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ABSTRACT

Feature selection is a fundamental process in machine learning to identify the most relevant

subset of features for a given problem. Among the various feature selection approaches, filter

methods stand out for their simplicity and efficiency. However, these methods lack interpretabil-

ity regarding the relationships between the selected and unselected features. To address this

challenge, we propose a novel pairwise feature selection method based on Perfect Bipartite

Matching, which establishes optimized linear relationships between features, thus facilitating the

interpretation of feature connections. We also demonstrate how to incorporate domain knowl-

edge, allowing users to exclude/include desirable patterns (e.g., pre-select specific features).

Empirical evaluations using 17 datasets demonstrate the effectiveness of our approach compared

to baseline methods. Furthermore, we present a case study on Chagas disease, showcasing

detailed interpretation results and the significance of selected features in sudden cardiac death

prevention.

Keywords: chagas disease; interpretability; feature selection; machine learning.



RESUMO

A seleção de características é um processo fundamental em aprendizado de máquina para identi-

ficar o subconjunto mais relevante de atributos para um determinado problema. Entre as várias

abordagens de seleção de características, os métodos de filtro se destacam por sua simplicidade

e eficiência. No entanto, esses métodos carecem de interpretabilidade em relação às relações

entre as características selecionadas e não selecionadas. Para enfrentar esse desafio, propomos

um novo método de seleção de características em pares baseado em Emparelhamento Bipartido

Perfeito, que estabelece relações lineares otimizadas entre as características, facilitando assim a

interpretação das conexões entre elas. Também demonstramos como incorporar conhecimento de

domínio, permitindo aos usuários excluir/incluir padrões desejáveis (por exemplo, pré-selecionar

características específicas). Avaliações empíricas utilizando 17 conjuntos de dados demonstram

a eficácia de nossa abordagem em comparação com os métodos de referência. Além disso,

apresentamos um estudo de caso sobre a doença de Chagas, mostrando resultados de interpre-

tação detalhados e a importância das características selecionadas na prevenção da morte súbita

cardíaca.

Palavras-chave: doença de chagas; interpretabilidade; seleção de atributos; aprendizagem de

máquina.
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1 INTRODUCTION

Feature selection is a crucial step in Machine Learning (ML) to identify the most

relevant subset of features for a given problem. It offers several advantages, such as dimen-

sionality reduction, elimination of irrelevant data, noise reduction, avoidance of overfitting, and

accelerated ML algorithm training (CHANDRASHEKAR; SAHIN, 2014). Feature selection

techniques can be broadly classified into supervised and unsupervised approaches. In supervised

feature selection, the selection process considers the target variable or class labels to identify

the most discriminative features contributing significantly to the prediction task. These methods

aim to maximize the predictive power of the selected features. On the other hand, unsupervised

feature selection techniques do not rely on the target variable and focus on capturing the data’s

underlying structure or intrinsic characteristics. They aim to discover relevant features based on

statistical measures, such as variance or clustering analysis.

In addition to supervised and unsupervised classification, feature selection methods

can be categorized into different strategies, such as filter, wrapper, and hybrid approaches (MIAO;

NIU, 2016). Filter methods assess the relevance of features independently of a specific learning

algorithm. They rely on statistical measures or information-theoretic criteria to rank features

based on their characteristics. Filter methods are computationally efficient and provide a quick

initial feature ranking. Wrapper methods, on the other hand, utilize a specific learning algorithm

to evaluate feature subsets by considering their impact on the model’s performance. They search

through possible feature subsets, evaluating each subset’s performance with the chosen learning

algorithm. Although more computationally expensive than filter methods, wrapper methods can

capture feature interactions and provide more accurate feature rankings. Hybrid approaches

combine filter and wrapper elements, leveraging both strategies’ advantages to improve feature

selection outcomes.

Among the mentioned approaches, Filter Feature Selection (FFS) was widely studied

and still has the community’s attention, being applied in several scenarios as medical applications

(REMESEIRO; BOLON-CANEDO, 2019), marketing strategies (ZHAO et al., 2019), and

general classification problems (BOMMERT et al., 2020). Common FFS methods utilize

feature correlation measures such as Pearson or Spearman correlation (FORMAN et al., 2003),

chi-squared function (ZHAI et al., 2018), or Mutual Information (MI) measures, including

Mutual Information Maximization (MIM) (LEWIS, 1992), mRMR (PENG et al., 2005), and JMI

(YANG; MOODY, 1999). The mentioned approaches are highly regarded for their effectiveness
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in enhancing accuracy and reducing dimensionality in various data analysis tasks. By evaluating

the relevance of individual features through statistical measures or information-theoretic criteria,

these techniques efficiently rank the most informative features for subsequent analyses. Beyond

their performance benefits, filter methods offer an additional advantage - an explicit ranking

system. The straightforward nature of filter-based approaches allows for a clear understanding of

the selected features’ impact on the model’s performance (ZHAO et al., 2019). This transparency

enables researchers and practitioners to gain valuable insights into the underlying data patterns,

fostering more informed decision-making and facilitating the interpretation of results, a crucial

aspect in many real-world applications. However, since many of these algorithms employ

greedy forward search heuristics that often consider the global relation between the variables,

understanding the relationship between the selected and excluded features can be challenging

(KHALID et al., 2014).

To mitigate this issue, we propose a pairwise feature selection method based on the

well-known Hungarian algorithm, the Assignment Problem (AP)(KUHN, 1955). Our method

utilizes the AP to establish an optimized pairwise linear relationship between features, enabling

us to construct a tree that facilitates the interpretation of feature connections. Besides, calculating

the pairwise similarity allows us to explicitly identify why some feature was not selected, creating

an easy way to connect the unselected and selected features.

Interpretative Variable Selection (IVS) also offers a unique advantage in the context

of feature selection. This algorithm has the capability to incorporate specialist knowledge into

the feature selection process by modifying the cost matrix used for AP. It can be used, for

example, to influence the selection of specific variables, effectively ensuring their inclusion

in the final selected set of features. By adjusting the cost matrix strategically, domain experts

or researchers can prioritize certain variables based on their domain-specific knowledge and

insights. This flexibility adds a valuable dimension to the feature selection process, allowing

the integration of expert guidance and domain-specific constraints, which can be particularly

beneficial in scenarios where certain variables are known to be critical or where domain expertise

plays a crucial role in feature selection decisions.

To showcase the usability and efficacy of IVS, we conduct experiments using multiple

datasets across various domains to demonstrate the comparable performance of our method

against baseline approaches. Furthermore, we present a case study focused on Chagas disease

(MARIN-NETO et al., 2023). We provide detailed interpretation results by applying our
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feature selection method, shedding light on the connections between selected features and their

significance in the context of Sudden Cardiac Death (SCD) prevention.

1.1 General Goal

This thesis aims to contribute to the field of machine learning by proposing a novel

Feature Selection method that enhances interpretability and performance in various data analysis

tasks.

1.2 Specific Goals

1. Investigate and compare the performance of various feature selection methods regarding

accuracy, interpretability, and efficiency.

2. Develop a novel pairwise feature selection method using Perfect Bipartite Matching (PBM)

to optimize feature relations and construct an interpretable graph for Chagas disease

diagnosis.

3. Analyze the interpretability of the Computer-aided diagnostics (CAD) system by examining

the relationships among selected features and providing insights into the diagnostic process.

4. Conduct empirical evaluations using multiple University of California, Irvine (UCI)

datasets to assess the generalizability of the proposed method.

5. Validate the efficacy and reliability of the developed CAD system through extensive clinical

validation studies in real-world healthcare settings.

1.3 Publications

The following publications were made in the development of this work:

1. CALDAS, W. L.; MADEIRO, J. P. V.; MATTOS, C. L. C.; GOMES, J. P. P. A new

methodology for classifying qrs morphology in ecg signals. In: IEEE. 2020 International

Joint Conference on Neural Networks (IJCNN). [S.l.], 2020. p. 1±9.

2. PRIMO, P. E.; CALDAS, W. L.; ALMEIDA, G. S.; BRASIL, L. P.; CAVALCANTE, C. H.;

MADEIRO, J. P.; GOMES, D. G.; PEDROSA, R. C. Auxílio ao diagnóstico para predição

de morte súbita em pacientes chagásicos a partir de dados clínicos: uma abordagem

baseada em aprendizagem de máquina. In: SBC. Anais do XXI Simpósio Brasileiro de

Computação Aplicada à Saúde. [S.l.], 2021. p. 335±345.
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3. CALDAS, W. L.; MADEIRO, J. P. do V.; PEDROSA, R. C.; GOMES, J. P. P.; DU, W.;

MARQUES, J. A. L. Noise detection and classification in chagasic ecg signals based on

one-dimensional convolutional neural networks. In: SPRINGER. International Confer-

ence on Computer and Information Science. [S.l.], 2022. p. 117±129.

4. CAVALCANTE, C. H.; PRIMO, P. E.; SALES, C. A.; CALDAS, W. L.; SILVA, J. H.;

SOUZA, A. H.; MARINHO, E. S.; PEDROSA, R. C.; MARQUES, J. A.; SANTOS, H. S.

et al. Sudden cardiac death multiparametric classification system for chagas heart disease’s

patients based on clinical data and 24-hours ecg monitoring. Mathematical Biosciences

and Engineering, v. 20, n. 5, p. 9159±9178, 2023.

