X
&

UNIVERSIDADE FEDERAL DO CEARA

CENTRO DE CIENCIAS
DEPARTAMENTO DE COMPUTACAO
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

ROMMEL DIAS SARAIVA

MATHEMATICAL PROGRAMMING APPROACHES FOR NP-HARD
CONSTRAINED SHORTEST PATH PROBLEMS

FORTALEZA
2019



ROMMEL DIAS SARAIVA

MATHEMATICAL PROGRAMMING APPROACHES FOR NP-HARD CONSTRAINED
SHORTEST PATH PROBLEMS

Tese apresentada ao Programa de Pos-
Graduacdo em Ciéncia da Computagdo do
Centro de Ciéncias da Universidade Federal do
Ceard, como requisito parcial a obtengdo do
titulo de doutor em Ciéncia da Computagao.
Area de Concentragdo: Algoritmos e Otimizacio

Orientador: Prof. Dr. Rafael Castro de
Andrade

FORTALEZA
2019



Dados Internacionais de Catalogacdo na Publicacdo
Universidade Federal do Ceard
Biblioteca Universitéria
Gerada automaticamente pelo médulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

S247m Saraiva, Rommel Dias.
Mathematical programming approaches for NP-Hard constrained shortest path problems / Rommel
Dias Saraiva. — 2019.
74 f. 1l

Tese (doutorado) — Universidade Federal do Ceard, Centro de Ciéncias, Programa de Pés-Graduag¢do em
Ciéncia da Computacdo , Fortaleza, 2019.
Orientacdo: Prof. Dr. Rafael Castro de Andrade.

1. Combinatorial optimization. 2. Shortest path with negative cycles. 3. Constrained shortest path tour
problem. 4. Integer linear programming. 5. Lagrangian relaxation. I. Titulo.
CDD 005




ROMMEL DIAS SARAIVA

MATHEMATICAL PROGRAMMING APPROACHES FOR NP-HARD CONSTRAINED
SHORTEST PATH PROBLEMS

Tese apresentada ao Programa de Pos-
Graduacdo em Ciéncia da Computacio
do Centro de Ciéncias da Universidade
Federal do Ceard, como requisito parcial
a obtencdo do titulo de doutor em Ciéncia
da Computagdo. Area de Concentragio:
Algoritmos e Otimizagdo

Aprovada em:

BANCA EXAMINADORA

Prof. Dr. Rafael Castro de Andrade (Orientador)
Universidade Federal do Ceara (UFC)

Profa. Dra. Ana Karolinna Maia de Oliveira
Universidade Federal do Ceara (UFC)

Prof. Dr. Manoel Bezerra Campélo Neto
Universidade Federal do Ceara (UFC)

Prof. Dr. Marcos José Negreiros Gomes
Universidade Estadual do Ceard (UECE)

Prof. Dr. Placido Rogério Pinheiro
Universidade de Fortaleza (UNIFOR)

Prof. Dr. Nelson Maculan Filho
Universidade Federal do Rio de Janeiro (UFRIJ)



To my family.



ACKNOWLEDGEMENTS

This thesis is fruit of a research developed in the last four and half years. During this
time, there existed some people and entities that, directly or indirectly, were important for the
accomplishment of this work, and to whom I would like to express my gratitude.

First and foremost, I would like to thank my advisor Prof. Rafael Andrade for
believing in me, for giving me opportunity to do this research, and for guiding me during the
PhD program with his constant support and advices.

I would like to thank the members of the examination board — Profa. Ana Karolinna,
Prof. Manoel Campélo, Prof. Marcos Negreiros, Prof. Pldcido Pinheiro and Prof. Nelson
Maculan — for their presence and constructive comments on the work.

I would like to thank the ParGO research group. To all faculty members, for the
knowledge transmitted during lectures. To all laboratory colleagues, for the companionship. A
particular thank goes to Tatiane, Mardson, Ernando, Jefferson, Adriano and Sérgio. Talking
about issues related to research with them was always of great importance. Our friendship
outside the laboratory was also essential to take a break in moments of research stress.

I would like to thank FUNCAP (Fundagdo Cearense de Apoio ao Desenvolvimento
Cientifico e Tecnoldgico) and CAPES (Coordenagdo de Aperfeicoamento de Pessoal de Nivel
Superior) for the financial support.

Lastly, but not least, I would like to thank my family for their support and love they

provided me during my entire life.



RESUMO

Neste trabalho, estudamos dois problemas de roteamento NP-Dificeis: o problema do caminho
minimo na presenga de ciclos negativos (referenciado na literatura estrangeira de shortest path
with negative cycles — SPNC) e o problema da trilha minima com restricdo de agrupamento
(referenciado na literatura estrangeira como constrained shortest path tour problem — CSPTP).
Para o SPNC, propomos trés abordagens exatas baseadas em programac¢do matematica: um
modelo compacto de programacao linear inteira mista, um algoritmo de branch-and-bound
especializado e um método de planos de corte. Realizamos uma experimentacio englobando
tanto instancias geradas aleatoriamente como também instancias concebidas por outros autores.
Os testes computacionais mostram que as abordagens propostas se sobressaem em relagdo as
técnicas de programacao matemaética do estado da arte. Além disso, fazemos uma discussdo
sobre a relaxacdo linear dos modelos matemadticos presentes na literatura do problema. Com
relacdo ao CSPTP, apresentamos dois modelos compactos para o problema: um de programacao
linear inteira pura, que chamamos de modelo baseado em vértices artificiais; e outro de progra-
macdo linear inteira mista, que chamamos de modelo baseado em vértices fronteiras. Para este
ultimo, mostramos desigualdades validas e propomos heuristicas Lagrangeanas deterministicas e
nao-deterministicas. Experimentos realizados em instancias da literatura e em outras geradas
aleatoriamente validam e atestam a eficdcia das nossas contribui¢des, que alcancam a solucao
Otima em uma larga quantidade de casos. Mostramos que os modelos baseados em vértices
artificais e fronteiras alternam bons resultados dependendo das caracteristicas de cada instancia.
A eficiéncia das metodologias exatas propostas quando comparadas aos algoritmos de branch-
and-bound especializados, presentes na literatura para o CSPTP, também é comprovada por meio
dos testes computacionais, assim como as potencialidades das heuristicas Lagrangeanas, que

alcancam a solucao 6tima para grande parte das instancias abordadas.

Palavras-chave: Otimizacdo combinatdria. Problema do caminho minimo na presenga de ciclos
negativos. Problema da trilha minima com restricao de agrupamento. Programacao linear inteira.

Relaxagdo Lagrangeana. Heuristicas.



ABSTRACT

In this work, we study two NP-Hard routing problems: the shortest path with negative cy-
cles (SPNC) and the constrained shortest path tour problem (CSPTP). For the SPNC, we propose
three exact approaches based on mathematical programming: a compact mixed integer linear
programming model, a specialized branch-and-bound algorithm, and a cutting-plane method.
We perform numerical experiments comprising both randomly generated and benchmark in-
stances from the literature. The computational tests show that the proposed approaches stand out
from state-of-the-art mathematical programming techniques. Moreover, we discuss the linear
relaxations of models present it the literature. Concerning the CSPTP, we show two compact
models for the problem: a pure integer linear programming model, which we call dummy node-
based model; and a mixed integer linear programming one, which we call frontier node-based
model. For the latter, we show valid inequalities and propose deterministic and non-deterministic
Lagrangian heuristics. Experiments performed on both randomly generated and benchmark
instances from the literature validate and attest the effectiveness of our contributions, which
achieve the optimal solution in the vast majority of cases. We show that the dummy node and
the frontier node-based models alternate better results depending on the characteristics of each
instance. The efficiency over specialized branch-and-bound algorithms from the literature is also
proven through experiments, as well as the potentialities behind the Lagrangian heuristics, which

find the optimal solution for a large number of instances.

Keywords: Combinatorial optimization. Shortest path with negative cycles. Constrained shortest

path tour problem. Integer linear programming. Lagrangian relaxation. Heuristics.
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1 INTRODUCTION

The proposed contributions of this thesis are centered on mathematical programming
approaches for NP-Hard constrained shortest path problems, namely, the shortest path problem

in digraphs with negative cycle and the constrained shortest path tour problem.

1.1 Context

The shortest path problem (SPP) is one of the most studied problems in network
optimization. The SPP is defined on a graph G = (V,E) where V is the set of vertices (or nodes)
and E is the set of edges, being each edge assigned to a cost. When one intends to consider only
admissible orientations on the edges, set E is replaced by a set of arcs A and graph G turns out to
be a directed graph (or digraph) D = (V,A). For the sake of simplicity, we assume the latter case.

Before continuing, we make use of some definitions from graph theory (BONDY et

al., 2008) that will guide the reader to better understand fundamental aspects of this work.

Definition 1 A walk in D is a finite non-null sequence W = voaviasv; . ..agvy, whose terms are
alternately nodes and arcs, such that, for 1 <i <k, arc a; = (vi_1,v;), withvi_1 €V and v; € V.

We say that W is a walk from node vy to node vy, or simply a (vo,vi)-walk.

Definition 2 A trail is a walk composed of distinct arcs. A trail from vo € V to vy €V is referred

to as (vo, vg)-trail.

Definition 3 A path is a walk composed of distinct nodes. A path from vo € V to v € V is

referred to as (vo,vy)-path.

The SPP consists in finding a path between two distinct nodes such that the sum of
the weights of its arcs is minimized. The problem is often referred to as the single-pair shortest
path problem in order to distinguish it from the following variants:

e the single-source shortest path problem, whose aim is to find shortest paths from a source
node to all other ones;

e the single-destination shortest path problem, whose aim is to find shortest paths from all
nodes to a single destination one;

o the all-pairs shortest path problem, whose aim is to find shortest paths between every pair

of nodes.
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Several polynomial time algorithms have been devoted to solve the SPP to optimality.
Dijkstra’s original algorithm (DIJKSTRA, 1959), for instance, is the most popular and it is able
to solve the SPP in a digraph with non-negative arc costs. The standard implementation runs in
O(|V|?). An alternative implementation that adopts a Fibonacci heap, conceived by Fredman
e Tarjan (1987), is asymptotically the fastest SPP algorithm for that kind of digraph, running
in O(|A| + |V|log|V]). Unlike Dijkstra’s algorithm, the Bellman—Ford algorithm (FORD, 1956)
arises as a versatile routine when computing the SPP in digraphs containing negative arc costs,
but without negative (directed) cycles. It runs in O(|V||A|). Still considering the latter kind of
digraphs, there are also polynomial time algorithms that compute the SPP between all pairs
of nodes, e.g., the Floyd—Warshall algorithm (FLOYD, 1962), running in 0(|V|3), and the
Johnson’s algorithm (JOHNSON, 1977), running in O(|V |*log|V |+ [V ||A]).

Extensions of the standard SPP have been widely investigated by the scientific com-
munity. They commonly add ingredients to the classical SPP resulting in an NP-Hard (GAREY;
JOHNSON, 2002) problem, being properly classified as constrained shortest path problems (CSPPs).
The most classical CSPP is the resource constrained shortest path problem (RCSPP) (JOKSCH,
1966; HANDLER; ZANG, 1980; BEASLEY; CHRISTOFIDES, 1989), which aims at finding
the shortest path between two distinct nodes on a transport network where transversing each arc
consumes certain resource whose sum must lie within a given upper limit.

In this work, we study two challenging CSPPs. The first one is the shortest path
problem in digraphs with negative cycles (SPNC) (IBRAHIM, 2007), which basically consists
in finding the shortest path between two distinct nodes in a digraph containing negative cycles.
The second one is the constrained shortest path tour problem (CSPTP) (FERONE et al., 2016;
FERONE et al., 2019), which aims at finding the shortest trail between a source and a destination

while satisfying visiting constraints on some clusters of nodes.

1.2 Motivation

The first problem addressed here is the SPNC, which is an NP-Hard (BONDY et al.,
2008) problem that has been focus of investigation by the literature with the first mathematical
programming approach due to Ibrahim (2007). The problem has as input a digraph D = (V,A)
with set of nodes V and set of arcs A, with ¢;; € R representing the cost of each arc (i, j) € A. The
aim is to determine, if it exists, a path of minimum cost between two distinguished nodes s € V

and ¢ € V. Figures 1 and 2 show an instance and its corresponding optimal solution, respectively.
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Figure 1 — Example of an SPNC instance, with s = 1 and r = 8.

1 4
AN /N
-5 -6

N N
6 8

Source: The author.

The main motivation we have seen behind the SPNC stems from the fact that there
are only few mathematical programming techniques to solve the problem (IBRAHIM et al.,
2009; HAOUARI et al., 2013). In this sense, we propose three exact solution approaches.
The first one is a compact primal-dual model whose preliminary results were presented at the
XLVII Simpésio Brasileiro de Pesquisa Operacional (SBPO 2015) (ANDRADE et al., 2015).
We also conceive a combinatorial branch-and-bound algorithm and a cutting-plane method,
both presented at the 18th Latin-Iberoamerican Conference on Operations Research (CLAIO
2016) (ANDRADE; SARAIVA, 2016). Extensive computational experiments performed on both
benchmark and randomly generated instances indicate that our approaches either outperform
or are competitive with existing mixed-integer programming models while providing optimal

solution for challenging instances in small execution times. A full version of this work has been

Figure 2 — Optimal solution for the example in Figure 1.

Source: The author.
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accepted for publication in Annals of Operations Research (ANDRADE; SARAIVA, 2017).
The second problem under analysis is the CSPTP, an NP-Hard problem that has been
recently introduced in the literature (FERONE et al., 2016; FERONE et al., 2019). Defined on a
digraph D = (V,A) with set of nodes V and set of non-negative weighted arcs A, the problem is
to find the shortest trail between two distinct nodes s € V and ¢ € V while visiting at least one
element of node disjoint subsets 7; C V,i=1,...,N, in this order. More precisely, the trail starts
at s € 71 and goes to some element of 75 (possibly through some intermediate nodes that are not
in 75), then goes to some element of 73 (possibly through some intermediate nodes that are not
in 73), and so on, until finally ending at ¢ € Ty (possibly through some intermediate nodes).
Practical applications arise in customers cargo delivery. Each customer has a set of
available warehouses to where goods can be delivered (see Figure 3). Goods are stored into a
container following a priority queue (see Figure 4) in which customers will be visited.
Figure 3 — Transport network: the origin is where the truck starts its delivery service. The cargo
of the first customer must be first delivered in any of its warehouse labeled by ‘1°,

followed by the second and the third customers in any of their warehouses labeled by
2’ and ‘3’, respectively. The route ends at the destination point.

destination

Source: The author.

We present mathematical programming models for the CSPTP. The first one, which
we call dummy node-based model, is due to the pilot research presented at the Joint EURO/ALIO
International Conference 2018 on Applied Combinatorial Optimization (EURO/ALIO 2018) (AN-
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Figure 4 — Loaded container: boxes are delivered according to a precedence order.

container cargo to i cargo to cargo to
door i customer 1 i customer2 ! customer 3

Source: The author.

DRADE; SARAIVA, 2018). The second one employs the concept of frontier node and it is
further enhanced with valid inequalities. We also develop deterministic and non-deterministic
heuristics within a Lagrangian relaxation framework. Experiments performed on benchmark and
randomly generated instances compare our results with those obtained by state-of-the-art exact

algorithms. A complete version of this study has been submitted to the International Transactions

in Operational Research (SARAIVA; ANDRADE, 2019).

1.3 Organization

The remainder of this document is organized as follows. In Chapter 2, we present
mathematical programming approaches for the SPNC, which comprise a compact formulation,
a combinatorial branch-and-bound algorithm, and a cutting-plane method. In Chapter 3, we
address the CSPTP by proposing compact formulations, valid inequalities and a Lagrangian-
based heuristic framework. In Chapter 4, we close the text drawing conclusions concerning our

work and giving directions for future research.
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2 SHORTEST PATH WITH NEGATIVE CYCLES

We devote this chapter to the study of the shortest path with negative cycles. Problem
preliminary studies were presented at SBPO 2015 (ANDRADE et al., 2015) and CLAIO
2016 (ANDRADE; SARAIVA, 2016). The complete work was accepted in the Annals Operations
Research (ANDRADE; SARAIVA, 2017).

2.1 Introduction

Let D = (V,A) be a digraph with a set V of vertices, and a set A of arcs. An arc from
vertex i € V to vertex j € V is represented as (i, j) € A, with ¢;; € R being its cost, for all (i, j) € A.
Given two distinct vertices s € V and t € V, the problem of finding the shortest path with negative
cycles (SPNC) consists in determining, if it exists, an (s,7)-path of minimum cost in D, a digraph
possibly containing (directed) cycles whose sum of their arc costs is negative. This NP-Hard
problem (BONDY et al., 2008) has applications in telecommunications and recently gained
renewed interest in the literature IBRAHIM et al., 2009; DREXL, 2013; HAOUARI et al., 2013;
IBRAHIM et al., 2015b; IBRAHIM, 2015; IBRAHIM et al., 2015a; TACCARI, 2016).

We find related problems in digraphs containing cycles with negative cost. For
instance, the negative cost cycle detection problem (YAMADA; KINOSHITA, 2002; SUBRA-
MANI; KOVALCHICK, 2005; SUBRAMANI, 2007; GU et al., 2009; HOUGARDY, 2010); the
all-pairs shortest path problem (MEHLHORN et al., 2002); the single-source all-destinations
shortest path problem (PUGLIESE; GUERRIERO, 2016), who conceive a dynamic multi-
dimensional labelling approach that runs in O( |V|22|V| ); and the minimum weighted elementary
directed cycle problem (IBRAHIM et al., 2016), to cite just a few problems. Well-established
algorithmic techniques as the Bellman-Ford or the Dijkstra’s algorithms, as well as dynamic
programming, are in charge of solving them. It is known that Bellman-Ford algorithm fails when
determining shortest paths in digraphs with negative cycles. Hence, handling, e.g. the SPNC
with an algorithm is not trivial, thus requiring mathematical programming techniques.

In this sense, we propose three exact solution approaches for the SPNC. An enhanced
MTZ-based compact primal-dual model, a specialized combinatorial branch-and-bound algo-
rithm, and a cutting-plane method. The ideas we explore in these solution approaches are new for
the problem and constitute our main contributions. The algorithms are easy-to-implement and

allowed to realize an extensive set of computational experiments conducted on both benchmark
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and new randomly generated instances. The proposed approaches either outperform or are
competitive with existing solution strategies for the considered instances. Moreover, this chapter
reports a discussion comparing the linear relaxation of the MTZ-primal-dual model with those
of models from the literature, as well as presents a new result concerning the quality of the
integrality gap for particular instances of the problem when solved by the MTZ-based model.
The remainder of this chapter is organized as follows. Section 2.2 reports mixed-
integer programming (MIP) models for the SPNC. Section 2.3 presents an enhanced MTZ-
primal-dual formulation and gives some properties concerning its linear relaxation. Sections 2.4
and 2.5 describe a combinatorial branch-and-bound algorithm and a cutting-plane strategy for
the problem, respectively. Section 2.6 reports computational experiments on benchmark and new

randomly generated instances. Finally, Section 2.7 gives the conclusions of this chapter.

2.2 SPNC formulations

For the sake of convenience, we adopt the following convention throughout the text.

Given D = (V,A), let 5;“ (resp., 8;°) denote the set of arcs leaving (resp., entering) vertex j € V.
2.2.1 The linear flow-based model of Ibrahim et al. (2009)

Ibrahim et al. (2009) propose a compact MIP model based on a non-simultaneous
network flow stated as follows. Let x;; (resp., y;) be a binary variable taking value 1 if arc
(i,J) € A (resp., vertex j € V) belongs to the solution, or 0 otherwise; and let zfj >0bea
continuous variable representing the flow through arc (i, j) € A, in an (s,7)-path, from vertex s

to vertex k € V\{s}. The model (IMM) is the following.

(IMM) min Y cijx; (2.1)
(i,j)€A
st Y xg=1 (2.2)
jeds’
Y xp=1 (2.3)
jed”
Z Xij = Yis Vie V\{S,t} (2.4)
jest
Z Xji = Vi, Vi e V\{S,t} (2.5)

JjES,
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Y &i— Y A= vkeV\{s} (2.6)
jedt je€bds

Y - Y =0 Vkev\{s} ieV\{sk} (2.7)
jest j€s

Y - Y Ee=-w VkeVv\{s} 2.8)
jesk j€s;
4 <xij, VkeV\{s}, (i,j) €A 2.9)
Xij € {07 1}7 \V/(l,_]) €A (210)
y;j€{0,1}, VjeV 2.11)
%20, VkeV\{s}, (i,j) €A (2.12)

Constraints (2.2) and (2.3) establish that one arc leaves the source s and one arc
enters the destination ¢, respectively. Constraints (2.4) and (2.5) state that the number of arcs
leaving and entering vertex i € V\{s,7}, respectively, is equal to 1 if it belongs to the (s,7)-path;
otherwise, no arc is incident to the vertex. The flow conservation constraints (2.6) and (2.8)
state, respectively, that if vertex k is in the solution, then the amount of flow leaving s to k 1s 1
and the amount of flow arriving at k is also 1; otherwise, these flows are null. Constraints (2.7)
state that transit vertices i € V\{s,k} do not retain flow from s to k. Constraints (2.9) state
that if an arc (i, j) € A is not in the solution, then the flow in this arc is null. The remaining
constraints (2.10)—(2.12) indicate the domain of the variables. Model (IMM) contains O(|V|?)
binary variables, O(|V|?) continuous variables and O(|V|?) constraints.

Ibrahim et al. (2015b) and Ibrahim (2015) adopt model (IMM) to investigate some
classes of valid inequalities and lifting techniques within a cutting-plane framework, whose
performances are analyzed for grid instances. The reason why they consider the above flow-based
model stems from the fact that it provides very strong initial linear programming (LP) relaxations

for the problem.
2.2.2 The non-linear model of Haouari et al. (2013)

This section reproduces the compact non-linear MIP model of Haouari et al. (2013).
Consider the characteristic vector x of arc decision variables as in model (IMM). Let non-
negative continuous variables u, j € V, indicate the number of arcs from the source s to a vertex

J € V\{s} in the (s,7)-path, with u; = 0.

Assumption 1 |6, | = |5,7| =0, and (s,t) € A.
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Considering Assumption 1, Haouari et al. (2013) propose the following model.

