, we initially introduce our global differential privacy approach using

the contributions presented previously in the entire dataset, i..e., in a global view of the data. We

extend our results to propose a new method to release count-weighted graphs under the local

differential privacy setting, where the random perturbation is performed on the user side. This

chapter also provides running examples to effectively demonstrate and exemplify the utilization

of both approaches.

In global DP, there is a trusted curator who has access to the entire graph and applies

privacy-preserving mechanisms to ensure the privacy of the overall dataset during analysis or

processing. The curator ensures that any information released from the dataset adheres to the

principles of differential privacy. In particular, the trusted curator obtains the original weighted

graph, applies the graph perturbation step, and subsequently, adjusts the node degrees and the

edge weights before releasing its perturbed version. The necessity of a trusted curator makes the

existing global-DP methods unsuitable in some scenarios, such as decentralized systems where

data is distributed across multiple, autonomous entities (ERLINGSSON et al., 2014). In such

cases, the reliance on a single trusted curator contradicts the principles of decentralization and

poses a potential single point of failure. Additionally, in scenarios involving highly sensitive

or competitive data, entrusting a third party with the role of curator may not be feasible due

to concerns about data leakage or misuse. Furthermore, in environments with limited trust or

where establishing a trusted curator is logistically challenging, alternative privacy-preserving

techniques that do not rely on a central authority become more desirable.

Local DP (LDP) has risen in popularity due to its adoption in both academia and

industry. LDP provides much stronger privacy protection when compared to the traditional global

DP, since the perturbation is performed by the users (nodes), not by the data curator. LDP has

been originally adopted to protect each user’s data independently from the other users. However,

in the graph context, it should consider that an edge contains information about two users. Edge

weight LDP (Definition 14) assumes that the edge connecting the user v to user u and the edge

connecting the user u to user v are different pieces of information. Particularly, user u must trust

user v to not leak information about their shared edge. Figure 15 presents an overview of the

pipeline used by both global and local proposed approaches. Detailed information regarding

both approaches is presented in this chapter.
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Figure 15 ± An overview of the pipeline used by both global and local proposed approaches.

Source: Elaborated by the author.

5.1 The Global Approach

In this section, we describe our global approach to releasing weighted networks

under DP. The main idea is to first privately query important graph statistics, then add noise to

both graph structure and edge weights. In the end, we use the queried statistics to post-process

the perturbed graph and recover the original graph characteristics before releasing it.

The global approach consists of four main general phases: (1) statistics extraction;

(2) graph perturbation; (3) degrees adjustment; and (4) weights adjustment. These phases are

presented in details in Chapter 4. Algorithm 5 presents the global approach and their respective

phases.

Algorithm 5: Global DP Releasing of Weighted Graphs
Input :A graph G = (V,E,ω), privacy budgets ε1, ε2, ε3

Output :Sanitized graph ÅG
1 ÅD, Ås← Statistics_Extraction(G,ε1,ε2)
2 Åm← ∑

n
i=1

ÅDi/2 // obtaining the number of expected edges

3 G̃← Graph_Perturbation(G, Åm,ε3)

4 G∗← Degrees_Adjustment(G̃, ÅD)
5 ÅG← Post-processing_Projection(G∗, Ås)
6 return ÅG
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The global approach starts privately querying the node degrees and the total sum

of edge weights (line 1) using privacy budgets ε1 and ε2, respectively. Recall that neighboring

weight graphs (Definition 12) can be seen as a relaxation of the traditional edge-DP model.

Under edge-DP, the number of edges is not publicly known (XIAO et al., 2014). Thus, we

assume the total number of edges in our thesis is also private. To keep the expected number

of edges, we obtain it by the sum of the post-processed node degrees divided by 2 (line 2),

since the sum of the degree values is twice the number of edges. It is plausible to make this

assumption because, in expectation, the sum of all node degrees in the original graph is similar

to the sum of all node degrees in the perturbed graph, i.e., E[∑n
i=1 Di] = E[∑n

i=1 D̃i]. It occurs

because noises introduced by the geometric mechanism are independently generated from a

zero-mean geometric distribution.

In line 3, the algorithm efficiently perturbs the input graph using a sampling strategy.

Finally, the adjustments are made in the degrees and in the weights (lines 4 and 5). Figure 16

illustrates a running example of the proposed global approach.

The running example of the global approach starts as follows.

Example 2. Consider the original weighted graph G in Figure 16. It has original degrees D

= [1, 1, 3, 3, 2, 2] and the total sum of edge weights (constant s) equal to 15. We first apply

the geometric mechanism to D with ε1 and get D̃ = [-2, 3, 3, 5, 2, 3]. Next, we post-process the

node degrees to satisfy domain constraints and obtain ÅD = [1, 2, 3, 4, 2, 2]. In addition, the

noisy number of edges Åm = 7 is established from the consistent degrees ÅD, by summing up all

their values and dividing it by 2. Finally, we apply the geometric mechanism to the sum of edge

weights with ε2 and get Ås = 14.

The graph perturbation phase is also exemplified as follows.

Example 3. Consider the graph G in Figure 16. The number of necessary edges Åm in G̃ was

found in the previous steps. Consider the threshold τ = 3 for the desired number of edges Åm = 7.

For every existing edge (u,v) in G, we add geometric noise with ε3 to ω(u,v) to get ω ′(u,v)

and add it to G̃ with probability puv = min( ω̃(u,v)
3 ,1)+. Four edges (a,c), (b,c), (d,e) and (e, f )

remain in G̃ since their noisy weights are greater than or equal to τ . For the non-existing edges,

we uniformly at random select three edges: (a,b), (a,d) and (b,d). We draw their noisy weights

from the probability distribution function mentioned previously.

We use the Example 4 to illustrate the degrees adjustment step.
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Figure 16 ± A running example of the proposed global approach.

Source: Elaborated by the author.

