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ABSTRACT

Edge Computing (EC) is a promising concept to alleviate some of the cloud computing limitations

in supporting Internet of Things (IoT) applications, especially time-sensitive applications, by

bringing computing resources closer to end users, at the network edges. As promising as EC

is, it also faces many challenges. These are mainly related to the resource management in

the vast, distributed, dynamic, and heterogeneous setting brought by EC. A relevant issue for

resource management is the service placement problem, which is the decision-making process

of determining where to place different applications or services over the EC infrastructure

according to some constraints, requirements, and performance goals. This decision-making

process can thus be extended to include other related issues, such as load distribution and

service migration. In this thesis, we investigate the IoT services placement with load distribution

and service migration in the context of next generation networks with EC capabilities, such

as the fifth-generation (5G) mobile system. First, we address service placement with load

distribution as single and multi-objective problems and we the proposal to solve these using a

well-chosen genetic algorithm. Analytical results show that through our proposed formulation

and the associated proposed algorithms, we are able to outperform other benchmark algorithms

in terms of multiple conflicting objectives, such as response deadline violation, operational cost,

and service availability. Then, in order to handle load fluctuations, we propose a centralized

limited look-ahead prediction control that periodically readjusts service placement and load

distribution decisions by taking into account the performance-cost trade-off of service migrations.

Evaluation results show that our predictive control has even better system performance regarding

response deadline violations with a small additional migration cost compared to benchmark

algorithms. Finally, we address the scalability issue faced by centralized decision-making

process by designing a hierarchical distributed service placement solution. The evaluation of our

distributed control indicates that the trade-off between the system performance and the scalability

of decision-making depends on how the control decision problem is decomposed.

Keywords: service placement; load distribution; service migration; internet of things; edge

computing; 5G network.



RESUMO

Edge Computing (EC) é um conceito promissor para mitigar algumas das limitações da com-

putação em nuvem no suporte às aplicações da Internet das Coisas (Internet of Things - IoT),

especialmente às aplicações sensíveis ao tempo, ao trazer recursos computacionais para a prox-

imidade dos usuários finais nas bordas da rede. Por mais promissor que a EC seja, este conceito

também enfrenta muitos desafios. Estes desafios estão principalmente relacionados à gestão de

recursos em ambiente vasto, distribuído, dinâmico e heterogêneo trazido pela EC. Uma questão

relevante para o gerenciamento de recursos é o problema de colocação de serviço, que é o

processo de tomada de decisão para determinar onde colocar diferentes aplicações ou serviços

na infraestrutura da EC de acordo com algumas restrições, requisitos e metas de desempenho.

Este processo de tomada de decisão pode ser estendido para incluir outras questões relacionadas,

como a distribuição de carga e a migração de serviço. Esta tese investiga a colocação de serviços

IoT com distribuição de cargas e migração de serviços no contexto das redes de próxima geração

com suporte à EC, tal como a rede móvel de quinta geração (5G). Primeiramente, esta tese

aborda a colocação de serviços com distribuição de carga como problemas mono-objetivo e

multiobjetivo e propõe resolvê-los usando algoritmo genético. Os resultados analíticos mostram

que, por meio de nossa formulação e dos algoritmos propostos associados, é possível superar

outros algoritmos de benchmark em termos de múltiplos objetivos conflitantes, tais como a

violação de prazo de resposta, o custo operacional e a disponibilidade de serviço. Em seguida,

para lidar com as flutuações de carga, é proposto um controle centralizado e preditivo que

reajusta periodicamente as decisões de colocação de serviço e distribuição de carga de acordo

com a relação custo-benefício das migrações de serviço. Os resultados da avaliação mostram

que o controle preditivo proposto tem um desempenho de sistema ainda melhor em relação às

violações do prazo de resposta e um pequeno custo de migração adicional em comparação com

os algoritmos de benchmark. Finalmente, é tratado o problema de escalabilidade enfrentado por

um processo de tomada de decisão centralizado ao projetar uma solução hierárquica e distribuída

da colocação de serviços. A avaliação do controle distribuído proposto indica que a compensação

entre o desempenho do sistema e a escalabilidade da tomada de decisões depende de como o

problema de decisão é decomposto.

Palavras-chave: colocação de serviço; distribuição de carga; migração de serviço; internet das

coisas; edge computing; rede 5G.



RÉSUMÉ

L’Edge Computing (EC) est un concept prometteur pour atténuer certaines des limitations

du cloud computing dans la prise en charge des applications Internet des Objets (Internet of

Things - IoT), en particulier les applications sensibles au délai, en rapprochant les ressources

informatiques des utilisateurs à la périphérie du réseau. Aussi prometteur que soit l’EC, ce

concept est également confronté à de nombreux défis. Ceux-ci sont principalement liés à la

gestion des ressources dans ce cadre étendu, distribué, dynamique et hétérogène qu’apporte

l’EC. Un des problèmes majeurs pour cette gestion des ressources est le problème du placement

des services ou applications. Ce problème peut ainsi être étendu pour inclure d’autres aspects

connexes, tels que la répartition de la charge et la migration de service. Dans cette thèse, nous

étudions le placement des services IoT avec distribution de charge et migration de services

dans le contexte de réseaux de nouvelle génération dotés de capacités EC, tels que le système

mobile de cinquième génération (5G). Premièrement, nous abordons le placement de services

avec la distribution de charge comme un problème mono-objectif, puis un problème multi-

objectifs. Nous proposons alors de les résoudre en utilisant un algorithme génétique spécifique.

Les résultats analytiques montrent que grâce à notre formulation et aux algorithmes proposés,

nous sommes en mesure de suppléer les autres algorithmes de référence en termes lorsque

nous considérons des objectifs multiples et contradictoires, comme la violation du délai de

réponse, le coût opérationnel et la disponibilité du service. Afin de gérer les fluctuations de

charge, nous proposons ensuite un contrôle centralisé et prédictif qui réajuste périodiquement les

décisions de placement de services et de distribution de charge en tenant compte du compromis

performance-coût lié aux migrations de services. Les résultats de l’évaluation montrent que notre

contrôle prédictif offre des performances du système encore meilleures en ce qui concerne les

violations de délai mais au prix d’une légère augmentation du coût liée à la migration. Enfin, nous

abordons le problème d’extensibilité auquel est confrontée toute prise de décision centralisée en

concevant une solution hiérarchique et distribuée pour le placement de services. L’évaluation

de notre contrôle distribué indique que le compromis entre les performances du système et

l’extensibilité de la prise de décision dépend de la façon dont le problème de décision de contrôle

est décomposé.

Mots clés: placement de services; distribution de charge; migration de services; internet des

objets; informatique en périphérie; réseau 5G.
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1 INTRODUCTION

1.1 Contextualization

With the progressing development of computing and wireless technologies, the

Internet of Things (IoT) is a paradigm driving a digital transformation in our daily lives (GUBBI

et al., 2013; BALAJI et al., 2019). In the IoT paradigm, smart objects or things are essential

building blocks, which include mobile phones, vehicles, home appliances, sensors, actuators,

and any other embedded devices. These devices will be interconnected in order to exchange

data related to real and virtual worlds among themselves through modern communication

network infrastructures. Therefore, IoT expands existing human-to-human communication to

human-to-machine and machine-to-machine communications. Furthermore, IoT envisions the

creation of new and innovative applications in diverse areas, such as supply chain management,

transportation and logistics, connected vehicles, healthcare, smart home, smart buildings, and

smart cities (PERERA et al., 2014).

The continued growth of IoT brings more connected devices to collect and consume

data across the network. Due to the resource constraints of those devices, a common approach is

to use Cloud Computing (CC) to execute data analysis remotely. Some of the benefits of using

CC are (i) the flexible pricing model (pay-as-you-go), (ii) the on-demand and elastic delivery

of virtualized resources (e.g., computing, storage, and network resources), and (iii) the scalable

computing model (PAN; MCELHANNON, 2018).

The backbone of CC is based on building a few large data centers in various parts

of the world to serve a huge number of users. However, this means that all user-generated

data or requests need to be transmitted to a remote centralized data center, which may result in

long (network) latencies. For some time-sensitive IoT applications (e.g., factory automation,

intelligent transport systems, emergency response, interactive mobile gaming, augmented reality,

and mission-critical applications) requiring real-time responses at 10ms or even 1ms (SCHULZ

et al., 2017), the delay caused by transferring data to the cloud is unacceptable. Moreover, some

data processing can be made locally without having to be transmitted to the cloud. Even when

some decisions are made in the cloud, it may be unnecessary and inefficient to send the large

volume of data to the cloud for processing and storing because not all data is useful for decision

making and analysis (HU et al., 2017). Another drawback of CC is the lack of fast and direct

access to local contextual information (e.g., precise user location, local network conditions,
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and user mobility behavior) while provisioning resources to an application (LIU et al., 2018).

Therefore, these challenges caused by the explosive growth of IoT cannot be addressed only by

the Cloud Computing model.

Several similar concepts have emerged in academia and industry to overcome some

limitations of only using CC. Among those concepts are Cloudlet (SATYANARAYANAN et al.,

2009), Fog Computing (BONOMI et al., 2012), and Mobile Edge Computing/Multi-access Edge

Computing (ETSI, 2016). The common denominator of those concepts is the extension of Cloud

Computing by bringing cloud services and resources (e.g., computing, storage, and networking

resources) closer to end users on geo-distributed nodes at the network edges (ROMAN et al.,

2018; BILAL et al., 2018). We use the term Edge Computing (EC) to encompass these partially

overlapping and complementary concepts. In general, EC adds a new layer of distributed general-

purpose computing nodes between the end-user devices and cloud data centers, as shown in

Figure 1 (BAKTIR et al., 2017). A variety of edge nodes forms the edge layer, where a node may

have diverse resource capabilities and supports the execution of applications or services through

virtualization technologies. Some examples of such edge nodes are cellular base stations, routers,

switches, and wireless access points.