HMM) min ) cijxi (2.13)
(i,j)eA

st (2.2),(2.3),(2.10), and

Yowij— Y, xi=0, VjieV\{s:} (2.14)
i€d; i€}

Y xij<1, VjeV\{s1} (2.15)
ieéjf

UjXij = (ui—l—l)xij, VjEV\{S,[}, i€ 8;\{.9} (2.16)
UjXsj = Xsj, Vje 6s+ (2.17)
ug=0, 1<u;<|V|—-1, VjeV\{s} (2.18)

Constraints (2.14) establish that the number of arcs entering any vertex j € V\{s,¢}
is equal to the number of arcs leaving this vertex. Constraints (2.15) impose that at most one
arc enters each vertex j € V\{s,7}. Constraints (2.16) and (2.17) avoid cycles in any feasible
solution. The idea in (2.16) is to impose that if arc (i, j) is in the solution, then the distance from
s to j, say uj, is one unit more than the distance from s to i, say u;. Constraints (2.17) impose that
the first vertex to be visited will be at a distance 1 from the source s. Finally, constraints (2.18)
define the domain of the u variables.

To linearize constraints (2.16) and (2.17), the authors use the reformulation lineariza-
tion technique (RLT) of Sherali e Adams (1990), which is accomplished by substitutions of
variables o;; = u;x;;, and f;; = u;x;j, for all j € V\{s}, and i € 6, \{s} (the reader is referred

to Haouari ef al. (2013) for further details). Thus, they obtain the following model.

(HMM-RLT) min ) cjjxi (2.19)
(i,j)eA
st (2.2),(2.3),(2.10),(2.14),(2.15), and
o = Bij+xij, Vji€V\{s}, i€ \{s} (2.20)
X+ ), o— Y Bi=0, Vjeg’ (2.21)
i€5; \{s} €8’
Y = Y Bi=0, VjeV\{§ U{s1}} (2.22)

S P
l€5j l€5j
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Xij < Oj < (|V| — 1)x,-j, V] € V\{S}, i€ 5;\{5} (223)

xij < Bij < (V= Dxij,  VjeV\{s}, ied \{s} (2.24)

Constraints (2.20)—(2.24) work as subtour elimination constraints. Model (HMM-
RLT) contains O(|V|?) binary variables, O(|V|) continuous variables and O(|V |?) constraints.
Models (IMM) and (HMM-RLT) are the core of the main solution approaches for

the SPNC. They are used for comparison purpose with the solution approaches in the sequel.

2.3 Enhanced MTZ-primal-dual model

Miller-Tucker-Zemlin (MTZ) subtour elimination constraints (MILLER ez al., 1960)
have been recently explored in MIP models to solve the SPNC. For instance, Andrade et al.
(2015) and Taccari (2016) conceive a compact primal-dual model for this problem based on the
classical MTZ constraints. We explore ideas proposed by Desrochers e Laporte (1991) to obtain

a strengthened model for the problem. Initially, consider the following property.

Property 1 Let vi,vy,v3,...,Vy—1,V, be a sequence of vertices in an (s,t)-path, with vi =s
and v, = t; and u, be the number of arcs from the source s to v in this path, for all v €

{vi,v2,v3,...,vu—1,vn}. Thus, uy, =0 and u,, =u, _,+1, fork=2,3,...,n.

Our first solution approach for the SPNC uses Property 1 with the aim of introducing
a new SPNC formulation that connects primal variables x and dual variables u in a unique model,
focusing on those variables directly involved in the (s,7)-path. The model, referred to as (CPD),

is the following:

(CPD) min Z C,’jx,’j (225)
(i,j)eA

st (2.2),(2.3),(2.10),(2.14),(2.15),(2.18), and

wi—uj+Mxij <M—1, Y(i,j)€A, i#j (2.26)

Constraints (2.26) are MTZ subtour elimination constraints, with M being a big-M
positive constant (e.g., M = |V| for SPNC). They avoid cycles in any feasible solution, ensuring

that if an arc (i, j) € A belongs to the solution, then u j—u; > 1. We can show, for vertices from
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s to ¢ in any feasible solution, that Property 1 is verified. The compact model (CPD) contains

O(|V|?) binary variables, O(|V|) continuous variables and O(|V|?) constraints.
Proposition 1 Model (CPD) correctly returns an (s,t)-path of minimum cost.
Proof 1 Straightforward.

Following ideas from Desrochers e Laporte (1991), we can strengthen model (CPD)

while replacing constraints (2.26), when both arcs (i, j), (j,i) belong to A, by:
Ui —Uj + (|V‘ - 1)xij + (|V‘ - 3)xji < |V‘ - 27 v (17.])7 (]al) €A,

In what follows, we refer to model (CPD) as the proposed model enhanced with the

aforementioned constraints.
2.3.1 Remarks on linear relaxed solutions of SPNC models

We investigate the quality of the linear relaxed solutions for the three SPNC models
(IMM), (HMM-RLT), and (CPD). Basically, we give some examples where the value of the
linear relaxed solution of model (HMM-RLT) is better than that one of (CPD), and vice-versa.
We also prove that model (IMM) is tighter than (CPD).

In Figure 6, the shortest (1,9)-path has cost equal to —8 for the digraph in Figure 5.
The linear relaxed solution for (CPD) is depicted in Figure 7, and has a value equal to —10
while that one for (HMM-RLT), in Figure 8, has a value equal to —10.66. The value u; = 0 is
omitted, as well as variable values for & and f3 that are not defined for arcs leaving s. For this
example, the linear relaxed solution value obtained by (CPD) is larger than that one obtained by

(HMM-RLT).
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Figure 5 — Instance: a digraph with s = 1 and t = 9. Values in the middle of the arcs represent
their costs.

Lo \N/ s\ /
6 4
NS0T N8

-3 -3 -5 -5 -2

Source: The author.

Figure 6 — Shortest (1,9)-path of cost equal to —8.

8§ —8 — 9

Source: The author.

Figure 7 — Optimal linear relaxed solution for model (CPD) of cost equal to —10. Values in
the middle of the arcs (resp., in bold font near each vertex) denote the corresponding
values of the variables x (resp., u).
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Source: The author.

On the other hand, in Figure 10, the shortest (1,9)-path for the digraph in Figure 9
has cost equal to —28. The linear relaxed solution for models (CPD) and (HMM-RLT) are
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Figure 8 — Optimal linear relaxed solution for model (HMM-RLT) of cost equal to —10.66.
Values in the middle of the arcs (resp., in bold font near each arc) denote the corre-

sponding values of variables x (resp., & and f3, represented as a ~ f3).
1.33~0.66

—0.66— 2 —0.66— 3

€€ I~0'C

1
\
=
(9%)
»1.33~0.66
é 10—,
™~ 0.66
2.66~1.66

—990— & <990 —

0'C~99'C

Source: The author.

depicted in Figures 11 and 12, and their values are equal to —33 and —31.71, respectively. The
arc attribute notation is the same as in Figures 5-8. Here, the linear relaxed solution value

obtained by (HMM-RLT) is larger than that one obtained by (CPD).

Figure 9 — Instance: a digraph instance with s =1 and t = 9.
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Source: The author.



Figure 10 — Shortest (1,9)-path of cost equal to —28.
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Source: The author.

Figure 11 — Optimal linear relaxed solution for model (CPD) of cost equal to —33.
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Figure 12 — Optimal linear relaxed solution for model (HMM-RLT) of cost equal to —31.71.
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Proposition 2 When projecting out y and z variables from model (IMM), the set of feasible

linear relaxed solutions of the resultant model is contained in that one of (CPD) when projecting

out its u variables.
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Proof 2 For every solution (X,Z,¥) of the linear relaxation of (IMM), the digraph induced by

Al . o :
LL‘ is always connected. This digraph does not contain a cycle

the non-null components of x € R
induced by the components of X equal to 1. If it were the case, by (2.4)—(2.5), there should
exist exactly one arc in this digraph leaving (or entering) each vertex of such cycle. But, by
constraints (2.6)—(2.8), we have at least one vertex not belonging to this cycle that is connected
to one of its vertices, thus, violating one of the constraints (2.4) or (2.5). In this case, any
cycle in a linear relaxed solution of (IMM) is induced by fractional components of x. We use
X to construct a feasible solution to the linear relaxation of (CPD) as follows. We set ii; = 0
and, for all x; j = 1, we set iij = ii; + 1, with the value of ii; determined accordingly without
violating (2.18) and (2.26). In case 0 < X; j < 1, it is always possible to determine a pair of
values for ; and it in order to satisfy (2.26) since these constraints were conceived (MILLER

et al., 1960) to become inactive when %; j # 1. The remaining constraints of (CPD) are clearly

satisfied by X.

Proposition 3 When projecting out u variables from model (CPD), the set of feasible linear
relaxed solutions of the resultant model is not contained in that one of (IMM) when projecting

out its y and z variables.

Proof 3 To prove this result, we claim that there are optimal linear relaxed solutions of (CPD)

that induce disconnected digraphs, which cannot be feasible to the linear relaxation of (IMM).

An example of Proposition 3 is given for the digraph in Figure 13. The notation is
the same as before. The linear relaxed solution for (CPD) is depicted in Figure 15. It is not
connected and has cost equal to —15.5 (with M = 12 in (2.26)) while that one for (IMM) is the

shortest (1,10)-path of cost equal to —12 in Figure 14.

Figure 13 — Instance: a digraph with s = 1 and t = 10.

Source: The author.
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Figure 14 — Shortest (1, 10)-path of cost equal to —12. It is feasible for the linear relaxation of

model (IMM).
A 4 — —-10— 7 )
—1 —1

1] —1— 2 ——1-3~ 8 — 159 —1— 10

Source: The author.

Figure 15 — Optimal linear relaxed solution for model (CPD) of cost equal to —15.5.
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Source: The author.

Proposition 4 We can construct SPNC instances whose integrality gap for model (CPD) is as

large as possible.

Proof 4 We prove this result by constructing an instance presenting a very large integrality
gap for model (CPD). For instance, consider any SPNC instance. Let us modify this instance
by adding an extra structure as done in Figure 16 to its input digraph delimited by the ellipse.
Assume that the optimal (a,b)-path cost in the input digraph (represented by the dashed (a,b)
arc) and its optimal linear relaxed solution value are denoted by 7 and Zg, respectively. The
linear relaxed solution for model (CPD) of the modified digraph presents arc decision variables
associated with the structure equal to e.g. xqc = Xxgp = 0 and xco = Xeq = X4. = 0.83, whose
values are for M = |V|. Labels related to u variables are equal to u. = ug = u, = 0. The cost
referred to the added structure is —6M x 0.83. Thus, the new linear relaxed solution cost is
limited from above by 7 — 6M x 0.83. Therefore, the integrality gap of the modified digraph

increases with the value of M while its optimal solution remains the same.

2.4 Combinatorial branch-and-bound algorithm

A combinatorial branch-and-bound (B&B) algorithm works as usual with its classical
branching, bounding, and pruning techniques, except for the way we proceed to branch on integer
B&B node solutions from the combinatorial relaxation employed to evaluate nodes in the B&B

search tree.
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Figure 16 — Adapting any SPNC instance to have a very large integrality gap for model (CPD).
M is a big positive value. Vertices a and b are the given path source and destination
vertices, respectively, in the input digraph. The structure associated with vertices
{c,d,e} modifies the input digraph.

C Input digraphb

~ -

~—zo--

Source: The author.

In the next paragraphs, we detail the main bounding and branching operations of our

specialized B&B algorithm for the SPNC.
2.4.1 Evaluation of B&B nodes

In order to obtain a relaxation of the SPNC to be used in a B&B algorithm, we
drop the subtour elimination constraints (2.26) from model (CPD), as well as the integrality
requirement on the x variables. Thus, the following model evaluates each node of the B&B

search tree.

(CPD-CR) min Y ¢;jxij (2.27)
(ij)€A

s.t. (2.2),(2.3),(2.14),(2.15), and

0<x;j<1, V(ij)eA (2.28)

Based on Proposition 5, we see that model (CPD-CR) is a combinatorial optimization
problem since any feasible solution for (CPD-CR) is an (s,¢)-path with a set of disjoint cycles
(which are also disjoint w.r.t. the path from s to t), as we can see e.g. in Figures 17 and 18. If

there is no cycle in the optimal solution of (CPD-CR), then it is feasible for (CPD).

Proposition 5 The constraint matrix of model (CPD-CR) is totally unimodular (TU).
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Figure 17 — Input digraph: s =1 and t = 8.
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Proof S Let Acpp_cr) be the coefficient matrix associated with the constraints of (CPD-CR).
Consider M = {1,...,2|V| =2} as the set of row indices, N = {1,...,|A|} as the set of column
indices, and aj; as the element belonging to the i-th row and j-th column of Acpp_cr)- We
resort to the characterization of TU matrices conceived by Ghouila-Houri (1962): Y1 C M,
3 I, € I such that }, ajj— ). a;j € {0,£1}, ¥Vj € N. The proof is by construction. Let
M ={1,...,|V|} andlleélz = {]‘lfeﬁ— 1,...,2|V| =2} be partitions of M, and let I be an arbitrary
subset of M. We construct I} and I, as follows. I = {INM;}U{ie My : (i—|V|+1) ¢ I},
L={ieM,: (i—|V|+1) €lI}. The rationale behind the partition scheme is that rows from
flow conservation constraints are all added to 1|, while rows from degree constraints are added
to either Iy or I, depending on which rows from flow conservation constraints belong to subset I.
Take an arbitrary vertex i € V\{s,t}. The row defining the degree constraint of vertex i, if in I, is
added to 1 if and only if the row defining the flow conservation constraint of i is not in I. If the

latter row is in I and consequently in Iy, then adding the former row to Iy would produce a sum

of value equal to £2.

An example of a coefficient matrix, with respect to (CPD-CR), for a complete digraph
with |[V| =4 is detailed in Annexe A.

A straightforward consequence of Proposition 5 is that the solution of model (CPD-
CR), with respect to a given node in a B&B tree, is integer. Thus, if the solution is cycle-free, it

provides an upper bound on the optimal solution value of the original problem.
2.4.2 Combinatorial branch

In the B&B algorithm, when a relaxed node solution contains disjoint cycles (see
e.g. Figures 17 and 18), we represent all of them by C1,C;,...,C,,. Note that the structure of the

digraph obtained from the solution of (CPD-CR) allows us to recover cycles by using a simple
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Figure 18 — Optimal solution when solving the example of Figure 17 with (CPD-CR): an
(s,¢)-path and two disjoint cycles.

AN

Source: The author.

depth-first search (DFS) polynomial-time routine. We then proceed by choosing one of them to
be broken. In particular, our algorithm selects the cycle C* < C; (1 < j < m) with the minimum
number of arcs (in Figure 18, the smallest cycle is the one represented by arcs (5,7) and (7,5)).
This is intended to reduce the number of new partitions during the branching process of the B&B
algorithm, as explained below (priority is given to the cycle with the largest cost in case of ties).
Once determined the cycle C*, let aj,as,as, . .. . a|c| be its arcs. The corresponding B&B node

is partitioned into |C*| new subproblems according to the following idea. In the first partition,

we fix arc a; out of the solution; in the i-th partition, for i € {2,...,|C*|}, we fix arc a; out of
the solution and impose that all arcs a;,as,as,...,a;—1 belong to its solution. This is called a
disjunctive combinatorial branch and has been explored within B&B schemes in case of B&B
node relaxed solutions are integer (ANDRADE; FREITAS, 2013; BATSYN et al., 2013).

We illustrate this branching process in Figure 19. Solid (resp., dotted) lines show that
an arc is fixed in (resp., fixed out of) the corresponding B&B node solution. All new partitions

Figure 19 — Disjunctive combinatorial branch. New partitions ny,na, ..., n|c+| are the leaves on
this tree.

ap
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) ny:Fy={a,ax},Fy = {a3}
a‘cﬂ /

’

“‘ ¥ ng: Fy ={ay,ar,a3},Fo = {as}

nc  Fi = {al,az,a3,a4,...,a‘c*| -1}, = {a\C*\}

Source: Artwork adapted from Andrade e Freitas (2013).
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(subproblems) are represented by the leaves in the corresponding binary tree representation.
Fixing an arc in (resp., out of) a B&B node relaxed solution can be done by setting each
corresponding arc decision variable lower and upper bounds to one (resp., to zero). In this figure,
for every new subproblem, Fp and Fj are the sets of arcs whose both lower and upper bounds of
their corresponding arc decision variables are fixed at zero and at one, respectively. Every new
subproblem is evaluated before its inclusion into the B&B tree of open subproblems. We use the
best-first criterion to choose the next open node to be evaluated, which explores the B&B nodes
in an increasing order of relaxed solution values.

In the next section, we devise a cutting-plane algorithm to solve (CPD) based on the

solution of model (CPD-CR).

2.5 Cutting-plane method

We present an exact cutting-plane (CP) method for the SPNC that is based on model
(CPD-CR). This model is a relaxation for (CPD) and its solution can contain cycles. Thus, the
idea is to iteratively cut off cycles from the space of feasible solutions of (CPD-CR). Remember
that we can detect a cycle in a given digraph by using, for instance, a DFS procedure. In this
case, we determine the corresponding digraph induced by any feasible solution x of (CPD-CR)
and run a DFS-based cycle detection procedure for this solution, say containCycle (¥). This
procedure returns all cycles present in X. We generate subtour elimination constraints for every
cycle in X and add them to model (CPD-CR), then re-optimized.

This process is repeated until the solution of (CPD-CR) presents no cycle, when

the optimal solution of (CPD) is achieved. Observe that, as subtour elimination constraints are

Algorithm 1: Cutting-plane method for the SPNC.
: Data: SPNC instance.
Result: SPNC optimal solution x.
X < solve(CPD-CR);
while (containCycle()) do
Let C1,Cs,...,C, represent the cycles induced by ;
for (i< 1tom) do
Let a; be a decision variable associated with arc j, for all j € C;;
Add inequality ¥ ;jcc,a; < |Ci| — 1 to (CPD-CR);
end for
X < solve(CPD-CR);
: end while

R A U S S e

—_
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iteratively included in model (CPD-CR), the total unimodularity of its constraint matrix may be
violated. When a fractional solution is obtained, we stop working with continuous variables on
(CPD-CR) and start adopting the integrality requirement to guide the CP method.
Algorithm 1 gives the main steps of our CP method, as well as the inequality
implemented to cut off cycles. This algorithm uses the procedure containCycle defined above.
The number of cycles in a digraph D is finite, although exponential in the worst case.
Thus, Algorithm 1 always ends with an optimal solution for model (CPD) after enumerating at

most all cycles of D.

2.6 Computational experiments

We implemented models (IMM) and (HMM-RLT) of Ibrahim et al. (2009) and
Haouari et al. (2013), respectively, as well as model (CPD), the combinatorial B&B, and the
cutting-plane (CP) algorithm. All five solution approaches are compared in this chapter. We
report numerical results for problem instances categorized as follows: 38 general digraphs
of Haouari et al. (2013) (in Table 1), 50 randomly generated digraphs (in Table 2), 17 grid
digraphs of Ibrahim et al. (2015b) (in Table 3), 90 pricing subproblems of Taccari (2016) (in
Tables 4 and 5), and 9 new instances (in Table 6) obtained from instances from Tables 1 and 2.
For all instances, we set |8;"| = |§,7| = 0 and (s,7) € A in order to apply properly (HMM-RLT).
In IBRAHIM et al., 2015b), the authors give the number of negative cycles for their instances.
As it was very time consuming to determine the same parameter for the remaining instances we
deal with, probably due to their exponential number of negative cycles, this information was not
considered here. Our experiments were performed on a PC Intel Pentium 17 / 8 x 3.60 GHz /
16 GB DDR3 RAM under Linux Ubuntu 14.05 LTS. We used CPLEX 12.6 and Java concert
technology. The CPU time limit for each instance was set to 3600 seconds.

Haouari et al. (2013) randomly generate 38 digraphs as follows. First, for each
vertex j (j=1,...,|V|—1), the out-degree dj+ of vertex j is drawn uniformly at random from
[1,min{3,|V|—j—1}]. Second, d;.L outgoing arcs from j (j = 1,...,|V|—1) are created by
randomly choosing d;-“ endpoints in {j+ 1,...,|V|}. If, after this process, there is a vertex
Jj (j =2,...,|V|) having no incident arc in the resulting partial graph, then an arc (i, j) is
arbitrarily created, with i randomly drawn from {1,..., j— 1}. To create cycles, for each vertex
J(j=2,...,]V]), an arc (j,k) is added to the digraph with probability equal to %, with k being

randomly chosen from {2,..., j — 1}. Finally, for each arc (i, j) € A, the corresponding cost ¢;;
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is initially drawn uniformly at random from [1,50], and then multiplied by —1 with probability
equal to % to impose the existence of negative cycles. They always set s = 1 and t = |V|.

Ibrahim et al. (2015b) generate 17 digraphs (grid instances) with a random arc
orientation. Arc cost values are uniformly drawn from [—13,7]. Vertices s and ¢ are also
randomly chosen.

Taccari (2016) reports 90 pricing subproblems from a column-generation algorithm
for the asymmetric m-salesmen TSP. The pricing problem in such an algorithm is a shortest path
problem on a graph with negative cycles. Arc cost values lie in [—108,30000]. These instances
contain at least one negative cycle.

We also randomly generate 50 digraphs using the following procedure. For each pair
of verticesi € V (i # |V|) and j €V (j # 1), with i # j, an arc (i, j) is created according to a
given input probability p, whose value corresponds to the desired arc density of the digraph that
can be inferred by |A|/|V|(|V| —1). Arc costs ¢;; are drawn uniformly at random from [—48,50].
Vertices s and ¢ are set to 1, and to |V|, respectively. We perform a DFS-based post-processing
operation to check the connectivity of our instances. Disconnected digraphs are not considered.

Concerning the instances used in Table 6, they were obtained from the last four
instances from Table 1 and from the last five instances from Table 2. These instances with
small integrality gaps were modified by adding to them the structure presented in Figure 16 with
M = |V|. This is intended to make their integrality gaps very large for model (CPD) as stated by
Proposition 4, thus allowing us to evaluate if such a change has some impact on the performance
of all solution approaches for these instances.

The legend in the next tables is as follows. The first three columns give the number
of vertices |V[, the number of arcs |A|, and the optimal solution value OPT for each instance. The
remaining columns report, for each solution approach, the number of relaxed subproblems (bb)
solved by CPLEX, and the elapsed time (cpu) in seconds required to obtain the optimal solution.
For the MIP models, we provide the integrality (gap) in percentage between the linear relaxed
solution and the optimal one. The elapsed time (¢) in seconds to solve the linear relaxation of
each MIP model is also given (for CP, it is the execution time of (CPD-CR), which is the same to
the B&B algorithm). For B&B, we also show the average cardinality (¢) of the cycles broken
during the execution of the algorithm. The symbol “NA” means values not available due to time

limit exceeded, whereas “OM” means that CPLEX runs out of memory.
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For the benchmark instances of Haouari ef al. (2013) in Table 1, (CPD) obtains

optimal solutions in smaller CPU times for 21 digraphs while CP and B&B get it for 11 and 2

digraphs, respectively. Nevertheless, the average CPU time presented by CP is 1.30 seconds

against 1.82 seconds of model (CPD) and 8.50 seconds of B&B. Observe also that the average
number of subproblems solved by CP (7.87) is much smaller than those of (CPD) and B&B

(180.50 and 881.84, respectively). Model (HMM-RLT) finds all optimal solutions in average

CPU time of 13.45 seconds while (IMM) is not able to solve 17 instances to optimality. For

digraphs with up to 600 vertices, IMM) produces tighter LP relaxations than (HMM-RLT) and

(CPD). Considering all instances, the average gap of (CPD) is a bit smaller than that one of
(HMM-RLT). The average cardinality of broken cycles is 28.45.