Example 4. Consider the graph G̃ in Figure 16. Note that some node degrees do not correspond

to the expected values in ÅD. For instance, node "a" has degree equal to 3 in G̃, while it should

be equal to 1. We first add edge (d,e) to G∗ following the descending order of weight. The

remaining degree sequence after such addition is ÅD = [1, 2, 3, 3, 1, 2]. Next, we add edges (a,c),

(b,c) and (e, f ) to G∗ and ÅD is converted to [0, 2, 2, 3, 1, 2], [0, 1, 1, 3, 1, 2] and [0, 1, 1, 3,

0, 1], respectively. The next edge to be added should be (a,b). However, node a has already

reached the number of allowed edges, since its value in ÅD is now equal to 0. Thus, its insertion

is skipped. Finally, (b,d) is added to G∗ and (a,d) is also skipped. The resulting ÅD is now [0,

0, 1, 2, 0, 1]. Following the remaining ÅD, the final graph is realized. Edge (a,b) in G̃ becomes

(c,d) in G∗ and edge (a,d) in G̃ becomes (d, f ) in G∗. In the end, ÅD=[0, 0, 0, 0, 0, 0] and node

degrees in G∗ are, in expectation, close to the original ones.
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The final step of the proposed global approach is to adjust the edge weights.

Example 5. Consider the graph G∗ in Figure 16. The total sum of edge weights is equal to 22.

However, the expected sum Ås should be equal to 14. In order to achieve this goal, we post-process

all the weights in G∗ and we find a solution that preserves this sum and that also guarantees the

weights are positive. Finally, the graph ÅG is released, including these new edge weights.

5.2 Local Approach

Our local approach adopts the same ideas as its global counterpart, but in two main

phases: (i) a local neighborhood perturbation in each user and (ii) a graph data aggregation in

the curator side.

5.2.1 Local Neighborhood Perturbation

In the LDP setting, each node has its own local neighborhood. In this work, we

consider the neighborhood of a node v to be composed of all nodes connected to v along with

their edges and their respective weights. Algortithm 6 provides a detailed description of the local

neighborhood perturbation phase.

Algorithm 6: Local Neighborhood Perturbation
Input : All user’s neighboring weight lists γ = (γv1 , ...,γvn), privacy budgets ε1, ε2, ε3

Output : All noisy neighboring weight lists γ̃ , noisy degrees D̃ and noisy sum of
weights S̃

1 D̃, S̃, γ̃ ← /0
2 α1← e−ε1/2, α2← e−ε2 , α3← e−ε3

3 foreach γvi
∈ γ do

4 dvi
← |γvi

| // counting of non-zero edge weights, i.e., the vi degree

5 svi
← ∑γvi

// sum of incident edge weights

6 d̃vi
← dvi

+Geometric_Mechanism(α1)
7 s̃vi

← svi
+Geometric_Mechanism(α2)

8 γ ′vi
← Graph_Perturbation(γvi

, d̃vi
,ε3) // perturbing each neighborhood

centered at node vi

9 γ̃vi
← Post-processing_Projection(γ ′vi

, s̃vi
) // adjusting the sum of

edge weights based on s̃vi

10 add perturbed local neighborhood γ̃vi
to γ̃

11 add noisy node degree d̃vi
to D̃

12 add noisy sum of incident edge weights s̃vi
to S̃

13 end
14 return γ̃ , D̃, S̃
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Initially, for each node vi neighborhood of the graph (line 3), denoted γvi
, we locally

extract both the degree (line 4) and the sum of incident edge weights (line 5), as well as the global

approach. In lines 6 and 7 we add geometric noise to these values with privacy budgets ε1 and ε2,

respectively, to get their noisy versions. Then, we apply the priority sampling strategy to perturb

each neighborhood centered at a given node vi with ε3 in line 8. The number of expected edges

in the local approach is given by the noisy queried degree, denoted d̃vi
. As previously mentioned

in Chapter 5.1, edge weights with high noisy values are most likely to correspond to non-zero

edge weights in the neighborhood of the original vi. However, some zero-edge weights may

be included in the neighborhood. In this case, these edges must be incident to the central node.

Note that, if the noisy degree or the noisy sum of edge weights assumes negative values, only

the central node remains after the neighborhood perturbation phase, i.e., without any incident

edge. In line 9, we post-process the weights of vi’s neighborhood considering the noisy sum

of incident edge weights, denoted s̃vi
, to preserve the number of records in the original dataset.

Finally, each noisy neighborhood is sent to the data curator, along with its noisy degree and noisy

sum of weights. The example in Figure 17 illustrates this phase.

The running example of the local neighborhood perturbation approach is given as

follows.

Example 6. Our goal is to release the weighted graph G in Figure 16 under the local approach.

Consider the node a’s neighborhood in Figure 17. Originally, it has degree equal to one (da = 1)

and the sum of edge weights equal to three (sa = 3). We first add geometric noise to both da

and sa to get their noisy versions d̃a and s̃a. The expected noisy a’s neighborhood has degree

equal to 3 and sum of edge weights equal to 9. Let the threshold τ = 2 for the desired number of

edges d̃a = 3. In this case, the original edge (a,c) remains in the noisy a’s neighborhood, since

its noisy weight is greater than τ . Additionally, edges (a,b) and (a,d) are uniformly at random

selected and their noisy weights are drawn from the distribution mentioned in global approach.

Next, the weights of a’s neighborhood are post-processed considering the noisy sum of incident

edge weights s̃a = 9. The whole process is repeated for each node’s neighborhood in G. Note

that, in node b’s neighborhood, only the central node remains after neighborhood perturbation

step, since its noisy degree is negative. In the end, each noisy neighborhood, noisy degree and

noisy sum of weights are sent to the data curator.
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Figure 17 ± Local neighborhood perturbation example.

Source: Elaborated by the author.

5.2.2 Graph Data Aggregation and Release

This phase aims to guarantee the graph consistency after each local neighborhood

perturbation. Algorithm 7 shows the details of this phase. Initially, the data curator aggregates all

noisy degrees (in D̃) and post-processes them to satisfy domain constraints to obtain ÅD (line 1).