1.3.1 Organization

The remainder of this thesis is structured as follows: Chapter 2 provides an overview

of related work in the literature for Feature selection (FS) and describes the Perfect Bipartite

Matching (PBM). Chapter 3 cover our proposed approach. Chapter 4 presents the experimental

setup and the results obtained using our proposed method. Finally, Chapter 5 concludes the paper

by summarizing our findings and outlining potential directions for future research.
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2 LITERATURE REVIEW

2.1 Feature Selection.

This section will cover the state-of-art of feature selection algorithms, as the score of

this work is supervised FFS; we will briefly cover the most critical supervised filter selections and

then go deep into FFS methods. First, in classification and regression problems, FS is a crucial

preprocessing step to eliminate irrelevant or redundant data, thereby enhancing learning accuracy

and comprehensibility (CHANDRASHEKAR; SAHIN, 2014). It involves selecting a subset

of relevant features, encompassing various approaches, like feature filtering, feature wrapping,

and hybrid methods. Each approach has its advantages and limitations. Feature filtering is a

simple and fast method, whereas feature wrapping tends to outperform feature filtering but is

more prone to overfitting. Hybrid methods aim to find a balance between these two approaches

(KHALID et al., 2014).

Filter methods are widely used as a preprocessing step independent of the learning

algorithm. They evaluate each feature individually or about others, based on statistical measures

like MI or Chi-Square, and rank them according to their relevance or importance (KUMAR

et al., 2017). One advantage of these methods is their robustness to overfitting since they are

not dependent on the specific learning algorithm being used and its simplicity, as most of the

algorithms rely on the Greedy Forward Search Heuristic (GFSH) (KURSA, 2021).

Wrapper methods select subsets of features by incorporating feature selection as an

integral part of the model-building process. These methods treat a learning algorithm (such as a

classifier or regression model) as a black box to evaluate various feature subsets and optimize

the model’s performance. Wrapper methods often yield more accurate feature subsets than

filter methods, but they can be computationally expensive and prone to overfitting, mainly when

dealing with small datasets. Some noteworthy examples of wrapper methods include Lasso

regression (ZHANG; HUANG, 2008), Recursive Feature Selection (CHEN; JEONG, 2007),

Ridge regression (NG, 2004) and Random Forests (KURSA; RUDNICKI, 2010).

Hybrid methods aim to leverage the strengths of both filter and wrapper approaches.

In a two-step process, they first employ a filter method to reduce the feature space by selecting

the most relevant features. Subsequently, a wrapper method is applied to the filtered feature set to

further fine-tune the feature selection process. This approach balances computational efficiency

and performance, addressing potential overfitting issues associated with pure wrapper methods
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while enhancing performance compared to filter methods alone. Notable hybrid methods include

the independent component analysis in conjunction with MI criteria (STONE, 2002), and Genetic

Algorithm with MI criteria (HUANG et al., 2007).

In summary, feature selection is a critical step in data preprocessing, and choosing the

appropriate method depends on the specific problem, dataset characteristics, and computational

resources available. Wrapper methods are effective but computationally expensive; filter methods

are efficient but might not capture feature interactions. Hybrid methods compromise these two

approaches, aiming for improved performance and efficiency, but are much more complex. Table

1 summarizes all the described approaches.

Table 1 ± Comparison between feature selection strategies of relevance and redundancy estima-
tions. Relevance metrics measure how important a feature is in relation to the specific
prediction or classification task at hand. Redundancy metrics evaluate how much one
feature is correlated with or redundant with respect to other features.

Method Type Relevance Measure Redundancy Measure
JMI Filter Mutual Information Mutual Information
MIM Filter Mutual Information -
MRMR Filter Mutual Information Mutual Information
chi2 Filter Chi-Square -
Lasso Regression Wrapper Coefficient Magnitude -
Ridge Regression Wrapper Square of the Coefficient Magnitude -
Random Forest Wrapper Coefficient Magnitude -
Hybrid GA (Genetic Algorithm) Hybrid Fitness Function Genetic Diversity

mRMR-ICA Hybrid Mutual Information
Independent
Component Analysis

Source: Author.

As mentioned before, the FFS on table 1 relies on GFSH, and, before going deep

into these methods, we will first formally introduce the GFSH. First, consider a system (X ,Y )

consisting of D features denoted by Xi and a target variable Y . The algorithm starts with an empty

list of selected features, denoted as S, and adds features step-by-step based on the maximal value

of a specific criterion function J. Once a feature is selected and added to S, it is not considered

again during the selection process (KURSA, 2021). Below, we will cover the most common

criteria used with this approach.

Correlation-based criteria, such as Pearson or Spearman correlation, are the simplest

criteria for feature selection. These approaches select features that exhibit the highest correlation

with the target label and work well when the relationship between the features is linear (FORMAN

et al., 2003). Another commonly used approach replaces covariance with the chi-squared

function, a statistical test employed to determine if there is a significant difference between
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observed categorical variables and expected frequencies. According to (ZHAI et al., 2018), this

approach has yielded competitive results in text mining. Based on the previous criteria, we can

easily formulate a generic optimization function named Topk where the algorithm evaluates

each feature’s relevance by scoring them against a similarity measure F and selecting the best k

features. Below we present the equation:

Jtopk
= ∑

W∈S

F(W ;Y ) (2.1)

Another well-known family of feature selection algorithms is based on MI(BENNASAR

et al., 2015), which measures the statistical dependence between two random variables. MI

is a non-parametric technique capable of handling non-linear relationships, making it widely

applicable in various fields (SIDDIQI et al., 2020; ZHOU et al., 2020; ZHOU et al., 2022). Some

commonly used methods within this category include MIM(LEWIS, 1992), mRMR (PENG et

al., 2005), and JMI(YANG; MOODY, 1999).

Let‘s start describing the simplest method of MI family, the MIM, which is consid-

ered the topk version based on MI, where the criteria focus solely on the mutual information

between a feature and the decision:

JMIM = ∑
W∈S

I(W ;Y ) (2.2)

Even though the MIM present robust results, it disregards inter-feature interactions

(PENG et al., 2005). As an alternative, the mRMR algorithm aims to identify a subset of features

relevant to the target variable while also having low correlation among themselves. To achieve

this, the algorithm computes the MI between each feature and the target variable, as well as the

MI between each feature and all other features in the dataset (PENG et al., 2005). The features

are then ranked based on a combination of these two values to maximize relevance and minimize

redundancy, as shown in the following equation:

JmRMR = I(Xi;Y )−
1
|S| ∑

W∈S

I(Xi;W ) (2.3)

Here, I(v1;v2) represents the MI between random variables v1 and v2. Unfortunately,

mRMR is unable to detect more complex interactions as it assumes that I(Xi;Y ) is an upper
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bound of feature significance (KURSA, 2021). In contrast, JMI iteratively selects features, taking

advantage of the already selected features. The JMI criterion is formulated as follows:

JJMI = ∑
W∈S

I(Xi,W ;Y ) (2.4)

Here, I(v1,v2;v2) represents the MI between random variables A and B given the

variable C. Alternatively, because I(v1,v2;v3) = I(v1;v3|v2)− I(v3;v2), the criteria can also be

formulated as:

J′JMI = ∑
W∈S

I(Xi;Y |W ) (2.5)

While the abovementioned methods yield good results in many problems, they

lack interpretability and visualization tools to help users understand why certain features are

selected while others are removed. The interpretability of these methods is normally based

on the similarity between selected variables and the target variable; Theoretical frameworks

were also proposed to offer another level of interpretation based on the statistical assumptions

(BROWN et al., 2012). Still, the optimizations equations 2.1 2.2, do not take into account the

similarity between variables, and the equations 2.3, 2.4 calculate the global similarity between the

selected features and the unselected ones; Unfortunately, this strategy makes hard to determine

individual relationships; and because that makes the interpretation between a specific selected

and unselected feature complicated.

To address this issue, we propose a pairwise feature selection method based on

the assignment problem, which allows users to identify the relationship between selected and

unselected features one-by-one while keeping competitive results.

2.2 Perfect Bipartite Matching Problem

The PBM is a well-known problem in graph theory that involves finding a maximum

cardinality set of pairwise non-adjacent edges in a bipartite graph. This problem has found

applications in various fields of machine learning and data mining, including multiview learning,

recommendation systems, and object tracking (HASHEMI et al., 2021; BEIRANVAND et al.,

2022; LI; CHEN, 2013; ZHANG et al., 2016; WANG et al., 2021). Several algorithms can be

employed to solve the PBM, such as the Hopcroft-Karp Algorithm, Ford±Fulkerson algorithm,
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Hungarian algorithm, linear programming, auction algorithm, and branch and bound method

(GERARDS, 1995). Table 2 summarizes the complexity and characteristic for each one of the

methods.

Table 2 ± Methods for solving the Assignment Problem. Where O represents the
asymptotic complexity, V is the number of vertices or nodes, E the umber
of edges, F is the Maximum flow value (used in Ford±Fulkerson algorithm),
and n is the number of nodes.

Method Complexity Algorithm Type Description

Hopcroft-Karp Algorithm O(
√

V E) Augmenting Path

Finds
maximum matching
in bipartite graphs.

Ford±Fulkerson Algorithm O(EF) Augmenting Path

Finds
maximum flow
in a network.

Hungarian Algorithm O(n3) Augmenting Path

Solves the
assignment problem
for square
cost matrices.

Linear Programming O(n3) Optimization

Can be used
for solving
assignment problems
with non-square
cost matrices.

Auction Algorithm O(n2 logn) Combinatorial Auction

Iteratively finds
prices and allocations
in auction-like manner.

Branch and Bound Method Exponential Optimization

Systematically explores
the search space
for optimal assignment.

Source: (GERARDS, 1995).

Formally, let G be an undirected graph with vertex set V = ω ∪ τ and edge set E,

where ω and τ are two disjoint sets of vertices, and E represents the set of edges connecting

the vertices in ω and τ . A matching M ⊆ E is a subset of edges in which no two edges share a

node. A matching M is considered maximal if its cardinality is maximal among all matchings.