Table 1 — Results for benchmark instances of Haouari ef al. (2013).

Instance (IMM) (HMM-RLT) (CPD) B&B Ccp
V| |A]  OPT bb cpu gap t bb cpu gap t bb cpu gap t ¢ bb cpu bb cpu t
10 29 —-185 O 0.150.00 0.10 0 0.100.00 0.10 0 0.09 0.00 0.10 0.00 0 0.09 00.090.08
10 29 —-232 0 0.140.00 0.01 0 0.10 0.00 0.01 0 0.010.000.01 0.00 0 0.00 00.010.00
20 70 —-392 0 0.19 0.00 0.03 0 0.140.00 0.01 0 0.010.000.01 0.00 0 0.01 00.010.01
20 74 —446 O 0.19 0.00 0.02 0 0.130.000.01 0 0.02 0.00 0.01 8.00 8 0.10 10.020.00
30 110 —-744 0 0.56 0.00 0.08 0 0.16 0.00 0.02 0 0.050.000.01 0.00 61 0.15 40.070.01
30 114 815 O 0.27 0.86 0.13 0 0.122.330.01 0 0.011.100.01 10.17 0 0.10 00.010.01
40 154 —1057 O 1.06 0.19 0.28 0 0.253.88 0.02 0 0.062.37 0.01 6.44 58 0.14 30.110.01
40 158 —928 0 0.991.08 0.22 0 0.27 7.54 0.02 0 0.085.930.01 4.33 65 0.14 50.120.00
50 193 —1214 O 1.86 0.99 0.42 0 0.241480.02 178 0.09 1.570.01 1793 184 0.20 11 0.37 0.00
50 196 —1281 O 2.391.72 0.62 0 0.26 2.34 0.02 0 0.072030.0113.14 251 0.23 110.540.01
60 234 —1623 14 8.590.80 1.01 0 0.281.480.02 155 0.171.790.01 11.33 887 0.63 221.08 0.01
60 242 —1519 O 5.720.86 0.75 0 0232630.02 171 0.123.560.0118.87 102 0.22 40.150.01
70 276 —1824 O 7.24 0.93 1.49 0 0.271.750.04 180 0.181.750.0111.7v8 106 0.19 5 0.20 0.00
70 285 —1912 0 530021 1.12 0 0.22 0.630.03 0 0.06 0.630.01 3.00 6 0.12 20.050.00
80 318 —2176 26 38.57 0.18 1.65 0 0.320.600.02 388 0.27 0.550.01 563 154 0.24 6 0.38 0.00
80 323 —-2012 0 14.700.80 1.39 0 0.29 1.64 0.03 0 0.121.64 0.01 9.63 45 0.19 20.070.01
90 353 —2339 39 64.650.43 2.45 62 0.421.24 0.03 0 0.261.240.0111.93 167 0.27 7 0.430.00
90 357 —2293 5 23.050.35 1.97 0 0.27 0.44 0.04 0 0.09 0.39 0.01 20.00 60 0.22 30.130.01
100 407 —2628 21 69.94 0.38 2.83 129 0.56 0.42 0.04 0 0.12 0.42 0.01 36.25 164 0.28 50.210.01
100 414 -—-2768 12 77.010.33 3.12 0 0.29 0.40 0.04 0 0.120.430.023280 290 0.42 80.290.01
200 821 —5133 25 1435.22 0.12 33.51 0 0.76 0.27 0.15 181 0.39 0.27 0.02 10.89 225 0.58 50.79 0.01
200 827 —5288 NA NA 0.17 NA 0 1.280.47 0.16 0 0.320.550.0218.75 207 0.57 81.060.01
300 1227 —7856 NA NA 0.09 NA 9 1.290.480.32 0 0.330.100.0360.25 241 1.02 30.370.02
300 1229 —7988 NA NA 0.11 NA 134 2280.260.44 263 0.720.14 0.04 28.16 901 2.69 13 1.410.02
400 1657 —10327 NA NA 0.06 NA 685 7.47 0.10 0.50 0 0.56 0.10 0.06 27.00 243 1.28 6 1.04 0.02
400 1660 —10276 NA NA 0.00 NA 0 4.19 1.07 0.47 0 0.27 0.50 0.05 2.80 14 031 10.190.03
500 2078 —12999 NA NA 0.01 NA 63 4.630.130.62 349 2.750.130.092350 188 1.22 40.470.03
500 2085 —13086 NA NA 0.09 NA 493 6.120.160.72 121 1.480.09 0.09 54.63 1311 6.72 14 2.58 0.03
600 2469 —15573 NA NA 0.03 NA 8652557 0.071.00 890 4.84 0.07 0.13 84.63 9225 57.43 32 8.97 0.03
600 2486 —15169 NA NA 0.06 NA 228 6.600.091.02 497 2.830.09 0.1255.00 770 5.19 16 2.930.03
700 2907 —18188 oM 569 22.31 0.09 1.61 1579 11.15 0.09 0.13 94.05 5925 46.55 21 4.64 0.06
700 2932 —17841 oM 2275 48.08 0.15 1.67 781 5.70 0.05 0.14 29.97 1169 9.56 11 2.57 0.04
800 3280 —20510 oM 1432 18.38 0.11 1.87 49 2.800.110.19 83.32 2083 30.46 10 2.26 0.05
800 3329 —20269 oM 746 60.44 0.04 1.65 430 6.11 0.04 0.18 97.88 3132 48.44 17 4.12 0.05
900 3693 —23049 oM 679 62.56 0.052.28 404 5.68 0.05 0.16 74.69 2913 54.11 21 7.05 0.08
900 3712 —23719 oM 509 86.72 0.03 2.19 58 4.72 0.03 0.28 15.40 77 188 30.610.07
1000 4158 —25680 oM 923 76.46 0.08 2.70 75 6.550.08 0.18 17.22 155 3.88 3 1.20 0.07
1000 4176 —26076 oM 297 71.20 0.11 2.73 110 9.96 0.11 0.27 81.65 2123 47.18 12 2.73 0.07
Average NA 265.74 13.45 0.86 0.60 180.50 1.82 0.74 0.06 28.45 881.84 8.50 7.87 1.30 0.02
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Concerning our randomly generated digraphs in Table 2, B&B presents smaller CPU
times for 28 instances while CP gets it for 20 instances. The average number of subproblems
solved by them is 108.04 and 6.66, respectively. The remaining 2 instances are solved in smaller
CPU times by (CPD), which solves 21.50 subproblems in average. Model (HMM-RLT) finds
all optimal solutions in average CPU time of 106.62 seconds while model (IMM) solves to
optimality only 11 instances. Taking into account only digraphs with 100 vertices, we note that
(IMM) produces LP-relaxed solutions with very small gaps. For the whole set of instances, the
average integrality gaps of (CPD) and (HMM-RLT) are 0.02 and 0.03, respectively. The average
cardinality of broken cycles is 13.75.



Table 2 — Results for new randomly generated instances.
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Instance (IMM) (HMM-RLT) (CPD) B&B cp
V| |A| OPT bb cpu gap t bb cpu gap t bb cpugap t ¢ bb cpu bb cpu t
100 1899 —3968 18 2358.55 0.10 157.20 0 0.97 0.10 0.46 111 1.010.130.162233 201 0.77 6 0.790.14
100 1913 —4085 0 356.41 0.00 122.84 0 0.32 0.00 0.15 0 0.14 0.00 0.04 0.00 0 0.02 0 0.070.03
100 1937 —4118 25 2747.55 0.15 37.26 160 1.45 0.17 0.38 0 0.610.170.04 1281 269 0.72 9 1.040.02
100 1985 —4158 0 820.37 0.00 234.24 0 1.06 0.02 0.31 0 0.46 0.02 0.03 9.00 36 0.11 3 0.210.02
100 1983 —4192 0 727.99 0.02 177.56 0 1.39 0.05 0.33 0 0.67 0.05 0.03 23.00 69 0.28 3 0.390.01
100 3878 —4501 3 1933.19 0.04 368.18 0 2.68 0.09 0.29 0 1.970.070.0811.38 239 1.72 4 0.640.03
100 3778 —4450 NA NA 0.05 327.26 34 2.470.14 053 500 2530.090.0724.46 318 2.19 17 2.610.02
100 3822 —4518 NA NA 0.04 438.45 39 2.450.04 0.50 0 1.800.04 0.07 1433 172 1.23 11 1.400.03
100 3892 —4495 0 3297.42 0.00 249.06 0 1.84 0.04 0.59 0 0.86 0.04 0.06 4.33 13 0.11 4 0.530.03
100 3870 —4492 9 1360.11 0.05 377.32 0 255 0.07 055 99 1.850.07 0.06 12.63 101 0.75 5 0.730.02
100 5835 —4639 NA NA 0.00 970.24 0 9.48 0.07 1.06 0 3.290.020.11 575 69 0.70 5 1.010.03
100 5772 —4626 NA NA 0.00 1376.51 0 1.46 0.00 0.86 0 0.83 0.00 0.09 16.00 32 034 5 0.610.03
100 5804 —4653 0 2379.13 0.00 789.74 0 1.08 0.00 0.97 0 1.26 0.000.1157.75 231 237 5 0.580.03
100 5797 —4635 0 2095.17 0.00 666.17 0 1.60 0.00 1.09 0 0.69 0.00 0.14 16.67 50 0.54 3 0.210.02
100 5830 —4603 NA NA 0.00 934.38 0 4.20 0.00 1.02 0 1.79 0.00 0.11 3.00 3 006 3 0.260.03
100 7759 —4724 NA NA 0.00 1085.23 0 13.030.11 142 0 3.460.04 0.19 8.40 210 2.78 7 1.310.04
100 7771 —4685 NA NA 0.00 1815.06 0 2.900.02 1.43 0 1.190.000.1831.71 222 294 3 0.420.03
100 7761 —4692 NA NA 0.00 1185.25 27 5.47 0.00 1.43 0 2.17 0.00 0.17 14.75 59 0.80 9 1.590.03
100 7793 —4709 NA NA 0.00 1698.77 0 234 0.02 1.32 0 1.470.000.13 0.00 0 004 0 0.100.05
100 7758 —4688 NA NA 0.00 1360.60 55 27.69 0.09 1.33 0 3.750.02 0.20 10.17 61 082 9 1.340.04
100 9703 —4718 NA NA 0.02 1190.41 0 11.800.02 2.09 11411.850.020.4011.40 114 189 15 3.57 0.05
100 9703 —4741 NA NA 0.00 2212.06 0 2.430.02 1.66 0 2.06 0.00 0.18 8.50 51 091 11 1.87 0.04
100 9703 —4725 NA NA 0.00 918.12 0 434000 1.87 32 6.030.020.27 14.00 42 073 8 1.910.05
100 9703 —4744 0 3209.33 0.00 1426.20 0 3.05 0.00 1.92 0 6.630.000.27 6.33 19 037 1 0.210.05
100 9703 —4729 NA NA NA NA 0 8.350.00 2.02 0 5.27 0.00 0.23 5.00 25 054 9 2.060.05
200 7870 —9022 NA NA NA NA 410 59.850.03 1.57 0 2900.030.1715.75 252 427 6 1.820.04
200 7832 —9036 NA NA NA NA 291 19.940.09 143 219 2510.030.122286 480 7.37 15 3.350.06
200 7782 —9040 NA NA NA NA 0 3.310.00 1.39 0 1.430.000.14 2.00 2 009 1 0.170.05
200 7919 —9072 NA NA NA NA 0 7.350.01 1.52 0 1.97 0.01 0.17 28.67 86 132 5 0.610.04
200 7948 —9130 NA NA NA NA 0 6.66 0.00 1.71 0 0.350.000.13 4.50 9 019 6 0.750.04
200 15872 —9468 NA NA NA NA 0 37.460.03 3.99 0 6.860.030.80 1420 284 8.69 7 1.770.09
200 15659 —9429 NA NA NA NA 0 49.380.01 3.26 0 3.830.010.39 9.67 29 095 1 0.560.07
200 15584 —9475 NA NA NA NA 0 66.410.04 3.99 0 3.010.000.31 3.50 14 0.53 12 3.37 0.08
200 15813 —9446 NA NA NA NA 4 146.96 0.01 3.82 010.520.01 0.3116.22 146 443 3 0.67 0.08
200 15868 —9432 NA NA NA NA 228 159.73 0.00 3.41 0 12.69 0.00 0.46 4.50 9 037 4 1.790.09
200 23819 —9567 NA NA NA NA 3 204.430.01 6.97 0 5.890.00 0.56 6.75 54 246 7 3.320.15
200 23499 —9567 NA NA NA NA 0 121.72 0.00 6.53 0 6.78 0.00 0.72 16.00 48 227r 3 1.110.14
200 23767 —9574 NA NA NA NA 0 10.940.00 6.52 0 12.74 0.00 0.53 11.33 34 165 10 3.530.13
200 23683 —9567 NA NA NA NA 0 17.36 0.00 5.26 021.500.00 0.84 2729 191 843 5 3.310.12
200 23601 —9564 NA NA NA NA 0 78.220.00 8.87 0 9.710.00 0.54 1850 148 6.65 11 4.120.12
200 31462 —9642 oM 0 17.520.01 10.82 0 11.39 0.00 0.94 0.00 0 023 2 1.090.19
200 31499 —9657 OM 274 175.72 0.00 14.38 051.920.01 1.08 15.14 106 6.15 16 10.11 0.17
200 31703 —9637 oM 0 211.82 0.00 14.23 0 9.290.001.96 25.85 336 19.37 7 6.380.21
200 31538 —9643 oM 635 1006.56 0.00 13.86 0 40.85 0.00 2.77 4.00 8 066 8 6.180.17
200 31490 —9647 oM 7 317.49 0.00 12.65 0 18.71 0.00 0.90 17.00 68 4.04 14 8.08 0.19
200 39403 —9685 oM 0 192.34 0.01 14.96 0 32.24 0.00 3.12 21.50 43 321 12 9.29 0.24
200 39403 —9681 oM 0 810.62 0.00 13.61 017.410.00 3.4220.17 121 8.40 11 7.790.27
200 39403 —9677 oM 5 910.50 0.00 14.12 0 46.06 0.01 6.04 10.69 139 9.66 3 3.430.23
200 39403 —9691 oM 0 302.97 0.10 14.25 0 16.06 0.00 3.86 15.78 142 9.79 5 5.570.29
200 39403 —9683 oM 19 279.46 0.00 13.63 0 28.92 0.00 3.53 11.75 47 354 4 278031

Average NA 43.82 106.62 0.03 4.4521.50 8.78 0.02 0.75 13.75 108.04 2.77 6.66 2.33 0.09

For the grid digraphs of Ibrahim et al. (2015b) in Table 3, model (CPD) yields proven
optimal solutions in smaller CPU times for 15 instances while model (HMM-RLT) gets it for
the remaining 2 instances. The average time spent by model (IMM) to solve each instance is
1.14 seconds while models (CPD) and (HMM-RLT) require 0.23 and 0.24 seconds, respectively.

B&B and CP do not find the optimal solution for one instance within the time limit. Nevertheless,



40

Table 3 — Results for grid instances of Ibrahim et al. (2015b).

Instance (IMM) (HMM-RLT) (CPD) B&B CP
V| |A| OPT bb cpu gap  tbb cpu gap t bb cpu gap t ¢ bb cpu bb cpu t

100 180 —82 0 0.54 34.150.40 00.18 117.07 0.16 00.16 123.17 0.11 9.77 1250 0.54 15 0.410.09
100 180 —167 00.71 3.590.32 00.23 22.16 0.05 00.14 22750.02 6.87 268 024 6 0.220.01
100 180 —62 0 0.58 12.90 0.34 00.19 25.81 0.02 0 0.14 250.00 0.02 9.03 12518 3.69 20 0.70 0.01
100 180 —70 0 0.52 14.29 0.21 0 0.22 168.57 0.03 00.13 227.14 0.01 11.33 19120 5.93 25 0.79 0.01
100 180 —95 00.47 5.26 0.17 0 0.22 101.05 0.03 0 0.14 101.05 0.01 9.59 4478 1.59 29 0.79 0.00
100 180 —121 00.57 5.790.20 00.19 21.49 0.04 00.14 3058001 586 82 0.17 5 0.160.00
100 180 —102 0 0.60 13.730.21 00.22 88.24 0.03 1319 0.24 100.00 0.01 14.24 39888 11.86 161 15.21 0.00
100 180 —192 00.65 3.130.28 00.19 11.98 0.03 00.14 28.650.01 429 266 0.23 6 0.210.00
100 180 —107 00.59 11.220.18 0 0.16 48.60 0.03 00.12 4953 0.01 4.88 78 0.19 3 0.150.00
200 342 —59 01.49 49.150.71 00.25 89.83 0.06 0 0.22 593.22 0.02 8.01 24332 13.88 25 1.03 0.01
200342 —-76 0131 6.580.63 00.24 21.050.03 00.16 251.32 0.02 5.44 1088 0.87 8 0.27 0.01
200370 =385 0276 494193 00.36 31.690.26 2720.25 43.64 0.12 13.51 3634 0.54 23 0.880.11
200 370 =201 01.64 7.961.10 00.27 49.250.07 00.22 80.60 0.02 5.92 9154 0.54 17 1.28 0.03
200 370 —113 01.48 30.09 1.14 0 0.26 125.66 0.04 0 0.15284.07 0.01 7.19 284 035 5 0.240.02
200370 =371 0194 2971.18 00.28 29.11 0.06 00.23 50.67 0.01 6.04 1358 0.54 5 0.64 0.02
200 370 —191 0153 2.090.71 00.25 27.23 0.04 00.18118.85 0.01 5.84 3382 0.54 6 0.330.01
200 370 —126 0 2.09 106.35 1.84 0 0.32 174.60 0.04 9955 1.09 312.70 0.01 NA NA NA NA NA 0.02

Average 01.14 18.480.68 00.24 67.85 0.06 679.18 0.23 156.94 0.02 NA NA NA 0.02

these approaches demonstrate to be more efficient than (IMM) for many instances with respect
to CPU times. We observe that model (IMM) exhibits smaller gaps when compared to the other
MIP models, showing that its corresponding linear relaxation is tighter. For these instances, the
average gap of model (CPD) is much larger than the one of (HMM-RLT). The average time spent
by (CPD) to solve the whole set of instances is 0.23 seconds, while (IMM) and (HMM-RLT)
need 1.14 and 0.24 seconds, respectively. The average time consumed by (CPD) to solve their
linear relaxations is 0.02 seconds, while (IMM), (HMM-RLT), and (CPD-CR) (representing the
first subproblem of B&B and CP) require 0.68, 0.06, and 0.02 seconds, respectively.

In Tables 4 and 5, for the instances of Taccari (2016), (CPD) finds optimal solutions
in smaller CPU times for 31 digraphs while CP and B&B find optimal ones for 8 and 3 digraphs,
respectively. (HMM-RLT) and (IMM) present better CPU times for 31 and 17 instances,
respectively. The average number of subproblems solved by (IMM) is 2 and the average gap is

8.20%. The average time of (HMM-RLT) is 1.04 seconds and (CPD) requires 3.59 seconds.