This step guarantees that node degrees assume positive values. The expected number of edges Åm

is also obtained, by summing up all values in ÅD and dividing it by 2 (line 2). Next, the curator

aggregates all the sum of incident edge weights in S̃ to compute the expected total sum of edge

weights in the released graph. It is obtained by summing up all values in S̃ and then dividing it

by 2 (line 3).
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Algorithm 7: Data Aggregation and Release

Input : All noisy neighboring weight lists γ̃ , noisy degrees D̃ and noisy sum of
weights S̃

Output : Sanitized graph ÅG
1 ÅD← Post−processing_Projection(D̃,∑n

i=1 D̃i) // preserving the noisy sum

of all node degrees and guaranteeing all nodes have positive

degrees

2 Åm← ∑
n
i=1

ÅDi/2 // obtaining the number of expected edges

3 Ås← ∑
n
i=1 S̃i

2 // computing the expected total sum of edge weights

4 G̃← Merge_Neighborhoods(γ̃, Åm) // merging each weight list to a single

graph, keeping the expected number of edges

5 G∗← Degrees_Adjustment(G̃, ÅD)
6 ÅG← Post-processing_Projection(G∗, Ås)
7 return ÅG

In line 4, the merged graph G̃ is built by adding all the edges in each noisy neigh-

borhood, including their weights. For edges that are present in two neighborhoods, the curator

computes the average for the two weight values. The next step is to post-process the merged

graph G̃ to adjust the degrees based on the expected ÅD and Åm. The curator creates an empty

graph G∗ and starts adding the edges to G∗ following the descending order of weight in G̃

(line 5). Finally, in line 6 the expected total sum of edge weights is adjusted similarly to the

global strategy and the data curator releases the graph ÅG. Example 7 illustrates how this phase

guarantees graph consistency.

Example 7. In the example of Figure 18, the data curator first aggregates the noisy degrees, D̃ =

[3,−1,2,3,3,2], post-processes them to satisfy domain constraints and obtain ÅD= [2,1,2,3,2,2].

The curator also gets the expected number of edges Åm = 6. Additionally, the noisy total sum

of edge weights Ås = 16 is obtained. The merged graph G̃ is built by adding all the edges in

each noisy neighborhood. Note that, the edge (a,c) has noisy weight equal to 3 in node a’s

neighborhood, while it has noisy weight equal to 5 in node c’s neighborhood. Then, edge (a,c)

assumes weight equal to 4 in G̃ (Figure 18), i.e., the average of the values. The degrees of the

merged graph G̃ are then adjusted based on the expected ÅD and Åm. The curator creates an empty

graph G∗ and initially the edges (a,c), (d,e), (a,b), (c,d) and (e, f ) are added. The remaining

ÅD at this point is equal to [0, 0, 0, 1, 0, 1]. Then, the edge (d, f ) is added to G∗ with weight

equal to 2, since it follows the descending order of weights. The edges with lowest weights (a,e),

(b, f ) and (c, f ) in G̃ do not remain in G∗. Finally, the curator adjusts the expected total sum of

edge weights, from 17 in G∗ to 16 in ÅG and releases it.
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Figure 18 ± Graph data aggregation and release for local DP on weighted graphs.

Source: Elaborated by the author.

It is worth mentioning that the final output of the global approach may be different

from that of the local one, since the graph perturbation and adjustments are performed in different

phases.

5.3 Summary

In this chapter, we presented our approach to releasing weighted graphs under global-

DP. First, we privately computed important statistics that provided a good balance of the original

graph. The statistics computed were (1) the node degrees and, (2) the sum of all edge weights.

We then adopted a sampling strategy to perturb the original weighted graph, since filtering

techniques introduce additional bias when compared to sampling approaches. Our strategy

overrode the costly operation of materializing all the edge weights. Additionally, we included

two adjustment steps to recover as much as possible of the original graph characteristics before its

release: degrees and weights adjustments. Finally, we provided details about the post-processing

step, applied during the mentioned phases, to guarantee the consistency of the released graph.

We also presented in this chapter our approach to releasing weighted graphs under

local-DP. We argued that our local approach works similarly to the global one. The difference

is that the perturbation and the adjustment steps are performed by each user. On the user side,

we privately computed the node degrees and the sum of all edge weights. Then we applied

the priority sampling strategy to perturb each neighborhood centered on a given user. We

included the adjustment steps and recovered as much as possible of the original neighborhood

characteristics before the noisy neighborhood was sent to the data curator. On the curator side,

additional steps were added to guarantee the consistency of the released graph.
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6 EXPERIMENTAL EVALUATION

In this chapter, we empirically evaluate the effectiveness of our global and local

approaches on a variety of real-world weighted graphs. Experiments were carried out in Linux

64-bit, Intel(R) Core(TM) i7-7820X CPU @ 3.60GHz CPU and 128GB RAM. We implemented

both approaches in Python with the graph-tool package (PEIXOTO, TIAGO P., 2014). For each

dataset, we repeat each experiment 10 times and report the average results. The number of steps

t and the step size η in PostProcessing_Projection are set to 10 and 0.1, respectively. In

our experiments, we vary the privacy budget ε from 0.1 to 1.0. As discussed in Section 2.3,

to set a proper privacy budget for an application, experts, stakeholders, and data users have to

provide extensive feedback to ensure that the privacy of individuals is sufficiently protected

while maintaining high levels of accuracy in the released information (United States Census

Bureau, 2021). Therefore, how to properly set the privacy budget is outside the scope of this

paper, and we use values of the privacy budget commonly used by other works in this area.

6.1 Datasets

We conducted experiments over four real-world network datasets from different

domains and characteristics. The statistics of these datasets are summarized in Table 2 and

detailed as follows.

Table 2 ± Statistics of graph datasets.

HS contact Reality call Enron DBLP

Nodes 327 6,809 37.9k 1.9M
Edges 5,818 87,680 250k 4M
degavg 35.5 25.7 9.2 4.18
degmax 87 283 1,718 1,088
ωavg 32.4 1.5 15.9 1.7
ωmax 2,949 966 9,080 325

± High-school contact: This is a very small dense network with high weight values where

nodes correspond to students and edge weights are the number of interactions of two

students in contact (MASTRANDREA et al., 2015). In light of our proposed notion of

neighboring weight graphs, in this dataset we aim to protect the presence or absence of an

interaction.

± Reality call: This is a small dense network where a node represents a person, an edge
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indicates a phone call, and edges weights are the number of phone calls between two

people. Based on our definition of neighboring weight graphs, the object of privacy

protection is the existence of a phone call between two people.

± Enron: This is a medium-sized sparse network with high weight values. Each node is

an email address and an edge connects a pair of addresses. Edge weights represent the

number of emails exchanged. In this dataset, our model aims to preserve the presence or

absence of an exchanged email.

± DBLP: This is a sparse and large network with low edge weight values. Nodes are authors

and edges represent the co-authorships among them. Different from the traditional DBLP

dataset, where two authors are connected if they published at least one paper together,

in this dataset we consider two authors to be connected if one of them is the first author.