Figure 1 – The three-tier architecture of Edge Computing

Source: Adapted from <https://bit.ly/37VL0Mu>.

By offering cloud resources at the edge layer, applications running on edge nodes

in the vicinity of their end-user devices can filter, aggregate, or analyze data close to its source.

Consequently, Edge Computing can (i) minimize latency and response time; (ii) reduce core and

cloud networks traffic; (iii) decrease power consumption of end-user devices by running compute-

https://bit.ly/37VL0Mu
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intensive applications in the edge layer; as well as (iv) make better location- and context-aware

decisions (LIU et al., 2018). The characteristics of EC ensure a wide range of applications and

use cases that can benefit from being deployed at the edge, such as healthcare, augmented and

virtual reality, multi-player gaming, interactive multimedia, video analytics, smart environments,

industrial control systems, vehicular communications, road traffic monitoring (BILAL et al.,

2018).

EC can also be considered a key technology to overcome some challenges of the next

fifth-generation (5G) cellular network, such as extremely low latency, reduction on core network

traffic, and delivery of real-time contextual information (TALEB et al., 2017). The 5G network

is driven by the current trends toward IoT and the growth of mobile Internet traffic to surpass the

limitations of 4G networks by guaranteeing a thousand-fold communication capacity increase,

extremely low latency, and a massive number of connections in a cost and energy-efficient

manner (SHAFI et al., 2017; MARABISSI et al., 2018). Moreover, the ubiquitous connectivity

of 5G provides the 4A (Anytime, Anyplace, Anyone, and Anything) connectivity for an IoT

environment (KITANOV et al., 2016). That is, people and things can connect at any time to any

place with anything and anyone.

Compared to the traditional cloud infrastructure, Edge Computing has distinguishing

characteristics (HU et al., 2017; KHAN et al., 2019). First, Cloud Computing usually locates its

resources in a few centralized data centers, but there will be a dense geo-distribution of edge

nodes in EC. Furthermore, the availability of the cloud services depends on the distance of

multi-hop between an end-user device and a cloud data center, while edge nodes are one or few

hops away from end users. Edge nodes are more heterogeneous than cloud servers, i.e., edge

nodes come with different form factors and resources capabilities. However, edge nodes are

generally more resource-limited than cloud data centers. Lastly, EC supports mobility and has,

consequently, a more dynamic environment than CC.

Despite the benefits of Edge Computing, it is still a recent research topic and faces

several challenges. A major challenge is related to resource management due to the vast,

distributed, dynamic, and heterogeneous EC environment (LIU et al., 2018; BILAL et al., 2018).

We are particularly interested in the service placement problem, which is a resource management

issue related to the decision of ideal places (i.e., whether on a node in the edge or within the

cloud) to deploy multiple applications or services according to some demands and constraints in

order to optimize desired objectives (TÄRNEBERG et al., 2017; FILHO et al., 2018). Moreover,
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in the service placement context, we use the notion of application and service interchangeably to

designate a program or software that performs a function or suite of related functions of benefit

to their end users.

In the next section, we further discuss service placement as a non-trivial problem

that can include some related sub-problem, such as service migration and load distribution.

1.2 Motivation

In the Edge Computing context, a major concern is related to allocating shared

resources for running applications through virtualization technologies (e.g., Virtual Machine

(VM) or container) (BILAL et al., 2018; TOCZÉ; NADJM-TEHRANI, 2018; NAHA et al.,

2018). Accordingly, service placement, service migration, and load distribution are crucial issues

that should be addressed to achieve efficient resource management on Edge Computing.

Application or service placement is the decision-making process of selecting a desti-

nation computer-based node or server to host an application. This decision is made autonomously

by some Infrastructure Provider (InP) throughout a resource management tool, called controller,

on behalf of Application Service Providers (ASPs), which do not directly determine where

to place their applications (FILHO et al., 2018). Usually, an ASP only signs a Service Level

Agreement (SLA) defining the Quality of Service (QoS) requirements to be fulfilled by the

InP. In this way, a service placement scheme maps each application onto some hosting node

to optimize a set of performance-related objectives while meeting all requirements defined by

ASPs and InP.

Over time, the service placement decision needs to be further reassessed as ap-

plication workload conditions change, and the current solution mapping cannot meet some

requirements (FILHO et al., 2018). Such changes may be due to user mobility or different

workload patterns. Application or service migration can be understood as the movement of

applications from one server to another. Moreover, service migration provides the ability to

adjust the placement of applications to satisfy the QoS requirements continually, such as low

response time. Although the movement of applications may improve system performance, it

may lead to some problems (PIETRI; SAKELLARIOU, 2016). For instance, it may cause

performance degradation due to excessive reallocation, system overhead, resources wastage

by some applications, and lack of them to other ones. As the migration overhead may not be

negligible, frequent migrations need to be avoided, especially when the migration cost exceeds
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its benefits. On the other hand, a delayed reallocation may lead to SLA violations or an increased

cost from resource over-provisioning. Therefore, the reassessment of a placement decision

should consider the benefits and costs of service migrations.

Another challenge is provisioning adequate resources to handle the fluctuating

workloads generated by application users. That is, how many resources should be allocated to

each application to handle a dynamic incoming workload. A simple solution to this problem

is using resource over-provisioning to handle high peak loads. However, over-provisioning is

unsuitable for EC due to high costs and limited resource capacity at edge nodes (SKARLAT

et al., 2017b; BILAL et al., 2018). Meanwhile, a service placement solution mappings can

be many-to-many, i.e., an application can be placed onto one or more nodes, and a node can

host more than one application. In this way, service placement may consider the load balancing

to distribute workloads of an application across multiple nodes. Hence, load distribution can

be applied to improve resource usage, increase availability, reduce response time, and avoid

over-provisioning (XU et al., 2017).

Although the service placement, service migration, and load distribution problems

can be separately optimized in independent procedures, the placement decision may affect the

two other problems, and vice versa (URGAONKAR et al., 2015). For instance, an application

workload can only be distributed to nodes selected by a service placement decision to host

this application. On the other hand, a service placement procedure may avoid deploying an

application in an overloaded server whose incoming workload depends on a load distribution

decision. Hence, an optimal decision-making process may require a complex joint optimization

of these problems.

We can find several research works in the literature concerning service placement

in Cloud Computing. Pires and Barán (2015), Pietri and Sakellariou (2016), Carvalho et al.

(2018), and Filho et al. (2018) published surveys on this topic over the past few years. However,

research works for CC cannot be directly applied to EC because they neither consider the distinct

characteristics of EC (e.g., a large, distributed, heterogeneous, and dynamic environment) nor

the time-sensitive application requirements.

There are some research works in the literature related to service placement in Edge

Computing, such as Tärneberg et al. (2017), Gu et al. (2017), Skarlat et al. (2017b), Zhao and

Liu (2018). However, the majority of these works do not handle the scalability and dynamism

of EC because the decision-making process is centralized and static. Furthermore, some works
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do not consider the limited resource capabilities of edge nodes, requirements of time-sensitive

applications, or conflicted optimization objectives.

1.3 Research Questions and Contributions

In this thesis, we aim to address the aforementioned concerns to provide decision-

making approaches for the service placement problem and its related sub-problems, specifically

load distribution and service migration, in the context of cellular networks with Edge Computing

capabilities (e.g., 5G networks). In order to achieve this goal, we investigate the following

research questions through the three main contributions of this thesis:

– Research Question 1 (RQ1). How to make service placement and load distribution deci-

sions to deploy multiple IoT applications or services in an Edge Computing infrastructure

according to certain infrastructure constraints, application requirements, and performance

criteria?

– Research Question 2 (RQ2). How to reassess the service placement and load distribution

decisions due to dynamic application loads by taking into account the benefits and costs of

service migrations?

– Research Question 3 (RQ3). How to make scalable and optimized (service placement,

load distribution, and service migration) decisions in a large Edge Computing environ-

ment?

The above-mentioned research questions follow an incremental methodology where

each subsequent question adds new aspects to be considered for the service placement problem.

Consequently, we also have incremental contributions as a contribution extends the previous

ones. Our three main contributions are described below.

In our first contribution, we jointly address the service placement and load distri-

bution problems in a static Edge Computing scenario where all information required in the

decision-making process is provided in advance and does not change over time. We formal-

ize the decision-making process as an optimization problem that considers EC infrastructure

resource capacity constraints and different application characteristics (e.g., response deadline,

resource demand, scalability, and availability). The formalized problem aims to minimize

the potential occurrence of SLA violations in terms of application response deadlines. Then,

we extended this single-objective problem to include multiple conflicting performance-related

objectives (e.g., operational cost and service availability) and still prioritizing metrics related
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to time-sensitive applications, such as minimizing deadline violations. In order to solve the

single and multi-objective formulated problems, we propose a genetic-based meta-heuristic that

combines Biased Random-Key Genetic Algorithm (BRKGA) (GONÇALVES; RESENDE, 2011)

and Non-dominated Sorting Genetic Algorithm II (NSGA-II) (DEB et al., 2002) with specific

evolutionary operations to generate feasible solutions to these problems.