Table 4 — Results for instances reported by Taccari (2016).
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Instance (IMM) (HMM-RLT) (CPD) B&B cp

V] |A] OPT bb cpu gap t bb cpu gap 't bb cpu gap t c bb cpu bb  cpu t
27 651 * 0 0.97 0.00 1.07 00.21 0.00 0.04 00.11 0.00 0.01 3.56 612 0.68 20 0.66 0.12
27 651 % 0 260 0.001.17 00.37 0.000.03 00.09 0.000.00 3.01 56270 49.48 17 0.520.01
27 651 * 0 1.06 0.000.81 00.25 0.00 0.04 00.12 0.00 0.00 2.31 83 0.08 5 0.130.01
27 651 * 0 0.85 0.000.94 00.44 0.18 0.03 00.17 0.18 0.00 2.41 3724 321 3 0.230.01
27 651 * 0 1.50 0.00 0.90 00.32 0.00 0.03 00.26 0.00 0.01 2.23 690 0.61 5 0.230.01
27 651 * 0 4.38 0.00 1.35 00.26 0.00 0.04 72 0.45 0.00 0.01 3.71 3859 3.32 18 0.660.01
27 651 * 0 135 0.001.16 00.34 0.000.03 00.10 0.000.01 322 40927 36.32 23 0.67 0.01
27 651 * 0 1.57 0.001.02 108 0.69 0.00 0.03 0 0.09 0.00 0.01 3.53 22411 1942 8 0.180.01
27 651 * 0 373 000096 0028 0.00 0.04 0011 0.000.01 451 4178 3.68 9 0.290.01
27 651 * 0 1.45 0.001.20 610.50 0.00 0.03 211 0.29 0.00 0.01 3.61 2502 221 19 0.640.01
27 651 * 0 3.24 0.001.12 00.22 0.00 0.03 00.10 0.00 0.00 3.01 2340 205 8 0.240.01
27 651 % 0 472 0.001.01 360.83 0.000.05 00.10 0.000.01 2.28 326 029 4 0.090.01
27 651 * 0 6.73 0.00 1.18 150 0.64 0.00 0.03 263 0.37 0.00 0.00 2.87 11023 9.86 18 0.680.01
27 651 * 0 074 000090 00.28 0.000.02 00.10 0.000.00 2.63 121 010 5 0.130.01
27 651 % 0 0.85 0.001.07 123 0.57  0.00 0.03 00.10 0.000.00 2.83 18125 16.13 8 0.280.01
27 651 *28 0.33 0.00 1.26 00.30 0.00 0.03 00.10 0.00 0.00 8.06 2298 205 4 0.060.01
27 651 * 0 3.17 0.00 1.16 3913 3.48 0.27 0.04 9192 3.03 0.40 0.00 NA NA NA 88 22.18 0.01
27 651 * 0 3.62 0.000.88 00.61 0.00 0.04 00.10 0.00 0.00 11.91 136534 123.37 6 0.150.01
27 651 % 0 103 0.000.87 00.31  0.000.03 00.11  0.000.00 2.79 732 0.64 30 0.820.01
27 651 %= 0 108 0.001.13 30055 000003 18030 0.00000 2.16 1710 145 3 0.080.01
27 651 * 0 0.96 0.000.68 120.35 0.00 0.03 24 0.23 0.00 0.00 2.23 134 0.12 8 0.180.01
27 651 * 0 474 0.001.18 00.39 0.000.03 00.16 0.000.00 262 1211  1.04 11 0.330.01
27 651 * 0 1.13 0.00 1.08 00.16 0.00 0.03 00.15 0.00 0.00 2.51 339 029 7 0.190.01
27 651 * 0 1.30 0.000.75 6 0.40 0.00 0.03 325 0.47 0.00 0.01 3.19 997 0.87 11 0.28 0.01
27 651 % 0 141 0.001.00 0055 0.000.03 00.10 0.00000 250 6779 585 9 0.220.01
27 651 * 0 2.77 0.00 0.96 00.24 0.00 0.03 10 0.24 0.00 0.00 2.95 1125 1.00 19 0.540.01
27 651 * 0 1.28 0.00 1.11 904 1.43 0.09 0.04 4364 0.79 0.20 0.00 NA NA NA 442 103.56 0.00
27 651 * 0 6.51 0.00 1.08 00.25 0.00 0.05 64 0.26 0.00 0.00 2.97 8335 7.37 19 0.590.01
27 651 * 0 1.28 0.00 1.29 00.30 0.00 0.03 00.27 0.00 0.01 4.69 2910 2,58 30 0.96 0.00
27 651 %= 0 3.14 0.000.84 0027 000002 96044 0.00000 3.73 20322 17.89 6 0.180.01
27 651 —2045 0 1.19 3.180.82 761 0.62 454.32 0.03 8755 1.64 427.87 0.01 NA NA NA 530 352.49 0.15
27 651 —2356.73 0 2.50 13.15 1.35 2246 0.81 475.37 0.05 20176 3.48 365.97 0.00 NA NA NA 99 35.16 0.02
27 651 —202.4 0 0.88 0.00 0.92 395 0.52 5168.62 0.05 1531 0.35 3563.75 0.00 3.75 121510 97.80 14 1.350.01
27 651 —730 0 1.05 0.000.76 750.51 1544.03 0.04 361 0.25 1037.73 0.00 2.72 794488 650.99 42 3.330.01
27 651 —5940 0 0.72 0.00 1.10 00.31 105.76 0.04 00.24 68.21 0.00 2.48 1870 150 11 0.730.01
27 651 —3420 97 26.30 17.07 0.85 256 0.51 349.15 0.03 4679 0.73 286.92 0.00 3.01 178692 144.98 133 25.77 0.01
27 651 —4985 0 0.78 0.00 1.14 2687 1.21 271.32 0.03 36964 4.48 241.27 0.00 NA NA NA 95 67.13 0.01
27 651 —2895.88 0 1.56 5.01 1.21 308 0.50 319.70 0.03 4637 0.66 318.95 0.00 3.42 2576330 2755.46 40 5.97 0.01
27 651 —2870 0 0.86 0.00 0.92 743 0.57 262.58 0.04 4876 1.13 282.58 0.00 NA NA NA 34 5.860.01
27 651 —154 0 0.81 0.00 0.67 0 0.34 8107.29 0.03 1223 0.43 6732.47 0.00 3.34 1576933 1407.92 27 2.59 0.01
27 651 —3325 0 0.93 0.000.81 00.52 286.29 0.04 1983 0.47 246.62 0.00 3.03 296102 241.11 18 1.77 0.01
27 651 —1060 0 1.17 0.00 1.02 827 0.68 835.83 0.03 4048 0.70 643.87 0.00 2.87 420554 359.88 31 3.830.01
27 651 —618.75 0 2.70 37.27 0.80 1477 0.70 1996.19 0.04 6693 0.79 1906.77 0.00 NA NA NA 48 6.46 0.01
27 651 —1334.7 0 0.86 0.00 0.70 302 0.67 569.06 0.03 13368 1.96 513.17 0.00 NA NA NA 137 56.03 0.01
27 651 —1030.02 0 0.87 0.00 1.08 4618 0.98 1586.03 0.03 26799 5.16 1572.38 0.00 NA NA NA 214 263.49 0.01
27 651 —1472 0 5.22 61.14 1.02 475 0.43 560.15 0.04 26376 3.63 383.56 0.00 NA NA NA NA NA 0.01
27 651 —1980 0 0.96 0.00 1.04 00.44 687.950.03 8794 1.57 520.71 0.00 NA NA NA 28 4.900.01
27651 —4830 0 3.00 145094 0058 186.87 0.04 656 0.42 158.70 0.00 2.80 24437 21.03 48 4.170.01
27 651 —4869.95 0 1.16 0.00 0.97 5509 1.42 181.20 0.03 9597 2.20 199.68 0.00 NA NA NA 52 22.19 0.01
27651  —3190 0 1.47 0.84 0.87 247 0.40 485.08 0.03 1774 0.43 309.320.00 2.76 394617 326.07 32 3.38 0.01
* Very small values ~ —2.6 x 10°

Globally, for the benchmark digraphs, (CPD), B&B and CP outperform existing MIP

models for the SPNC. Considering only our randomly generated digraphs, B&B and CP show to

be competitive approaches, performing very well for them. For grid and pricing digraphs, (CPD)

again shows its efficiency, despite presenting larger integrality gaps when compared to (IMM)

and (HMM-RLT). For some instances, B&B and CP do not find optimal solutions.
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Table 5 — Results for instances reported by Taccari (2016) (cont.).

Instance (IMM) (HMM-RLT) (CPD) B&B cP
V] |A] OPT bb cpu gap t bb cpu gap t bb cpu gap 't C bb cpu bb  cpu t
27 651 —4440 00.87 0.00 0.92 00.34 177.90 0.03 4173 0.54 145.27 0.00 3.20 123804 100.18 35 3.510.01
27 651 —4120 0210 3.70 0.95 0 0.37 195.16 0.03 1169 0.65 126.82 0.00 2.63 9868 792 7 0.430.01
27 651 —1736.7 0154 211123 725 0.47 455.89 0.04 3049 0.57 375.04 0.00 NA NA NA 30 3.810.01
27 651 0 0 1.56 100.00 0.91 0 0.37 100.00 0.04 2391 0.51 100.00 0.00 NA NA NA 49 499 0.01
27 651 —5839.98 00.75 0.00 0.77 0 0.35 299.09 0.04 0 0.23 185.40 0.00 2.57 30854 243 4 0.190.01
27 651 —1977.46 0156 1.770.93 3161 1.02 446.29 0.04 6937 0.85 444.81 0.00 NA NA NA 51 6.08 0.01
27 651 —-990 0133 0.001.18 0 0.47 793.50 0.03 384649 49.66 868.94 0.00 NA NA NA NA NA 0.00

27651 —1564 00.98 0.001.03 455 0.56 695.72 0.03 3157 0.60 672.54 0.00 2.94 118060 93.71 15 1.620.01
27 651 —3753.78 0282 1.68 0.88 545 0.54 200.03 0.04 6702 1.09 177.88 0.00 NA NA NA 161 44.16 0.01
27 651 —183.21 0248 430.25 091 1205 0.84 6488.82 0.03 11022 1.68 5118.07 0.00 NA NA NA 106 25.87 0.01
27651 —2245 0130 0.001.07 55221.95 406.56 0.03 180805 39.97 382.41 0.00 NA NA NA NA  NA0.12
27 651 —-3163.4 01.08 0.001.40 3588 3.56 330.250.04 8487 5.51 247.150.00 NA NA NA 57 24.94 0.01
27 651 —1953.6 01.37 0.001.08 150 1.49 488.17 0.06 5345 1.03 313.64 0.00 3.38 140137 11256 12 1.840.01
27 651 —2655.42  01.07 0.00 1.14 00.74 385.21 0.03 3928 3.97 256.06 0.00 2.83 586308 515.77 25 5.50 0.01
27 651  —6000 00.94 0.000.90 57 0.87 107.93 0.03 1199 0.55 83.04 0.00 2.65 13607 10.96 16 1.410.01
27651  —5340 04.47 276098 2100 1.70 196.14 0.03 2968 0.71 148.08 0.00 3.01 89157 73.44 19 2.830.01
27651  —6340 01.00 0.001.30 3447 2.20 194.13 0.04 25771 8.38 168.34 0.01 NA NA NA NA  NA0.01
27 651 —3137.92 00.86 0.001.29 1638 1.40 288.64 0.03 7059 4.09 286.63 0.01 NA NA NA 57 20.510.01
27651 —2870 0291 0.000.99 10111.71 26258 0.03 11242 4.47 28258 0.00 NA NA NA 271 381.10 0.01
27651  —2080 00.79 0.00 1.27 00.58 542.42 0.03 2747 0.68 425.72 0.00 3.88 2040823 3067.84 28 4.03 0.01
27651  —5560 01.47 0.001.19 1046 1.65 192.77 0.03 4056 2.81 142.90 0.00 NA NA NA 26 7.500.01
27651  —1060 01.83 0.001.12 618 1.42 836.75 0.03 5371 1.10 660.38 0.00 NA NA NA 34 6.26 0.01
27651 —1460 0521 1.031.03 2732241 801.530.05 10860 3.37 750.47 0.00 NA NA NA NA  NA0.01
27 651 —1822.62 0 1.48 0.00 1.14 4962 3.24 397.22 0.03 72045 17.32 352.87 0.01 NA NA NA NA  NA0.01
27 651 —3001.7 0163 0.001.26 3468 3.10 483.850.03 72831 17.68 473.87 0.00 NA NA NA NA  NA0.01
27 651  —1536 718.07 54.43 0.99 477 0.89 539.54 0.03 52318 8.04 363.41 0.00 NA NA NA NA  NA0.01
27 651  —4930 04.14 0.611.07 1775246 217.800.03 43723 14.99 154.67 0.00 NA NA NA 180 198.00 0.01
27651 5150 0129 0.001.26 141 0.91 174.81 0.04 1449 0.68 14262 0.00 3.72 39096 32.96 72 11.59 0.01
27 651 —5139.97 0125 0.001.09 55935.04 168.910.03 13465 4.89 183.94 0.00 NA NA NA 58 59.83 0.01
27 651  —5440 0137 0.001.02 00.53 249.88 0.04 0 0.48 140.220.00 3.44 28569 24.09 5 0.410.01
27 651  —5260 0 1.42 0.001.12 01.10 140.72 0.04 4166 1.84 107.03 0.00 3.51 75967 63.37 27 4.570.01
27 651  —4400 0499 0.680.99 63152.65 180.80 0.03 6131 2.66 135.450.00 3.13 775850 679.61 17 4.27 0.01
27 651 —4716.74 0 1.40 0.00 1.29 3567 2.25 185.37 0.03 9141 4.21 153.88 0.00 NA NA NA 28 12.62 0.01
27651  —2090 0131 0.001.19 16221.66 623.930.03 71899 18.50 527.150.01 NA NA NA NA  NA0.01
27 651 —7019.96 0 0.78 0.00 0.94 90 0.88 233.68 0.03 2247 0.59 149.250.00 3.27 138239 11455 8 0.690.01
27 651 —2317.43 0130 0.001.21 3510 4.85 369.02 0.04 16943 3.99 364.88 0.00 NA NA NA 83 29.550.01
27 651  —3060 0 1.45 0.001.07 119 1.73 191.40 0.03 123249 27.61 214.30 0.00 NA NA NA NA  NA0.01
27651  —2344 0145 0.001.14 33 0.89 438.20 0.04 6553 2.57 416.04 0.00 3.42 762044 677.82 253 91.37 0.00
27 651 —4126.93 01.20 0.00 1.18 665 1.47 178.83 0.03 60752 16.14 152.76 0.00 NA NA NA NA  NAO0.01
27 651 —1915.63 01.20 0.00 1.16 3699 4.23 533.41 0.04 38381 8.20 405.70 0.00 NA NA NA 87 65.73 0.01

Average 2.182.23 8.20 1.04 1003.39 1.04 495.85 0.03 16514.54 3.59 406.46 0.00 NA NA  NAO0.01

As we can see in our numerical experiments, although instances with large gaps (see
Tables 3, 4 and 5) lead to poor execution-time performances of both B&B and CP algorithms,
we find no strong evidence to classify instances being easy or difficult to solve w.r.t. small
or large integrality gaps. Indeed, consider the numerical results reported in Table 6 for the 9
instances modified according to Proposition 4. They contain the structure depicted in Figure 16.
By analyzing such table, we note that in general both B&B and CP present better CPU times
than those obtained by models (HMM-RLT) and (CPD) for these instances presenting very
large integrality gaps. Therefore, it seems that presenting small or large integrality gaps is not

conclusive to make instances easy of difficult to deal with the proposed solution approaches.
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Table 6 — Results for extended digraphs.

Instance (HMM-RLT) (CPD) B&B CP
V| |A| OPT bb cpu gap 't bb cpu gap t ¢ bb cpubb cpu t

903 3698 —23049 628 89.71 258.34 3.33 639 10.66 260.08 0.45 83.66 2928 55.16 22 7.79 0.22
903 3717 —23719 116 36.40 251.03 4.17 152 8.83 252.72 0.46 10.75 86 1.90 3 1.89 0.24
1003 4163 —25680 227 109.75 232.09 6.09 117 7.01 233.49 0.44 8.04 201 5.05 3 1.30 0.24
1003 4181 —26076 1775 284.10 228.59 5.40 0 6.26 229.98 0.61 87.96 2111 46.51 11 3.05 0.23

203 39408 —9685 0 11.50597.939.61 0 39.80 616.46 3.40 26.14 183 12.55 5 3.96 0.56
203 39408 —9681 0 475.02 598.18 9.33 0 32.47 616.723.54 423 55 3.81 54.270.36
203 39408 —-9677 8 683.53 598.44 8.69 0 34.88 616.98 5.30 9.87 79 5.28 3 3.50 0.30
203 39408 —9691 0 10.96 597.56 9.27 0 27.54 616.08 3.31 10.00 80 5.43 54.48 0.30
203 39408 —9683 0 11.24 598.06 9.10 0 87.58 616.59 3.16 4.28 77 5.19 11.330.31

2.7 Conclusion

We propose new solution approaches for the shortest path with negative cycles,
including a compact MTZ-primal-dual model (CPD), a combinatorial B&B algorithm, and
a cutting-plane (CP) method. Extensive numerical experiments show that they outperform
existing solution techniques for this problem (IBRAHIM et al., 2009; HAOUARI et al., 2013)
while obtaining optimal solutions for all instances in a few seconds (for B&B and CP, some
instances are not solved to optimality). For all benchmark (HAOUARI et al., 2013) and randomly
generated instances, model (CPD) alternates better results with both B&B and CP algorithms.
Concerning the grid instances (IBRAHIM et al., 2015b), model (CPD) globally shows to be
more attractive than the remaining solution strategies, despite its linear relaxation presents larger
integrality gaps when compared to the ones obtained by the other models. Finally, for pricing
subproblems (TACCARI, 2016), (CPD), (HMM-RLT), and (IMM) performed better for them.
There was no strong evidence to conclude if large integrality gaps play an important role in the
instance difficulty for these models. Further work in this direction is needed to characterize

challenging instances of this problem.
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3 CONSTRAINED SHORTEST PATH TOUR PROBLEM

We devote this chapter to the study of the constrained shortest path tour prob-
lem (CSPTP). Our pilot research was presented at the Joint EURO/ALIO International Con-
ference 2018 on Applied Combinatorial Optimization (EURO/ALIO 2018). A complete ver-
sion of this study has been submitted to the International Transactions in Operational Re-

search (SARAIVA; ANDRADE, 2019).

3.1 Introduction

Let D = (V,A) be a connected digraph where V is the set of nodes and A is the set of
arcs. Let ¢;j be a non-negative cost assigned to every arc (i, j) € A. Given two distinct nodes
s,t € V, an integer value N > 1, and node disjoint subsets 7; CV (i =1,...,N) such that s € T}
and ¢ € Ty, the CSPTP aims at finding the shortest trail from s to ¢ while successively visiting at
least one node in 7,75, ..., Ty, in this order. The trail starts at s € 77 and goes to some node in
T; (through nodes of V — T3), then goes to some node in 73 (through nodes of V — 73), and so on,
finally ending at ¢ € Ty (through nodes of V). It is worth mentioning that trails may visit any
node more than once, but repeating an arc is not allowed.

The CSPTP was introduced by Ferone et al. (2016) and can be viewed as a variant
of the shortest path tour problem (SPTP) (FESTA, 2012; FESTA et al., 2013). Basically, the
difference is that the latter problem allows repeated arcs. We formalize such a distinction
considering Figure 20, which depicts a digraph with its arc costs. Let s = 1 and t = 4 be the
source and destination nodes, respectively. Clearly, arcs (1,2), (2,3), and (3,4) represent the
standard shortest path from s to #, whose cost is 3. Now, let T} = {1}, T» = {3}, Tz = {2},
and 7y = {4} be node disjoint subsets to visit, in this order. The SPTP optimal solution is the
sequence of arcs (1,2), (2,3), (3,2), (2,3), and (3,4), whose cost is 5. Note that arc (2,3) is
used twice. As the CSPTP does not allow repeated arcs, its corresponding optimal solution is

composed of arcs (1,3), (3,2), (2,3), and (3,4), in this order, whose cost is 8.

Figure 20 — Example of a directed graph.

T
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Source: Ferone et al. (2016).
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Real-world CSPTP applications typically arise in cargo transportation operations in
which each customer has a set of available warehouses to where goods can be delivered. Goods
are stored in a container to be transported and delivered to customers following a priority queue
according to the order of client visits. As observed by Ferone ef al. (2016), the CSPTP can also
be viewed as a special case of the network interdiction problem on a flow network (LIM; SMITH,
2007) in which an attacker disables all the arcs of a network whenever they are used to ship
flow, with the aim of minimizing the net profit that can be obtained from shipping a commodity
across the network. A profit can be associated with nodes or arcs. Whenever the profit of an arc
is collected, it is forbidden to traverse it again since it is disrupted after traveling on it for the first
time. In this context, a special case of the network interdiction modeled by the CSPTP occurs,
when a profit is associated with all the subsets of a given sequence that must be visited in a fixed
order. Another application concerns reliable network design (HEEGAARD; TRIVEDI, 2009),
where one selects ways to travel arcs whose usage does not compromise the survivability of the
flow that must be sent along the network through ordered sets of nodes that must be crossed at
least once (FERONE et al., 2016).

Theoretical properties of the CSPTP are discussed by Ferone et al. (2016), who
show how the Hamiltonian path problem (HPP) (BERTOSSI, 1981) is polynomially Karp-
reducible to the CSPTP. It is also thanks to Ferone et al. (2016) the first solution approaches:
an exact branch-and-bound (B&B) method and a greedy randomized adaptive search proce-
dure (GRASP). In the B&B approach, the CSPTP is reduced to the path avoiding forbidden
pairs problem (PAFPP) (SRIMANI; SINHA, 1982) on an auxiliar multistage digraph. If the
solution of a B&B subproblem does not contain a forbidden pair, then a CSPTP feasible solution
is known. Otherwise, new subproblems are generated by branching on some forbidden pair. It is
worth mentioning that their B&B is able to efficiently solve only small-size instances. When
dealing with larger ones, their GRASP procedure, which operates with constructive and local
search phases based on a classical shortest path algorithm (DIJKSTRA, 1959), is used to obtain
feasible solutions. Recently, Ferone et al. (2019) conceived an alternative B&B approach whose
subproblems are SPTPs, which, in turn, are solved by dynamic programming. If the resulting
tour does not contain repeated arcs, then it is feasible for the CSPTP. Otherwise, the algorithm
branches on a given repeated arc.

B&B can take advantage of valid combinatorial optimization problem relaxation

to solve a given integer programming (IP) problem. Indeed, the CSPTP can be addressed by



46

means of another problem structure, e.g., PAFPP (FERONE et al., 2016) and SPTP (FERONE et
al., 2019). Alternatively, one can explore specific IP models for the CSPTP. Andrade e Saraiva
(2018), for instance, recently proposed a dummy node-based model that showed to be very
efficient.

In this chapter, we extend the ideas of Andrade e Saraiva (2018) and extensively
evaluate the dummy node-based model for a set of 321 instances. We perform comparative
analysis between the dummy node-based model and a new one, called frontier node-based model,
that we independently developed in parallel with a similar model recently reported by Ferone
et al. (2019). Moreover, we propose new valid inequalities that enhance the computational
performance of the latter model, as well as explore the coefficient matrix of its linear relaxation
to design heuristics embedded into a Lagrangian-based framework. At each iteration of the dual
ascent procedure, we use the information obtained from the Lagrangian problem to find promising
feasible solutions. Experiments carried out on benchmark data sets from the literature (FERONE
et al., 2016) show the efficiency of the valid inequalities and the effectiveness of our Lagrangian
framework. Computational results show, in fact, that these data sets do not require a great
computational effort of IP models as their optimality is always reached in the root node of the
CPLEX branch-and-cut search tree. This motivated us to generate two new challenging data sets
for the problem. We show that state-of-the-art B&B algorithms fail to solve all new instances
due to memory limitation, while the existing GRASP heuristic does not achieve any optimal
solution for them. On the other hand, our solution approaches find no difficulty in handling all
the new instances to optimality.

The remainder of the chapter is organized as follows. Section 3.2 presents 1P
models for the CSPTP, remarks on the frontier node-based model, and valid inequalities for the
problem. Section 3.3 details the Lagrangian-based framework. Section 3.4 reports experiments
on benchmark and new randomly generated data sets. Section 3.5 closes the chapter with a brief

conclusion.

3.2 Integer programming models

This section presents two IP models for the CSPTP.
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Figure 21 — Representation of the augmented digraph.

2
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Source: The author.

3.2.1 Dummy node-based model

Initially, we modify each CSPTP instance as follows. For every node disjoint subset
T (k=1,...,N), we create a dummy node v; and add it to V; for all u € T}, we add arcs (u, vy)
and (vg,u) to A and set their costs to zero, as in Figure 21. Refer to V/ and A as the augmented
sets of nodes and arcs, respectively.