In other words, instead of forming a clique of co-authors for each paper, we form a star

graph centered at the first author for each paper, with each co-author connected with the

first author through an edge. Edge weights represent the number of such co-authorships

for each pair of authors. This definition aligns with our proposed notion of privacy in

neighboring weight graphs, i.e., preserving the privacy of the presence or absence of a

co-authorship in a paper.

Figure 19 exhibits the main characteristics of the tested weighted graphs, in terms of

sparsity and heaviness.

Figure 19 ± Main characteristics of the tested weighted graphs, in terms of sparsity and
heaviness.

Source: Elaborated by the author.

6.2 Baselines

We compare our two approaches with the naive geometric mechanism (GHOSH et

al., 2012), exponential mechanism (MCSHERRY; TALWAR, 2007), log-laplace (NY; PAPPAS,

2013), truncation (HARDT; ROTH, 2012), high-pass filter (HPF) (CORMODE et al., 2012) and

priority sampling (PS) (DUFFIELD et al., 2007). Of these, geometric, log-laplace, and truncation
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techniques consider the graph structure to be public and provide a good baseline for understanding

the quality of our results, since we propose going beyond the scope of the works that assume

the graph structure is public. Specifically, for some experiments, we use three different values

in the truncation approach to limit the maximum edge weights: θ = ∆W 1/2,θ = ∆W 1/3 and

θ = ∆W 1/4, where ∆W denotes the maximum weight.

The baseline exponential mechanism implemented in this thesis employs a utility

function u that measures how far a candidate graph g is from the original graph G, where g and

G share the same set of nodes (which are publicly known). Thus, we adopt a utility function

u(G,g) =−d(G,g), where d(G,g) denotes the number of unit edge weight modifications on G

to obtain g. All graphs that can be obtained from G through modification of one edge weight

by one unit have u =−1. Similarly, all graphs that can be minimally obtained from G through

edge weight modifications of two units (whether by modifying one edge by two units, or two

distinct edges by one unit each) have u = −2, and so on. This general approach of a utility

function based on distances has achieved good results in DP literature (ZHANG et al., 2015;

MEDINA; GILLENWATER, 2020), since it has low sensitivity and is easy to compute. Based

on our definition of neighboring weight graphs (Definition 12), the sensitivity ∆u of our utility

function is equal to 1, because the maximum possible change in the mechanism output, when we

modify one arbitrary edge weight in the input, is 1.

A naive implementation of the proposed approach is to iterate over all output

weighted graphs and assign probability proportional to exp( ε.u
2 ). However, since the num-

ber of output graphs grows exponentially with the number of nodes, this implementation is not

practical. To overcome this limitation, we group output graphs with the same utility from G and

apply the exponential mechanism.

First, we compute the probability mass function of each group Li, which is measured

by the probability mass of a graph at a specific group i times the number of graphs at that group,

i.e., P(Li) ∝ exp( ε.(−i)
2 ).|Li|. Next, we pick a group i based on its probability P(Li). Finally,

we randomly sample an output graph from the picked group. It is worth mentioning that the

baseline exponential mechanism usually outputs graphs with many positive- weighted edges that

originally did not exist, i.e., dense graphs. Consequently, we do not present an experimental

evaluation of the baseline EM for the DBLP dataset due to its sparsity. In this thesis, we do not

perform any type of adjustment step in the baselines.
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Figure 20 ± Similarity between the original and the perturbed graphs with different privacy
budget allocations.

(a) High School Contact (b) Reality Call

(c) Enron (d) DBLP

Source: Elaborated by the author.

6.3 Privacy Budget Allocation

The use of the total privacy budget ε needs to be carefully allocated in each phase.

Recall that our proposed approaches divide the entire budget into three parts: ε1 to query node

degrees, ε2 to query the total sum of edge weights and ε3 to perturb the graph (ε1 + ε2 + ε3 = ε).

In order to determine which is the best privacy budget allocation, we empirically measure how the

original graph G and the perturbed one ÅG are similar for different privacy budget combinations

(the similarity definition is presented in Chapter 6.4). This analysis is shown in Figure 20. In

this experiment, ε = 1. Note that, for all studied datasets, the similarity values are higher when

ε1 ≈ 0.6,ε2 ≈ 0.1 and ε3 ≈ 0.3. It makes sense to use this combination of budgets. Intuitively,

when querying the total sum of edge weights with ε2, the noise magnitude is low, since this

sum is usually quite large. So, we do not have to allocate a high budget. One can assume the

distributions of weights and degrees are similar. Then we could split the remaining budget in two

equal parts for ε1 and ε3. However, the sensitivity of querying degrees is twice the sensitivity of

querying weights (Theorem 8). Therefore, it makes sense to assign ε1 = 2ε3.
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6.4 Utility Evaluation

In this section, we first define some metrics to evaluate the utility of the released

graphs. Then, we compare our approaches with the mentioned baselines.

6.4.1 Graph Statistics

We adopt the following statistics to measure the utility of a graph G = (V,E,ω):

± Graph similarity (Sim): it is a general metric that allows for comparing graphs with

different edges and different edge weights. Since some baseline approaches only perturb

edge weights, not the edges themselves, the similarity measure can take that into account.

In this thesis we adopt an iterative method to measure the similarity between two graphs,

based on the fact that two graphs are similar if their both neighbourhoods and weights are

similar (KOUTRA et al., 2011). Then, the graph similarity is computed by:

Sim(G1,G2) =

(

∑i≤ j

∣

∣A
(1)
i j

∣

∣+
∣

∣A
(2)
i j

∣

∣

)

−
(

∑i≤ j

∣

∣A
(1)
i j −A

(2)
i j

∣

∣

)

(

∑i≤ j

∣

∣A
(1)
i j

∣

∣+
∣

∣A
(2)
i j

∣

∣

) , (6.1)

where A(1) and A(2) are weighted matrices of two graphs G1 and G2, respectively. The

higher the score is, the higher the similarity between G1 and G2.

± Sum of all edge weights (SEW): it is the total weight of all the edges in the graph. It also

corresponds to the original number of records in a dataset of interactions, since each unit

of weight corresponds to one record in the original data, as exemplified in Figure 1a. This

metric is computed by:

SEW = ∑
(u,v)∈E

ω(u,v) (6.2)

± Average weighted shortest path length (AWSP): it indicates the level of integration of the

weighted graph. It has a strong effect on various dynamics networks statistics, such as

synchronization (NISHIKAWA et al., 2003), random walks (CONDAMIN et al., 2007),

among others. Let d(u,v), where u,v ∈V denote the shortest weighted distance between u

and v. Assume that d(u,v) = 0 if v cannot be reached from u. Then, the average weighted

shortest path length is given by:
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AWSP =
1

n(n−1) ∑
u̸=v

d(u,v) (6.3)

where n is the number of nodes in the graph.