The PBM aims to find a maximum cardinality set of pairwise non-adjacent edges, where each

edge connects a vertex in ω to a vertex in τ . The problem can be mathematically formulated as

follows:

M = max{|M′| : M′ ⊆ E,(∀w ∈ ω)(∃!t ∈ τ)(u, t) ∈M′} (2.6)
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A specific case of the PBM incorporates a weight function w : E → R assigning

weights to the edges. In this case, the objective is to find a subset M ⊆ E that minimizes the

total weight of the edges. This variant is often referred to as the AP, a well-known optimization

theory problem. The AP involves assigning a set of resources to a set of tasks while minimizing

the overall cost or maximizing the overall profit. In the formulation of the AP, ω represents the

set of workers, τ represents the available tasks to be completed, and E represents the cost matrix

for each worker to perform a task. The mathematical formulation is as follows:

min

{

∑
(u,t)∈M

w(u, t) : M ⊆ E,(∀u ∈ ω)(∃!t ∈ τ)(u, t) ∈M

}

(2.7)

A solution to the AP is illustrated in Figure 1. While the Hungarian method is often

used to solve the AP, we chose to use the Hopcroft-Karp Algorithm due to its better asymptotic

time complexity of O(|E|
√

V ) compared to the Hungarian method’s O(|V |3). It should be noted

that in the worst-case scenario, |E|= |V |2.

Figure 1 ± Solution for the Balanced Assignment example for
n= 4. Each one of the wavy edges represents a different
match between a worker and a task.

w1

w2

w3

w4

t1

t2

t3

t4

C11=1

C12=0

C13=4
C

14 =1
C21=2

C22=2

C23=6
C2=4

C31=
5

C32=
5

C33=5

C34=5

C 41
=2

C42=
2

C43=
2

C44=6

Source: Author

2.2.1 Assignment variants

In addition to the traditional AP, several variants are commonly encountered. Three

notable variants are the Unbalanced Assignment Problem (UAP), the Restricted Assignment
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Problem (RAP), and the Symmetric Assignment Problem (SAP).

The unbalanced assignment problem arises when the sets ω (representing the work-

ers) and τ (representing the available tasks) in the bipartite graph have different cardinalities,

making finding a match that connects all elements in both sets impossible. To address this issue,

dummy nodes can be introduced with zero cost in the smaller set to balance the sizes of the sets.

Note that including dummy nodes does not affect the optimization costs since their costs are

constant (PENTICO, 2007).

On the other hand, the restricted assignment problem deals with situations where

certain workers from ω cannot perform specific tasks in τ (WANG; SITTERS, 2016). This can

be represented by removing edges in the bipartite graph or increasing the value to a high number

to prevent the solver algorithms from picking up specific relations.

Another variant worth mentioning is the SAP, where the cost matrix is symmetric.

In the SAP, if a match mi, j belongs to the matching set M, then the symmetric match m j,i must

also be in M. This particular case of the SAP, in which the diagonal cells of the cost matrix have

infinite costs, is equivalent to the perfect matching problem in graph theory (MURTY, 1967).

It is important to note that perfect matches can only occur in graphs with an even number of

vertices, thus requiring an even number of assignments. While there are specialized approaches

to solving the SAP, they often have higher time complexity compared to the previous algorithms

(DERIGS, 1978). As an alternative to the existing approach, we propose an efficient solution

that leverages the Hopcroft-Karp algorithm. Our method aims to improve the matching process

while maintaining a manageable time complexity. Here’s how our approach works:

1. Removing Non-Symmetric Matches: We begin by analyzing the matches in the set M.

We identify and eliminate any non-symmetric matches, which are represented by mi, j in

M but m j,i is not present in the set. By removing these non-symmetric matches, we ensure

that each remaining match is bidirectional and symmetrical.

2. Adding Symmetric Matches Greedily: After rectifying the matches, we proceed to add

symmetric matches in a greedy procedure. This involves iteratively selecting the best pairs

of entities and adding them to the set M. The process continues until no more symmetric

matches can be found.

Importantly, this additional step of adding symmetric matches does not introduce a

significant increase in the overall time complexity of the assignment algorithm. The time com-

plexity of this operation is O(|E|), meaning it scales linearly with the number of entities(edges
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of the graph) in the matching pool. As a result, the overall time complexity of our proposed

solution remains the same as the original algorithm.

Considering these variations, exploring different approaches, and adopting appro-

priate algorithms, the AP and its variants can be effectively solved and optimized in various

real-world scenarios, providing valuable insights and practical solutions.



28

3 INTERPRETATIVE VARIABLE SELECTION VIA PERFECT BIPARTITE

MATCHING (IVS)

This section presents a novel feature selection method based on the AP. We begin by

briefly introducing feature selection and then present the general idea of the proposed method,

along with its pseudocode. Finally, we discuss the potential interpretation of the results obtained

through this technique.

Formally, given a standard classification/regression problem f : X → Y , where

X ∈RNxM represents the input data with n rows and D features, and Y is the target variable, our

objective is to identify the optimal subset of features S that best represent the data for constructing

the predictive function f .

In order to construct the mapping function f , we propose a feature selection algorithm

based on the AP, which involves identifying the most similar pairs of variables iteratively and

discarding the less relevant ones. We also demonstrate how we can adapt the AP to the context

of feature selection.

First, the AP is primarily concerned with matching a set of workers with tasks while

minimizing a cost matrix. Based on this formulation, we introduce a slight modification where

the sets of workers and tasks correspond to the complete feature set; note that although they

conceptually represent the same objects, they are still separate sets as needed in the assignment

problem, the idea behind this modification is to associate feature pairs rather than worker/task

pairs.

To construct the cost matrix C we can use any similarity metric, such as covariance

or mutual information. Our approach uses a common variant of normalized covariance: the

Pearson product-moment correlation coefficient due to its simplicity and faster implementation

than other similarity measures. It represents the covariance ratio between two random variables

to the square root of the product of their variances. Mathematically, one can express it as:

corrcoe fi j =
cov(i, j)
√

σ
2
i ∗σ

2
j

(3.1)

Here, i and j denote two random variables, cov(i, j) is their covariance, and σ
2
i

and σ
2
j represent their variances. The correlation coefficient ranges from -1 to 1, where -1

indicates a perfect negative correlation, 1 represents a perfect positive correlation, and 0 implies

no association between the variables.
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From the perspective of feature selection, positive and negative correlations hold

equal importance. Therefore, we take the absolute value of Equation 3.1 and subtract it from

1 (converting the weight minimization into weight maximization) to define our cost function

G(a,b) = 1−abs(corrcoe fab). The cost matrix C can be defined as follows:

Ci j =











G(i,Y ) if i = j

G(i, j) otherwise
(3.2)

Since the sets of workers and tasks correspond to the features, the cost matrix C

represents the absolute value of the normalized covariance between all pairs of features in the

complete feature set. Additionally, the diagonal elements of C are replaced with G(i,Y ), where

Y denotes the target variable.

Next, we propose the following objective function:

jivs = ∑
W∈S

G(W,Y )− ∑
W∈S

∑
V∈W ′

G(W,V ) (3.3)

Unfortunately, like most filtering methods, maximizing the cost function in Equation

3.3 is quadratic in terms of D, as it requires evaluating all feature permutations to find the optimal

subset S. Instead of employing a greedy forward approach and evaluating features individually,

we propose an algorithm based on multiple rounds of the assignment problem to determine S.

The core idea is to find the best global pairwise matches recursively. Initially, we

compute the cost matrix C and apply the SAP variant instead of the classic AP to X , a necessary

condition to avoid cycle dependency between features (see subsection 3.1). The output consists

of a set of pairs that precisely corresponds to a total of M pairs, because we used the SAP variant

a match between feature i and j (represented as mi j) is essentially redundant when compared

to a match between j and i (represented as m ji), as they both capture the relationship between

features i and j, based on this assumption, we can simplify and assume that there are only |M|/2

distinct pairs in the output. In other words, half of the features are matched with the other half.

For each pair of matched features, we choose the feature with a higher Cr
ii value (indicating

greater similarity to the target variable) forming a new set, denoted as X r, where r represents

the number of rounds of SAP performed. We repeat the SAP again in the r-th round of matches

(starting from 0, i.e., X = X r=0). We repeat this process recursively until |X r|> 2 and store Mr

in a list of match rounds denoted as L.
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After several rounds of matches, the last feature in the final match round exhibits

high similarity to Y while leaving out its correlated features from the previous steps. To select

the feature set S, we sort the features in reverse order based on their appearance in L. For nodes

at the same level (number of rounds of assignment or the height on the tree; see section 3.2), we

use their similarity with Y as a tiebreaker (higher similarity is favored). Finally, we select the

first |S| features. We present the pseudocode of this algorithm in 1.

Algorithm 1 IVS Pseudocode
Input: X, Y, |S|
Output: subset of features S

1: C← G(X ,Y )

2: X r← X

3: L← []

4: while |X r| ≤ 2 do

5: if |X r|/2 is odd then

6: X ′← ADDFAKENODE(X ′)

7: end if

8: C′← CALCULATECURRENTCOSTS(X r,C)

9: C′← SETINFINITYDIAGONAL(C′)

10: Mr← FINDASSIGMENT(C′)

11: X r← SELECTNEXTCANDIDATES(X ′,Mr)

12: L.append(Mr)

13: end while

14: T ← SORTNODES(L,X ,C)

15: S← GETBESTFEATRUES(T )

3.1 Dealing with the cycle dependency

As described before, for each round of the AP with M matches, it’s necessary to

ensure that we going to have only |M|/2 distinct pairs, otherwise, some features may have

duplicate matches (despite the symmetric ones) forming a cycle dependency between them. For

example, suppose the presence of a triple of matches mi j, m jk, mki. It’s not possible to select

which feature propagates because we have multiple relations for each one of them. To address

this, we must ensure that if mi j represents a match from feature i to feature j in the match set Mr,
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then m ji must also be a match. To enforce this condition, we must use SAP variant applying the

following conditions:

1. The value of |X r|/2 must be even for each round.

2. The diagonal of C is set to infinity.

The first condition is necessary because an odd value of |X r|/2 implies that it is

impossible to have all matches for both mi j and m ji simultaneously, as this requires an even

cardinality of matches. To address this, a dummy node with zero cost can be added to the

feature set, as described in the 2.2.1 subsection. This modification does not interfere with the

optimization problem and does not require any changes to the current algorithm. The second

condition is easily fulfilled by setting the diagonal of Cr to infinity. Even for non-symmetric

assignment problems, this step is necessary to prevent matches between the same features. Note

that mii represents a match between worker i and task i, but since workers and tasks correspond

to features, a match between the same feature is redundant.