Let P ={(s,v1),(v1i,v2),(v2,v3),...,(vn,t)} consist of N+ 1 ordered pairs of nodes
and let (ay,by) be the k-th element of P (k= 1,...,N + 1). The idea behind the dummy node-
based model (ANDRADE; SARAIVA, 2018) is to find N + 1 paths, each one having source a;
and destination by, and concatenate them in order to compute the optimal trail from s to ¢. For
this aim, we employ binary decision variables xf?j that take the value 1 if arc (i, j) belongs to the

path from ay, to by, and 0 otherwise, for all (i, j) € A" and for k = 1,...,N + 1. The model is as

follows.
N+1
ON) min Y Y el (3.1)
k=1 (i,j)eA’
l,ifi:ak,
st. Y = Y Xi=< titi=p, . k=1 N+1VieV (3.2)
(i,/)eA! (J.i)eA’
0, otherwise.

xfka_xﬁlj;lzov k:17"'7N7v(i7Vk)€A/ (33)
N+1
Y <1, V(ij)ed (3.4)
k=1
xf, =0, V(i,vp) €A k=1, .,N+1:k#p (3.5)
Y x=0 (3.6)
(i,5)€A’
Y Ht=o0 3.7)

(t,0)eA’



48

Y <1, k=1,... . N+1VjeV (3.8)
(i,j)eA’
X €{0,1}, V(i j)eA k=1, N+1 3.9)

The objective function (3.1) minimizes the cost of the trail from s to z. Con-
straints (3.2) ensure flow conservation at every node of each path whose origin and destination
are elements of P. Constraints (3.3) impose that the last arc belonging to a given path is the
first arc belonging to the next subsequent path. Constraints (3.4) guarantee that each arc is used
at most once. Constraints (3.5) impose that x variables referred to arcs (i,vy), with i € Ty, are
null in any path p # k. Constraint (3.6) (resp. (3.7)) states that no arc enters (resp. leaves) the
source s (resp. destination ¢) in the first (resp. last) path. In each path, constraints (3.8) establish
that the number of arcs entering any node is at most one. Finally, constraints (3.9) define the
domain of the decision variables. Model (DN) contains O(N x |A’|) binary decision variables

and O(N x |V'| +|A’|) constraints.
3.2.2 Frontier node-based model

Based on model (DN) (ANDRADE; SARAIVA, 2018), it is straightforward to adapt
it to obtain an alternative IP model referred to as frontier node-based model with no use of
dummy nodes. The idea relies on the observation that the optimal trail can be viewed as a
concatenation of N — 1 paths where the k-th path starts at the frontier node of 7 and ends at the
frontier node of 7y (k=1,...,N —1). A frontier node is an element of 7} (k=1,...,N) that
is source and/or destination of a simple path. Thus, any feasible solution contains exactly N
frontier nodes, being two of them trivial due to the problem definition, namely, s € 71 and f € Ty.
See Figure 22 for an example.

Working with the concept of frontier node was independently developed in parallel
by Ferone et al. (2019). Because of this, we reproduce in the sequel exactly the (frontier node-
Figure 22 — Representation of frontier nodes: s is source of the first path; v is destination (resp.

source) of the first (resp. second) path; w is destination (resp. source) of the second

(resp. third) path; and ¢ is destination of the last path.
T ) I; Iy

Source: The author.
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based) model of Ferone et al. (2019) and provide some important remarks left open by the
authors.

Consider decision variables y; denoting if i is a frontier node (value 1) or not (value 0),
for all i € UY_, Tk. Let xf?j be decision variables indicating if arc (i, j) belongs to the k-th path
(value 1) or not (value 0), for all (i,j) € A and for k = 1,...,N — 1. The frontier node-based
model (FN) is as follows.

N—1
(FN) min Y Y el
k=1 (i,j)eA
)
—yi,if i € Tiy 1,
st. Y xi— Y A=< yifiern, . k=1,...N—1YieV (3.10)
(i.j)eA (jii)eA
0, otherwise.
\
Y yvi=1, k=1,...,N (3.11)
iETk
N—1
Y <1, Vi,j)eA (3.12)
k=1
yi=1, ie{st} (3.13)
X e{0,1}, V(i j)eA k=1, . N—1 (3.14)
yi€{0,1}, k=1,....NVieT; (3.15)

Constraints (3.10) ensure flow conservation at any node belonging to the trail. Con-
straints (3.11) enforce that each subset 7} has exactly one frontier node. Constraints (3.12) state
that each arc can be used at most once. Constraints (3.13) impose s and 7 to be frontier nodes.
Constraints (3.14) and (3.15) define the variable domains. Model (FN) has O(N x |A|+ % \Tx|)
binary variables and O(N x |V|+ |A|) constraints. .

Now, we point out remarks concerning the frontier node-based model (FN) that are

relevant from theoretical and practical aspects.
Proposition 6 The integrality on the y variables in model (FN) is not necessary.

Proof 6 We claim that y variables can be continuous, say 0 <y < 1. This follows from con-

straints (3.10) and the integrality on the x variables (3.14).

Proposition 7 Constraints (3.11) are not necessary to (FN) be correct.
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Figure 23 — Solution in bold lines with every disjoint subset having exactly one frontier node.

Source: The author.

Figure 24 — Solution in bold lines with every disjoint subset having two frontier nodes.

Source: The author.

Proof 7 As y; = 1 by (3.13), the flow conservation constraints (3.10) ensure that s € Ty is
the source of the first path whose destination must be some node v € T, for which y, = 1.
Constraints (3.10) impose that the second path starts at v € T and ends at some u € T3, for
which y, = 1. This reasoning is applied to every k-th path, k =3,...,N—1. Whenk=N — 1, in
particular, y; = 1 by (3.13) and hence t € Ty is the destination of the last path. The knapsack
constraints (3.12) impose that each arc is used at most once. Thus, constraints (3.11) are not

necessary to model (FN) be correct.

Despite redundant, constraints (3.11) speed up CPLEX execution time for this model.
This is due to the fact that (FN) contains feasible solutions consisting of multiple frontier nodes
for each individual subset 7 (k = 1,...,N), thus allowing the existence of multiple disjoint trails
from T; to Ty. These solutions will never be of minimum cost as there is no negative arc cost.

An example is shown in Figs. 23 and 24.

Proposition 8 There is no arc entering (resp. leaving) node s (resp. t) in the first (resp. last)

path.
Y xi=0 and Y x7'=0 (3.16)
(i,5)€A (t,i)eA

Proof 8 As s (resp. t) is the source (resp. destination) of the first (resp. last) path and arc costs
are non-negative, then visiting s (resp. t) more than once in the first (resp. last) path leads to

non-optimal solutions.
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Proposition 9 In each individual path, the number of arcs entering any node j €V is at most

one.

Y di<1, k=1, .N-1VjeVv (3.17)

Proof 9 Visiting an arbitrary node more than once in any path would induce a subtour with

non-negative cost. As arc costs are non-negative, the corresponding solution cannot be optimal.

Proposition 10 In any k-th path from Ty to Ty (k =1,...,N —2), the first element visited in

T+ can be considered its frontier node.

Proof 10 Consider an optimal solution (x*,y*) where the k-th path visits two or more nodes in
Ti1. Let u and v be the first and the last nodes, respectively, of Ty in the k-th path of (x*,y*).
Node v is the source of the (k+ 1)-th path in this solution. Now consider a new feasible solution
(x,¥) exactly composed by the same set of arcs of (x*,y*) in the following way. Node u replaces
v as the frontier node of Ty1 in (X,¥); the path from u to v of the k-th path and the (k+ 1)-th
path from Ty | to Tiyo of (x*,y*) now constitute the (k+ 1)-th path from Ty, to Ty in (X,7).
All remaining paths and frontier nodes of (x*,y*) are kept the same in (X,y). Both solutions refer

to the same trail structure. Thus, they have the same value and therefore (X,y) is also optimal.

Corollary 1 Any k-th path from T, to Tyy, for k € {1,...,N —2}, ends at the first node of Ty 1.

Consequently,

X;=0, V(i,j) €Ali €Tiry, ke {l,....N=2} (3.18)

Proof 11 By Proposition 10, no arc leaves Ty in the k-th path, k =1,... N —2.

In what follows, we refer to (FN)™ as model (FN) with the valid inequalities presented

above.

3.3 Lagrangian framework

In model (FN), complicating constraints are the knapsack inequalities (3.12). Thus,
if we relax them by means of non-negative Lagrange multipliers tt > 0, we obtain the Lagrangian
problem

N—-1 N—1

L) min Y Y cpli+ Y wi(Y xi—1) (3.19)

k=1 (i,j)eA (ij)eA k=1
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s.t.  (3.10), (3.11), (3.13) —(3.15)

For any pt >0, L(p) is a lower bound on the optimal solution value provided by (FN).
The linear relaxation of the Lagrangian problem is integral (see Proposition 11 and Corollary 2).

In this case, the Lagrangian dual problem

has the same optimal value (GEOFFRION, 1974) of the linear relaxation of (FN). The Lagrangian
dual problem is handled by a classical subgradient algorithm as in the self-explaining pseudocode
of Algorithm 2. In this algorithm, the function stopCondition() is related to some stopping
criterion, e.g. number of subgradient iterations. Procedure subgradient (L(u*)) computes the

N—1

subgradient of L(u*) at ¥ having components given by ¥, )Ef] — 1, forall (i, j) € A.
k=1

Proposition 11 The constraint matrix defined by (3.10) is totally unimodular (TU).

Proof 12 The coefficient matrix associated with the x variables is composed of N — 1 network
flow matrices known to be individually TU. Columns y associated with nodes of Ty and Ty have
only one non-zero entry that is equal to —1 and +1, respectively. Columns y associated with
each node of T, (k=2,...,N — 1) have exactly two non-zero entries that are equal to +1 and —1.

The complete matrix fits the well known sufficient condition to a matrix be TU.
Corollary 2 The constraint matrix Ay, associated with the Lagrangian problem L(u)is TU.

Proof 13 As shown by Proposition 11, the constraint matrix defined by (3.10) is TU. This is due
to the fact that such a matrix is a classical network matrix, which is TU. Now, we want to show
that the constraint matrix defined by (3.10) and (3.11) is also a network matrix. To prove it, we
resort to an algorithm for recognizing network matrices (SCHRIJVER, 1998). Note that Ay,
has columns with at most three non-zero coefficients (those related to y;, i € Nle 1} ). Define, for
any row index i =1,...,m of Ay ), an undirected graph G; as follows. The jertex set of Gj is
{1,...,m}\{i}. Two vertices j and k are adjacent in G; if and only if A () has a column that
has non-zeros in row positions j and k of and a zero in position i. Then, if Ay, is a network
matrix, there exists an i for which G; is disconnected. Observe that constraints (3.11) contain N
rows, each one related to a subset Ty, (k=1,...,N). Choose arow i € {2,...,N — 1}. Without
loss of generality, suppose i = 2. Each set of columns represented by x* (k=1,...,N — 1) leads

to a connected component Hy of G, since x-columns define N — 1 independent network flow
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Algorithm 2: Subgradient algorithm.
1: Data: upper bound UB on the optimal solution value, maximum number of subgradient
iterations K, maximum number of iterations  without lower bound (LB) improvement.

2: Result: LB on the optimal solution value.
3 w0« 0; Ay « 0.75; k < 0; LB < —oo; IterNolmprovedLB < 0;
4: while (stopCondition() = false) do
5. solve(L(uX)) and let its optimal solution value be L*;
6: v < subgradient(L(uk)); //subgradient of L(u*) at x*
7. O < M(UB—L")/||¥*||> /I step-size
8: if (LB < L*) then
9: LB+ L%
10:  else
11: IterNolmprovedLB < IterNolmprovedLB + 1;
12:  endif
13 pkl e max{0, uf + 6y}
14:  if (IterNoImprovedLB module B = 0) then
15: )Lk—o—l <—?Lk/2;
16:  else
17: )Lk—Q—l — A
18:  end if
190 k+k+1;

20: end while

matrices, all of these columns with value zero in the i-th row position. Note that component H;
is not connected with Hy. The columns of y(T») have non-zero coefficients in the first and second
blocks of network flow matrices related to the first and second subpaths, which define H| and H,.
These components are clearly not connected. This is because the columns of y(T») have non-zero

coefficients in the i-th position. Thus, by construction of G;, a vertex of H, cannot be adjacent to

N—1
a vertex of Hy in Gy. In fact, for a general k =2,...,N — 1, vertices of component |J H; are
i=k
k—1
not connected with any vertex of component \J H;. For the example above, H, is not connected
i=1
N—1
with U H,.
i=2

In Annexe B, we show the construction of a disconnected graph G; (i = 1,...,m)
when considering a given matrix Az ).

Our Lagrangian relaxation (LR) scheme has ingredients to guide the construction of
feasible solutions while extracting information from the Lagrangian multipliers and the solution
provided by L(ut), which can be feasible for the original problem (contains only non-repeated
arcs) or infeasible (contains repeated arcs). The former case gives a valid upper bound for the

problem when considering original arc costs. The latter case is a CSPTP infeasible solution
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for which we attempt to turn it into a feasible one through a repair algorithm (Algorithm 3)
that makes successive calls to the classical algorithm of Dijkstra (1959) as explained in the
sequel. In a nutshell, the idea behind the repair routine is as follows. Let H be a given optimal
solution for L(u) consisting of a set of arcs A’ and N frontier nodes f1, f2,..., fn, each one
related to 71,73, .., Ty, respectively. We initialize a matrix of arc costs Ci4|, (y—1) Whose rows
are associated with the arcs and columns are associated with the N — 1 paths from 7; to 75, from
T, to T3, and so on, finally ending in 7y. Each entry C,; denotes the cost of arc a € A to be
considered in the k-th path. For every path k = 1,...,N — 1, we run the Dijkstra’s algorithm from
fi to fiy1 under D = (V,A) and arc costs C, i, i.e., when computing the k-th shortest path, we
take into account only arc costs from the k-th column of the aforementioned matrix. To avoid
further infeasibilities, arcs in the solution of Dijkstra’s algorithm from previous iterations are not
allowed to be in subsequent shortest paths. The cost of the feasible solution is the sum of N — 1
shortest paths considering original arc costs. We work with distinct strategies to initialize matrix
C. For the row associated with arc (i, j) € A:

e Strategy I - Check in which paths (i, j) is present. Assign the cost 0 to the corresponding
columns and set the remaining columns with a big positive constant .# . If the arc is not
present in any path, keep its original arc cost in all columns.

e Strategy II - For every arc a € A, set its cost Cy; < ¢4+ Uy, fork=1,... N — 1, where
cq (resp. Ug) is the original cost (resp. Lagrangian multiplier) of this arc.

e Strategy III - For each arc (i, j) of a Lagrangian solution H, we identify its number of
occurrences m;; in this solution. If m;; > 1, then we run m;; Dijkstra’s calls to obtain m;;
arc disjoint simple paths from i to j under Lagrangian arc costs. During this process, we
avoid using repeated arcs from previous paths. The cost of the resulting feasible solution
considers original arc costs.

Considering the subgradient algorithm and the repair procedures, we propose deter-
ministic and non-deterministic variants of Lagrangian heuristics for the CSPTP. The deterministic
Lagrangian heuristic (DLH) works as follows. At each iteration of Algorithm 2, we solve the
Lagrangian problem and obtain the subgradient associated with its solution. Then, we run Algo-
rithms 3 and 4 to obtain candidate upper bounds (recall that function setCost () in Algorithm 3
operates with two distinct implementations) and the smallest one is used to calculate the step-size
and to update the Lagrange multipliers. This process is repeated until it reaches a stopping

condition. When some Dijkstra’s routine does not find a path in Algorithms 3 and 4, the attempt
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to get a feasible CSPTP solution fails and the incumbent upper bound remains the same from
previous iterations.

Concerning the non-deterministic variants of the repair Algorithms 3 and 4, basically
we randomly select the order in which the Dijkstra’s algorithm is invoked to obtain each path in
line 6 of Algorithm 3 and to select repeated arcs in line 7 of Algorithm 4. The non-deterministic
Lagrangian heuristic (NDLH) operates as DLH, but considering non-deterministic calls to
Algorithms 3 and 4.

Both DLH and NDLH are embedded into a single Lagrangian framework, i.e., two
subgradient algorithms are executed separately and independently, each one implementing

distinct heuristics in order to improve incumbent solution values.

3.4 Computational experiments

Models (DN), (FN), and (FN)™, as well DLH and NDLH, were coded using the Java
concert technology of CPLEX 12.7. Experiments were performed on a PC Intel Pentium i7, 8 X
3.60 GHz, 16 GB DDR3 RAM under Linux Ubuntu 18.04. The CPU time limit to execute each
instance was set to one hour. For the Lagrangian heuristics, based on practical observations from
preliminary numerical experiments, the best set of subgradient parameters are: initial Lagrangian
multipliers u® = 0, and starting step-size scaling factor Ay = 0.75, reduced by half at every
B = 10 consecutive iterations without improvement on the lower bound. The stopCondition()
criteria in Algorithm 2 is either the maximum number of subgradient iterations K = 500, or
executing up to 3 x f3 iterations with no lower bound improvement, or solution optimality. For
this last criterion, as all instances used in the experiments have integer arc costs, we say that

a given solution value is optimal if the difference between an upper and a lower bound on the

Algorithm 3: First repair algorithm.

Data: infeasible solution H of L(u), directed graph D = (V,A).
Result: upper bound U B on the optimal solution value.
Let Cbe a|A| x (N — 1) cost matrix and f; be the frontier node of T;in H (i = 1,...,N);
UB + 0;
setCost(Clu|x(v—1)); // initialize the matrix of arc costs
for (k< 1toN—1)do
P < dijkstra(fi, fir1,V,A,Clajxk); 1/ shortest path P from fi to fi 41

UB<«~UB+ Y «c¢jj; [/ accumulate sub-path original arc costs
(i.j)ep

9: A<+ A-—P; [//remove arcs of P from A

10: end for

AN AN o ey
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Algorithm 4: Second repair algorithm.
1: Data: infeasible solution H of L(u), directed graph D = (V,A).
2: Result: upper bound UB on the optimal solution value.
3: UB <+ 0;
4: forall (i,j) € Ado
50 Cij & Cij T Wij;
6
7
8
9

: end for

: forall (i,j) € Ado
Let m;; be the number of occurrences of arc (i, j) in H;
if (mij = 1) then

10: UB<—UB—|—Cij;

11: Remove (i, j) from A;

12:  end if

13:  if (m;; > 1) then

14: for k < 1 to m;; do

15: P <+ dijkstra(i,j,V,A); /I shortest path P from i to j

16: UB<«UB+ ) ci; [/l accumulate sub-path original arc costs
i,j)EP

17: A+ A-—P; ( /J/)remove arcs of P from A

18: end for

19:  end if

20: end for

solution value is less than 1.

We perform comparative analysis considering mathematical programming models
(DN), (FN), (FN)", Lagrangian heuristics DLH and NDLH, state-of-the-art B&B methods (FER-
ONE et al., 2016; FERONE et al., 2019) referred to as BBdf, BBbf, NewBB, and the GRASP
algorithm of Ferone et al. (2016). All executable files were provided by the authors. In order to
obtain a comprehensive feedback from NDLH, we run it 10 times for each problem instance.
The number of GRASP iterations is 500, the same of subgradient iterations of our Lagrangian

framework.
3.4.1 Benchmark instances

We adopt benchmark data sets of (FERONE er al., 2016). These instances were
generated by using an algorithm proposed by (FESTA; PALLOTTINO, 2003), comprising
different digraph topologies as complete, sparse, and square/elongated grid digraphs. In the next
tables, we group numerical results according to the topology and dimensions of the instances.
In each table, we inform the instance identifier inst, number of nodes |V |, number of arcs |A|,

number of node disjoint subsets N, and the optimal solution value opt. With respect to individual
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results of exact models, we report the CPLEX number of solved subproblems bb, the CPLEX
number of dual simplex iterations iter, and the CPU execution time in seconds. For B&B
methods (FERONE et al., 2016; FERONE et al., 2019), we give only CPU times. As DLH and
NDLH achieved the optimal solution for all benchmark data sets, we give only their CPU times.
For NDLH, we report results for 10 runs and give the worst, average, and best execution times,
referred to as CPUT, CPU, and CPU respectively. Execution times associated with optimal
solutions are in bold font to be distinguished from the ones related to out of memory (OM) error
or time limit (TL) exceeded. For the GRASP procedure, we report the incumbent solution value
UB and the CPU time reached after running 500 iterations. Average column values in the last
line of the tables do not consider instances presenting OM error.

For 90 benchmark complete digraphs with 200 nodes (Table 7), NewBB outper-
formed all exact solution approaches with a very fast average execution time of 0.04 seconds.
According to (FERONE et al., 2019), this is due to the fact that their solution approach explores
the problem structure of complete digraphs. BBbf and BBdf were not able to solve 40 instances.
Concerning IP models, (DN) was the most efficient approach, solving this data set on average
execution time of 71.65 seconds. Model (FN) did not solve 3 instances to optimality. On the
other hand, (FN)™ spent 347.63 seconds, on average, to solve all these instances. Considering the
best execution times observed by the Lagrangian heuristics NDLH and DLH, the average CPU
time spent by the Lagrangian framework was of 93.91 seconds, smaller than those of models
(FN) and (FN)*. The GRASP algorithm found the optimal solution for only 38 instances.

Concerning 62 benchmark complete digraphs with |V| varying from 250 to 260
nodes (Table 8), the overall performance is similar to the one of Table 7, with NewBB presenting
smaller CPU times. The contribution of valid inequalities can be observed when comparing
the average execution time of (FN)™ (124.53 seconds) with the one of (FN) (326.06 seconds).
However, the best IP approach was again (DN), whose average CPU time was of 66.65 seconds.
The best CPU time spent by the Lagrangian heuristic was of 31.62 seconds, on average, which is
better than those of IP models. The GRASP algorithm solved to optimality all these instances
within an average execution time of 98.68 seconds.

Considering 10 benchmark complete digraphs with 300 (Table 9) and 350 (Table 10)
nodes, NewBB presents better CPU times than the other approaches, with average execution time
of 0.05 and 0.08 seconds, respectively. On what concerns IP models, (DN) (resp. (FN)™) is the
most outstanding approach for digraphs with 300 (resp. 350) nodes. The impact of the proposed
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valid inequalities can be accessed when looking at CPU columns of (FN) and (FN)*. The
Lagrangian framework achieved the optimal solutions faster than any other IP technique, which
attests its efficiency and effectiveness. The GRASP algorithm achieved the optimal solution for
these 20 digraphs, spending, on average, 142.65 seconds (for instances in Table 9) and 317.53
seconds (for instances in Table 10).

Numerical results for 50 benchmark random sparse digraphs with |V| varying from
100 to 180 nodes (Table 11) underline a slightly competitiveness between solution methods,
except BBbf and BBdf. This is not surprising because B&B techniques tend to require a high
number of branching operations on these kind of digraphs. The best average CPU times observed
were for IP models followed by the Lagrangian framework, which reveals its robustness to
achieve optimal solutions in a reasonable CPU time. On the other hand, the GRASP algorithm
found the optimal solution for 30 instances.