± Global clustering coefficient: is a measure of the density of triangles in the graph. It is

computed as the sum of the weights of all triangles in the graph, divided by the sum of

the weights of all possible triangles (triples). The global clustering coefficient takes into

account both the existence of triangles and the strengths of the connections between the

nodes that form them. A higher value of the global clustering coefficient indicates a higher

degree of clustering in the graph. The global clustering coefficient of a weighted graph is

given by:

C =
A3

∑i ̸= j[A
2]i j

(6.4)

where A is the weighted matrix and it is assumed that the weights are normalized, i.e.,

Ai j ≤ 1.

± Node strength (NS): it is a measure of the importance of a node based on the weighted

connections it has with other nodes in the graph. More specifically, the node strength of

node v is defined as the sum of the weights of all the edges incident on node v, which is

given as follows:

NS(v) = ∑
u∈N(v)

ω(u,v) (6.5)

where N(v) is the set of neighbors of node v.

± Sum of neighboring node strength (SNNS): it refers to the sum of the node strengths that

are directly connected to a particular node v in the graph. This measure provides useful

information about the influence of a node in a network, as nodes with a higher sum of

neighboring node strengths are generally more connected and have a greater impact on the

flow of information or resources in the network. It is defined as:

SNNS(v) = ∑
u∈N(v)

NS(u) (6.6)
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± Weighted PageRank (WPR): the traditional PageRank is a widely used algorithm for

ranking web pages in search engine results. The weighted PageRank is an extension of the

PageRank algorithm that takes into account the edge weights. It assigns a score to each

node in the graph based on the number and weights of incoming edges to that node. The

higher the weight of an incoming edge, the higher the score assigned to the node. The

weighted PageRank formula for a particular node v is:

WPR(v) =
1−d

n
+d

n

∑
i=1

ω(v, i) ·WPR(i)

deg(i)
(6.7)

where d is the damping factor (typically set to 0.85 in practice), n is the total number of

nodes in the graph and deg(i) is the degree of node i.

6.4.2 Utility Analysis

We evaluate the results in four different groups of utility metrics: graph similarity,

distributions of degrees and weights, general graph statistics, and node centrality measures. For

graph similarity and weight distribution, we compare our two approaches with the geometric

mechanism, exponential mechanism, log-laplace, truncation, and priority sampling techniques.

For the distribution of degrees, we compare with exponential mechanism, high-pass filter, and

priority sampling because other techniques assume the graph topology is public and consequently

preserve their original node degrees. For general graph statistics and node centrality measures,

we compare with exponential mechanism, log-laplace, truncation, and priority sampling. In this

work, we do not compare our approaches against the works proposed by Wang et al (WANG et

al., 2020) and Ning et al (NING et al., 2021), since these works compose two distinct notions

of differential privacy for graphs and they do not establish a DP property satisfied by this

composition.

6.4.2.1 Graph similarity

Figure 21 shows the results for similarity between the original and the perturbed

graphs. These results indicate a superiority of both global and local approaches in all datasets

as ε increases. Note that for non-heavy graphs, such as DBLP and reality call, the achieved

similarity is below 50% for all investigated approaches. It occurs because the number of edges

which have the same source and target originally decreases significantly in the perturbed graphs.
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Figure 21 ± Similarity between the original and the perturbed graphs.

(a) High School Contact (b) Reality Call

(c) Enron (d) DBLP

Source: Elaborated by the author.

6.4.2.2 Distributions Comparison

We use the Kullback-Leibler (KL) divergence to evaluate the utility of both degree

and edge weights distributions. It is defined as

DKL(P||Q) = ∑
x∈X

P(x) log
(P(x)

Q(x)

)

, (6.8)

where P(x) and Q(x) are probability distributions of some statistic obtained using a differentially

private approach and the original graph, respectively. The smaller the KL divergence is, the

higher the utility. In Figure 22, we compare the degree distributions obtained from global

and local approaches with that of exponential mechanism, high-pass filter (HPF), and priority

sampling (PS) as ε increases. Both approaches outperform PS and HPF when ε > 0.5 and present

very similar results in most cases. However, for the non-heavy graphs, when ε is too low, other

approaches could be better suited. Particularly, the degree is a local metric centered at a specific
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Figure 22 ± KL Divergence between degree distributions.

(a) High School Contact (b) Reality Call

(c) Enron (d) DBLP

Source: Elaborated by the author.

node, and consequently, the local approach performs as well as the global one. As mentioned in

Section 4.2, filtering techniques tend to introduce additional bias to the weights when compared

to sampling approaches. For this reason, priority sampling outperforms high-pass filter.

We also evaluate the KL divergence of edge weight distributions in Figure 23. Since

our weights adjustment phase alleviates the bias introduced to them previously, both global and

local approaches achieve lower KL divergence when compared to the competitors, even those

that consider the graph topology to be known. Although the exponential mechanism produces

dense graphs, such new edges generally have low edge weights, it reflects positively on its KL

divergence of edge weight distributions.
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Figure 23 ± KL Divergence between edge weights distributions.

(a) High School Contact (b) Reality Call

(c) Enron (d) DBLP

Source: Elaborated by the author.