3.2 Interpretation and visualization

Traditional filter methods such as mRMR, MIM, JMI, and Top-k chi-square provide

users with a certain level of interpretation, typically based on the similarity level between the

target variable and the selected features. While valuable and easy to interpret, these methods lack

explainability regarding the intra-relationship among the features. In contrast, wrapper methods

like tree-based feature selection offer better interpretability by revealing the structure that governs

the feature relationships. However, as noted in (JOVI ÂC et al., 2015), wrapper methods are more

prone to overfitting. In this work, we propose a simple approach to interpret the results of IVS

while maintaining the simplicity of filter methodologies. We achieve this through constructing a

hierarchical graph, which elucidates the relationships between all features and explains why they

are selected.

To construct the hierarchical graph G, we create a node for each feature in X . The

value of each node is computed using Equation 3.1, which represents the normalized covariance

between the feature and the target variable. In each round of the assignment problem, we add an

edge between the matched nodes on the edges set E. Using the last selected node as the root,

a tree is formed where each edge denotes the linear relationship between the parent and child

nodes. Notably, the tree exhibits a unique property where the value of each parent node must be

greater than or equal to that of its child node. This property holds because a node with a higher
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value will continue to be propagated in the subsequent assignment rounds.

The tree structure of the graph facilitates an intuitive interpretation of the results.

Starting from the root node, representing the feature with the highest linear similarity to the target

variable, one can traverse the edges downward to explore a sequence of linearly related features.

Parent nodes, with higher values than their child nodes, indicate features more strongly related

to the target variable. By examining the value of each edge, it becomes possible to understand

why certain features were not selected (e.g., they may be relevant but highly similar to other

selected features). This sequence of features can serve as a feature subset for further analysis,

such as model training or feature engineering. Section 4 presents an illustrated example for SCD,

including how to build the graph and how to interpret it.

In summary, the hierarchical graph visually captures the linear relationships between

features and the target variable, enabling a straightforward interpretation of the results and

identification of feature subsets for subsequent analysis.

3.3 Incorporating Domain Knowledge

This section explains integrating domain-specific knowledge into feature selection

by adjusting the cost matrix. It offers strategies to enhance feature relevance, ensure feature

propagation, handle variable relationships, and strike a balance between domain knowledge and

algorithmic objectivity.

The approach to incorporate domain-specific knowledge is to manipulate the values

in the cost matrix (C), which influences feature similarity and is crucial in the selection process.

Here are strategies for modifying these values:

3.3.1 Emphasizing Feature Relevance

In scenarios where certain features are known to be more crucial due to domain

expertise, we can increase their feature relevance value. By increasing the similarity values

between these features and the target variable Y , we encourage their inclusion in the final feature

subset. This adjustment effectively elevates their importance in the feature selection process,

making it more likely for these features to be selected.
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3.3.2 Reducing Redundancy

In cases where redundancy among features is a concern, we can set the cost matrix

values to enforce matches between related features. This ensures that important relationships

between variables are preserved in the selected subset.

For example, if we know that features A and B are highly correlated and both contain

valuable information, we can set CAB and CBA to encourage their simultaneous exclusion.

3.3.3 Preserving Relevance

Conversely, if we want to preserve features with the highest relevance by retaining

multiple representative features from a group of correlated variables, we can set low-cost relation

values to discourage matches between these variables. This ensures that the algorithm propagates

the redundant features in different branches, preventing them from being removed.

3.3.4 Forcing Feature Propagation

If we increase the relevance for a single variable for the highest value, we can

guarantee the variable will be selected because of the propagation ability of IVS. This property

does not hold if we increase the feature relevance for multiple variables. It is insufficient to

guarantee that all features will be present in the final sub-selected feature set because some may

be removed because of redundancy.

As a countermeasure, we can strategically set their cost matrix values to ensure that

specific features are propagated through the selection process. For example, if we have prior

knowledge that features A and B are highly relevant, we can set high values for CAA, CBB while

we set CAB and CBA to lower values compared to other feature pairs, making the algorithm favor

these features to match other pairs and avoiding one of them being out of the final subset of

selected features.

In other words, to guarantee a subset of features k to be inserted on the final subset,

we must ensure:

1. for each pair i j we set Ci j = 0

2. for each variable i, we normalize Cii =Cii + c, where c = 1 Since the values of cost matrix

C fall into a range between 0 and 1, adding a constant value c bigger or equal than one

will force the k variables to be propagated once they will never match each other because
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of the previous clause.

3.3.5 Balancing Act

It’s important to strike a balance between domain knowledge and algorithmic ob-

jectivity. While injecting domain expertise can improve the quality of feature selection, overly

biased adjustments may lead to suboptimal results. Experimentation and validation should guide

the fine-tuning process to ensure that domain knowledge enhances, rather than hinders, the

feature selection algorithm.

Incorporating domain knowledge into the cost matrix empowers us to steer the

feature selection process toward more informed and context-aware decisions. It enables us to

leverage our understanding of the problem domain to select the most relevant and valuable

features while managing redundancy effectively.

3.4 Running Example

This section will present how the algorithm works and how to interpret the results,

taking an artificial data set in a controlled scenario as an example.

3.4.1 Description of the Toy Data Set

This subsection describes an experiment based on an artificial data set designed

to facilitate a classification experiment to explore the interpretability of the feature selection

algorithm. The data set consists of two classes: Class 0 and Class 1. Each class represents a

distinct category that the classification algorithm aims to identify based on the input features. It

also contains 600 samples evenly distributed across the two classes. The data generation process

description can be consulted as follows:

1. Informative Features (2): Two informative features are generated using multivariate

normal distributions. Class 0 data points are generated with a mean vector of [2,2] and

a covariance matrix of





1 0.7

0.7 1



. In contrast, class 1 data points are generated with

a mean vector of [−2,−2] and a covariance matrix of





1 −0.5

−0.5 1



. These features

contribute significantly to the separation of the two classes.
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2. Redundant Features (4): Four redundant features are created to investigate how the

presence of such features affects the interpretability of the classification algorithm. Redun-

dant features are obtained by combining the informative features linearly with adjustable

coefficients and adding random noise using a normal distribution with a mean of 0 and a

standard deviation of 1. This process ensures that the redundant features are related to the

informative ones but do not provide any additional discriminatory information.

3. Repeated Feature (1): A single repeated feature is introduced to the data set. This

feature is identical to the first informative feature, allowing one to examine the algorithm’s

sensitivity to repeated information and its impact on interpretability.

4. Non-informative Feature (1): One non-informative feature is included in the data set,

which is purely random noise. This feature allows for investigating the algorithm’s ability

to differentiate between informative and uninformative variables.

The final data set has 8 features (2 informative + 4 redundant + 1 repeated + 1

non-informative). Figure 2 shows the 2D projection of the data set is visualized using scatter

plots.

Figure 2 ± Scatter plot for the synthetic data set. On the X label, we
have the informative feature 1; On the axis Y, we have the
informative feature 2.
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3.4.2 How to interpret the results

The first step in the algorithm execution is to build the cost matrix using the function

3.2. Note that for n = 8, the matrix will have n2− n cells representing the similarity of each
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feature and n cells on the diagonal expressing the relevance of each feature (similarity with the

target variable). We will then define the value k = 2, for the number of selected features. Then

we will apply rounds of the assignment problem to form pairs of similar attributes.

Figure 3 ± Aggregation rounds of the proposed method for the synthetic data set

(a) First round: we performed the
SAP; The red node is more sig-
nificant and will be sent to the
next round.

(b) Second round: the double are
matched, forming quartets of
features.

(c) Third round: Feature 1 was se-
lected as the root of the model.

Source: Author

Figure 3a shows the first round of the assignment. Note that we will have eight pairs

for eight features, of which four are redundant. This happens because we are using the symmetric

variant of the AP (pairs (a,b) and (b,a) represent matches between feature a and feature b).

Each of the formed pairs represents the best possible global match given the cost matrix, and

as expected, the repeated variable represented by the number 7 matched with the informative

variable represented by the number 1. There is a perfect degree of similarity between these two

variables. Variables 3 and 4, 5 and 6 are linear compositions of variables 1 and 2, and therefore,

they share a certain degree of information. This explains the matches (3,4) and (2,5). The match

(6,8) is different because variable 8 is composed of random noise. This match did not happen

due to the similarity between 6 and 8 but rather to form the best combination that maximizes

the global similarity of pairs. Despite this connection not representing a similarity between the

variables, propagating the more relevant variable mitigates the possible loss of information.

Note that conforming figure 3a, only variables 1, 2, 3, and 6 were selected to compose

the second round. This happened because they have higher relevance in their respective pairs.

The final result of the second round can be seen in figure 3b, where the formed matches were

(2,6) and (1,3), and variables 2 and 1 were propagated. The explanation for this is simple:

variables 1 and 2 are independent variables used to form the output variable and, therefore

contain much information regarding the output variable. Their matches with variables 6 and

3 occurred again because the latter are linear combinations of the former and thus share some
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information.

In the third and final round, only variables 1 and 2 remain, with only the pair (1,2)

left. In Figure 3c, we have the last round of assignments where feature 1 is propagated due to its

higher relevance. With no more features left for a new round of assignments, the first part of the

algorithm comes to an end.