The second contribution considers that application loads might vary in spatial and

temporal domains in a dynamic EC scenario due to user mobility or workload patterns. In order

to handle this dynamic load, we design a centralized controller that readjusts the application

placement and load distribution decisions over time. Moreover, the designed controller adopts a

proactive approach, called Limited Look-ahead Control (LLC) (ABDELWAHED et al., 2004),

that prepares the EC system in advance for predicted load fluctuations. The proactive preparation

can include the pre-deployment of an application through service migration to a region that will

soon request this application. As a result of this pre-deployment, the negative impact of service

migration delays on future response time can be reduced. According to the LLC concept, we

formulate the dynamic service placement with load distribution problem as a multi-objective

optimization control problem over a look-ahead prediction horizon. We then extend the genetic

algorithm proposed in our first contribution to solve this dynamic control problem.

Our third and last contribution tackles the scalability issue of a centralized decision-

making process in a large EC environment. Here, we propose a hierarchical distributed limited

look-ahead control approach to reduce the dimensionality of the overall control problem. In

this hierarchical distributed control, the entire EC system is partitioned into subsystems. Each

subsystem contains a disjoint subset of EC nodes and has its own local controller responsible for

control decisions regarding service placement, load distribution, and service migration within this

subsystem. At the upper control layer, the global controller receives system-wide information and

provides local control goals for the lower control layer, which is composed of local controllers

that may exchange information to coordinate their control decisions. Moreover, the global

controller considers the entire EC system in a more abstract way to avoid the same scalability

issue of a centralized controller.

1.4 Research Methodology

An overview of the research methodology used in this thesis is presented in Figure 2,

which is organized into three main phases: (i) conception, (ii) development, and (iii) evaluation.
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In the conception phase, we review the literature and define a classification taxonomy to identify

related work issues. Based on the identified gaps, we define the research problems and questions.

After the first phase, the development and evaluation phases are executed using an incremental

approach, as briefly discussed in Section 1.3.

In the development phase, we refine the literature review focusing on each research

question to discover challenges and solution techniques. For a specific research question, we

formally model the related problem and develop solutions (algorithms) to solve it. Next, we

define use-case scenarios and metrics to validate and evaluate the proposed solutions through

numerical experiments in the evaluation phase. Based on the experiment analysis, we identify

strengths, weaknesses, and major contributions of the proposal. Then, we address some of the

found limitations in the development and evaluation phases of the subsequent research question.

Therefore, these two phases are only completed when all research questions have been covered.

Figure 2 – Research methodology

Source: Author.

1.5 Organization

This thesis consists of seven chapters, including the introduction presented in this

chapter. The remaining chapters are organized as follows:
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– Chapter 2 outlines the main concepts related to this thesis: Internet of Things, Cloud

Computing, Edge Computing, and 5G Networks. It also introduces mathematical program-

ming as a formalism to model optimization problems throughout this thesis. This chapter

then overviews genetic algorithms, including BRKGA and NSGA-II, as a method to solve

optimization problems. Furthermore, the LLC concept is presented in this chapter as a

technique to control dynamic systems proactively.

– Chapter 3 presents the related work on service placement in Edge Computing. It also

identifies and discusses the limitations of existing works found in the literature according to

a classification taxonomy that considers different aspects of a service placement approach.

– Chapter 4 details our first main contribution, a static approach to service placement with

load distribution. Specifically, we model an EC system where replicas of an application

can be placed over the EC infrastructure to distribute user-generated load among these

replicas. Then, we jointly formulate the service placement and load distribution problems

as a single or multi-objective optimization problem. Moreover, we develop a genetic-based

algorithm to solve the formulated problem, and we analytically compared its performance

against some benchmarking algorithms.

– Chapter 5 describes our second main contribution, a dynamic and centralized approach

to service placement with load distribution and service migration. By following the LLC

concept, we model how an EC system evolves under controllable (service placement and

load distribution) actions and uncontrollable (user-generated load) events. Moreover, we

extend our genetic algorithm to select control actions that optimize system performance

over a limited look-ahead prediction horizon. We also provide a performance evaluation

where our proposal is compared with different benchmarking algorithms in a scenario with

dynamic load synthetically generated.

– Chapter 6 presents our last main contribution, a dynamic and distributed approach to

service placement with load distribution and service migration. In this distributed approach,

we decompose that overall control problem into a set of local control problems that are

solved in a hierarchical cooperative fashion. Preliminary performance evaluation results

are then discussed to compare our centralized and distributed approaches.

– Chapter 7 concludes this thesis by summarizing the achieved contributions and discussing

future research directions.
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2 BACKGROUND

This chapter presents the main concepts of areas referenced in this thesis, which

are useful for understanding the challenges and solutions mentioned in this research work.

Section 2.1 presents the Internet of Things concept, whereas Section 2.2 discusses Cloud

Computing, Edge Computing, and 5G network as enabling infrastructure technologies for IoT

applications. Section 2.3 introduces the mathematical programming notion to formally model

optimization problems. Next, Section 2.4 presents genetic algorithms as a method to solve

optimization problems. In Section 2.5, Limited Look-ahead Control is presented as a technique

to proactively control dynamic systems. Finally, Section 2.6 summarizes this chapter.

2.1 Internet of Things

In 1999, Kevin Ashton first coined the term Internet of Things (IoT) in the context

of supply chain management by using Radio Frequency Identification (RFID) technology (ASH-

TON, 2009). After that, the term has evolved to encompass a broader range of application

domains (e.g., healthcare, utilities, and transport) and technologies (e.g., wireless sensor net-

works, mobile networks, big data, and cloud/edge computing). However, there is no unified

definition for the IoT term, and there are several definitions proposed by academic and industry

organizations (SINGH et al., 2019). For instance, the IoT European Research Cluster (IERC)

defined IoT as a dynamic global network infrastructure with self-configuring capabilities based

on standard and interoperable communication protocols where physical and virtual “things” have

identities, physical attributes, and virtual personalities and use intelligent interfaces, and are

seamlessly integrated into the information network (VERMESAN et al., 2011).

The fundamental characteristics of IoT can be represented in a basic architecture

shown in Figure 3, which is comprised of three distinct layers (AL-FUQAHA et al., 2015): (i)

perception, (ii) network, and (iii) application layers. These layers can be briefly described as

follows:

– Perception layer. This layer aims to collect useful information from the monitored

environment, which are then transformed into digital data. For this purpose, this layer is

composed of various types of physical devices, sensors, and actuators. Moreover, these

devices, also known as smart objects, are able to exchange data via the network layer with

applications and other devices.
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– Network layer. This layer provides the facility to interconnect the smart objects. Further-

more, it is also in charge of data transmission between the perception and the application

layers. Depending on the device features, diverse network technologies (e.g., ZigBee,

Bluetooth, WiFi, 4G, and 5G.) can be used to guarantee communication in IoT.

– Application layer. It is responsible for delivering services to the end users. For this

purpose, applications can store, aggregate, process, and manage the received data from the

perception layer. This application layer covers numerous vertical markets, such as smart

home, smart building, transportation, industrial automation, and smart healthcare.

Figure 3 – Basic IoT architecture

(a) Three-layer architecture (b) Application operational pattern

Source: Author.

Following this architecture, IoT applications generally have a common operational

pattern (YU et al., 2018). Due to limitations of energy, storage, and computational capability,

end-user devices send through the network their collected data in a request message to an

application deployed in a remote server. After processing the received request, the application

will send the results back to the end users in a response message. This request processing can

be data filtering, aggregation, storage, or analysis. Moreover, the nature of a request processing

response can be diverse. For example, it can be to intervene in the physical environment through

actuators.

IoT relies on an enormous amount of technologies to support its applications (AL-

FUQAHA et al., 2015). The next section presents Cloud Computing, Edge Computing, and 5G

networks as infrastructure technologies related to this thesis that facilitate the operation of IoT
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applications.

2.2 Infrastructure Technologies

2.2.1 Cloud Computing

According to the National Institute of Standards and Technology (NIST), Cloud

Computing (CC) can be defined as a model for enabling convenient, on-demand network access

to a shared pool of configurable computing resources (e.g., networks, servers, storage, and

services) that can be rapidly provisioned and released with minimal management effort or service

provider interaction (MELL; GRANCE, 2011).

Cloud Computing provides several services that make it attractive to business owners.

These CC services can be classified into three types based on the business model (VAQUERO

et al., 2009): (i) Infrastructure-as-a-Service (IaaS), (ii) Platform-as-a-Service (PaaS), and (iii)

Software-as-a-Service (SaaS). IaaS refers to the on-demand provisioning of virtualized resources

(e.g., CPU, memory, and storage) while PaaS provides software environments for developing,

deploying, and managing applications. Finally, SaaS provides software applications and compos-

ite services to end users and other applications. However, in practice, IaaS and PaaS providers

are often parts of the same organization (e.g., Google and Amazon). Therefore, PaaS and IaaS

providers are often called InPs or cloud providers, and SaaS providers are named ASPs (ZHANG

et al., 2010).

A technical foundation of Cloud Computing lies in the virtualization of resources.

For instance, to deploy and run applications in CC, two virtualization technologies are commonly

used (TALEB et al., 2017): (i) Virtual Machine (VM) and (ii) container. The VM technology

enables flexibility, isolation, and fine-grained control of resources for applications hosted on

virtual machines through a hypervisor software. Moreover, a VM is a physical hardware

abstraction and requires a complete Operating System (OS), binaries, and libraries to run

applications. As a result, a VM may unnecessarily use a large number of physical machine

resources and have slow OS boot processes. These two characteristics can make it difficult to

initialize and migrate applications quickly.