Concerning benchmark data sets related to 59 grid digraphs (Tables 12—-17), NewBB
showed difficulty in finding the optimal solution for these instances, which contrasts with the
case of complete digraphs. When tackling both random sparse and grid digraphs, NewBB
experimented memory limitations. For grids, IP models need at most one second of CPU time
each, on average, to achieve optimal solutions. As NewBB, state-of-the-art algorithms BBbf,
BBdf, and GRASP failed to solve several instances to optimality. The Lagrangian framework
seems to be a promising approach for grids since all optimal solutions are provided in small
average execution times, which varies from 1.14 to 16.67 seconds considering the best CPU

times observed for NDLH and DLH variants.
3.4.2 New instances

The benchmark data sets addressed all share a common characteristic since they do
not require a great computational effort of IP models in the sense that their optimal solutions
are found in the root node of the CPLEX branch-and-cut search tree, excepting two instances
in Table 17 that require some bb nodes to reach their optimal solutions. This motivated us
to introduce a new set of instances with 100 and 150 nodes. They were randomly generated
according to (ANDRADE; SARAIVA, 2017). For a distinct pair of nodes i, j € V, an arc (i, j) is
considered to belong to A according to a given probability p = % The arc cost ¢;; is uniformly

drawn at random from [0,100]. The number of nodes S to be visited is uniformly drawn at

NN

random from [@, |V|] and the number of subsets N is uniformly drawn at random from [%, 5].
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Finally, we set s € T and ¢ € Ty. The remaining nodes to be visited are randomly assigned to
T5,...,Ty_1, each one having at least one node.

For random digraphs with 100 nodes (Table 18), model (FN)™ spent 53.15 seconds
(on average) to solve these instances, whereas (DN) and (FN) needed 66.92 and 170.56 seconds
(on average), respectively. It is clear that the proposed valid inequalities improve (FN). Despite
the average number of relaxed subproblems solved by (FN)* be close to the one of (FN), the
average number of dual simplex iterations of the former model is approximately one third of
that one found by the latter model. NDLH (resp. DLH) found 19 (resp. 4) optimal solutions.
State-of-the-art methods BBbf, BBdf, and NewBB failed to solve all these instances due to
memory limitation, while GRASP only achieved feasible solutions for them.

Regarding random digraphs with 150 nodes (Table 19), (FN)™ showed to be the most
efficient approach while solving them in 452.33 seconds (on average), whereas (DN) and (FN)
needed 537.97 and 986.82 seconds, respectively. NDLH achieved the optimal solution for 13
instances, while DLH just for one. Columns related to BBbf, BBdf, and NewBB were omitted
because they failed to solve all instances due to memory limitation. The GRASP algorithm did
not find any optimal solution.

The numerical experiments carried out on the new data sets clearly indicate that the
best branch-and-bound approach from the literature, referred to as NewBB, worked better for
benchmark complete digraphs. Nevertheless, it failed to solve some benchmark grid digraphs
as well as all new instances. Concerning IP models, (DN) solved all benchmark instances with
an average execution time of 55.01 seconds, while (FN)™ in 152.38 seconds. Conversely, for
new data sets, (FN)™ solved all instances in 252.74 seconds, while (FN) and (DN) in 578.69 and
302.45 seconds, respectively, showing the efficiency of valid inequalities. Taking into account
all 321 instances, (DN) was the best IP model. The Lagrangian framework seems to be a very
efficient approach since, for benchmark instances, it found the optimal solution in an average
CPU time of 44 seconds (considering the smallest time observed by the non-deterministic
version), which is better than the time observed by model (DN) reported above. For new data
sets, the Lagrangian framework found the optimal solution for 19 (from a total of 20) digraphs
with 100 nodes. For 20 digraphs with 150 nodes, the optimal solution was achieved for 13
instances, which shows how solid the framework is in finding near optimal solutions. The
GRASP algorithm from the literature did not find the optimal solution for several instances,

being more suitable for benchmark complete digraphs.
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3.5 Conclusion

This chapter addresses the NP-Hard constrained shortest path tour problem (CSPTP).
We evaluate two models for the problem and introduce valid inequalities allowing to enhance the
CPU time performance of the frontier node-based model (FN). By exploring the matrix structure
associated with a CSPTP relaxation of (FN), we also develop a Lagrangian-based heuristic
framework. We report an exhaustive set of computational experiments on benchmark and new
instances. The NewBB approach worked better for benchmark complete digraphs. Nevertheless,
it fails to solve the new instances as well as BBbf and BBdf. The Lagrangian framework seems
to be very efficient in solving tested instances to optimality in a reasonable CPU time, except
for some randomly generated digraphs. Taking into account the whole set of 321 instances, the

dummy node-based model (DN) presents the smallest average CPU time.
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Data set (DN) (FN) (FN)* BBbf BBdf NewBB NDLH DLH GRASP

inst N opt iter CPU iter CPU iter CPU CPU CPU CPU CPU" CPU CPU~ CPU UB CPU
N20-00 40 686 610 20.27 7401 58.87 607 15.54 5.98 6.03 0.02 11.62 9.53 7.71 8.49 690 13857
N20-01 40 673 577 16.07 7373 58.72 647 15.69 5.97 6.02 0.02 9.09 7.57 5.94 6.55 684 133.00
N20-02 40 675 668 17.21 7395 64.07 761 15,53 597 6.04 0.02 9.11 7.76 5.97 6.55 679 130.02
N20-03 40 670 677 19.65 7391 63.09 689 1556 5.98 6.04 0.02 10.53 9.10 7.28 8.18 672 131.66
N20-04 40 707 898 16.98 7411 58.99 754 15.60 5.98 6.02 0.02 9.28 7.77 6.09 6.84 711 12223
N20-05 40 675 605 16.52 7283 57.74 659 13.90 5.97 6.03 0.02 9.19 7.80 5.98 6.78 680 132.90
N20-06 40 692 746 19.37 7418 60.96 716 1556 6.02 6.03 0.02 12.01 10.55 8.77 9.85 699 138.64
N20-07 40 679 661 18.68 7434 61.33 670 13.03 6.02 6.04 0.02 9.03 7.64 5.73 6.51 681 135.02
N20-08 40 674 684 19.90 7253 59.38 666 15.61 6.03 6.03 0.02 10.57 931 7.24 8.26 683 132.95
N20-09 40 686 827 19.21 7423 61.53 681 15.56 6.02 6.03 0.02 9.38 7.99 5.98 6.79 692 148.04
N30-00 60 1111 781 49.50 11392 146.39 865 54.13 12.16 12.11 0.02 40.69 35.64 27.78 38.86 1128 128.75
N30-01 60 1149 1181 49.28 11389 144.37 1080 54.92 9.69 9.67 0.02 16.26 13.26 9.47 11.06 1149 169.09
N30-02 60 1059 800 49.58 11254 144.49 824 56.04 9.61 9.70 0.02 16.22 13.10 9.55 10.97 1064 141.30
N30-03 60 1166 985 47.76 11411 150.69 1020 55.99 9.60 9.70 0.02 21.32 18.40 13.35 17.18 1166 131.08
N30-04 60 1145 886 49.12 11376 156.27 861 57.13 9.60 9.70 0.02 19.82 17.29 13.79 18.06 1146 127.23
N30-05 60 1104 867 49.42 11098 140.44 882 63.25 12.04 12.15 0.02 293.25 247.76 186.66 230.29 1106 130.21
N30-06 60 1151 1056 49.43 11357 144.91 994 59.12 9.62 9.72 0.02 17.17 14.28 9.61 11.52 1151 128.81
N30-07 60 1145 980 48.84 11394 146.14 1033 59.67 9.66 9.78 0.02 21.17 18.07 13.50 16.52 1148 132.72
N30-08 60 1175 1188 50.56 11418 146.61 1190 60.82 9.68 9.74 0.02 21.80 18.31 12.69 16.66 1180 128.95
N30-09 60 1147 957 49.09 11433 148.04 1032 60.92 12.09 12.28 0.02 42.26 36.32 25.61 31.19 1147 136.56
N40-00 80 1659 1304 56.98 15413 252.11 1271 86.90 19.07 19.49 0.02 25.20 19.39 12.50 15.39 1659 128.30
N40-01 80 1625 1218 58.30 15366 239.83 1172 83.53 15.58 16.13 0.02 32.49 26.58 18.06 22.00 1625 146.75
N40-02 80 1567 1158 56.61 15530 248.51 1224 82.72 18.99 19.65 0.02 63.63 53.24 31.88 42.82 1567 133.66
N40-03 80 1586 1072 59.71 15399 242.86 1068 84.81 25.81 26.79 0.02 195.83 112.06 36.66 58.20 1587 127.09
N40-04 80 1548 1077 55.65 15414 256.47 1057 80.13 15.60 16.51 0.02 32.66 27.28 18.07 21.39 1548 119.81
N40-05 80 1683 1346 55.32 15408 236.84 1291 81.08 15.48 16.65 0.02 30.82 24.84 16.46 21.46 1687 121.73
N40-06 80 1667 1341 57.24 15347 246.58 1419 84.15 15.52 16.81 0.02 30.82 24.84 16.44 18.80 1676 129.12
N40-07 80 1648 1230 56.88 15414 256.51 1267 87.07 15.54 16.89 0.02 31.18 27.20 18.73 21.26 1648 140.74
N40-08 80 1671 1361 56.28 15421 245.72 1330 81.69 15.56 16.95 0.02 30.76 25.46 17.50 20.46 1671 148.51
N40-09 80 1567 1052 60.02 15272 242.71 1082 82.41 18.92 20.56 0.02 137.39 81.45 39.42 345.32 1567 140.63
N50-00 100 2103 1425 69.31 88037 171.34 1439 111.18 41.35 44.52 0.02 138.53 108.25 73.14 94.04 2103 111.42
N50-01 100 2172 1628 70.26 81996 118.19 1605 110.60 32.57 40.15 0.02 137.36 99.70 46.88 49.37 2173 131.53
N50-02 100 2119 1556 69.04 88830 153.59 1566 111.47 32.91 40.81 0.02 141.86 121.32 87.32 146.78 2121 123.56
N50-03 100 2183 1641 69.34 91222 162.80 1613 106.42 33.28 45.30 0.02 107.65 84.29 70.95 80.60 2185 121.04
N50-04 100 2146 1507 67.60 91771 138.30 1467 111.67 25.98 26.32 0.02 144.20 124.03 79.05 123.20 2146 107.77
N50-05 100 2251 1787 70.02 83653 138.49 1735 106.25 30.74 31.07 0.02 84.66 69.19 44.96 55.45 2251 130.66
N50-06 100 2247 1646 73.26 89066 136.27 1697 110.33 43.03 44.94 0.02 213.28 129.27 77.04 90.24 2247 135.46
N50-07 100 2177 1596 69.75 87898 153.43 1634 118.64 29.78 31.46 0.02 91.36 74.09 45.67 56.81 2178 120.98
N50-08 100 2154 1620 68.21 82858 127.19 1606 105.18 25.63 26.74 0.02 49.00 40.31 29.53 31.19 2155 123.34
N50-09 100 2134 1457 69.49 87021 141.55 1467 110.06 39.72 41.23 0.02 95.50 78.56 46.00 56.30 2135 118.09
N60-00 120 2703 2030 44.73 106418 152.58 1979 53.28 77.31 83.79 0.03 3513.99 2267.35 446.65 115.28 2703 127.46
N60-01 120 2678 1784 43.84 118370 235.34 1742 52.08 36.50 42.68 0.02 59.23 46.39 23.29 26.30 2678 127.86
N60-02 120 2700 1983 45.16 112570 241.96 1945 55.73 85.59 100.84 0.02 251.43 188.91 84.82 86.36 2700 124.86
N60-03 120 2671 1858 44.53 121066 274.47 1834 51.23 61.62 66.80 0.02 187.99 153.48 95.10 113.32 2672 126.77
N60-04 120 2636 1606 43.89 128931 319.91 1532 55.54 38.00 37.19 0.02 52.93 42.77 30.11 34.90 2636 121.67
N60-05 120 2728 1930 43.81 110428 168.81 1878 52.61 39.78 44.50 0.02 259.79 183.47 52.46 97.852730 119.51
N60-06 120 2764 1934 45.80 108060 207.01 1913 55.73 45.77 57.93 0.02 271.28 210.65 125.25 154.96 2764 124.56
N60-07 120 2711 1981 45.28 119543 251.09 1950 53.19 80.54 188.60 0.03 290.79 189.26 81.79 144.18 2712 128.52
N60-08 120 2708 1892 44.44 118456 229.99 1856 53.15191.43 187.52 0.04 1116.20 480.13 188.64 1891.71 2708 122.89
N60-09 120 2723 1761 44.48 107134 185.58 1753 52.68 49.71 51.18 0.02 189.05 146.89 92.52 97.03 2723 125.62
N70-00 140 3219 2004 50.47 155414 419.18 1985 59.58 OM OM 0.02 311.55 244.38 95.82 99.68 3219 115.82
N70-01 140 3269 2158 51.52 140017 387.74 2086 62.67 OM OM 0.02 306.99 247.46 64.43 219.05 3269 114.17
N70-02 140 3267 2179 51.27 159659 503.06 2166 61.91 oM OM 0.02 76.47 59.58 40.32 44.66 3267 111.19
N70-03 140 3300 2284 50.05 166303 567.22 2264 64.04 OM OM 0.03 371.35 250.26 98.57 98.90 3300 118.25
N70-04 140 3328 2357 52.03 137369 335.40 2354 63.84 OM OM 0.02 244.32 182.65 94.01 100.76 3328 105.88
N70-05 140 3177 2015 51.76 138517 361.07 2004 63.47 OM OM 0.02 68.43 5242 28.29 31.62 3177 124.87
N70-06 140 3385 2345 49.85 157306 482.26 2313 60.22 oM OM 0.03 471.98 320.30 100.29 146.94 3387 127.53
N70-07 140 3243 2232 50.38 130655 325.49 2214 63.29 OM OM 0.03 318.44 257.83 109.05 189.29 3243 120.52
N70-08 140 3245 2108 52.43 160719 501.01 2061 64.38 OM OM 0.03 229.94 183.60 96.16 99.76 3247 98.35
N70-09 140 3329 2245 52.70 157332 435.37 2164 61.92 OM OM 0.02 229.62 174.49 64.80 74.67 3329 116.50
N80-00 160 3855 2579 57.08 239122 1122.59 233350 388.87 OM OM 0.02 382.54 250.14 134.79 170.31 3855 114.29
N80-01 160 3828 2402 58.58 174991 540.49 205321 472.42 oM OM 0.02 474.32 345.52124.83 246.31 3828 109.34
N80-02 160 3999 2901 57.03 190444 638.49 234701 554.54 OM OM 0.04 577.57 420.17 228.79 237.51 4009 123.35
N80-03 160 3917 2694 57.65 194128 717.82 211513 434.09 OM OM 0.02 394.64 317.12178.56 232.81 3917 135.06
N80-04 160 3857 2527 58.74 227172 982.86 214026 476.12 oM OM 0.07 378.71 303.85141.47 172.12 3866 109.43
N80-05 160 3811 2438 56.77 204875 831.21 175390 345.43 OM OM  0.03 495.52 340.00 204.11 226.46 3811 106.01
N80-06 160 3931 2719 59.37 188922 672.89 215498 460.85 oM OM 0.31 480.46 374.00 183.93 198.93 3935 118.67
N80-07 160 3799 2469 54.85 222233 915.84 210932 495.67 OM OM  0.07 477.44 337.48 197.93 276.78 3814 99.46
N80-08 160 3805 2516 57.25 216598 909.07 196714 397.36 OM OM 0.02 281.62 237.17 77.96 97.56 3805 113.92
N80-09 160 3794 2482 57.44 195626 763.32 174341 345.60 OM OM 0.02 459.20 332.82123.05 167.59 3794 118.11
N90-00 180 4390 2820 129.75 360190 2215.67 290262 903.43  OM OM 0.03 327.28 240.02 107.21 173.18 4391 84.18
NO0-01 180 4415 2754 125.04 315993 1704.58 238648 731.90 OM OM 0.03 579.39 373.86 138.65 184.59 4417 84.85
NO90-02 180 4461 2948 129.25 318702 1919.90 289499 888.71 oM OM 0.04 435.54 311.27 156.17 189.66 4463 104.43
N90-03 180 4518 3018 133.27 261149 1381.65 271300 858.62 oM OM  0.03 2104.07 1198.00 203.84 385.53 4518 110.57
N90-04 180 4338 2593 123.33 290197 1629.73 227608 661.32 oM OM 0.03 562.85 345.17 150.67 199.91 4348 101.77
N90-05 180 4349 2695 126.28 323524 1871.28 350963 1167.85 oM OM 0.03 454.24 305.18 139.36 172.86 4354 102.50
N90-06 180 4498 2896 130.50 283329 1543.06 312975 843.94 OM OM  0.03 420.24 289.99 137.31 140.02 4509 118.93
N90-07 180 4342 2806 127.67 348401 1879.16 198908 521.32 OM OM  0.56 1461.57 942.27 465.08 388.00 4346 110.28
N90-08 180 4360 2731 125.57 244773 1219.09 304922 980.69 OM OM  0.02 432.01 323.94 139.62 239.73 4360 112.80
NO90-09 180 4425 2790 129.59 341828 2027.50 320304 904.79 OM OM 0.04 672.47 408.51 138.94 157.24 4430 99.34
N100-00 200 5004 3291 165.19 TL TL 436822 1250.84  OM OM 0.04 399.92 320.87 199.43 290.38 5006 48.56
N100-01 200 4963 3013 168.91 440563 3088.31 351482 1141.14  OM OM 0.04 530.04 390.67 124.58 251.72 4971 45.72
N100-02 200 5086 3483 167.27 424128 2471.39 394851 1176.66  OM OM 0.10 993.02 663.53 304.87 440.21 5094 51.68
N100-03 200 5095 3394 168.58 468318 3260.55 366850 1216.55 oM OM  0.07 1329.73 701.93 206.95 430.79 5098 50.40
N100-04 200 4964 3060 174.89 472001 3370.92 460888 1343.79  OM OM 0.03 763.86 488.14 227.71 254.83 4973 45.30
N100-05 200 4953 3035 170.46 402343 2649.34 433976 1614.06  OM OM 0.03 522.24 384.20 176.10 197.21 4958 45.99
N100-06 200 5100 3398 164.64 442132 2931.00 347014 1157.09 OM OM 0.21 796.18 493.49 207.37 338.02 5122 51.20
N100-07 200 5028 3343 167.07 TL TL 682240 3315.77 OM OM  0.751087.77 687.75 306.44 434.59 5041 50.07
N100-08 200 4994 3180 173.23 415768 2860.34 363244 1150.11 OM OM  0.051262.11 559.66 213.26 346.58 4997 50.23
N100-09 200 4991 3240 168.82 TL TL 371429 1256.75 oM OM  0.20 2204.07 945.49 294.26 435.81 4996 50.87

Average 1268.3 47.83 47292.3 164.98 1260.5 64.10 27.62 31.70 0.02 17233 11556 4871 9220 — 130.15
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Table 8 — Results for complete digraphs with |V | € {250,252,254,256,258,260} (FERONE et

al., 2016).