Figure 4 ± Hierarchical graph of features for k = 2. The selected nodes are in red. The
edges represent the cost similarity between nodes. The unselected features are
represented for the first selected node in their path to the root.

Source: Author.

In conclusion, based on the number of rounds of AP, the proposed algorithm selected

the most relevant variables, which turned out to be features 1 and 2. The final structure, shown in

Figure 4, represents a simplified model that captures the essential information needed for further

analysis or modeling.

Starting from the root represented by feature 1, we explored the similarity relation-

ships among nodes at lower levels. We analyzed the edges and found that some pairs like (1,7)

exhibited perfect similarity, allowing us to remove redundant information without compromising

the model’s accuracy. Additionally, the algorithm’s approach of propagating the most relevant

variables helped mitigate potential information loss, even when pairs with lower similarity values

were present, like (1,3).

Furthermore, we observed that some edges (3−4, 2−5, and 2−6) showed high lin-

ear similarity between parent and child nodes, indicating that the higher-level variable accurately

represented the information of its corresponding lower-level node. This insight allowed us to

remove the child nodes, further simplifying the model while retaining the necessary information.

Lastly, we identified an edge with a similarity value of 0, corresponding to variable
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8, which was composed solely of random noise and lacked helpful information. As expected, we

safely discarded this variable without negatively impacting the model’s performance.

Overall, the algorithm’s application successfully selected the most relevant variables,

simplified the model’s structure, and preserved crucial information, making it a valuable tool for

feature selection and interpretation.
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4 EXPERIMENTS AND RESULTS

This section presents the empirical evaluation of the proposed feature selection

method through two experiments. The first experiment investigates the accuracy of the algorithms

as the number of features increases, while the second examines the general classification accuracy.

4.1 General data sets

In order to evaluate and compare IVS with the state-of-art approaches, we carefully

selected 17 datasets from the UCI Repository (ASUNCION; NEWMAN, 2007) that exhibit

variations in features, sizes, and domains. These datasets are commonly used in similar studies

(BROWN et al., 2012; BENNASAR et al., 2015).

To assess the difficulty level of the feature selection task for each dataset, we

computed the example-feature ratio N
mc

, where N represents the number of data points, m denotes

the median arity of the features, and c signifies the number of classes. A lower value of the

example-feature ratio indicates a more challenging feature selection problem (BROWN et al.,

2012). The table describing the selected datasets can be found in 3.

Table 3 ± Data sets used in experiments. The final column indicates
the difficulty level of performing feature selection, where a
smaller value indicates the hardest problem.

Dataset Name Size Attributes Classes Ratio
COIL20 1440 1024 20 14
USPS 9298 256 10 186
arcene 200 10000 2 1
colon 62 2000 2 10
madelon 2600 500 2 9
lung_discrete 73 325 7 3
connectionist-bench-sonar 208 60 2 21
optical-recognition-handwritten-digits 3823 64 10 22
ozone-level-detection-one 1848 72 2 185
ozone-level-detection-eight 1847 72 2 185
libras-movement 360 90 15 5
hill-valley-noise, 606 100 2 61
hill-valley 606 100 2 61
adult, 32561 107 2 8140
mushroom, 8124 111 2 2031
horse-colic, 300 121 2 75
lung-cancer, 32 146 3 5

Source: Author.

Our data processing pipeline begins by applying a standardization function to all

datasets. Following the approach of (BROWN et al., 2012), we perform a discretization step on
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continuous features using an equal-width strategy with five bins.

In line with existing literature, we utilize the widely known Support Vector Machine

(SVM) as the learning model for classification. We employ a 10-fold cross-validation setup with

a linear kernel and set the hyperparameter C to 1. We repeat the experiment 10 times without

performing any hyperparameter tuning. The primary focus of the experiment is to evaluate

the feature selection effectiveness of the algorithms rather than the predictive capability of the

learning model.

For the first experiment, we conduct a classification task using five well-known

filter algorithms as baselines for comparison with our proposed method. We vary the number

of features across different datasets, and the final results are presented in Figures 5 and 6. As

expected, in most datasets, increasing the number of features also increases the accuracy, except

6a and 6e, where redundant features appear to have negligible impact. Some datasets, such as

5g, 5h, 6b, 6c, exhibit poor results for all methods, our hypothesis is this happened due to the

nonlinearity of the datasets. It is worth noting that the chi-square algorithm performs poorly

when a low number of features is selected in almost all datasets, even in 5c, which has the highest

example ratio (indicating an easier feature selection task). We can expect this behavior since

chi-square is one of the simplest baseline filter methods.
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Figure 5 ± Performance of all methods regarding classification accuracy and
the number of features. Data sets 1-9.
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(b) USPS

10 20 30 40 50 60

0.72

0.74

0.76

0.78

Number of Features

A
cc

ur
ac

y

chi-square
proposed
jmi
mic
mrmr

(c) adult

10 20 30 40 50 60

0.66

0.68

0.7

0.72

0.74

Number of Features

A
cc

ur
ac

y

chi-square
proposed
jmi
mic
mrmr

(d) arcene
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Source: Author
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Figure 6 ± Performance of all methods regarding classification accuracy and
the number of features. Data sets 10-18.
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(a) horse-colic
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(b) libras-movement
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(c) lung-cancer
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(d) lung discrete

10 20 30 40 50 60
0.54

0.56

0.58

Number of Features

A
cc

ur
ac

y

chi-square
proposed
jmi
mic
mrmr
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(f) mushroom
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(h) ozone-level-detection-eight
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An interesting observation is that the proposed method achieves better results on

5a and 5c, where both datasets have similar example ratios and relatively large numbers of

features/examples compared to the other datasets. The proposed method benefits from having

more samples to measure the similarity between features accurately. High-dimensional datasets

often contain more redundant features, and the proposed method’s ability to aggregate similar

features and propagate the most relevant ones becomes advantageous.

The mutual information-based filters (JMI, mRMR, MIM) demonstrate the best

performance on the most challenging datasets, such as 5d and 6d. Unlike covariance-based

methods, mutual information can capture nonlinear information between features leading to

better results. However, as shown in Figure 7, these methods exhibit slower performance

times compared to the proposed method, especially for JMI and mRMR. This is expected

because calculating mutual information involves the computation of multiple integrals, which is

computationally expensive. This suggests a trade-off between accuracy and time when comparing

covariance-based and mutual information methods. Nonetheless, in the upcoming experiment,

we will demonstrate that the proposed method achieves statistically similar results to JMI and

mRMR.

Figure 7 ± Expended time in seconds for classification ex-
periment. As expected, the proposed method is
slower than simple mic and chi2 methods but
faster than JMI and mRMR. The upper part of the
figure represents values greater than 1, while the
inferior part represents values between 0 and 1.
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In the second experiment, we conducted the classification problem and examined

which filter would provide better accuracy for each dataset. The goal was to determine if there

was a significant difference in the accuracy of the outcomes among the methods. Table 4 provides

a summary of the accuracy achieved by each filter for each dataset.

From the table, we can observe that the proposed method achieved better accuracy

in 7 datasets, even though the graphs in Figures 5 and 6 show high values at certain peaks for the

other methods, we can hypothesize that our approach was more effective in avoiding overfitting

in these experiments.

To assess the statistical significance of the results and compare the proposed method

with the method that achieved higher accuracy (beyond the proposed method), we conducted a

corrected resampled t-test (BOUCKAERT; FRANK, 2004). This t-test checks the hypothesis

that the difference between the outcomes of the two classifiers comes from a distribution with a

mean of zero.

Table 5 provides the p-values and statistics of the t-tests comparing the proposed

method with the alternative methods for each dataset. The p-values indicate the probability of

observing the obtained difference in accuracy if the true difference in performance is zero. A

small p-value suggests that the observed difference is statistically significant, indicating that the

proposed method performs similarly to the alternative method.

By examining the table, we can conclude that for most datasets, the p-values are

relatively high, indicating no significant difference in performance between the proposed method

and the alternative method with higher accuracy. This finding supports the claim that the proposed

method achieves statistically similar results to the baseline methods.

The results of the previous experiments indicate that the proposed method performs

comparably to the baseline methods while demonstrating faster execution times, particularly in

comparison to traditional methods like JMI and mRMR, for most data sets as can be seen in

Figure 7. These findings suggest that the proposed method is a practical and effective alternative

to existing feature selection filter algorithms in the literature.

Overall, the experiments provide evidence that the proposed method is a viable and

promising approach for feature selection, offering a balance between accuracy and computational

efficiency compared to traditional filter algorithms.
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4.2 Application in real-word case.

Sudden cardiac death (SCD) is a significant adverse outcome of Chagas Disease.

Some approaches have been proposed to identify clinical and laboratory features that can assist

in early diagnosing high SCD propensity. Some of these approaches include the Rassi score

(JR et al., 2006), multivariate analysis (SOUZA et al., 2015), and Heart Rate Variability (HRV)

analysis (ALBERTO et al., 2017; ALBERTO et al., 2020).

In this study, we aim to reduce the number of variables in existing systems, which

can help lower the costs of exams or minimize the need for invasive procedures. Identifying a

subset of relevant features can also contribute to the early diagnosis of high SCD propensity in

individuals with Chagas Disease. This process can help streamline and optimize the diagnostic

process, potentially enhancing outcomes and resource utilization in the clinical setting. The data

set used in this study is the same as the one used in (CARVALHO et al., 2019), and Table 6

summarizes of the features included in the dataset.

This section will demonstrate the proposed method’s usability while comparing it

with the mentioned baseline approaches. We will conduct a classification + feature selection

experiment to identify patients with a record of SCD; We performed a similar experiment in

the previous section using SVM with 10X10-fold cross-validation, linear kernel, and the hyper-

parameter C = 1. Figure 8 shows the accuracy comparison between the baseline filter and the

proposed work, varying the number of features.