In contrast, the container technology occurs at the OS level, where the OS kernel

allows the creation of multiple instances (containers) isolated from user-space to run different
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applications. A container engine (e.g., Docker1) utilizes the OS kernel to manage the lifecycles

of containers. Compared to a VM image, a container image has a smaller size because it contains

only the software packages required to run a specific application. Hence, a container enables

easy instantiation and rapid migration of an application due to its lightweight nature. Despite

these benefits, containers are less secure than VMs because the kernel is shared among different

containers. Specifically, threats and failures at the kernel level, as well as in a container, can

affect all containers (SULTAN et al., 2019). Figure 4 illustrates the discussed difference between

the architectural representation of VM and container.

Figure 4 – Comparison between VM and container

Source: Author.

2.2.2 Edge Computing

Edge Computing is in its early years, still lacking standardized definitions, archi-

tectures, and protocols (BILAL et al., 2018). This lack of a standard definition may lead to

misunderstandings in the relationship between Cloud Computing and Edge Computing concepts.

For instance, one misconception is that EC will move or replace CC, when, instead, it should

be considered as a complement to CC. Indeed, EC has some similar characteristics to CC by

extending cloud services to the network edges, such as on-demand provisioning of virtualized

resources.

Despite the similarities, Edge Computing possesses distinguishing characteristics

from Cloud Computing, as shown in Table 1. The main difference between EC and CC lies in the

location of their nodes (KHAN et al., 2019). Edge nodes are widely geographically distributed,

whereas CC places nodes in a few centralized locations. On the other hand, CC utilizes large data

centers with high resource capabilities as nodes, whereas edge nodes are more heterogeneous
1 https://www.docker.com

https://www.docker.com
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and limited in terms of resource capacities. Due to this limited capacity, edge nodes occupy

less space than cloud ones, and they can be located a single or few network hops away from

end-user devices (YOUSEFPOUR et al., 2019). This proximity to users allows EC to offer

significantly lower latencies when compared to CC. Moreover, edge nodes can provide real-time

local contextual information to applications (e.g., user mobility and network status) that are not

available or limited in CC (GEDEON et al., 2019).

Table 1 – Comparison of Cloud Computing and Edge Computing
Characteristic Cloud Computing Edge Computing

Infrastructure Centralized Distributed

Geo-distribution Locally clustered Widespread

Resource capacity High Low

Heterogeneity Low High

Latency High Low

Distance to end users Far (multiple hops) Near (one or few hops)

Local context awareness Limited Supported

Mobility Limited Supported

Source: Author.

In recent years, several similar concepts have emerged regarding EC implementation

schemes. In the following paragraphs, three main EC implementation concepts are presented:

– Cloudlet Computing. Cloudlet is a term coined by Satyanarayanan et al. (2009), and

it acts as a data center in a box deployed at facilities close to mobile users, such as

coffee shops, shopping malls, company buildings, train stations, and hospitals. A cloudlet

consists of resource-rich servers or a cluster of servers running VMs to provide the

resources demanded by mobile applications. Moreover, a cloudlet is connected to the

Internet and offers one-hop wireless access, mainly WiFi, to nearby end users. Hence,

cloudlets represent the middle tier of a three-tier architecture, i.e., mobile device, cloudlet,

and cloud tiers (TALEB et al., 2017).

– Mobile Edge Computing. It is an initiative of the European Telecommunications Stan-

dards Institute (ETSI) to bring the capabilities of Cloud Computing and Information

Technology (IT) service environment to the Radio Access Network (RAN) of cellular

networks (ETSI, 2016). In 2017, ETSI expanded the Mobile Edge Computing (MEC)

scope not only to encompass cellular networks but also to include multiple types of network

accesses (e.g., 3G, 4G, 5G, WiFi, and fixed access technologies). Thus, it changed the
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name from Mobile Edge Computing to Multi-access Edge Computing (MEC), yet the

acronym MEC remained.

– Fog Computing. Cisco initially introduced the concept of Fog Computing as an analogy

to the natural phenomenon of fog (DOLUI; DATTA, 2017). Just as the clouds are far above

the sky, the fog is closer to the people. Therefore, a fog infrastructure is decentralized and

based on nodes located at any point between end-user devices and the cloud. Moreover, fog

nodes are heterogeneous and can range from being resource-poor to powerful servers (e.g.,

end devices, routers, switches, access points, set-top boxes, and 5G base stations) (ROMAN

et al., 2018).

Although these concepts (cloudlet, fog, and MEC) aim to bring cloud services closer

to end-user devices, there are few subtle differences among them (DOLUI; DATTA, 2017;

MOURADIAN et al., 2018). The first difference regards the edge node location as follows:

cloudlet is a data center in a box with WiFi access in which users connect directly; nodes in

MEC are deployed to cellular base stations, where users connect directly; and fog nodes can

be anywhere on the infrastructure, so there is no guarantee of access at a single hop to a fog

node. The second difference is that cloudlet relies exclusively on VM technology, while MEC

and fog can use other virtualization technologies besides VMs, such as containers. The third

difference is that cloudlet and MEC may work in stand-alone mode, i.e., there is no iteration with

the cloud. On the other hand, a fog infrastructure always includes the cloud. The final difference

is related to the targeted application types, as cloudlet focuses only on computing offloading,

while MEC and fog target any application type (e.g., computing offloading, data storage, caching,

and processing). Table 2 summarizes these differences.

In this thesis, we use the Edge Computing term to encompass the different emerging

concepts that extend the Cloud Computing capabilities to the edge. Furthermore, an edge or

EC node refers to any computer-based node with resource capabilities along the path between

end-user devices and cloud data centers.

2.2.3 5G Network

Cellular network technologies are continuously evolving in a manner where each

generation provides performance enhancements, for example, in terms of data rate, latency, and

connection density. The fifth-generation cellular (5G) network continues this trend by providing

a significant performance improvement of its predecessors (SHAFI et al., 2017). Compared to
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Table 2 – Comparison of Edge Computing concepts
Characteristic Fog Computing Mobile-Edge Computing Cloudlet Computing

Node devices Routers, switches, ac-
cess points, gateways

Servers running in base sta-
tions

Data Center in a box

Node location Varying between end-
users devices and cloud

RAN Local/Outdoor installation

Software architecture Based on fog abstrac-
tion layer

Based on mobile orchestrator Based on cloudlet agent

Proximity One or multiple hops One hop One hop

Access mechanisms Bluetooth, WiFi, cellu-
lar networks

cellular networks WiFi

Virtualization
technology VM, container VM, container VM

Source: Adapted from (DOLUI; DATTA, 2017).

the fourth-generation (4G), 5G intends to achieve a 1000-fold system capacity growth, a 5-fold

reduction in end-to-end latency, an energy efficiency of at least ten times, and a 20 times increase

of transfer rate (BARB; OTESTEANU, 2020). Table 3 presents the performance comparison

between 4G and 5G.

Table 3 – Performance comparison between 4G and 5G
Key Requirements 4G 5G

Peak data rate 1 Gbit/s 20 Gbit/s

User experienced data rate 10 Mbit/s 100 Mbit/s

Mobility 350 km/h 500 km/h

Latency 10 ms < 1 ms

Connection density 105 devices/km2 106 devices/km2

Area traffic capacity 0.1 Mbit/s/m2 10 Mbit/s/m2

Source: Barb and Otesteanu (2020)

5G networks envisage not only performance improvement but also support a wide

variety of usage scenarios and applications, which are broadly categorized as follows (ITU-R,

2015):

– enhanced Mobile Broadband (eMBB). It is an evolution of existing human-centric

mobile broadband applications by improving performance and seamlessly increasing the

user experience. This usage scenario covers a range of cases, such as wide-area coverage

and hotspot. The wide-area coverage case expects seamless coverage and medium to

high mobility, with improved user data rates compared to that offered by 4G. The hotspot

case supports high user density and needs very high traffic capacity, but only requires
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mobility at pedestrian speeds. Moreover, the hotspot case requires higher data rates than

the wide-area coverage.

– Ultra Reliable Low Latency Communications (URLLC). It has stringent requirements

for capabilities such as throughput, latency, and availability. Some examples include tactile

Internet applications, factory automation, remote medical surgery, and intelligent transport

systems.

– massive Machine Type Communications (mMTC). It typically consists of a very large

number of connected devices transmitting a relatively low volume of delay-tolerant data.

These devices are required to be low cost and have a long battery life.

Table 4 presents the minimum performance requirements for the three 5G use

case categories. These requirements are extremely challenging and diverse. Hence, the 5G

networks must be flexible and adaptable to a variety of application scenarios. According to the

European Telecommunications Standards Institute (ETSI), Edge Computing plays an essential

role in achieving some of these requirements, such as low end-to-end latency and bandwidth

efficiency (KEKKI et al., 2018).

Table 4 – Key Performance Indicators (KPIs) to assess the performance of
5G use case categories

KPI Key Use Case Values

Density mMTC ≥ 10,000 devices/km2

Mobility eMBB Up to 500 km/h

Peak data rate eMBB Downlink: 20 Gbps, Uplink: 10 Gbps

User data rate eMBB Downlink: 100 Mbps, Uplink: 50 Mbps

User plane latency eMBB, URLLC 4 ms (eMBB), 1 ms (URLLC)

Control plane latency eMBB, URLLC 20 ms

Reliability URLLC Frame error rate < 10−5

Availability URLLC > 99 %

Source: Marabissi et al. (2018)

ETSI also defines a reference architecture for Multi-access Edge Computing (MEC)

that can be integrated into 5G networks (ETSI, 2016). As shown in Figure 5, the MEC architecture

is composed of entities grouped into trees levels: (i) system, (ii) host, and (iii) network levels.