6.4.2.3 General Graph Statistics

Table 3 summarizes three graph statistics obtained using our global and local DP

approaches, as well as through log-laplace, truncation, and PS, and compares with the non-private

statistic values. The global approach achieves the best results for such metrics, even comparing

it with the methods that consider the graph topology is known. In particular, the sum of edge

weights, i.e. the total number of records in the original tabular dataset, is preserved in the

global approach. In the local approach, due to some edges being removed in the neighborhood

perturbation step, this statistic presents lower values when compared to the others. For the global

clustering coefficient statistic (Clustering coef.), the global approach slightly outperforms the

other methods. In the particular case of the sparse reality call dataset, global, local, and PS

techniques have basically the same results as ε varies.
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Table 3 ± Graph statistics of the original and differentially private networks.

exponential log-laplace truncation θ = ∆W 1/3

Statistics non-private ε=0.1 ε=0.5 ε=1.0 ε=0.1 ε=0.5 ε=1.0 ε=0.1 ε=0.5 ε=1.0

High School Contacts
Sum of edge weig. 188,507 253.4k 231.1k 216.1k 6.6M 2.5M 1.0M 430.0k 104.5k 65.3k
Avg. Weighted SP 2.72 1.66 1.69 1.71 4.19 3.73 3.65 3.61 3.43 3.25
Clustering coef. 0.61 0.85 0.80 0.77 0.35 0.39 0.42 0.41 0.44 0.48

Reality Call
Sum of edge weig. 135,425 31.6M 20.8M 13.5M 3.1M 1.0M 2.9M 4.4M 972.6k 536.5k
Avg. Weighted SP 3.03 1.63 1.65 1.67 3.62 3.57 3.51 3.63 3.62 3.61
Clustering coef. 0.02 0.07 0.06 0.05 0.01 0.01 0.01 0.01 0.01 0.01

Enron
Sum of edge weig. 3,237,456 983.7M 646.M 421.6 813.2M 229.2M 58.5M 25.9M 5.9M 3.5M
Avg. Weighted SP 8.84 2.63 2.67 2.71 92.86 60.26 43.04 38.42 26.08 16.27
Clustering coef. 0.79 1.61 1.47 1.35 0.05 0.16 0.26 0.11 0.25 0.34

DBLP
Sum of edge weig. 7,286,515 - - - 662.5M 431.0M 257.9M 148.9M 34.2M 20.0M
Avg. Weighted SP 8.31 - - - 61.39 34.89 20.50 56.00 18.65 13.59
Clustering coef. 0.11 - - - 0.82 0.45 0.29 0.33 0.28 0.24

priority sampling global approach local approach

Statistics non-private ε=0.1 ε=0.5 ε=1.0 ε=0.1 ε=0.5 ε=1.0 ε=0.1 ε=0.5 ε=1.0

High School Contacts
Sum of edge weig. 188,507 492.7k 238.6k 209.5k 187.5k 188.6k 188.4k 185.2k 186.4k 187.2k
Avg. Weighted SP 2.72 11.49 5.97 3.92 3.22 3.10 3.01 10.64 8.02 6.54
Clustering coef. 0.61 0.13 0.32 0.46 0.41 0.47 0.51 0.41 0.46 0.50

Reality Call
Sum of edge weig. 135,425 5.8M 1.2M 644.8M 133.5k 135.0k 135.4k 133.2k 134.0k 134.9k
Avg. Weighted SP 3.03 8.41 6.71 4.34 5.02 3.37 3.07 6.08 4.13 3.27
Clustering coef. 0.02 0.01 0.02 0.02 0.03 0.02 0.02 0.04 0.03 0.02

Enron
Sum of edge weig. 3,237,456 18.6M 5.7M 4.2M 3.24M 3.23M 3.23M 3.04M 3.12M 3.20M
Avg. Weighted SP 8.84 36.85 21.81 12.51 40.73 19.25 12.02 49.56 21.28 16.01
Clustering coef. 0.79 0.07 0.27 0.34 0.15 0.38 0.49 0.09 0.22 0.37

DBLP
Sum of edge weig. 7,286,515 83.4M 56.5M 20.0M 7.23M 7.29M 7.28M 6.92M 7.04M 7.15M
Avg. Weighted SP 8.31 38.60 26.20 18.10 10.58 8.78 8.51 11.84 9.41 8.70
Clustering coef. 0.11 0.83 0.31 0.15 0.02 0.05 0.06 0.01 0.02 0.04

Source: Elaborated by the author.

6.4.2.4 Node Centrality Measures

Finally, we evaluate the average relative error for node strength (NS), sum of neigh-

boring NS, and weighted PageRank in Table 4. The mean relative error is a statistical measure

used to quantify the average difference between perturbed values (y′i) and original ones (yi),

expressed as a percentage. MRE is defined as:

MRE(y,y′) =
∑

n
i=1 |y

′
i− yi|

∑
n
i=1 yi

, (6.9)

where n is the number of elements in both yi and y′i. In our results, a relative error equal to 1.00

indicates 100%.
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Table 4 ± Average relative errors for the evaluated approaches.

exponential log-laplace truncation θ = ∆W 1/3

Centrality measure ε=0.1 ε=0.5 ε=1.0 ε=0.1 ε=0.5 ε=1.0 ε=0.1 ε=0.5 ε=1.0

High School Contacts
Node strength 1.18 0.77 0.50 9.20 5.17 4.13 3.05 0.60 0.59

Sum of Neighboring NS 10.33 7.47 5.19 15.74 8.14 4.60 1.39 0.63 0.42
Weighted PageRank 0.18 0.14 0.11 0.46 0.45 0.43 0.48 0.44 0.42

Reality Call
Node strength 7.16 5.31 4.43 12.93 10.82 7.04 12.82 8.50 4.27

Sum of Neighboring NS 27.8 14.52 7.08 17.86 15.86 12.98 12.54 4.20 1.89
Weighted PageRank 0.29 0.28 0.27 0.60 0.42 0.29 0.43 0.41 0.39

Enron
Node strength 38.61 32.21 27.94 25.08 19.05 10.52 20.08 10.06 4.98

Sum of Neighboring NS 90.87 47.49 23.09 32.12 24.62 17.98 29.14 5.54 2.67
Weighted PageRank 1.65 1.64 1.64 1.73 1.32 1.09 0.59 0.54 0.50

DBLP
Node strength - - - 15.04 12.27 11.35 9.26 5.83 2.91

Sum of Neighboring NS - - - 8.15 6.39 5.93 12.08 4.48 2.17
Weighted PageRank - - - 0.55 0.47 0.47 0.54 0.46 0.40

priority sampling global approach local approach

Centrality measure ε=0.1 ε=0.5 ε=1.0 ε=0.1 ε=0.5 ε=1.0 ε=0.1 ε=0.5 ε=1.0

High School Contacts
Node strength 3.49 0.59 0.25 1.08 0.20 0.10 1.04 0.18 0.07

Sum of Neighboring NS 0.88 0.39 0.29 0.93 0.30 0.20 1.12 0.34 0.22
Weighted PageRank 0.39 0.14 0.08 0.45 0.12 0.08 0.32 0.11 0.06