Data set (DN) (FN) (FN)*  BBbf BBdf NewBB NDLH DLH GRASP

inst N opt iter CPU  iter CPU iter CPU CPU CPU CPU CPU* CPU CPU~ CPU CPU
250N25-00 62 1350 1024 76.88 14876 300.92 1014 111.00 17.54 17.42 0.03 27.49 23.76 16.57 16.64 103.45
250N25-01 62 1330 1018 75.78 14828 304.80 1011 110.48 22.00 21.58 0.04 75.84 62.33 45.51 43.93 86.68
250N25-02 62 1367 1101 72.52 14863 300.52 1098 106.56 17.61 17.33  0.04 30.12 25.37 18.26 17.51 106.01
250N25-03 62 1304 1321 74.66 14998 303.44 1264 111.10 21.80 21.70 0.04 85.44 69.39 50.75 75.67 112.55
250N25-04 62 1355 992 74.74 14815 307.06 1026 108.85 17.46 17.25 0.03 31.50 24.25 16.93 17.85 86.71
250N25-05 62 1336 1046 75.90 14893 315.93 1004 113.42 17.49 17.39  0.03 29.35 24.47 16.99 17.79 87.16
250N25-07 62 1405 1244 75.37 14897 206.18 1244 110.61 17.45 17.41 0.03 34.78 29.43 20.40 22.20 95.43
250N25-08 62 1368 1121 77.08 14896 308.63 1077 116.52 17.46 17.44 0.03 36.65 28.67 20.57 22.94 96.09
250N25-09 62 1325 1112 76.66 15023 310.36 1112 121.89 21.73 21.74 0.04 34.78 30.37 21.67 24.12 84.54
250N25-10 62 61 252 74.95 14907 298.41 212 113.05 17.34 17.33  0.03 33.51 26.13 16.51 18.44 21.61
250N25-11 62 61 219 73.83 14907 320.56 228 113.06 17.35 17.29  0.03 36.14 26.36 17.54 20.88 22.71
252N25-00 63 1433 1225 74.14 15301 319.44 1180 120.32 17.95 17.95 0.04 38.64 31.56 22.83 24.25 85.06
252N25-01 63 1387 1061 75.23 15118 208.63 1068 117.66 17.87 17.94 0.04 39.02 31.50 24.33 25.50 74.52
252N25-02 63 1362 1032 75.36 15125 305.02 1027 117.92 17.84 17.92  0.04 36.78 31.29 22.56 25.61 95.31
252N25-03 63 1380 1067 77.75 15234 330.91 1023 125.11 17.90 17.88 0.04 39.87 32.72 24.85 26.39 77.98
252N25-04 63 1435 1053 79.54 15250 318.93 1079 119.61 17.89 17.88 0.04 42.14 33.43 22.25 26.45 90.00
252N25-05 63 1383 1010 78.24 15100 314.03 1024 120.80 22.22 22.36 0.04 77.87 62.15 44.45 54.79 81.35
252N25-06 63 1403 1208 80.04 15383 321.83 1207 123.43 17.82 17.99 0.04 41.99 32.85 21.77 25.97 82.68
252N25-07 63 1446 1123 77.68 15384 323.89 1118 119.84 22.27 22.36 0.04 88.70 70.41 52.00 63.57 99.61
252N25-08 63 1393 1172 77.09 15441 309.43 1171 120.52 26.69 26.85 0.04 86.44 73.11 54.92 85.28 98.12
252N25-09 63 1415 1200 79.01 15108 307.48 1150 115.15 17.87 17.94 0.04 37.46 31.04 20.77 25.52 68.40
254N25-00 63 1405 1136 79.47 15170 333.14 1100 129.20 18.09 18.36 0.04 85.88 67.05 44.05 53.50 93.94
254N25-02 63 1347 952 82.13 15355 331.46 925 121.60 22.85 22.83 0.04 91.14 74.25 52.28 81.00 66.37
254N25-03 63 1324 943 79.36 15307 315.01 947 126.02 22.78 22.86  0.04 82.93 67.67 47.20 57.04 76.36
254N25-04 63 1387 1063 80.91 15267 316.49 1018 123.88 22.81 22.86 0.04 42.44 35.81 24.63 28.42 82.87
254N25-05 63 1380 1150 79.16 15428 316.29 1153 125.90 22.78 22.84 0.04 92.34 71.62 46.03 63.32 98.07
254N25-06 63 1304 1096 79.31 15217 313.05 1114 125.84 18.31 18.39  0.04 43.09 34.40 23.45 28.65 92.97
254N25-07 63 1401 1146 80.47 15234 315.95 1130 125.04 18.35 18.48 0.04 57.95 42.40 27.77 32.78 108.51
254N25-08 63 1371 1041 77.84 15445 319.19 1028 121.40 18.27 18.80 0.04 33.15 27.20 18.32 20.14 137.08
254N25-00 63 1423 1190 81.86 15228 324.23 1172 128.48 18.30 18.88  0.04 40.73 33.23 24.60 27.66 118.48
254N25-11 63 62 204 79.85 15294 315.05 207 118.47 18.03 18.79  0.03 39.52 28.21 17.44 19.42 29.64
254N25-13 63 1423 1159 79.70 15377 317.38 1162 125.27 22.76 23.88  0.04 36.76 28.07 18.57 21.19 117.42
256N25-00 64 1420 1123 80.47 15723 344.47 1131 128.47 19.72 21.00 0.04 45.90 35.22 24.38 27.89 117.62
256N25-01 64 1428 1163 87.43 15800 361.92 1152 124.41 19.78 20.97 0.04 45.86 36.14 26.14 30.60 114.90
256N25-02 64 1404 1108 82.93 15849 353.86 1126 126.56 24.48 25.94  0.04 219.77 102.70 59.29 463.23 86.89
256N25-03 64 1441 1140 77.61 15769 350.29 1160 127.70 20.78 21.36  0.04 46.06 35.45 25.81 27.54 127.72
256N25-04 64 1376 938 86.53 15767 337.94 935 123.47 21.00 21.56  0.04 39.00 29.52 20.27 23.55 90.44
256N25-05 64 1307 1040 76.03 15788 343.48 1051 122.61 25.88 31.49 0.04 42.42 32.34 22.42 23.97 97.05
256N25-06 64 1401 1149 78.84 15774 344.73 1140 134.56 21.22 23.57 0.04 4572 35.96 25.75 30.02 83.00
256N25-07 64 1426 1054 87.87 15775 342.98 1076 127.77 21.29 23.23 0.04 65.78 48.18 29.63 31.25 92.38
256N25-08 64 1318 883 79.18 15810 335.16 879 130.81 24.80 28.18  0.04 116.06 82.12 55.05 498.92 108.02
256N25-00 64 1419 1156 79.15 15792 332.19 1191 124.61 20.11 23.06 0.04 43.67 35.10 25.34 28.78 134.05
258N25-00 64 1373 994 40.84 15828 342.05 1009 133.12 20.76 23.33  0.04 44.29 36.30 26.82 29.57 146.49
258N25-01 64 1454 1165 39.21 15912 337.35 1171 131.54 21.74 21.09 0.04 45.16 36.27 25.47 28.90 97.89
258N25-02 64 1380 963 41.53 15936 351.68 953 133.06 25.69 26.13  0.04 88.34 69.68 46.49 54.68 128.55
258N25-03 64 1393 1127 40.15 15921 339.60 1114 131.34 21.24 21.48 0.04 48.20 37.65 27.36 30.30 101.31
258N25-04 64 1447 1124 42.50 15905 339.93 1097 140.70 21.27 21.52  0.04 48.45 38.80 29.10 32.20 112.51
258N25-05 64 1301 1037 40.07 15897 347.12 1033 132.25 21.34 22.88 0.04 39.18 30.37 20.66 22.41 117.38
258N25-06 64 1405 1136 40.48 15879 334.50 1147 127.82 21.58 22.66 0.04 44.51 36.38 26.47 27.79 122.44
258N25-07 64 1432 1271 43.61 15900 339.02 1256 133.85 21.65 22.87 0.04 46.56 36.75 26.67 29.13 133.67
258N25-08 64 1398 1070 41.65 15915 344.26 1060 132.72 21.27 22.71  0.04 40.89 30.52 20.11 22.35 118.49
258N25-00 64 1420 975 41.01 15806 345.69 945 132.43 21.66 22.38  0.04 38.47 30.49 20.68 21.77 118.64
260N25-00 65 1424 1174 44.74 16122 315.50 1178 130.80 25.29 26.39 0.04 43.99 32.85 22.02 24.08 133.79
260N25-01 65 1473 1244 43.54 16134 318.26 1240 129.72 25.21 26.31 0.04 47.18 37.76 27.03 28.97 129.43
260N25-02 65 1309 1047 40.61 16084 319.39 1050 138.61 26.58 26.21 0.04 49.62 39.03 27.33 28.63 86.24
260N25-03 65 1400 1072 41.98 16108 341.50 1063 133.83 26.61 26.38  0.04 51.05 40.58 30.36 31.93 83.70
260N25-04 65 1401 1096 42.99 16097 324.81 1120 128.89 26.41 26.43 0.04 50.24 40.63 28.68 29.80 144.88
260N25-05 65 1433 1133 41.01 16348 337.31 1121 130.21 31.52 31.48  0.04 100.75 79.95 60.12 61.26 94.67
260N25-06 65 1488 1354 41.85 16416 338.44 1325 130.70 24.12 26.67 0.04 49.39 38.21 27.25 20.04 98.88
260N25-07 65 1483 1332 43.08 16501 350.54 1352 133.21 20.19 31.15  0.04 104.91 81.42 57.80 59.67 104.93
260N25-08 65 1463 1250 41.45 16321 339.04 1234 130.98 39.55 41.57  0.04 698.84 464.34 121.87 424.83 102.94
260N25-00 65 1384 1026 41.38 16171 329.17 1027 125.89 37.79 36.50  0.04 154.17 116.20 59.38 92.99 98.98

Average

1064.9 66.65 15545.4 326.06 1058.5 124.53 21.85 22.49

0.04 67.34 50.60

31.65 55.01 98.68
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Table 9 — Results for complete digraphs with [V | =300 and N = 75 (FERONE et al., 2016).

Data set

inst opt

(DN)

iter CPU

(FN)

iter CPU

(FN)*

iter  CPU CPU CPU

N25t40-00 1615
N25t40-01 1598
N25t40-02 1647
N25t40-03 1660
N25t40-04 1571
N25t40-05 1600
N25t40-06 1642
N25t40-07 1639
N25t40-08 1607
N25t40-09 1644

1452 147.47
1345 159.80
1416 165.85
1503 167.26
1257 174.70
1334 148.85
1395 162.52
1410 153.08
1273 172.09
1383 165.41

21802 684.71
21523 688.89
21914 709.95
21841 719.15
21608 688.52
21858 707.73
21925 706.32
22018 716.35
21598 687.33
21838 715.17

1453 203.56 36.52 38.89
1354 236.33 36.33 36.97
1408 252.40 36.46 38.04
1513 241.61 36.66 37.46
1255 255.45 36.60 37.06
1344 245.32 44.60 45.40
1340 253.75 36.59 37.19
1409 244.62 36.63 37.25
1238 250.16 36.53 37.35
1345 253.02 44.64 45.77

Average

1376.8 161.70 21792.5 702.41 1365.9 243.62 38.16 39.14

BBbf BBdf NewBB

CPU

cpPU*

NDLH DLH GRASP
CPU CPU~ CPU CPU

0.05
0.05
0.05
0.06
0.05
0.05
0.05
0.05
0.05

68.03
82.90
74.22
86.86
86.60
81.27
87.37
82.73
83.83

49.89 36.83 37.97 130.09
63.94 44.32 45.54 134.17
52.76 32.9 33.04 149.90
63.84 35.56 37.04 162.33
63.98 37.24 36.80 147.52
63.88 49.25 43.73 114.56
63.69 49.04 44.81 134.83
63.86 41.91 44.10 165.76
63.67 41.59 42.81 131.79

0.05 165.31 126.27 94.16 92.75 155.55

0.05

89.91

67.58 46.28 45.86 142.65

Table 10 — Results for complete digraphs with |V| = 350 and N = 87 (FERONE et al., 2016).

Data set

inst opt

(DN)
iter  CPU

(FN)
iter CPU

N25t40-00 1874
N25t40-01 1810
N25t40-02 1903
N25t40-03 1848
N25t40-04 1895
N25t40-05 1872
N25t40-06 1904
N25t40-07 1870
N25t40-08 1852
N25t40-09 1831

1697 258.90
1527 251.21
1707 369.03
1626 389.76
1613 384.21
1764 316.17
1679 315.01
1677 304.33
1685 308.92
1696 305.97

140458 240.32
139066 238.40
128206 210.07
134296 220.12
154890 403.07
139692 233.99
141827 283.72
139389 207.95
137704 209.58
138112 234.63

(FN)* BBbf BBdf NewBB NDLH DLH GRASP
iter  CPU CPU CPU CPU CPUY CPU CPU~ CPU CPU
1701 136.62 OM OM  0.09 487.53 378.42 186.42 260.91 327.82
1459 131.45 OM OM 0.08 136.03 98.71 67.82 69.61 305.98
1696 135.67 OM OM  0.08 157.20 125.95 74.32 76.08 344.90
1617 135.10 OM OM 0.08 157.84 125.74 70.67 79.95 283.05
1591 137.34 OM OM 0.08 137.10 103.02 70.70 71.27 280.31
1767 129.72 OM OM  0.08 164.68 129.00 71.68 77.94 396.47
1633 133.73 OM OM 0.08 161.63 128.48 72.15 79.14 322.02
1600 131.91 OM OM 0.08 159.65 125.47 92.52 99.05 320.24
1633 132.65 OM OM 0.08 145.31 110.48 71.60 74.08 300.30
1683 131.81 0.10 496.52 388.17 261.44 276.13 294.23

OM OM

Average

1667.1 320.35 139364.0 248.18 1638.0 133.60 — -

0.08 220.35 171.34 103.93 116.42 317.53
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Table 11 — Results for random digraphs with |V| = 100, 120, 140, 160 and 180, whose number
of arcs |A| = 500, 600,700,800 and 900, and whose number of node disjoint subsets
N =20,24,28,32 and 36, respectively (FERONE et al., 2016).

Data set (DN) (FN) (FN)*  BBbf BBdf NewBB NDLH DLH GRASP
inst opt iter CPU iter CPU iter CPU CPU  CPU CPU CPU* CPU CPU~ CPU UB CPU
100N20-00 1981 338 0.23 1817 0.32 3310.25 0.04 0.15 0.01 0.54 0.22 0.14 0.17 1981 0.86
100N20-01 1980 406 0.24 1850 0.24 340 0.06 0.07  0.05 0.01 1.17 0.77 0.35 1.44 1980 0.87
100N20-02 1989 345 0.21 2038 0.29 340 0.06 0.21  0.42 0.01 0.75 0.48 0.32 0.38 1989 0.69
100N20-03 2007 414 0.33 1948 0.33 3830.14 0.51  1.28 0.01 24.03 9.42 1.23 2.33 2007 0.91
100N20-04 1620 263 0.30 1921 0.26 2650.06 0.06 0.12 0.01 0.82 0.58 0.26 0.44 1620 0.79
100N20-05 2172 350 0.23 1853 0.31 3750.06 0.17 0.21 0.01 0.52 0.33 0.16 0.26 2172 0.89
100N20-06 1965 374 0.25 1881 0.27 352 0.06 0.27 1.14 0.01 0.77 0.45 0.27 0.33 1965 0.92
100N20-07 1729 306 0.26 1785 0.25 289 0.06 0.03  0.05 0.01 0.22 0.16 0.09 0.14 1729 0.80
100N20-08 2135 450 0.27 1955 0.30 398 0.06 0.12  0.61 0.01 0.42 0.34 0.21 0.29 2156 0.87
100N20-09 2194 457 0.27 2087 0.27 453 0.06 0.39  0.37 0.01 2.83 1.82 0.83 1.63 2194 0.98
120N20-00 2380 606 0.50 3322 0.50 566 0.28 2.87  4.05 0.02 2.09 1.33 0.59 1.10 2380 1.30
120N20-01 2719 514 0.40 2966 0.45 5190.12 0.10 0.96 0.01 1.16 0.64 0.33 1.04 2719 1.31
120N20-02 2872 542 0.45 2740 0.45 552 0.38 0.08 0.27 0.01 0.94 0.47 0.18 0.46 2872 1.23
120N20-03 2462 662 0.48 3122 0.52 601 0.15 0.43  0.55 0.01 37.65 25.01 9.67 11.55 2462 1.25
120N20-04 2445 548 0.50 3037 0.45 5100.29 0.21  0.40 0.01 2.31 1.48 0.72 1.59 2445 1.29
120N20-05 2747 611 0.49 3069 0.51 576 0.08 0.34  0.78 0.03 2.06 1.16 0.44 1.30 2747 1.29
120N20-06 2780 543 0.34 2899 0.45 548 0.28 0.10 0.10 0.01 2.57 1.21 0.34 1.252780 1.46
120N20-07 2767 595 0.47 3040 0.58 583 0.35 9.91 22.95 0.26 1.51 0.93 0.63 0.752771 127
120N20-08 2481 609 0.45 3427 0.55 5710.29 3.28 8.46 0.14 2.05 1.24 0.77 1.612491 1.48
120N20-09 2700 622 0.52 3110 0.49 592 0.40 2.40  7.34 0.07 8.41 6.60 4.73 15.49 2700 1.33
140N20-00 3621 943 0.73 4681 0.93 865 0.50 151.32 305.20 2.34 12.70 7.79 4.25 5.17 3634 1.84
140N20-01 3212 648 0.67 3816 0.67 588 0.40 0.28 1.03 0.08 1.51 1.13 0.55 0.66 3215 1.76
140N20-02 2056 729 0.77 43321.09 759 0.53 0.45 1.93 0.01 4.29 2.40 1.24 2.63 2956 1.85
140N20-03 3254 653 0.66 4169 0.88 608 0.49 1.26  5.34 0.02 2.91 1.96 0.78 1.53 3254 1.75
140N20-04 3152 835 0.63 4825 1.06 888 0.46 21.34 568.24 0.39 3.02 1.69 0.81 1.20 3192 2.00
140N20-05 3000 803 0.74 4345 1.03 779 0.58 21.02 92.57 0.05 56.55 43.70 8.61 44.45 3000 2.05
140N20-06 3190 777 0.76 4466 0.89 7750.49 523 45.04 0.07 3.04 2.30 1.48 1.16 3207 1.80
140N20-07 2774 596 0.66 3830 0.79 550 0.15 0.35  0.80 0.01 3.82 2.54 0.64 1.04 2774 1.95
140N20-08 3511 705 0.68 3971 0.84 7150.47 4.90 10.76 0.03 1.18 0.89 0.64 0.66 3573 1.87
140N20-09 3381 1001 0.76 4087 0.91 938 0.24 2.91 13.60 0.14 61.74 42.20 8.71 32.08 3399 1.96
160N20-00 3514 753 0.93 5608 1.33 7720.15 3.24 851 0.07 1.53 1.08 0.69 0.92 3514 2.58
160N20-01 3805 1098 0.92 5781 1.45 9750.65 5.38  9.18 0.03 8.07 5.13 2.13 4.82 3805 2.48
160N20-02 4136 1113 0.90 6310 1.52 966 0.66 231.03 941.79 90.16 8.21 4.47 2.25 3.11 4185 2.43
160N20-03 3847 956 0.95 5448 1.27 1007 0.20 58.44 127.31 0.31 77.58 22.16 3.08 18.40 3847 2.61
160N20-04 3359 790 0.83 5137 1.28 757 0.64 0.51  6.78 0.06 4.53 2.76 1.50 2.39 3359 2.44
160N20-06 3889 1070 0.91 6230 1.70 1031 0.67 45.84 147.12 1.37 12.37 5.54 2.93 3.70 3919 2.63
160N20-07 3022 934 0.85 5994 1.37 999 0.64 47.72 97.48 0.31 3.47 1.38 0.75 1.053960 231
160N20-08 3750 979 1.02 5972 1.64 1003 0.82 6.22 37.05 0.24 78.10 66.41 53.07 60.34 3752 2.66
160N20-09 3851 1205 1.10 5967 1.70 1129 0.77 132.78 434.80 73.03 80.29 67.07 17.30 59.77 3875 2.60
160N20-10 3684 713 0.80 5317 1.16 6820.18 0.12 0.13 0.01 1.10 0.85 0.44 0.80 3684 2.56
180N20-00 4630 1168 1.13 7129 2.12 1118 0.77 55.96 797.10 1.10 7.31 4.28 2.56 10.61 4630 3.30
180N20-01 4551 976 1.05 7797 1.91 1000 0.82 14.98 115.17 0.09 4.71 2.73 1.51 3.254576 3.09
180N20-02 4554 1037 1.02 7494 1.80 999 0.79 528 26.94 0.03 2.64 1.96 1.23 1.91 4627 3.27
180N20-04 4200 1013 1.05 8115 2.27 984 0.81 12.61 1178.21 0.06 5.25 3.35 2.52 2.84 4200 3.52
180N20-07 4079 1005 1.14 6609 1.93 911 0.82 5.44 11.41 0.16 6.81 3.07 1.32 4.27 4079 3.27
180N20-08 4608 1303 1.23 8524 1.95 1390 0.87 9.46 111.33 20.97 17.25 11.85 6.47 12.79 4670 3.56
180N20-09 4664 1138 1.42 6695 2.40 1058 1.02 5.80  8.78 0.04 11.21 6.15 2.33 2.51 4664 3.54
180N20-10 4882 1380 1.21 7446 1.83 1250 0.83 31.42 103.16 0.75 11.99 7.77 3.97 11.86 4888 3.43
180N20-11 4487 1164 1.15 7533 1.95 1163 0.79 7.53 16.40 1.08 16.49 9.33 4.13 5.17 4522 2.97
180N20-12 4490 1029 1.09 7187 1.83 9810.81 1.82 12.25 0.07 2.82 2.00 0.98 1.254507 3.26
Average 7613 0.70 4493.6 1.03 735.6 0.43 1824 10571 3.88 12.11 7.81 3.22 692 — 1.8
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Table 12 — Results for grid digraphs with |V| =9 x 9 and N = 15 (FERONE et al., 2016).

Data set (DN) (FN) (FN)*  BBbf BBdf NewBB NDLH DLH GRASP
inst opt iter CPU  iter CPU iter CPU CPU CPU CPU CPUY CPU CPU~ CPU UBCPU
N19t35-000 2393 419 0.13 1179 0.08 389 0.05 0.03 0.18 0.01 0.340.16 0.07 0.08 2393 0.43
N19t35-010 4200 741 0.18 1244 0.12 687 0.10 2.52 89.47 0.06 1.11 0.87 0.29 0.69 4200 0.42
N19t35-020 3271 606 0.12 1206 0.09 562 0.08 0.49 0.82 0.05 0.43 0.34 0.17 0.32 3289 0.42
N19t35-030 2535 495 0.12 1111 0.08 4550.08 0.07 0.09 0.01 0.34 0.27 0.18 0.35 2535 0.44
N19t35-040 2980 558 0.10 1171 0.09 525 0.07 0.46 43.63 0.32 0.48 0.32 0.20 0.31 2980 0.38
N19t35-050 3011 609 0.15 1468 0.12 568 0.12 116.48 201.93 OM 11.19 9.74 7.42 10.68 3039 0.41
N19t35-060 2829 533 0.17 1194 0.08 480 0.07 0.19 0.37 0.33 1.201.05 0.81 0.83 2928 0.46
N19t35-070 2421 286 0.09 1085 0.08 266 0.07 0.01 0.02 0.01 0.14 0.09 0.06 0.06 2421 0.38
N19t35-080 2810 672 0.13 1100 0.10 665 0.09 0.84 1.53 0.01 9.743.76 2.08 2.62 2810 0.46
N19t35-090 2790 490 0.12 1197 0.09 465 0.06 0.17 1.12 0.01 0.30 0.25 0.19 0.20 2790 0.38
Average 533.3 0.13 1165.2 0.09 499.3 0.07 053 1525 009 156 0.79 045 061 — 0.42

Table 13 — Results for grid digraphs with |V| = 10 x 10 and N = 19 (FERONE et al., 2016).

Data set (DN) (FN) (FN)*  BBbf BBdf NewBB NDLH DLH GRASP
inst opt iter CPU  iter CPU iter CPU CPU CPU CPU CPUY CPU CPU~ CPU UBCPU
N19t35-00 4619 1396 0.52 2598 0.35 1311 0.36 OM OM 245.86 38.7524.94 1.12 0.95 4652 0.76
N19t35-10 4443 917 0.17 1882 0.19 836 0.17 5.47 88.34 0.11 4.95 2.67 1.10 1.90 4468 0.63
N19t35-20 4945 1229 0.31 2234 0.27 1135 0.23 OM OM OM 6.74 4.14 2.56 2.18 5253 0.72
N19t35-30 3591 608 0.15 1957 0.22 610 0.14 0.35 6.90 0.01 0.42 0.29 0.15 0.22 3591 0.72
N19t35-40 4064 1057 0.37 2146 0.27 946 0.22 81.91 218.77 6.53 29.57 26.56 15.10 0.93 4064 0.60
N19t35-50 3498 575 0.12 1944 0.20 557 0.13 0.44 0.99 0.01 0.47 0.32 0.14 0.22 3498 0.60
N19t35-60 4283 965 0.14 2092 0.22 946 0.20 OM 1790.24 7.99 21.42 7.04 3.22 5.06 4283 0.71
N19t35-70 4306 951 0.17 2244 0.25 916 0.19 OM OM 78.56 3.72 1.90 0.99 1.18 4346 0.72
N19t35-80 4869 1144 0.24 2212 0.24 1122 0.19 OM OM OM 21.71 18.61 6.28 18.04 4908 0.75
N19t35-90 4585 1031 0.26 1972 0.24 978 0.18 67.52 104.65 0.24 20.43 11.25 1.16 1.93 4604 0.70
Average  837.6 0.221980.2 0.22 785.4 0.17 31.14 8393 138 11.17 822 353 1.04 — 0.65

Table 14 — Results for grid digraphs with |[V| =5 x 20 and N = 19 (FERONE et al., 2016).