The MEC orchestrator plays a central role in the system level as it maintains an overall view

of the entire MEC system based on deployed MEC hosts, available resources, available MEC

services, and topology. It is also responsible for selecting MEC hosts for application instantiation,



38

on-boarding of application packages, triggering application relocation, and triggering application

instantiation and termination.

The host level consists of the MEC platform manager, the virtualization infrastructure

manager, and the MEC host. The MEC platform manager is responsible for managing the life

cycle of applications, providing element management functions, and controlling the application

rules and requirements. Meanwhile, the virtualization infrastructure manager is responsible

for allocating virtualized resources, preparing the virtualization infrastructure to run software

images, provisioning MEC applications, and monitoring application faults and performance.

The MEC host facilitates applications, offering a virtualized resource infrastructure and a set

of fundamental functionalities (MEC services) required to execute applications, known as the

mobile edge platform. Finally, the underlying network level offers integration and connectivity

to a variety of accesses, including 4G and 5G networks.

Figure 5 – MEC system architecture

Source: Adapted from (ETSI, 2016) and (KEKKI et al., 2018).

Although the MEC orchestrator can consider diverse application requirements and

information on the resources currently available in the MEC system to select one or more MEC

hosts to instantiate applications, the ETSI does not intend to specify the actual algorithm that

makes this selection. Therefore, it creates new research opportunities to address the application

or service placement selection. The rest of this chapter presents some techniques used in this

thesis to formalize and solve the service placement problem in Edge Computing.
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2.3 Mathematical Programming

A decision-making problem, such as the service placement problem, involves finding

the best decision under given circumstances. In general, this decision process aims to minimize

or maximize an objective function that measures the goodness of a decision. Hence, optimization

is central to a decision-making problem (CHONG; ZAK, 2004). Mathematical optimization,

also known as mathematical programming, consists of modeling the optimization in terms of

objective, variables, and constraints related to the problem. Formally, a general (single-objective)

optimization problem can be expressed as:

min f (x)

s.t. hi(x) = 0, i = 1, . . . ,P

g j(x)≤ 0, j = 1, . . . ,Q

x ∈X

(2.1)

where f : X → R is the (single-)objective function, hi : X → R are equality con-

straints, g j : X → R are inequality constraints, and x is the n-dimensional decision variable.

Here, the optimization is written as a minimization problem, but a maximization problem can be

obtained by replacing f (x) by − f (x) in problem (2.1).

A point or solution x ∈X is feasible if it satisfies all constraints hi(x) and g j(x).

Then, problem (2.1) is feasible if there is at least one feasible solution, and infeasible otherwise.

Moreover, a solution x∗ is said to be an optimal solution if it is feasible and f (x∗)≤ f (x) for all

feasible points.

Optimization problems can be classified based on the nature of their variables and

functions, as highlighted below:

– Linear Programming (LP). In this case, both objective and constraints are linear func-

tions. Moreover, the decision variables are continuous, i.e., x ∈X ⊂Rn. In practice, some

algorithms (e.g., simplex method) solve this problem quickly and efficiently, achieving the

optimal decision (CHONG; ZAK, 2004).

– Nonlinear Programming (NLP). It includes problems where some of the constraints

or objective functions are nonlinear, and the variables are still continuous. Under cer-

tain conditions (e.g., convexity), some NLP problems can also be solved quickly and

efficiently (BERTSEKAS, 1997).
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– Integer Linear Programming (ILP). Similar to LP, ILP problems have linear objectives

and constraints; however, the variables are integers, i.e., x ∈X ⊂ Zn. As a result of

discrete variables, ILP is NP-hard (SCHRIJVER, 1998). It is possible to apply algorithms

(e.g., branch-and-bound techniques) to get the exact optimal result in some cases. However,

many problems are intractable and, thus, heuristic algorithms are used instead to obtain

near-optimal results.

– Integer Nonlinear Programming (INLP). It includes problems where some of the con-

straints or objective functions are nonlinear, and the variables are discrete. As NLP, INLP

is also NP-hard due to integer variables.

– Mixed-Integer Linear Programming (MILP). In this case, the problem variables are

composed of discrete and continuous parts, i.e., x ∈ X ⊂ Rn1 ×Zn2 . Moreover, the

objective and constraints are linear functions.

– Mixed-Integer Nonlinear Programming (MINLP). It is also a type of integer program-

ming with discrete and continuous variables, but some (objective and constraint) functions

are nonlinear. MINLP is still NP-hard, and, in practice, it can be harder to solve than its

linear counterpart (BURER; LETCHFORD, 2012).

Typical methods to solve nonlinear problems (e.g., NLP, INLP and MINLP) are

associated with relaxation and constraint enforcement concepts (BELOTTI et al., 2013). A

relaxation technique transforms a nonlinear problem into an easier one to be solved; for instance,

a linearization relaxation that transforms the nonlinear problem into an LP, ILP or MILP problem.

Then, a constraint enforcement procedure excludes solutions that are feasible to the relaxation,

but not to the original problem.

2.3.1 Multi-Objective Optimization

Although problem (2.1) aims to optimize a single objective function f (x), many

real-world decision-making processes try to simultaneously optimize multiple objective functions

while satisfying a list of constraints (BRANKE et al., 2008). Let F = ( f1, f2, . . . , fM) be a list of

objective functions and, then, a general multi-objective optimization problem can be formulated
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as:

min F(x) = ( f1(x), f2(x), . . . , fM(x))

s.t. hi(x) = 0, i = 1, . . . ,P

g j(x)≤ 0, j = 1, . . . ,Q

x ∈X

(2.2)

Unlike single-objective optimization problems that may have a unique optimal

solution, in a multi-objective case, conflicts among objectives usually prevent the problem from

having a single optimal solution that can simultaneously optimize all objectives. In this way, the

improvement of an objective may lead to the deterioration of another. Therefore, it is necessary

to search for compromise solutions by considering trade-offs among the conflicting objectives.

The concept of Pareto dominance plays a vital role in finding a set of best trade-off

solutions that cannot be improved in any of the objectives without degrading at least one of the

other objectives (BRANKE et al., 2008). This concept is formally defined as follows:

Definition 2.1 (Pareto dominance) Given the multi-objective problem (2.2), a feasible solution

x1 Pareto-dominates another solution x2, expressed as x1 ≺ x2, when

x1 ≺ x2 iff fi(x1)≤ fi(x2) ∀i ∈ {1,2, . . . ,M}

and f j(x1)< f j(x2) ∃ j ∈ {1,2, . . . ,M}

The set of all solutions that are not dominated by any other solution is called the

Pareto optimal set or the Pareto optimal front. These non-dominated solutions are considered

equally good if there is no additional preference information.

When a decision maker is able to provide preference information related to the

objectives, classical a priori methods can be used to solve the multi-objective problem (BRANKE

et al., 2008). For instance, a scalarization technique (e.g., weighted sum and ε-constrained

methods) transforms a multi-objective problem into a single-objective optimization based on

some preference information. Another example of a priori method is the lexicographic method

that consists of solving a sequence of single-objective optimizations based on a preference order

among the objective functions.

On the other hand, when preference information is not available or is hard to obtain in

practice, methods based on the Pareto dominance concept can be used to solve the multi-objective

problem. In particular, evolutionary algorithms, such as genetic algorithms, are broadly adopted
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in the literature for multi-objective optimization (ZHOU et al., 2011). Hence, the next section

presents genetic algorithms to handle both single and multiple objectives cases.

2.4 Genetic Algorithms

Genetic Algorithms (GAs) are meta-heuristic methods for solving optimization prob-

lems inspired by the process of natural selection. In a GA, a population of candidate solutions,

called individuals, to an optimization problem is evolved toward an optimal solution (GOLD-

BERG; HOLLAND, 1988; HOLLAND et al., 1992). Each individual has a corresponding

chromosome that encodes the solution. For instance, a traditional chromosome is represented

by a string or vector of binary values, but other encodings are also possible. Moreover, a chro-

mosome is associated with a fitness level, which corresponds to the objective function value of

the solution it encodes. The GA is an iterative process where at each step, called generation,

it creates a new population by recombining or randomly mutating chromosome elements of

selected individuals of the current population to produce offspring individuals that make up the

next generation. Individuals are selected stochastically, but those with better fitness are preferred

over those that are less fit. Usually, GA terminates when either produces a maximum number of

generations or reaches a satisfactory fitness level.

A genetic approach has the advantages of not being limited to linear or single-

objective problems and being implemented in a parallel computing environment (CUI et al.,

2017). In the two next subsections, we exemplify the wide-spread applicability of GAs by

describing two algorithms employed in this thesis. Subsection 2.4.1 presents a GA that han-

dles constrained optimizations, whereas Subsection 2.4.2 introduces a GA for multi-objective

problems. After presenting these two algorithms, Subsection 2.4.3 discuss stopping criteria for

GAs.

2.4.1 Biased Random-Key Genetic Algorithm

GAs are typically applied for unconstrained optimization problems. A common way

of incorporating constraints into a GA is through penalty functions that add a certain value to

the objective function based on the amount of constraint violation present in a specific solution.

Nonetheless, it may be extremely difficult to estimate good penalty factors or even generate a

single feasible solution for some complex optimization problems (COELLO, 2002).
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An alternative method to handle constrained-optimization problems in GAs is to

develop (i) special solution representations to simplify the shape of the search space, and (ii)

special operators to preserve the feasibility of solutions at all times. Gonçalves and Resende

(2011) adopt this method by proposing a Biased Random-Key Genetic Algorithm (BRKGA)

where chromosomes are represented as a vector of randomly generated real numbers. Moreover,

a deterministic algorithm, named decoder, takes any chromosome as input and associates it with

a feasible solution of an optimization problem, for which an objective value or fitness can be

computed. In other words, a chromosome gives instructions on how to build a feasible solution.