Figure 8 ± Performance of all methods regarding classification accuracy
and the number of features for Chagas Dataset.
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The Chagas Disease data set analysis reveals interesting findings regarding the
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accuracy of different feature selection methods. The accuracy of the methods generally shows an

increase in the range of 1-20 features, followed by a decrease in accuracy in the range of 20-30

features. This pattern suggests the presence of linear redundancy among the features.

Among the methods evaluated, JMI with k = 20, the proposed method with k = 10,

and MIM with k = 30 achieved the highest accuracy results, with slight differences. Specifically,

JMI obtained an accuracy of 0.786, the proposed method achieved 0.778, and MIM also achieved

0.778. While the differences in accuracy are minimal, the proposed method stands out for its

ability to significantly reduce the number of features compared to JMI and MIM.

A classification experiment was conducted by tuning the number of features to further

investigate the findings. The classification results are summarized in Table 7. Interestingly, the

MIM filter, which is the simplest method among the mutual information (MI) family, achieved

the highest accuracy. This result could be attributed to the greedy search criteria used by the

other methods, which may make them more susceptible to overfitting.

To determine the significance of the results, a corrected t-test was performed between

MIM and the proposed method. The test resulted in a p-value of 0.8171 and a statistic of 0.2381,

which indicates that the null hypothesis is accepted. This means that there is no significant

difference between the accuracy of the two methods.

Overall, these findings suggest that despite its simplicity, our approach achieves

comparable accuracy to other feature selection methods while significantly reducing the number

of features required, being valuable in optimizing costs and the need for invasive procedures to

diagnose high SCD propensity in Chagas Disease.

Despite the comparable accuracies to other filters, IVS also offers a high degree of

interpretation. As explained in Section 3.2, the assignment iterations can be used to construct a

tree representing the feature selection process. The process is visualized in Figure 9, and the

final tree for k = 10 is shown in Figure 10.

In the tree, the selected features are represented by nodes in red. By disconnecting

the parent edges of the red nodes, we obtain k disconnected graph components, each taking

the form of a tree. These components can be interpreted as clusters of features formed through

pairwise similarity (e.g., Feature A matches with B, B matches with C, and so on). The root node

of each cluster represents the entire cluster. This hierarchical structure explains the selection or

removal of each feature.

Examining the tree structure clarifies why each feature was selected or discarded
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during the selection process. This interpretability aspect of the proposed method adds value and

enhances the understanding of the underlying relationships between features.

Figure 9 ± Aggregation rounds of the proposed method.

(a) First round: feature will
be matched forming doubles.
The red node is more signif-
icant and will be sent to the
next round.

(b) Second round: the double are
matched, forming quartets of
features.

(c) Third round: In this case, we
have an odd number of com-
ponents. A fake node will be
added to allow an even number
of matches.

(d) Fourth round: the component
with root 0 was matched with
the fake node, so no aggrega-
tion was performed. Still, we
move this component to the
next round.

(e) Fifth round: again, the compo-
nent with root 0 was assigned
to the fake node. We repeat
the process.

(f) Sixth round: the final graph
was built. Node number 31
is the most significant node
across all other nodes.

Source: Author

To illustrate the relationship between selected and non-selected features, we present

a table summarizing the similarity of the features (Table 8). On the left side of the table, we

can see the selected feature names, their relevance, and the number of iterations in which the

feature participated. On the right side, we list the removed features, their relevance, the number

of iterations, and their similarity with the selected feature. The relevance column indicates the

importance of the variable according to the similarity function mentioned in 3.2, representing the

similarity between the feature and the target label. The iteration column represents the number

of times the features were propagated for another round of the assignment problem. The selected

features are chosen based on their number of iterations and relevance, with a higher number of
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iterations indicating greater importance. The similarity column represents the similarity between

the selected and non-selected features.

Firstly, it’s important to note that all selected features have more significance than

their corresponding matches. This is expected since the proposed method propagates highly

relevant features while removing those with lower relevance. The most significant variable

selected, serving as the model’s root, is Count Premature Ventricular Contraction (PVC)’s,

which represents the number of PVCs for 24 hours. PVCs are considered triggering factors for

SCD according to the classic biological model of sudden death (ROBERT et al., 1989). This

triggering factor may also apply to chronic Chagas’ heart disease (JR et al., 2001). However,

PVC’s was connected to Syncope, resulting in the removal of this variable from the model. The

literature supports this similarity, which indicates that progressive PVCs induced by exercise or

stress can cause syncope or sudden death (PEREZ-SILVA; MERINO, 2011).

Another important finding is that the second most important variable is Gender.

This aligns with the studies presented on (KEEGAN et al., 2020), which suggest a strong

predisposition for SCD in Chagas disease among males. The literature also shows that variables

such as Systemic Arterial Hypertension, Type 2 Diabetes Mellitus, and Sedentary Lifestyle

are influenced by gender (KAUTZKY-WILLER et al., 2016; BRUNO et al., 2016). In this

context, it is plausible to hypothesize that the gender variable encapsulates the information of the

other mentioned clinical variables in the classification of SCD in Chagas disease. An alternative

hypothesis worth considering is that the observed differences may stem from survey selection

and information biases. It is possible that men, if they have underlying health conditions or

disabilities, might be hesitant to engage in survey participation or disclose pertinent health-related

information. (OKSUZYAN et al., 2010).

Other relevant features, such as Left ventricular ejection fraction (LVEF), are also

associated with SCD in Chagas disease (KEEGAN et al., 2020). It’s worth noting that frequent

idiopathic PVCs can result in a reduced LVEF (BAMAN et al., 2010). However, as described

in Tables 11 and 10, the relation between PVCs and LVEF is weaker than between PVCs and

syncope. Consequently, some related variables may appear in different branches as other strong

relations suppress them. Despite this, it’s also possible to note trivial relations, such as Cardiac

insufficiency and Average Heart Rate.

The literature supports the findings presented by our method. However, it is important

to acknowledge that important variables may be excluded from the model due to their similarity
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with the selected ones. This occurs because there is a threshold between the relevance and

redundancy of features, and sometimes it is reasonable to retain certain variables even if they are

redundant. An example is the Syncope variable, well-known as a factor for sudden cardiac death

in Chagas disease (KEEGAN et al., 2020). In such cases, incorporating specialist knowledge

into the model can be beneficial. Constraints can be applied to the assignment connections by

removing edges between specific nodes, a variant known as the constrained assignment problem

(described in Section 2.2.1).

To explore this, we replicated the experiment by removing the connection between

Syncope and the variables in its path according to Figure 10, namely Count PVC’s and Non-

Sustained Ventricular Tachycardia (Holter). We also removed the connections between

Left ventricular ejection fraction (LVEF) and Count PVC’s, and Syncope. The rationale

behind this modification was to disregard the similarity of well-known important features for

sudden cardiac death in Chagas disease. By doing so, we compelled the algorithm to explore

alternative connection paths between variables while propagating relevant variables in different

branches. Additionally, instead of using the relevance value of Syncope calculated by Equation

3.2, we assigned it the same value as Count PVC’s. This manual adjustment incorporated more

importance to the Syncope variable, ensuring its selection in the final model.

We observed no significant changes in terms of accuracy compared to the previous

version. The accuracy obtained was 0.781± 0.018 compared to 0.772± .025 in the previous

experiment, with a p-value of 0.7348 and a statistic of 0.3495, indicating statistical similarity

between the two experiments. However, in medical applications, understanding the outcome

for classification is as important as the correctness of the result. We argue that determining

which clinical variables should be included in the model without compromising interpretability

or accuracy is a valuable toolset.

The interpretation output of this experiment is presented in Table 9. The variable

LVEF had some connections modified. While its strong connection with Diastolic Dysfunction

was preserved, other variables such as Left Ventricular Diastolic Diameter (LVDD) and Left

Ventricular Systolic Diameter (LVSD) are now associated with Syncope, which is now part of

the selected feature set. This behavior is expected as the high linear relationships between LVEF

and Syncope can also be shared with LVDD and LVSD. Moreover, there is a high similarity

between the feature Syncope and Amiodarone, a medication that significantly increases the risk

of fall-related injuries and syncope (DALGAARD et al., 2019). We can observe similar changes
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in connections with Average Heart Rate, where Cardiac insufficiency is now associated

with Pacemaker instead, and the former is associated with Other Heart Diseases. These

alterations in connections are also expected since many features share information due to being

based on similar exams. However, the root of the model remains the same, and most of the

branches are fully preserved, such as Gender, Atrial Fibrillation/Flutter (Holter), Implantable

Cardioverter Defibrillator, and Premature Ventricular Contraction.