Reality Call
Node strength 7.69 5.58 4.16 1.11 0.44 0.27 1.05 0.33 0.17

Sum of Neighboring NS 9.71 4.74 2.33 1.23 0.46 0.40 1.67 0.58 0.49
Weighted PageRank 0.31 0.29 0.27 0.45 0.33 0.21 0.29 0.24 0.13

Enron
Node strength 19.80 12.86 7.81 24.7 11.65 5.87 11.48 5.90 3.12

Sum of Neighboring NS 36.71 12.91 8.87 33.52 9.77 6.25 37.90 22.77 15.92
Weighted PageRank 1.12 0.85 0.71 1.20 0.76 0.56 0.54 0.46 0.39

DBLP
Node strength 7.97 4.85 2.08 3.60 2.59 1.17 2.05 1.24 0.98

Sum of Neighboring NS 3.38 3.24 2.99 8.73 4.48 2.78 10.11 5.20 4.87
Weighted PageRank 0.79 0.76 0.73 0.95 0.81 0.66 0.54 0.42 0.37

Source: Elaborated by the author.

For NS, the local approach outperforms the other methods, including the global

approach. The reason is that node strength is a local metric and it is directly queried in the

statistics extraction phase of the local approach. In terms of sum of neighboring NS, the

approaches do not present a clear winner. It depends on the distribution of the weights in the

original graph. On the other hand, for the weighted pagerank centrality, the local approach

also outperforms the competitors, since the value of pagerank of a node is proportional to the

importance of its neighbors. Note that not all reported values for average relative errors are useful

in practice. For instance, even with ε = 1.0, sum of neighboring NS and pagerank centrality still

present values of relative errors, especially in larger graphs.
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6.5 Running time analysis

Figure 24 shows the average running time of global and local approaches and

exponential mechanism. We set ε = 1.0 and report the average of 10 runs. The low-time

complexities of our global and local approaches enable them to handle large-size graphs. In

particular, the global approach runs faster than the local since the latter presents adjustments on

the local neighborhood perturbation and on the curator side. Due to the fact that the exponential

mechanism materializes a large amount of originally non-existing edges, it takes more time to

run than the other approaches, even grouping output graphs with the same utility function. The

results for the exponential mechanism in the DBLP dataset were not included in Figure 24 due

to the extended duration of the experiments, which prevented them from reaching completion

within the scope of this study.

Figure 24 ± Average running time of global and local approaches and exponential mechanism.

Source: Elaborated by the author.

6.6 Summary

In this chapter, we evaluated the results obtained from our global and local approaches

and we compared them with existing baselines. We tested four real-world weighted graphs with

different sizes, sparsities, and heaviness: high-school contact, reality call, Enron, and DBLP.

In terms of utility, we started evaluating the graph similarity between the original

weighted graph and the perturbed one. In summary, the global approach presented better results.

We also observed that all the approaches presented low similarity values for the non-heavy graphs

since the number of edges that have the same source and target originally changes substantially.
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We also evaluated the results in terms of distributions of degrees and weights. Since

we propose adjustment steps for both statistics directly, it is expected that these approaches

exhibit satisfactory results. Particularly, for the distributions of degrees, we did not consider

geometric, log-Laplace, and truncation as baselines since the graph topology is not perturbed by

them in their approaches, and consequently, the node degrees are not modified.

In terms of general graph statistics and node centrality measures, the global approach

presented better results for general graph statistics, while the local approach worked well for

node centrality measures. The results for global and local approaches outperformed the baselines

mainly when the tested datasets have heavy edge weights. That was the case of high school

contact and Enron datasets.
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7 CONCLUSIONS AND FUTURE WORK

In this chapter, we present a comprehensive overview of the findings obtained

through our research. We have studied the problem of releasing count-weighted graphs for

analysis and statistical purposes with differential privacy while preserving as much as possible

the characteristics of the original graph. Particularly, Section 7.1 summarizes the achieved results

based on the main research questions introduced in Chapter 1. The impact of this research in

real-world applications is also presented in Section 7.2. Finally, open problems and future work

directions are provided in Section 7.3.

7.1 Summary of Results

As discussed in Chapter 1, the main research questions that guided our work were:

RQ1: How to establish a new definition of neighboring graphs considering both

graph topology and edge weights as private information?

RQ2: How can we provide a scalable graph perturbation solution?

RQ3: How to keep the graph consistent and avoid introducing bias in the edge

weights after adopting a DP technique to perturb the graph structure?

In the following, we discuss the achieved results for each research goal.

7.1.1 How to establish a new definition of neighboring graphs considering both graph

topology and edge weights as private information?

In this thesis, we introduced a new definition of neighboring weight graphs with

unknown topology that considers two graphs to be neighbors if the set of vertices is the same

and if the weight functions differ in one unit, i.e., both the graph topology and the edge weights

are assumed to be private. As a result, we applied this new notion to perturb an input graph G

and produce a noisy weighted version G̃ considering both edges and edge weights as private in-

formation. The results presented in Section 6.4 demonstrated the effectiveness of our approaches

in terms of utility when compared to existing techniques. This allowed for the subsequent

computation of various statistics on the released graph while maintaining high utility.
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7.1.2 How can we provide a scalable graph perturbation solution?

Initially, we adopted a sampling strategy to avoid the materialization of all zero-

edge weights in the graph perturbation process. Then we proposed an algorithm, based on

the priority sampling method, to efficiently perturb a count-weighted graph and output a noisy

graph with a pre-defined number of edges. In particular, Section 6.5 showed that the low-time

complexity obtained by our perturbation technique enabled our global and local approaches to

handle large-size graphs.

7.1.3 How to keep the graph consistent and avoid introducing bias in the edge weights after

adopting a DP technique to perturb the graph structure?

To maintain the node degrees consistent and avoid introducing bias in the perturbed

graph, we proposed two post-processing techniques to adjust both degrees and the sum of all

edge weights after the graph perturbation process. In particular, our degrees adjustment algorithm

is maximal in the sense that no more edges with higher weights can be included in the adjusted

graph without decreasing any node degree below 0. This fact enables swapping edges such that

the node degrees of the adjusted graph are as close as possible to the original one and, at the

same time, it preserves the edges with higher weight values. Finally, in the weights adjustment

phase, we proposed and solved an optimization problem to avoid introducing bias in the weights

after the perturbation process. When comparing the results obtained without the adjustment

steps, our global and local approaches outperformed the baselines that did not apply any kind of

post-processing, as shown in Section 6.4.