Figure 6 illustrates how BRKGA evolves the current population for the next genera-

tion. The initial population is made up of vectors of random values, or keys, in the real interval

[0,1]. After the fitness of each individual is computed by the decoder, the algorithm partitions

the population into two groups of individuals: a small group of elite individuals, i.e., those with

the best fitness values, and the remaining set of non-elite individuals. BRKGA uses an elitist

strategy to keep all of the current elite individuals, without modification, in the next generation.

This strategy keeps track of good solutions found during the algorithm iterations, resulting in a

monotonically improving heuristic. It also adds a small number of mutated individuals in the

next generation to escape from entrapment in local minima. A mutant individual is simply a

vector of random keys generated in the same way that the initial population is created. The next

population is completed by offspring individuals produced through the mating process called

crossover.

Figure 6 – Generation transition in BRKGA

Source: Adapted from (GONÇALVES; RESENDE, 2011)

In BRKGA, each new offspring individual produced by crossover is a combination

of one solution randomly selected from the group of elite individuals and one from the set of

non-elite individuals in the current population. More specifically, BRKGA uses parameterized
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uniform crossover (SPEARS; JONG, 1995) to combine two parent solutions and obtain a new

offspring. Let N be the length of the chromosome modeled as a vector and Pelite as the probability

that an offspring inherits a genetic characteristic of its elite parent. Then, in the parameterized

uniform crossover, each element at the position i ∈ {1, . . . ,N} of an offspring vector takes on the

value of the i-th element of the elite parent with probability Pelite and the value of the i-th element

of the non-elite parent with probability 1−Pelite. By setting Pelite > 0.5, the offspring is more

likely to inherit characteristics of the elite parent than those of the non-elite parent. Another

observation is that offspring solutions resulting from mating are always feasible because of the

assumption that any random key vector can be decoded into a feasible solution.

Figure 7 shows an overview of the BRKGA flowchart, which is divided into two parts:

(i) the problem-independent and (ii) the problem-dependent parts. The problem-independent part

has no knowledge of the problem being solved, and it is responsible for the solution searching

process based on the genetic operations (initialization, crossover, classification, selection, muta-

tion, and stop operations). The only connection to the optimization problem being solved is the

problem-dependent part of the GA, where the decoder produces solutions from random-key vec-

tors and computes the fitness of these solutions. Therefore, when designing a new meta-heuristic

for a specific optimization problem, we only need to specify the chromosome representation and

the decoder algorithm.

Figure 7 – BRKGA flowchart

Source: Gonçalves and Resende (2011)
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2.4.2 Non-dominated Sorting Genetic Algorithm

In each iteration, a genetic approach evolves a population of individuals toward better

solutions. This population-based approach is a perfect match for multi-objective optimization

problems, where an iteration can simultaneously find multiple compromised solutions according

to the Pareto dominance concept (BRANKE et al., 2008). The Non-dominated Sorting Genetic

Algorithm II (NSGA-II) proposed by Deb et al. (2002) is one of the most popular multi-objective

genetic algorithms, which uses elitist principle, non-dominance sorting, and crowding distance

sorting to find Pareto-optimal solutions.

As shown in Figure 8, a new population is comprised of the current population

and its offspring individuals. NSGA-II then classifies this new population by a fast sorting

procedure with two steps: (i) non-dominated sorting and (ii) crowding distance sorting. In the

first step, NSGA-II calculates the non-domination level of each solution. In other words, it

counts the number of other solutions that dominate a specific solution as the non-domination

level of this specific solution. Then, this first step sorts solutions according to the ascending level

of non-domination, and it groups solutions with the same level in a front.

Figure 8 – NSGA-II classification and selection procedures

Source: Adapted from (DEB et al., 2002).

The classification second step is a diversity preservation mechanism. This mechanism

orders solutions on the same front using crowding distance, which informs the density of solutions

surrounding a particular solution. Algorithm 1 proposed by Deb et al. (2002) calculates the

crowding distance of a solution or point as the average distance of two points on either side of

this point along each of the objectives. In order to preserve solution diversity, less dense solutions

are preferred and, thus, the second step sorts a population in descending order of crowding
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distance in each front.

Algorithm 1: Crowding distance assignment
Data: List of solutions in front F , list of objective functions F = ( f1, f2, . . . , fM)
Result: Crowding distance D

1 L← |F |; // number of solutions in the front
2 forall i ∈F do
3 Di← 0; // initial crowding distance of solution i

/* For each objective function */
4 forall fk ∈ F = ( f1, f2, . . . , fM) do
5 f max

k , f min
k ← maximum and minimum values of function fk;

6 S← sort solutions in F according to the objective function fk;
7 DS1 ← ∞; // distance of the first element in S
8 DSL ← ∞; // distance of the last element in S

/* For each solution in the front */
9 for i← 2 to L−1 do

10 DSi ← DSi +
fk(Si+1)− fk(Si−1)

f max
k − f min

k
; // distance of the i-th element in S

Figure 9 depicts the result of a population classification by NSGA-II for an optimiza-

tion problem with two objective functions, f1 and f2. In this figure, solutions as points in a curve

belong to the same front. Moreover, NSGA-II groups solution in fronts so that the i-th front is

more close to the Pareto optimal front than the (i+1)-th front. We can also observe that solution

p1 has a crowding distance larger than solution p2 because p1 is more distant from its neighbors

in the third front than solution p2.

Figure 9 – Example of population classified by NSGA-II

Source: Author.

After sorting the new population, the resulted position of an individual is assigned as



47

its rank. Then, NSGA-II only selects the best-ranked individuals/solutions for the next population.

Finally, the overall complexity of the classification and selection procedures is O
(
MN2

pop
)
, where

M is the number of objective functions and Npop is the population size (DEB et al., 2002).

2.4.3 Stopping Criteria

In a GA, a stopping criterion is invoked at the end of its current iteration. The most

popular criterion is just to terminate the algorithm after a given number of iterations/generations

tmax. However, an inadequate tmax may result in unsatisfactory solutions in terms of optimality if

the tmax value is too low or a waste of computational resources if tmax is too high. Hence, another

stopping criterion that detects scenarios where there is no sense in proceeding with the algorithm

execution may be necessary. For instance, a GA terminates when the solution obtained so far is

satisfactory or a better one is unlikely to be produced.

Martí et al. (2016) propose a stopping criterion for multi-objective problems called

MGBM after the authors surnames. MGBM combines a local improvement indicator, named

Mutual Domination Rate (MDR), and a global evidence-gathering process to detect situations

where no further progress will be made. Moreover, MGBM can be integrated with NSGA-II by

using the concept of non-dominated fronts.

The MDR indicator Imdr contrasts the non-dominated individuals of the current and

preceding iterations in order to compute a measure of the improvement produced by the current

iteration. Equation (2.3) specifies this indicator where F 1
t−1 and F 1

t are the first non-dominated

front produced by NSGA-II at iteration/generation t−1 and t, respectively. The function ∆(A,B)

returns the set of elements of A that are dominated by at least one element of B. According to

Martí et al. (2016), the order of complexity of calculating Imdr is O
(
M|F 1

t−1||F 1
t |
)

when there

are M objective functions.

Imdr(t) =
|∆
(
F 1

t−1,F
1
t
)
|

|F 1
t−1|

−
|∆
(
F 1

t ,F
1
t−1
)
|

|F 1
t |

(2.3a)

∆(A,B) = {x | x ∈ A and ∃y ∈ B,y≺ x} (2.3b)

The Imdr(t) ∈ [−1,1] indicator can be interpreted as follows. If Imdr(t) = 1, the entire

first-front population of iteration t is better than its predecessor. If Imdr(t) = 0, there has not

been any substantial progress. In the worst case, Imdr(t) =−1 indicates that iteration t has not

improved any of its predecessor solutions.
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In order to detect if a GA has made progress, MGBM uses a recursive estimation

based on a simplified Kalman filter to predict when the MDR indicator has stabilized around

zero. By using one-dimensional estimation, and assuming full progress estimation from the start

and that the observation noise is equal to the initial error covariance, the progress estimation Îmdr

at generation t ≥ 1 can be defined as (MARTÍ et al., 2016):

Îmdr(t) =

1 t = 1

Îmdr(t−1)+ 1
t+1

(
Imdr(t)− Îmdr(t−1)

)
t > 1

(2.4)

Therefore, a GA terminates when the progress estimation falls below a defined

threshold, i.e., Îmdr(t)< Îmin
mdr . As a safety measure for a possible non/slow convergence of Îmdr(t),

the maximum number of iterations can also be used in conjunction with MGBM.

2.5 Limited Look-ahead Control

In a dynamic computer system, various performance-related parameters must be

continuously tuned to achieve the desired performance under dynamic operating conditions. For

instance, an Edge Computing system reassesses its service placement decisions over time to meet

a certain response time for a time-varying service demand while minimizing operational costs.

Feedback methods in control theory, such as Model Predictive Control (MPC), are promising

approaches to automate these dynamic systems. A feedback control first observes the current

system state, and then, it takes corrective action, if any, to achieve the desired performance.

MPC is a proactive feedback control that takes control actions accordingly to current measured

information and predicted future events. However, traditional feedback controls, including MPC,

assume a linearized model for system dynamics with continuous variables and unconstrained

state space (KANDASAMY et al., 2006).