As evident, IVS facilitates users to seamlessly integrate specialized knowledge

through minor modifications. This process guarantees the discernment of crucial variables and

the establishment of fresh interpretative correlations, all while minimizing substantial alterations

to the preexisting structure.
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Table 5 ± Statistical hypothesis to verify accuracy
differences for every dataset compared to
the proposed approach.

dataset statistic p-value
connectionist-bench-sonar 0.1262 0.9024
optical-recognition-handwritten-digits 0.4451 0.6667
ozone-level-detection-one 0.2974 0.7729
ozone-level-detection-eight 0.1609 0.8757
libras-movement 0.0959 0.9257
hill-valley-noise 0.8550 0.4147
hill-valley 0.2109 0.8376
adult 0.9686 0.3580
mushroom 0.0000 1.0000
horse-colic 0.1517 0.8828
lung-cancer 0.0667 0.9483
USPS 2.0878 0.0664
arcene 0.5104 0.6220
colon 0.1011 0.9217
COIL20 2.0066 0.0757
lungd iscrete 0.1627 0.8743
madelon 1.2931 0.2282

Source: Author



53

Table 6 ± Chagas data set description.
Attributes Group Feature Number Variables Type

Personal Data
1 Gender Categorical
2 Body Mass Index Quantitative

Clinical History

3 Cancer Categorical
4 Systemic Arterial Hypertension Categorical
5 Type 2 Diabetes Mellitus Categorical
6 Other Heart Diseases Categorical
7 Pacemaker Categorical
8 Syncope Categorical
9 Atrial Fibrillation/Flutter Categorical
10 Chronic Kidney Failure Categorical
11 Cardiac insufficiency Categorical
12 Ventriculoperitoneal Shunt Categorical
13 Tabagism Categorical
14 Alcoholism Categorical
15 Sedentary Lifestyle Categorical

ECG

16 Inactive Electrical Area Categorical
17 Ventricular Extrasystole Categorical
18 Supraventricular Extrasystole Categorical
19 Non-Sustained Ventricular Tachycardia Categorical
20 Pause > 3s Categorical
21 Primary Change Categorical
22 Interventricular Conduction Disturbance Categorical
23 Atrioventricular Conduction Disturbance Categorical

ECO

24 Diastolic Dysfunction Categorical
25 Left Atrial Diameter Quantitative
26 Left Ventricular Diastolic Diameter Quantitative
27 Left Ventricular Systolic Diameter Quantitative
28 Left ventricular ejection fraction (LVEF) Quantitative
29 Segmental Deficit Categorical

Holter

30 Atrial Fibrillation/Flutter Categorical
31 Average Heart Rate Quantitative
32 Sinus Node Dysfunction Categorical
34 Non-Sustained Ventricular Tachycardia Categorical
35 Premature Ventricular Contraction (PVC) Categorical
36 Count PVS‘s Quantitative
37 Atrioventricular Conduction Disturbance Categorical

Medicine
38 Implantable Cardioverter Defibrillator Categorical
39 Ablations Categorical
40 Amiodarone Categorical

Source: Author.

Table 7 ± Chagas classification Experiment.
Dataset chi2 (acc)±(std) chi2 (time) JMI (acc)±(std) JMI (time) mic (acc)±(std) mic (time) mRMR (acc)±(std) mRMR (time) proposed (acc)±(std) proposed (time)
chagas 0.767±0.017 0.000 0.765±0.019 0.003 0.777±0.021 0.000 0.756±0.022 0.000 0.772±0.025 0.000

Source: the author
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5 CONCLUSION AND FUTURE WORKS

In conclusion, this thesis addressed the challenge of interpretability for FFS by

proposing a novel pairwise feature selection method using PBM. The proposed method offers

valuable insights into the relationships between variables by optimizing feature relations and con-

structing an interpretable graph. The empirical evaluations conducted on 18 datasets and a case

study on Chagas disease demonstrated the approach’s efficacy in achieving competitive accuracy

while enhancing interpretability. By selecting relevant features and clearly understanding their

relationships, the proposed method improves the transparency and trustworthiness of Chagas

disease diagnostic systems. This research opens up new avenues for developing interpretable

machine learning techniques in medical applications and holds promise for advancing the field

of computer-aided diagnostics for various diseases.

In addition to the findings and contributions of this study, there are several potential

avenues for future research. One possible direction is to explore utilizing different cost functions

in the pairwise feature selection method. While this study employed a specific cost function

to measure the relevance and similarity between features, alternative cost functions could be

investigated to further optimize the selection process. This could involve considering different

feature importance measures or incorporating domain-specific knowledge to guide selection.

Furthermore, extending the proposed method to handle large-scale datasets and high-

dimensional feature spaces would be another interesting area of investigation. The algorithm’s

scalability could be enhanced by exploring parallel computing. By addressing the challenges

posed by big data in the context of feature selection, the method could be applied to more

comprehensive datasets, potentially leading to improved accuracy and interpretability.

Moreover, integrating the pairwise feature selection method with other machine

learning algorithms or ensemble methods could be explored. Combining the strengths of

different techniques makes it possible to develop more robust and accurate models. Additionally,

investigating the interpretability of the ensemble models and understanding the interactions

between the selected features in the ensemble framework would provide valuable insights into

the diagnostic process in other CAD tols.

Lastly, conducting extensive clinical validation studies on diverse patient populations

and collaborating with medical experts would be essential to assess the real-world applicability

and generalizability of the proposed method. This would involve evaluating the performance

and interpretability of the method on larger and more diverse datasets, as well as validating the
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identified feature relationships against known clinical knowledge.

By pursuing these future research directions, we can further enhance the interpretabil-

ity and effectiveness of feature selection methods in computer-aided diagnostics, ultimately

advancing our understanding and diagnostic capabilities in diseases such as Chagas disease.



62

REFERENCES

ALBERTO, A. C.; LIMEIRA, G. A.; PEDROSA, R. C.; ZARZOSO, V.; NADAL, J. Ecg-based
predictors of sudden cardiac death in chagas’ disease. In: IEEE. 2017 Computing in Cardiology
(CinC). [S.l.], 2017. p. 1±4.

ALBERTO, A. C.; PEDROSA, R. C.; ZARZOSO, V.; NADAL, J. Association between circadian
holter ecg changes and sudden cardiac death in patients with chagas heart disease. Physiological
Measurement, IOP Publishing, v. 41, n. 2, p. 025006, 2020.

ASUNCION, A.; NEWMAN, D. UCI machine learning repository. [S.l.]: Irvine, CA, USA,
2007.

BAMAN, T. S.; LANGE, D. C.; ILG, K. J.; GUPTA, S. K.; LIU, T.-Y.; ALGUIRE, C.;
ARMSTRONG, W.; GOOD, E.; CHUGH, A.; JONGNARANGSIN, K. et al. Relationship
between burden of premature ventricular complexes and left ventricular function. Heart rhythm,
Elsevier, v. 7, n. 7, p. 865±869, 2010.

BEIRANVAND, F.; MEHRDAD, V.; DOWLATSHAHI, M. B. Unsupervised feature selection
for image classification: A bipartite matching-based principal component analysis approach.
Knowledge-Based Systems, Elsevier, p. 109085, 2022.

BENNASAR, M.; HICKS, Y.; SETCHI, R. Feature selection using joint mutual information
maximisation. Expert Systems with Applications, Elsevier, v. 42, n. 22, p. 8520±8532, 2015.

BOMMERT, A.; SUN, X.; BISCHL, B.; RAHNENFÜHRER, J.; LANG, M. Benchmark for
filter methods for feature selection in high-dimensional classification data. Computational
Statistics & Data Analysis, Elsevier, v. 143, p. 106839, 2020.

BOUCKAERT, R. R.; FRANK, E. Evaluating the replicability of significance tests for
comparing learning algorithms. In: SPRINGER. PAKDD. [S.l.], 2004. v. 3056, p. 3±12.

BROWN, G.; POCOCK, A.; ZHAO, M.-J.; LUJÁN, M. Conditional likelihood maximisation:
a unifying framework for information theoretic feature selection. The journal of machine
learning research, JMLR. org, v. 13, p. 27±66, 2012.

BRUNO, R. M.; PUCCI, G.; ROSTICCI, M.; GUARINO, L.; GUGLIELMO, C.; ROSEI, C.
A.; MONTICONE, S.; GIAVARINI, A.; LONATI, C.; TORLASCO, C. et al. Association
between lifestyle and systemic arterial hypertension in young adults: a national, survey-based,
cross-sectional study. High Blood Pressure & Cardiovascular Prevention, Springer, v. 23, p.
31±40, 2016.

CALDAS, W. L.; MADEIRO, J. P. do V.; PEDROSA, R. C.; GOMES, J. P. P.; DU, W.;
MARQUES, J. A. L. Noise detection and classification in chagasic ecg signals based on
one-dimensional convolutional neural networks. In: SPRINGER. International Conference on
Computer and Information Science. [S.l.], 2022. p. 117±129.

CALDAS, W. L.; MADEIRO, J. P. V.; MATTOS, C. L. C.; GOMES, J. P. P. A new methodology
for classifying qrs morphology in ecg signals. In: IEEE. 2020 International Joint Conference
on Neural Networks (IJCNN). [S.l.], 2020. p. 1±9.

CARVALHO, D. V.; PEREIRA, E. M.; CARDOSO, J. S. Machine learning interpretability: A
survey on methods and metrics. Electronics, MDPI, v. 8, n. 8, p. 832, 2019.



63

CAVALCANTE, C. H.; PRIMO, P. E.; SALES, C. A.; CALDAS, W. L.; SILVA, J. H.; SOUZA,
A. H.; MARINHO, E. S.; PEDROSA, R. C.; MARQUES, J. A.; SANTOS, H. S. et al. Sudden
cardiac death multiparametric classification system for chagas heart disease’s patients based on
clinical data and 24-hours ecg monitoring. Mathematical Biosciences and Engineering, v. 20,
n. 5, p. 9159±9178, 2023.

CHANDRASHEKAR, G.; SAHIN, F. A survey on feature selection methods. Computers &
Electrical Engineering, Elsevier, v. 40, n. 1, p. 16±28, 2014.

CHEN, X.-w.; JEONG, J. C. Enhanced recursive feature elimination. In: IEEE. Sixth
international conference on machine learning and applications (ICMLA 2007). [S.l.], 2007.
p. 429±435.

DALGAARD, F.; PALLISGAARD, J. L.; NUMÉ, A.-K.; LINDHARDT, T. B.; GISLASON,
G. H.; TORP-PEDERSEN, C.; RUWALD, M. H. Rate or rhythm control in older atrial
fibrillation patients: risk of fall-related injuries and syncope. Journal of the American
Geriatrics Society, Wiley Online Library, v. 67, n. 10, p. 2023±2030, 2019.

DERIGS, U. On solving symmetric assignment and perfect matching problems with algebraic
objectives. In: Optimization and Operations Research. [S.l.]: Springer, 1978. p. 79±86.