Data set (DN) (FN) (FN)* BBbf BBdf NewBB NDLH DLH GRASP
inst opt iter CPU  iter CPU iter CPU CPU CPU CPU CPUT CPU CPU~ CPU UBCPU
N19t35-00 4606 912 0.17 2042 0.18 943 0.15 44.44 475.92 42.66 20.06 9.35 2.13 3.55 4643 0.84
N19t35-10 6094 1198 0.28 1764 0.20 14140.20 OM OM OM 1.41 0.74 0.45 0.62 6214 0.72
N19t35-20 4827 1168 0.20 2252 0.20 1066 0.20 OM  OM  OM 21.94 15.06 2.92 18.07 4948 0.72
N19t35-30 3939 739 0.13 2026 0.15 653 0.14 17.03 23.65 0.71 1.85 1.13 0.50 0.66 3947 0.56
N19t35-40 5632 1639 0.47 2526 0.41 1520 0.30 OM OM  OM 48.12 14.25 1.08 1.07 5803 0.67
N19t35-50 4433 1193 0.30 2470 0.22 10440.19 OM OM OM 3.76 2.26 0.68 2.95 4433 0.62
N19t35-60 5247 1257 0.19 2165 0.22 12410.20 OM OM OM 12.84 5.86 3.14 3.855395 0.7
N19t35-70 4949 1037 0.16 2044 0.16 1024 0.19 OM  OM 15.82 20.54 5.37 0.83 1.15 4965 0.71
N19t35-80 5656 1623 0.49 2966 0.37 14050.30 OM OM  OM 37.42 18.05 0.96 1.06 5841 0.54
N19t35-90 4736 949 0.19 1792 0.18 886 0.18 0.34 OM 0.05 1.10 0.84 0.48 0.57 4789 0.66
Average  825.5 0.152034.0 0.16 798.0 0.15 30.74 249.79 21.69 10.95 524 132 210 — 0.70
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Table 15 — Results for grid digraphs with |V| =7 x 15 and N = 19 (FERONE et al., 2016).

Data set (DN) (FN) (FN)*  BBbf BBdf NewBB NDLH DLH GRASP
inst opt iter CPU  iter CPU iter CPU CPU CPU CPU CPU" CPU CPU~ CPU UBCPU
N19t35-00 4546 1108 0.27 2111 0.23 10150.21 OM OM 0.45 1.61 0.68 0.33 0.53 4546 1.00
N19t35-10 5198 1223 0.21 1911 0.19 12780.19 OM OM 45.01 2.67 1.65 0.769 1.17 5233 0.79
N19t35-20 4174 918 0.29 1992 0.31 857 0.27 113.17 142.89 1.80 29.50 23.95 14.64 17.78 4232 0.62
N19t35-30 3479 643 0.16 1830 0.17 608 0.12 0.18 0.21 0.01 0.77 0.44 0.28 0.28 3479 0.64
N19t35-40 4242 689 0.22 1828 0.21 6550.19 0.20 34.43 0.03 0.63 0.39 0.17 0.55 4242 0.75
N19t35-50 3688 730 0.14 2075 0.17 687 0.15 35.39 119.40 0.34 0.88 0.58 0.33 0.38 3700 0.83
N19t35-60 4501 836 0.15 1975 0.16 830 0.14 6.49 10.13 0.06 6.79 2.14 0.54 0.85 4501 0.95
N19t35-70 3500 628 0.14 1992 0.15 647 0.11 1.43 3.39 0.03 0.88 0.53 0.25 0.76 3500 0.74
N19t35-80 5513 1209 0.39 2338 0.28 11820.24 OM OM  OM 25.00 20.09 16.84 20.59 5551 0.84
N19t35-90 3586 673 0.16 1757 0.17 624 0.17 1.28 4.83 0.01 34.43 19.09 2.57 17.08 3586 0.67
Average  731.0 0.18 1921.2 0.19 701.1 0.16 2259 4504 0.33 1055 6.73 268 538 — 0.74

Table 16 — Results for grid digraphs with |V| =25 x4 and N = 19 (FERONE et al., 2016).

Data set
inst

opt

(DN)
iter CPU

(FN)
iter CPU

(FN)*
iter CPU

N19t35-00 5754
N19t35-10 5382
N19t35-20 6178
N19t35-30 3779
N19t35-40 6921
N19t35-50 5660
N19t35-60 6406
N19t35-70 4985
N19t35-80 5391

1528 0.29
1049 0.28
1655 0.32
693 0.41
1272 0.28
1412 0.55
1197 0.27
962 0.27
1362 0.31

2265 0.23
1927 0.21
2685 0.26
1926 0.22
2020 0.22
2217 0.25
1948 0.21
1788 0.19
2287 0.22

1492 0.19
976 0.17
1507 0.22
565 0.23
1351 0.20
1354 0.26
1218 0.18
1028 0.16
1298 0.19

Average

827.5 0.34 1857.0 0.21 796.5 0.19

BBbf BBdf NewBB

NDLH

DLH GRASP

CPU CPU CPU CPU* CPU CPU~ CPU UBCPU
OM OM OM 22.78 16.34 2.57 20.03 5834 0.94
OM OM OM 7.63 495 1.92 1.485751 1.13
OM OM  OM 22.86 20.29 16.61 20.02 6384 0.94
1.86 3.91 0.02 17.78 14.01 2.52 9.01 3779 1.00
OM OM OM 21.88 18.68 15.13 18.29 7121 0.96
OM OM  OM 22.46 19.39 15.70 19.13 5754 1.04
OM OM OM 15.10 3.53 1.19 1.43 6739 0.89
1.2543.88 0.56 1.22 1.00 0.69 0.64 4985 1.32
OM OM OM 22.7414.75 2.14 3.01 5615 1.19
156 23.90 029 950 751 160 483 — 1.16

Table 17 — Results for grid digraphs with |V| =12 x 12 and N = 27 (FERONE et al., 2016).

Data set (DN) (FN) (FN)* BBbf BBdf
inst opt bb  iter CPU bb  iter CPU bb  iter CPU CPU CPU
N19t35-00 7017 0 23550.86 0 5428 0.88 0 2135 0.51 oM OM
N19t35-10 8752 4 3332 3.07 3 6956 3.62 6 4126 3.83 oM OM
N19t35-20 5445 0 1314 0.60 0 4462 0.69 0 1310 0.41 oM OM
N19t35-30 8530 0 3019 0.94 0 7760 1.64 0 2897 0.70 147.35 OM
N19t35-40 6346 0 1478 0.51 0 3954 0.58 0 1390 0.40 11.71 65.12
N19t35-50 6261 0 1910 0.61 0 5906 0.83 0 1943 0.41 oM OM
N19t35-60 6359 0 17750.53 0 5601 0.78 0 1741 0.35 oM OM
N19t35-70 6185 0 1905 0.47 0 5843 0.83 0 1642 0.35 OM OM
N19t35-80 7210 0 2362 0.74 0 55720.86 0 2248 0.52 oM OM
N19t35-90 6611 2 2348 3.07 3 6290 2.26 0 2382 1.09 oM OM
Average 0 1478.0 0.51 03954.0 0.58 01390.0 0.40 11.71 65.12

NewBB NDLH DLH GRASP
CPU cPU* CPU CPU~ CPU UBCPU
OM 3600.00 1142.29 37.07 44.60 7091 1.70
OM 3600.00 3600.00 39.53 50.38 9027 1.59
13.12 4.31 2.58 1.49 2.13 5445 1.50
OM 177.19 137.08 36.24 44.01 8780 1.98
0.44  3.63 2.55 1.15 1.20 6346 1.48
OM 28.15 15.23 5.60 9.00 6381 1.65
oM 14.21 8.25 2.96 3.13 6432 1.62
oM 6.75 4.59 1.94 3.50 6535 1.45
OM 5496 36.23 7.47 16.44 7380 1.71
OM 81.88 68.56 33.26 39.98 6786 1.47
0.44 3.63 255 1.15 120 — 148
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Table 18 — Results for new random digraphs with |V| = 100.

Data set (DN) (FN) (FN)* NDLH DLH GRASP
|A| N opt bb  iter CPU bb  iter CPU bb iter CPUUB CPU* CPU CPU~ UB CPU UB CPU
660835191 0 2441 557 0 6686 17.02 0 2578 3.57191 321.00 74.90 33.01101 77.72 206 3.97
662541203 0 2184 12.30 3 5860 27.38 1 1946 13.80 203 436.50 428.47 401.33 203 298.55 212 10.04
657142264 0 1553 3.20 0 6330 13.60 0 1664 2.54 264 265.87 168.37 133.85 264 103.11 275 6.89
6566 44 264 0 4783 20.73 2 13378 51.84 0 4730 21.71264 490.66 453.31 448.66 265 444.76 283 6.50
655148371 0 3228 18.28 0 10804 28.69 0 3500 16.12371 165.88 132.52 107.31372 508.06 388 5.13
657749322 0 2895 4.48 0 12251 29.27 0 2225 293322 90.56 65.84 46.75322 41.24 359 7.01
660050 281 0 2880 14.72 0 10407 29.50 0 2815 6.03281 377.65 263.28 103.18 282 420.80 295 8.92
662653353 0 4481 27.71 0 16087 43.97 3 4393 28.21 353 593.91 571.62 555.15354 50546 387 4.88
6573 54 314 34 110904 59.38 20 31304 145.02 35 12019 59.33 314 613.71 595.36 577.05319 501.40 347 6.2
6602 56 3900 55 12898 59.50 59 30727 141.52 47 9448 47.91403 63881 612.60 592.62 407 606.13 438 6.29
6663 65506 0 6940 46.11 4 20783 119.30 14 5571 43.55506 744.07 718.04 687.54 512 701.08 554 7.60
6549 67 588 20 8286 52.54 10 23504 113.37 9 7343 42.26 588 745.91 725.51 692.06 593 70553 653 5.24
6640 68 542 50 18349 76.57 13 23631 135.14 12 7413 47.42542 767.29 753.29 717.30 544 727.74 685 3.77
6546 69 609 0 6890 38.10 0 22072 97.98 1 7256 46.03 609 766.46 742.91 702.23 616 71597 680 4.45
6600 78 653 3 10055 54.83 3 20282 151.17 1 0507 49.91 653 876.49 856.27 839.00 665 841.03 790 3.95
6588 80 612 24 21363 202.98 3 33668 233.83 22 21765 143.27 612 899.07 878.48 867.18 618 874.08 779 5.12
6586 81 696 99 25740 130.45 126 74623 387.13 149 24620 110.46 606 924.52 901.29 864.74 717 911.80 846 4.42
6580 84 743 27 19999 150.84 109 127104 900.93 42 24047 147.46 743 965.71 942.31 894.33 752 041.02 924 4.22
6595 85 675 10 13064 128.34 32 35104 321.07 4 10188 75.01 675 960.22 923.87 882.30 677 93455 796 4.80
6655 03 858 75 43042 231.70 115 53064 423.56 51 22880 155.43 858 1080.81 1059.55 1012.36 869 1058.22 1072 4.73
Average 20.3 11108.2 66.92 24.9 20391.9 170.56 19.5 9304.4 5315 — 63626 59339 557.90 — 60492 — 571

Table 19 — Results for new random digraphs with |V| = 150.

Data set

Al

N opt

(BN)

iter

CPU

bb

(FN)

iter

CPU

bb

(FN)*

iter

NDLH DLH GRASP
CPU UB CPU* CPU CPU- UB CPU UB CPU

14927
14903
14969
14871
15041
14889
14925
14955
14828
14877
14854
14879
14937
14890
14943
14892
14908
14903
14943

32 53
37 88
39 108
40 99
44 121
45119
51173
52 229
54 161
55 242
56 177
59 236
60 211
63 282
64 230
75 339
79 453
87 382
99 441

6

0
93
0
138
32
93
56
89
252
40

14975 106 536 298

4649
5842
4784
2790
6276
44013
34424
7543
10140
7345
45806
9341
74256
22345
57712
46292
33196

43.67
71.80
55.37
12.11
58.88
351.25
251.97
81.70
138.98
57.23
797.64
128.98
1031.41
493.79
354.08
377.37
472.52

202306 3600.45

67165

664.58

0
26
42

0

2

5
52

0
11

0
35

0

169
29
119
34
50
298
63

166232 1715.71 231

11079
16784
16608
8127
17210
20095
44348
21457
25344
20331
51430
28625
169133
62208
156014
63880
70976
446229
85545

66.28
115.61
114.17

54.70
218.33
209.57
499.70
253.71
289.56
241.17

1219.35
281.13
2707.07
739.88
2482.93
954.48
1130.65
3203.00
1818.78

0
24
18

0

0

5
87

0

5

0

128

0
91
16
86

7
59

5051
6283
3872
2648
6130
6603
39407
7065
9563
7454
61295
9136
42211
13238
42601
16111
28060

34.28 53 959.73 933.08 852.91 56 829.30 58 26.97
69.49 88 1138.59 1107.00 1062.60 90 1114.69 96 23.83
44.74 108 1212.64 1179.62 1130.74 115 1158.32 115 31.49
10.28 99 844.36 449.15 180.85 99 915.77 105 21.39
41.83 123 1392.45 1352.72 1273.21 127 1340.28 143 27.47
84.08 126 1416.89 1381.21 1342.14 133 1382.85 134 29.93
454.00 173 1633.65 1569.39 1515.26 177 1573.70 207 13.87
89.92 229 1662.43 1351.52 473.46 231 1606.36 250 15.84
117.85 161 1707.38 1625.42 1585.49 162 1602.34 186 27.84
39.45 242 1715.10 1054.14 365.32 243 1661.22 274 14.23
640.80 185 1765.72 1732.46 1699.87 189 1730.76 211 28.46
109.51 238 1848.18 1812.19 1772.49 243 1792.22 270 17.69
652.28 219 1885.30 1849.94 1798.85 224 1831.87 243 28.89
146.10 282 1951.06 1883.54 1793.95 284 1826.58 325 19.07
347.24 234 2076.63 1935.42 1872.78 238 1876.39 267 24.59
248.30 339 2619.85 2508.23 2445.65 349 2520.16 407 18.59
415.61 453 2736.31 2701.92 2604.51 465 2674.08 550 21.03

907 336293 3181.69 396 3001.92 2938.66 2860.45 408 2926.96 486 25.32

15

295507 3136.42 435

42734

602.56 449 3528.15 3461.53 3397.23 462 3448.77 572 28.43

289442 1716.66 556 3600.00 3598.84 3588.41 565 3600.00 — OM

Average

50.9 36117.1

475.99 49.2 70285.4

873.69 76.2 36092.3

385.79 — 1847.18 1727.74 1580.41 — 1779.61 — 23.42
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4 FINAL REMARKS AND FUTURE WORK

In this work, we investigate two NP-Hard routing problems: the shortest path with
negative cycles (SPNC) and the constrained shortest path tour problem (CSPTP). For the SPNC,
we propose three exact solution approches, namely, a compact mixed integer linear programming
model, a specialized branch-and-bound (B&B) algorithm, and a cutting-plane (CP) method.
For the CSPTP, we introduce both pure integer and mixed integer linear programming models,
as well as deterministic and non-deterministic Lagrangian heuristics. Our SPNC and CSPTP
contributions are all tested on randomly generated and benchmark instances from the literature.

Regarding the SPNC, we show that our three exact solution approaches outperform
existing state-of-the-art mathematical programming models when achieving optimal solutions in
smaller execution times. For benchmark instances consisting of general digraphs, our compact
model alternates better results with our B&B algorithm. For randomly generated instances, B&B
alternates better results with CP. For benchmark grid digraphs, our model performs better than
other approaches.

On what concerns the CSPTP, we show that our exact models, in general, outperform
B&B methods from the literature and we also show the impact of the valid inequalities. The
execution time is strongly reduced when taking them into account, mainly for randomly generated
digraphs. It is worth emphasizing the quality of the Lagrangian heuristics in terms of effectiveness
and efficiency when achieving the optimal solution for some instances in smaller execution
time when compared to exact approaches. For randomly generated instances, we show that
state-of-the-art B&B do not find any optimal solution within one hour of execution time, while
our exact contributions do.

An interesting line for future research is to study real-life problems where negative
costs on the arcs of the digraph arise. The proposed exact approaches for the SPNC are easy-
to-implement and could be adapted to tackle combinatorial optimization problems with such a
particular characteristic. Another future work is to investigate decomposition methods for the
CSPTP. Preliminary experiments proved that omitting nodes from clusters tends to reduce the
execution time. The choice for which nodes to omit is intrinsically related to decomposition.

Lastly but not least, the application of metaheuristics (e.g., Genetic Algorithm) seems
to be a natural way to find promising feasible solutions for huge SPNC and CSPTP instances,

which also deserves our attention.
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ANNEX A - SUPPLEMENTARY MATERIAL CONCERNING THE SHORTEST
PATH WITH NEGATIVE CYCLES

Table 20 shows an example of a coefficient matrix, with respect to (CPD-CR), for a
complete digraph with |V | = 4. The first four lines present coefficients from flow conservation
constraints (2.2), (2.3), (2.14), while the last two lines present coefficients from degree con-
straints (2.15). If I contains only rows from flow conservation, then /1 <— I, I, = 0, and we are
done. Now, let us suppose that I contains rows from degree constraints. Note that row 5 (resp. 6)
contains only positive values from row 2 (resp. 3). As row 2 (resp. 3), when belonging to /, is
present in /1, then we have to add row 5 (resp. 6) to I. Otherwise, we could have a sum of value
two if both rows 2 and 5 (resp. 3 and 6) belonged to /1. The same reasoning is generalized for
any digraph. The row from the degree constraint related to any vertex i € V — {s,¢} is added to
I, if and only if the row from the flow conservation constraint related to 7 is in /;. Otherwise, the

former row is added to I; as no other row has positive values in the same columns.

Table 20 — Example of (CPD-CR) coefficient matrix for a complete digraph with |V | = 4.

Node/Arc|x12 X13 X14 X21 X23 X24 X31 X32 X34 X41 X42 X43
1 -1-1-11 0 0 1 0 O 1 0 O
2 1 0 0 -1-1-10 1 O O 1 O
3 01 0 01 0 -1-1-10 0 1
4 O 01 001 OO0 1 —-1-1-1
2 1 0 0 0O OO 01 0 O0 1 O
3 01 0 061 0 0 0 0 O 0 1
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ANNEX B - SUPPLEMENTARY MATERIAL CONCERNING THE
CONSTRAINED SHORTEST PATH TOUR PROBLEM

A generic system matrix Ay, is as follows.

sub-path arc variables frontier-node variables

o T N () k) W) y(Tn-1) y(Tn)
—I 0
0 +h
VR 0 0 - 0 0 . 0 0 0
0 0
0
712
0 0 0 0 0 0 . 0 0 0
0
0
0 0 N0 0 0 0 0 0 0
+1Iy
0
0
) 0o 0 o0 0 0 0 0
711(
0
0
0 0 0 0 N0 0 0 0 : 0
Ty
0
0 0
) 0 0 0o 0 0 0 :
—In_1 0
0 +1Iy
) 0 o0 0 o0 [1---1] 0 0 0 0
0 0 o0 0 o0 0 1] 0 0 0
0 0 0 0 0 0 0 0 [1--1] 0 0
) 0 o0 0 o0 0 0 0 1] 0
0 0 o0 0 o0 0 0 0 M--1]

where .4 represents the network node-arc incidence matrix, I is an induced identity matrix of
order |T;| associated with the frontier nodes of T}, and [1--- 1] is a row vector of |T}| coefficients

all equal to 1 related to the cardinality constraints (3.11), kK = 1,...,N. Note that the first
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L VLIV 1, 2V (N =2)[V+ 1, (N = 1)[V] rows of matrix Ay, provide
N — 1 blocks of independent systems of flow conservation constraints determined based on the
network node-arc incidence matrix .4, each one related to an elementary path between two
consecutive sets of frontier nodes of the given order of visit of the 7;’s. The last N rows of
AL( u) are cardinality constraints, one for each T;, k = 1,..., N, whose non-null coefficients of
these rows are all equal to 1, associated with variables y of nodes in 7;. Every column of A7)
associated with the x-variables has exactly two non-null coefficients, +1 and —1. Every column
associated with the y-variables has at most three non-null coefficients, +1 and —1 in rows related
to flow conservation constraints, and +1 in the row associated with the cardinality constraint of
its corresponding frontier node set.

As an example, consider a complete digraph with four vertices. Let N =3, s =1
and t = 4. Furthermore, let T} = {1}, T, = {2,3} and T3 = {4}. The coefficient matrix Ay )

associated with the example is in Table 21.

Table 21 — Example of a coefficient matrix Az ,,).

Row/Variable|x}, xis Xiy X3 X33 X34 X3 X3y X34 X4y Xip X33 Xy Xi3 Xy X3 X33 X9, 43 X3 X34 Xy X Xs[V1 32 V3 v
1 1 11-100-10O0-100;00O0O0O0O0O0OO0OOOO0|10O0O
2 -1+06001110-10©0-10f(0O0O0O0O0O0O0O0OO0O0O0OOGO0OTO0O|0-10O
3 0-100-ro0o1r110®O0-10000O0OO0O0OO0O0OO0OO0O0|00-10
4 oo0-10O0-1000-1111}j]0000O0O0O0O0O0UO0O0O0/00O00O0
5 0oo0o00o00O0OO0OO0OO0O0O0O111T1T-2100-1020-100j000°0
6 oo000o0O0O0OO0O0O0O0O0CO0-rOO0OT1 1 10-10U0-10j010°0
7 oo0o00O0OO0OO0OO0OO0OOO0OO0O0O-10SO06-10T1TT1TT1TG0TUO0OS-10010
8 0o000O0OO0OO0OO0OO0OO0OO0OO0O|O0O0-10O0O-100-1111|000-1
9 0o000O0OO0OOOOOOTO0OO0O0OOOOOO0OOOO0OO0O|IOOO
10 0o000O0OO0OOOOOOTO0O]O0O0OOOO0OO0OO0OOOOO|0OLTIO
11 00 00O0OO0OO0OO0OOO0OO0OTO0O]0O0O0OOOO0OO0OO0O0OOO0|000O0T1

For constructing G;, choose the row i = 10. Note that G contains two components
H, and H, that are not connected. Component H; contains set of vertices {1,2,3,4,9} and com-
ponent H, contains set of vertices {5,6,7,8,11}. As row i = 10 contains non-zero coefficients

in columns related to y(73), there is no edge between H; and H,.