The Limited Look-ahead Control (LLC) is a proactive method similar to MPC but

supporting nonlinear systems with mixed continuous and discrete variables under explicit and

dynamic operating constraints (ABDELWAHED et al., 2004). Hence, the basic LLC concept is

to operate a system by continuously monitoring its current state and selecting control actions

that best satisfy the given specifications when applied in the system. Moreover, control actions

are obtained by optimizing system behavior, as forecasted by a mathematical model, for the

specified performance criteria over a limited look-ahead prediction horizon.

In order to apply a mathematical technique, an abstract model of the underlying
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system is required. In an LLC approach, the following discrete-time equation describes the

system dynamics:

s(t +1) = Φ(s(t),c(t),e(t)) (2.5)

where t is the discrete-time index, s(t) is the system state or output, c(t) denotes the

control input or decision variable, and e(t) represents the environment input or disturbance at

time step t. In general, environmental inputs are uncontrollable (e.g., system incoming workload),

but they can be estimated using well-known forecasting techniques, such as the AutoRegressive

Integrated Moving Average (ARIMA) described in (HYNDMAN; ATHANASOPOULOS, 2018).

Furthermore, Φ(·), called the system dynamics or behavioral model, captures the relationship

between a system state and its (control and environment) inputs.

Figure 10 shows the overall framework of a decision-maker controller using LLC.

The functional components within the framework are described as follows:

– Predictor. It forecasts relevant environment parameters over a limited look-ahead predic-

tion horizon of length H to be used by the system model.

– System Model. Given the current system state s(t) and the predicted environment inputs,

this component estimates a system state s(t+k+1), k ∈ [t, t+H−1] within the prediction

horizon H by using the dynamic model Φ(·) when it receives a control input c(t + k).

– Optimizer. Given a sequence of control inputs πc = {c(k) | k ∈ [t, t +H−1]}, it uses

the system model to constructs a set of future states from the observed state s(t) up

to a prediction horizon H. This component objective is to select the optimal sequence

πc∗ = {c∗(k) | k ∈ [t, t +H−1]} of control decisions that optimize the system performance

while satisfying both state and input constraints.

Figure 10 – LLC controller framework

Source: Adapted from (ABDELWAHED et al., 2004).
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Figure 11 illustrates the LLC basic working principle for a system with a one-

dimensional system state and control input. At the current time t, a sequence of future control

inputs or actions is selected based on how close the predicted system states are to the desired

performance reference trajectory over a discrete and limited look-ahead prediction horizon of

length H. For each time step within the prediction horizon, the predicted system state depends

on the selected control input applied to the system at this time step, the past system states, and

the system dynamics model.

Figure 11 – A basic working principle of LLC

Source: Adapted from <https://bit.ly/2GXOCni>.

At the beginning of a time step t, the controller performs the optimization of prob-

lem (2.6) to select a sequence of control inputs πc∗ . In this problem, f (·) is the performance

function to be optimized, and C is the finite set of all possible control inputs. In addition,

h(·) and g(·) are lists of equality and inequality constraints upon the system state and inputs,

respectively. After solving the problem, the controller applies the first control input c∗(t) of

the selected sequence into the system. This process is repeated at time step t +1 when the new

measured system state s(t +1) is available.

min
t+H−1

∑
k=t

f (s(k+1),c(k),e(k))

s.t. s(k+1) = Φ(s(k),c(k),e(k)) , ∀k ∈ [t, t +H−1]

h(s(k),c(k),e(k)) = 0, ∀k ∈ [t, t +H−1]

g(s(k),c(k),e(k))≤ 0, ∀k ∈ [t, t +H−1]

c(k) ∈ C , ∀k ∈ [t, t +H−1]

(2.6)

In order to solve problem (2.6), it is sufficient to use an algorithm that exhaustively

https://bit.ly/2GXOCni


51

evaluates all possible operating states within the prediction horizon to determine the best control

input for a system with few control options and a small prediction horizon. However, more

advanced techniques, such as GAs, in a system with a large control input set are necessary to

solve problem (2.6) due to the exponential growth of possible input combinations for a control

sequence (ABDELWAHED et al., 2004; BAI; ABDELWAHED, 2009). Therefore, this thesis

intends to develop LLC algorithms in the context of the service placement problem, which can

have diverse control options.

2.6 Summary

This chapter described the main concepts involved in this thesis work: Internet

of Things (IoT), Cloud Computing (CC), Edge Computing (EC), 5G Network, Mathematical

Programming, Genetic Algorithm (GA), and Limited Look-ahead Control (LLC).

First, this chapter presented a brief overview of IoT concepts, including an opera-

tional pattern for IoT applications based on a three-layer architecture. After that, CC, EC, and

5G concepts were explained as enabling technologies for IoT. Furthermore, similarities and

differences among CC, EC, and other related concepts (Fog Computing, Cloudlet Computing,

and MEC) were discussed.

Second, this chapter introduces mathematical programming as a formal manner

to model optimization problems, such as the service placement problem. Furthermore, this

chapter presents a classification of optimization problems based on the nature of their variables,

constraints, and objective functions. Then, genetic algorithms were depicted as a meta-heuristic

method for solving optimization problems. After that, this chapter detailed two genetic algorithms

(BRKGA and NSGA-II) employed in this thesis to handle constrained and multi-objective

problems. Moreover, MGBM was presented as a stopping criterion for multi-objective genetic

algorithms.

Finally, the LLC was presented as a proactive method to control systems operating

under dynamic environmental conditions, such as the service placement control for an Edge

Computing system with dynamic load addressed in this research work.
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3 RELATED WORK

This chapter presents the related works on service placement problem in Edge

Computing, which is this thesis topic. Given the complexity of this problem, the existing

literature considers different assumptions, characteristics, and strategies to propose efficient

service placement. Consequently, we present a taxonomy to classify the surveyed works in order

to identify their strengths and limitations and, thus, point out research opportunities.

The remainder of the chapter is organized as follows. First, we describe a taxon-

omy to compare service placement approaches in Section 3.1. Then, Section 3.2 discusses

and classifies the related work to identify research gaps. Finally, this chapter is summarized

in Section 3.3.

3.1 Classification Taxonomy

There are some taxonomies to classify service placement approaches in the literature.

In the Cloud Computing (CC) context, Pires and Barán (2015) propose a taxonomy for Virtual

Machine (VM) placement based on three main aspects: optimization approach (mono-objective,

multi-objective solved as mono-objective, and pure multi-objective), objective function, and

algorithm technique. In (PIETRI; SAKELLARIOU, 2016), the authors categorize VM placement

in CC using the following criteria: sub-problem (initial placement and reallocation problem),

optimization objective, scheduling type (event-driven, periodic, and threshold-based), optimiza-

tion technique, and evaluation platform. Masdari et al. (2016) classify VM placement schemes

as static and dynamic, and a dynamic placement can be further characterized as reactive or

proactive.

Regarding service placement in Edge Computing (EC), Brogi et al. (2020) survey

existing proposals based on their considered constraints, optimized metrics, and the algorithmic

solution used. In (SALAHT et al., 2020), the authors propose a service placement taxonomy by

taking into consideration the following elements: control plan design (centralized vs. distributed),

placement characteristic (online vs. offline), system dynamicity, and mobility support.

Based on the aforementioned taxonomies, we present a taxonomy to provide an

in-depth classification of works related to the service placement problem in EC. As shown

in Figure 12, this taxonomy has four main aspects: (i) problem formulation, (ii) controller

design, (iii) system modeling, and (iv) solution technique. We describe these aspects in the next
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subsections.

Figure 12 – Taxonomy for service placement problem in Edge Computing

Source: Author.

3.1.1 Problem Formulation

Typically, the service placement problem is seen as an optimization problem that can

be formally modeled by different techniques to deal with various sub-problems, objectives, and

constraints. Thus, the following four elements can be used to classify how the service placement

problem is formulated in the literature:

Modeling technique. There are different techniques to model an optimization

problem. Mathematical programming is often found in the literature to model an optimization

problem with goals and constraints. It includes ILP, MILP, MINLP, and other variations. Other

techniques, such as game theory and Markov Decision Process (MDP), can also be used to

capture different aspects of the problem.

Sub-problem. Besides the service placement decision, the problem statement can

also address other related sub-problems, such as service migration and load distribution. Service

placement refers to the mapping of applications or services onto hosting nodes. Service migra-

tion or reallocation involves the readjustment overtime of placement decisions due to system
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changes. Load distribution or balancing refers to the distribution of workloads, tasks, or requests

among multiple nodes hosting the associated application. Moreover, these sub-problems can be

formulated and optimized either independently or jointly.

Objective. It is a function that measures the suitability of a solution within the

optimization process. There are several objective functions in the literature to be minimized or

maximized; for instance, minimize cost, response time, and migration cost. Thus, we classify

placement proposals in the following categories: (i) single-objective, (ii) multi-objective as single-

objective, (iii) pure multi-objective. A single-objective approach considers the optimization of

only one objective function. In the second category, multiple objective functions are combined

into one objective function. Meanwhile, a pure multi-objective approach directly optimizes

a collection of objective functions by using multi-objective operations, such as the Pareto

dominance.

Constraint. An optimization process can include a set of constraints specifying con-

ditions regarding decision variables that must be satisfied by a feasible solution. Particularly for

the placement problem, we classify constraints as those related to infrastructure or applications.

In the infrastructure case, a common constraint concerns the availability of computing, storage,

and network resources. Application constraints may include the satisfaction of QoS requirements

and the limitation of costs within a budget.