FORMAN, G. et al. An extensive empirical study of feature selection metrics for text
classification. J. Mach. Learn. Res., v. 3, n. Mar, p. 1289±1305, 2003.

GERARDS, A. Matching. Handbooks in operations research and management science,
Elsevier, v. 7, p. 135±224, 1995.

HASHEMI, A.; DOWLATSHAHI, M. B.; NEZAMABADI-POUR, H. A bipartite
matching-based feature selection for multi-label learning. International Journal of Machine
Learning and Cybernetics, Springer, v. 12, n. 2, p. 459±475, 2021.

HUANG, J.; CAI, Y.; XU, X. A hybrid genetic algorithm for feature selection wrapper based on
mutual information. Pattern recognition letters, Elsevier, v. 28, n. 13, p. 1825±1844, 2007.

JOVI ÂC, A.; BRKI ÂC, K.; BOGUNOVI ÂC, N. A review of feature selection methods
with applications. In: IEEE. 2015 38th international convention on information and
communication technology, electronics and microelectronics (MIPRO). [S.l.], 2015. p.
1200±1205.

JR, A. R.; RASSI, A.; LITTLE, W. C.; XAVIER, S. S.; RASSI, S. G.; RASSI, A. G.; RASSI,
G. G.; HASSLOCHER-MORENO, A.; SOUSA, A. S.; SCANAVACCA, M. I. Development and
validation of a risk score for predicting death in chagas’ heart disease. New England Journal of
Medicine, Mass Medical Soc, v. 355, n. 8, p. 799±808, 2006.

JR, A. R.; RASSI, S. G.; RASSI, A. Sudden death in chagas’ disease. Arquivos brasileiros de
cardiologia, SciELO Brasil, v. 76, n. 1, p. 86±96, 2001.

KAUTZKY-WILLER, A.; HARREITER, J.; PACINI, G. Sex and gender differences in risk,
pathophysiology and complications of type 2 diabetes mellitus. Endocrine reviews, Oxford
University Press, v. 37, n. 3, p. 278±316, 2016.

KEEGAN, R.; YEUNG, C.; BARANCHUK, A. Sudden cardiac death risk stratification
and prevention in chagas disease: a non-systematic review of the literature. Arrhythmia &
Electrophysiology Review, Radcliffe Cardiology, v. 9, n. 4, p. 175, 2020.



64

KHALID, S.; KHALIL, T.; NASREEN, S. A survey of feature selection and feature extraction
techniques in machine learning. In: IEEE. 2014 science and information conference. [S.l.],
2014. p. 372±378.

KUHN, H. W. The hungarian method for the assignment problem. Naval research logistics
quarterly, Wiley Online Library, v. 2, n. 1-2, p. 83±97, 1955.

KUMAR, R. R.; REDDY, M. B.; PRAVEEN, P. A review of feature subset selection on
unsupervised learning. In: IEEE. 2017 Third International Conference on Advances in
Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). [S.l.],
2017. p. 163±167.

KURSA, M. B. Praznik: High performance information-based feature selection. SoftwareX,
Elsevier, v. 16, p. 100819, 2021.

KURSA, M. B.; RUDNICKI, W. R. Feature selection with the boruta package. Journal of
statistical software, v. 36, p. 1±13, 2010.

LEWIS, D. D. Feature selection and feature extraction for text categorization. In: Speech and
Natural Language: Proceedings of a Workshop Held at Harriman, New York, February
23-26, 1992. [S.l.: s.n.], 1992.

LI, X.; CHEN, H. Recommendation as link prediction in bipartite graphs: A graph kernel-based
machine learning approach. Decision Support Systems, Elsevier, v. 54, n. 2, p. 880±890, 2013.

MARIN-NETO, J. A.; JR, A. R.; OLIVEIRA, G. M. M.; CORREIA, L. C. L.; JÚNIOR, A. N.
R.; LUQUETTI, A. O.; HASSLOCHER-MORENO, A. M.; SOUSA, A. S. d.; PAOLA, A. A.
V. d.; SOUSA, A. C. S. et al. Diretriz da sbc sobre diagnóstico e tratamento de pacientes com
cardiomiopatia da doença de chagas±2023. Arquivos Brasileiros de Cardiologia, SciELO
Brasil, v. 120, p. e20230269, 2023.

MIAO, J.; NIU, L. A survey on feature selection. Procedia computer science, Elsevier, v. 91, p.
919±926, 2016.

MURTY, K. G. The symmetric assignment problem. [S.l.], 1967.

NG, A. Y. Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In: Proceedings
of the twenty-first international conference on Machine learning. [S.l.: s.n.], 2004. p. 78.

OKSUZYAN, A.; BRØNNUM-HANSEN, H.; JEUNE, B. Gender gap in health expectancy.
[S.l.]: Springer, 2010. 213±218 p.

PENG, H.; LONG, F.; DING, C. Feature selection based on mutual information criteria of
max-dependency, max-relevance, and min-redundancy. IEEE Transactions on pattern analysis
and machine intelligence, IEEE, v. 27, n. 8, p. 1226±1238, 2005.

PENTICO, D. W. Assignment problems: A golden anniversary survey. European Journal of
Operational Research, Elsevier, v. 176, n. 2, p. 774±793, 2007.

PEREZ-SILVA, A.; MERINO, J. L. Frequent ventricular extrasystoles: significance, prognosis
and treatment. ESC Coun. Cardiol. Pract, v. 9, p. 17, 2011.



65

PRIMO, P. E.; CALDAS, W. L.; ALMEIDA, G. S.; BRASIL, L. P.; CAVALCANTE, C. H.;
MADEIRO, J. P.; GOMES, D. G.; PEDROSA, R. C. Auxílio ao diagnóstico para predição de
morte súbita em pacientes chagásicos a partir de dados clínicos: uma abordagem baseada em
aprendizagem de máquina. In: SBC. Anais do XXI Simpósio Brasileiro de Computação
Aplicada à Saúde. [S.l.], 2021. p. 335±345.

REMESEIRO, B.; BOLON-CANEDO, V. A review of feature selection methods in medical
applications. Computers in biology and medicine, Elsevier, v. 112, p. 103375, 2019.

ROBERT, J. M.; KENNETH, M. K.; ARTHUR, L. B.; AGUSTIN, C. A biological approach to
sudden cardiac death: structure, function and cause. The American journal of cardiology,
Elsevier BV, v. 63, n. 20, p. 1512±1516, 1989.

SIDDIQI, U. F.; SAIT, S. M.; KAYNAK, O. Genetic algorithm for the mutual information-based
feature selection in univariate time series data. IEEE Access, IEEE, v. 8, p. 9597±9609, 2020.

SOUZA, A. C. J. de; SALLES, G.; HASSLOCHER-MORENO, A. M.; SOUSA, A. S. de;
BRASIL, P. E. A. A. do; SARAIVA, R. M.; XAVIER, S. S. Development of a risk score to
predict sudden death in patients with chaga’s heart disease. International journal of cardiology,
Elsevier, v. 187, p. 700±704, 2015.

STONE, J. V. Independent component analysis: an introduction. Trends in cognitive sciences,
Elsevier, v. 6, n. 2, p. 59±64, 2002.

WANG, C.; SITTERS, R. On some special cases of the restricted assignment problem.
Information Processing Letters, Elsevier, v. 116, n. 11, p. 723±728, 2016.

WANG, H.; LI, H.; ZHOU, H.; CHEN, X. Low-altitude infrared small target detection based on
fully convolutional regression network and graph matching. Infrared Physics & Technology,
Elsevier, v. 115, p. 103738, 2021.

YANG, H.; MOODY, J. Data visualization and feature selection: New algorithms for
nongaussian data. Advances in neural information processing systems, v. 12, 1999.

ZHAI, Y.; SONG, W.; LIU, X.; LIU, L.; ZHAO, X. A chi-square statistics based feature
selection method in text classification. In: IEEE. 2018 IEEE 9th International conference on
software engineering and service science (ICSESS). [S.l.], 2018. p. 160±163.

ZHANG, C.-H.; HUANG, J. The sparsity and bias of the lasso selection in high-dimensional
linear regression. 2008.

ZHANG, Y.; JIANG, F.; RHO, S.; LIU, S.; ZHAO, D.; JI, R. 3d object retrieval with
multi-feature collaboration and bipartite graph matching. Neurocomputing, Elsevier, v. 195, p.
40±49, 2016.

ZHAO, Z.; ANAND, R.; WANG, M. Maximum relevance and minimum redundancy
feature selection methods for a marketing machine learning platform. In: IEEE. 2019 IEEE
international conference on data science and advanced analytics (DSAA). [S.l.], 2019. p.
442±452.

ZHOU, H.; WANG, X.; ZHANG, Y. Feature selection based on weighted conditional mutual
information. Applied Computing and Informatics, Emerald Publishing Limited, 2020.



66

ZHOU, H.; WANG, X.; ZHU, R. Feature selection based on mutual information with correlation
coefficient. Applied Intelligence, Springer, v. 52, n. 5, p. 5457±5474, 2022.


	Title page
	Acknowledgements
	Abstract
	Resumo
	List of symbols
	Sumário
	Introduction
	General Goal
	Specific Goals
	Publications
	Organization


	Literature Review
	Feature Selection.
	Perfect Bipartite Matching Problem
	Assignment variants


	Interpretative variable selection via perfect bipartite matching (IVS)
	Dealing with the cycle dependency
	Interpretation and visualization
	Incorporating Domain Knowledge
	Emphasizing Feature Relevance
	Reducing Redundancy
	Preserving Relevance
	Forcing Feature Propagation
	Balancing Act

	Running Example
	Description of the Toy Data Set
	How to interpret the results


	Experiments and Results
	General data sets
	Application in real-word case.

	Conclusion and future works
	REFERENCES