7.2 Impact of the work

This thesis has the potential to create a positive impact on data privacy research

across a variety of domains that require count-weighted graphs. Systems that enable the ex-

change of information between multiple devices or locations, facilitating efficient and reliable

communication, can benefit from our two approaches. As stated in Chapter 6, the four tested

real-world datasets were based on communication networks, such as calls, messages, and e-mails

exchanged between entities. This fact provides an opportunity to examine influential people and

the interactions between them, along with the analysis of information campaigns through social

media in a private way.
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This research can also find applications within the domain of information among

entities within a propagation network, such as the private detection of misinformation. In this

context, edges are connected when news sharing occurs between two users and the edge weights

are defined as the intensity of propagation from one node to another. While accessing news

via social media platforms offers a convenient and straightforward experience, there exists

a susceptibility to being exposed to fake news that contains unchecked or intentionally false

information. Additionally, the privacy of the connections in this type of graph can be violated

if they are released to machine learning practitioners or researchers without sufficient privacy

guarantees. Then, our local and global approaches can be adopted to protect the presence or

absence of such connections and also of the propagation level.

In the domain of healthcare, our research has the potential for application in con-

ducting privacy-preserving analyses related to the dissemination of epidemic diseases, such

as COVID-19. In this field, edges represent interpersonal interactions, and the edge weights

quantify the frequency of contact between two individuals. In a similar context, our work can

explore the private detection of violations of social distancing measures, where edge weights

indicate the physical distance between nodes. Consequently, researchers can conduct statistical

analysis on such count-weighted graphs, by adopting our both local and global approaches, while

preserving the privacy of both interactions and the distances between individuals.

7.3 Open Problems and Future Work

By conducting a thorough investigation into the difficulties and resolutions con-

cerning the preservation of data privacy, while enhancing data analysis for weighted graphs,

we have uncovered some unresolved issues. First, our both solutions are designed to handle

integer-weighted values. It is important to introduce a weight function that associates real values

with the edges. It can provide a more precise and flexible representation of the relationships

associated with the edges in various applications, such as the strength of the association between

a user and an item in a recommendation system, the cost of transferring funds in a financial

network, the risk in portfolio management, among others. Additionally, edges may also convey

directional information (directed edges), offering a more detailed representation of information

flow, causality, or impact within a network.

In future work, we aim to investigate how the results perform when training machine

learning models with differentially private weighted graphs, comparing them to non-private
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versions and assessing their robustness and accuracy across various tasks. We plan to test graph

neural networks (GNNs) with differential privacy, capturing the dependencies and relationships

among nodes, edges, and weights, in order to generate weighted graphs with DP guarantees.

In addition, we intend to examine hybrid differential privacy, where certain relation-

ships may be accessible to one group of users, while others can be accessed by a different group.

It is an important field of study since some weighted networks may include data from individuals

who make choices to either grant (opt-in) or deny (opt-out) access to specific private information.

Moreover, we aim to propose new utility functions to the Exponential mechanism

that are more efficient in terms of running time and utility, since querying graphs are a closely

related field to categorical analysis. Thus, we can introduce novel differentially private techniques

to address attribute edges, enabling private analysis in emerging applications like fraud detection

within e-commerce networks or determining top rating levels in recommendation systems.

Finally, we aim to investigate fairness in artificial intelligence decisions over weighted

graphs. It involves ensuring that no specific interactions among nodes receive unfair advantages

or disadvantages in machine learning algorithms or analyses based on the graph’s count-weighted

structure. This concept is essential in various applications, including network optimization, data

analysis, and resource allocation, where fairness considerations play a crucial role in achieving

balanced and just outcomes.
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APPENDIX A ± PROOFS

A.1 Proof of Theorem 7

Theorem 7. Let S be the set of zero edges included in G̃. The probability of a zero edge (u,v) be

included in G̃ is given by:

Pr[(u,v) ∈ S] =
α(1−ατ)

τ(1−α2)
. (4.7)

Proof. A zero edge (u,v) is included in the perturbed graph with probability puv =min
(

ω̃(u,v)
τ ,1

)

+
.

Then:

Pr[(u,v) ∈ S | ω̃(u,v) = w] = min

(

w

τ
,1

)

+

,

The probability of a zero edge (u,v) be added in G̃ is given by:

Pr[(u,v) ∈ S] = ∑
w

Pr[(u,v) ∈ S | ω̃(u,v) = w]Pr[ω̃(u,v) = w]

= ∑
w≤τ

w

τ

1−α

1+α
α |w|+ ∑

w>τ

1−α

1+α
α |w|

=
1−α

τ(1+α)

τ

∑
w=0

wαw +
1−α

1+α

∞

∑
w=τ+1

αw

=
α

τ(1−α2)
(1− (τ +1)ατ + τατ+1)+

ατ+1

1+α

=
(1+α)α(1− (τ +1)ατ + τατ+1)+ τ(1+α)(1−α)ατ+1

τ(1−α2)(1+α)

=
α− τατ+1−ατ+1 + τατ+2 + τατ+1− τατ+2

τ(1−α2)

=
α(1−ατ)

τ(1−α2)
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A.2 Proof of Theorem 8

Theorem 8. For any neighboring weight graphs with unknown topology G and G’ that differ in

one unit of weight,

||deg(V (G))−deg(V (G′))||1 ≤ 2. (4.12)

Proof. Assume, without loss of generality, that G′ has an additional edge (u,v) with weight

equal to 1. Consequently, it increases the degree of both nodes u and v in one unit. Similarly,

suppose that G′ has a missing edge (u,v) with weight equal to 1. It implies both nodes u and v

lose one unit of degree. Therefore, it induces a difference of at most 2 in all node degrees for

both cases.

A.3 Proof of Theorem 9

Theorem 9. For any neighboring weight graphs with unknown topology G and G’ that differ in

one unit of weight,

|| ∑
u,v∈E(G)

ω(u,v)− ∑
u,v∈E(G′)

ω(u,v)||1 = 1. (4.13)

Proof. Assume, without loss of generality, that G′ has one unit of edge weight higher than G. As

a result, it increases the total sum of edge weights in one unit. Similarly, suppose that G′ has one

unit of edge weight lower than G. Consequently, it decreases the total sum of edge weights in

one unit. Therefore, both cases induce a difference of at most 1 in the sum of all edge weights.
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