3.1.2 Controller Design

An essential part of the development of a placement strategy is the design of a

controller responsible for the decision-making process. We depict hereafter two aspects of this

design, the architecture and assignment type, as follows:

Architecture. A controller architecture informs where the decision process is per-

formed. A centralized approach consists of a single central control unit operating all tasks related

to the decision-making process. A distributed architecture maintains a central unit, but some

of its tasks are distributed among multiple sub-units to increase scalability. Unlike these two

architectures, a decentralized controller does not have a central unit. Instead, several control

units compute their own decisions based on local resources and information. For instance, each

hosting node can decide for itself what services to deploy to it. Furthermore, a control unit can

make decisions independently or through coordination with other units.

Assignment type. A service placement assignment can be done either statically or
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dynamically. The static assignment, also known as an offline or initial assignment, performs a

placement decision at the pre-execution time and does not change it for a long time. It requires

all information related to the optimization process to be available in advance. On the other hand,

a dynamic or online assignment occurs during the controller run-time. Moreover, in this dynamic

case, placement decisions take into account the current state of the system and reallocation

actions.

3.1.2.1 Dynamic Assignment

We can further classify a dynamic controller according to when a placement reas-

signment will be triggered and if it has a reactive or proactive behavior.

Reassignment trigger. A triggering mechanism is required to reassess the place-

ment decision, where periodic, event-driven, and threshold-based are common triggers. A

periodic trigger invokes the optimization process at predefined intervals. In an event-driven

mechanism, some decisions are taken when certain events (e.g., the arrival of a new application)

are detected. A threshold-based method monitors performance-related metrics to trigger the

placement reassessment when a threshold is exceeded.

Reassignment behavior. A controller has a reactive behavior when it changes the

current placement mapping only after the system has reached a particular undesired state. In

contrast, a proactive controller involves prediction-based approaches that help prepare in advance

for system state changes.

3.1.3 System Modeling

The statement of service placement problem goes through the description of a system

model, which we can decompose in the following parts: (i) infrastructure, (ii) application, and

(iii) dynamic models.

3.1.3.1 Infrastructure Model

The EC infrastructure comprises the network of hosting nodes and the resources

required to deploy applications. We can categorize this infrastructure based on the resource types

and architecture considered in its model, which are described as follows:

Resource type. In order to deploy an application in a node, it is necessary to allocate
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resources to this application. A placement strategy can focus on allocating a single resource type

(e.g., CPU, memory, storage, and bandwidth) or multiple resource types.

Architecture. Generally, EC has an architecture composed of three-tiers: end-user

devices, edge, and cloud layers. Thus, the placement of services can occur in a single (i.e., edge

layer) or multiple tiers (e.g., edge and cloud layers).

3.1.3.2 Application Model

Diverse characteristics can be used to model applications deployed in EC. We

highlight three main characteristics: components, scalability, requirements, and user access

relationship.

Component. An application is generally composed of several functional parts called

components. According to the composition abstraction level, a placement approach can focus on

deploying these components as separate or unified pieces. At the high-grained abstraction level,

applications are designed to be self-contained, i.e., containing all their functional components,

and then placed as a single piece based on the container or VM technologies. Meanwhile, at the

fine-grained level, an application contains a set of components (e.g., micro-services) that can be

placed separately in different locations. Furthermore, each component has its own characteristics,

and there may be a dependency graph between components. Hence, at the fine-grained level,

application placement refers to the placement of its components.

Scalability. Some applications support scalability or elasticity to handle workload

variation without degrading the performance. An application can scale on the vertical and

horizontal axes. Vertical scaling means adding or removing resources of a single hosting node to

an application. Likewise, horizontal scaling refers to placing an application in more nodes or

removing the application from some nodes hosting it.

Requirement. Applications define requirements that should be satisfied by place-

ment approaches. We summarize some of those requirements based on QoS (e.g., maximum

response time and minimum availability), resource, and cost.

User access relationship. Concerning the access relationship between end users

and applications, we can category the access into two cases: single-user and multiple-users.

The single case means that each end user has a dedicated application. In this case, a user sends

request to a single application, and an application is only accessed by its single user. In contrast,

several users may send requests to the same application in the multiple-users case.
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3.1.3.3 Dynamic Model

Another classification criterion of placement approaches is whether they address the

system dynamics, which can be related to infrastructure, application, and user. In a dynamic

infrastructure, the network topology can evolve due to, for instance, the join and leave of nodes.

Other infrastructure characteristics, such as resource capabilities and allocation cost, can also

vary over time. Similarly, applications may enter and leave the system, and their characteristics

can change over time. For the user point-of-view, the mobility and requests pattern are usually

modeled as dynamic aspects.

3.1.4 Solution Technique

In the literature, we can identify four main algorithm techniques used to solve the

service placement problem (PIRES; BARÁN, 2015; SALAHT et al., 2020): deterministic,

approximation, heuristic, and meta-heuristic algorithms. In a deterministic or exact algorithm,

the optimal solution is computed by using a mathematical programming solver or performing

an exhaustive search (i.e., by enumerating all solutions). An approximation algorithm ensures

that the obtained solution is not more or less distant than a predetermined factor of the optimum

solution.

As performing the optimal solution may take a long processing time, heuristic

algorithms can obtain reasonably good results in less computational time by taking advantage of

any problem specificity. However, unlike deterministic and approximation algorithms, heuristic-

based approaches do not provide any optimality guarantees.

Meta-heuristics are high-level heuristics that also try to obtain good solutions in a

reasonable time. For instance, Genetic Algorithm, Ant Colony Optimization, Particle Swarm

Optimization are meta-heuristics inspired by nature. Unlike a heuristic designed for a specific

problem, meta-heuristics are problem-independent techniques that explore the solution space

more thoroughly to hopefully escape from a local optimum (ABDEL-BASSET et al., 2018).

A local optimum is the best solution to a problem within a small neighborhood of possible

solutions, but worse than the (global) optimal solution.
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3.2 Classification of Service Placement Approaches

VM placement is a well-studied topic in Cloud Computing. Pires and Barán (2015),

Pietri and Sakellariou (2016), Masdari et al. (2016), Carvalho et al. (2018), and Filho et al.

(2018) published surveys on this topic over the past few years. However, service placement

approaches to conventional CC do not consider that an Edge Computing environment is more

distributed, heterogeneous, latency-sensitive, and resource-limited than a cloud environment..

Therefore, we are only interested in the placement approaches of multiple applications in EC.

Moreover, other problems such as computation offloading (MACH; BECVAR, 2017), content

caching (WANG et al., 2017b), and live VM migration (ZHANG et al., 2018) are beyond this

thesis scope. Still, these problems can be seen as complementary to the service placement one.

Based on the assignment types presented in the previous section, we identify two

main scenarios for service placement in EC: static placement and dynamic placement scenarios.

These two scenarios can be divided into sub-scenarios specifying whether or not they address

load distribution. Thus, in the next subsections, we discuss and compare service placement

approaches according to the following cases: (i) static placement without load distribution, (ii)

static placement with load distribution, (iii) dynamic placement without load distribution, and

(iv) dynamic placement with load distribution.

3.2.1 Static Placement without Load Distribution

In this scenario, placement approaches map each application onto some hosting node

while satisfying a set of constraints and optimizing objective metrics. However, the provided

mapping solution is fixed or does not change for a long time. Furthermore, placement approaches

in this scenario do not consider load distribution and, thus, each service is usually mapped to a

single node.

In (TÄRNEBERG et al., 2017), the authors discuss the placement of applications

in edge nodes to minimize the overall running cost. That is, the work aims to reduce the edge

resource consumption due to the assumption that the running cost is proportional to resource

usage. The authors present an iterative local search heuristic among neighboring solutions in a

search tree to find a near-optimal solution. A limitation of this work is the assumption of having

sufficient resources for all applications at the network edge. Moreover, it only considers the

network latency as an impact factor of application response time, neglecting other factors such
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as processing time.

In (SKARLAT et al., 2017b) and (SKARLAT et al., 2017a), the authors examine the

service placement in a hierarchical and distributed edge architecture to maximize the number

of applications placed on edge nodes rather than the cloud. These works also prioritize time-

sensitive applications to satisfy their response time deadline requirements. Moreover, the authors

design a decentralized control where each control node performs the application placement

decision among its child nodes in the hierarchical network infrastructure. The work (SKARLAT

et al., 2017a) extends (SKARLAT et al., 2017b) by including a GA to solve the optimization

problem. However, the proposed GA can generate infeasible solutions, which may degrade the

algorithm performance.

According to (SPINNEWYN et al., 2017), an EC environment is more susceptible

to unpredictable failures than the cloud. As a result, this characteristic significantly affects the

reliability of applications deployed in an EC environment. Therefore, the authors investigate

the placement of multi-component applications to optimize multi-objectives while satisfying the

application minimum availability requirement. This work applies a scalarization to transform a

multi-objective optimization into a single-objective problem. The formulated problem is then

solved using a GA or a heuristic based on subgraph isomorphism detection. Although this work

allows the deployment of multiple replicas for an application component, they are only seen as

backup entities in case of failure. Hence, there is no load distribution among these replicas.

3.2.2 Static Placement with Load Distribution

This scenario includes placement approaches where an application can be replicated

and deployed in different locations simultaneously. Moreover, it is possible to distribute the load

among the various application replicas. Therefore, a placement approach establishes where to

place each application replica and how to distribute the incoming load among these replicas.

However, established decisions are fixed in this scenario.

Zhao and Liu (2018) address service placement and load distribution problems in

MEC while targeting to minimize the average response time. The authors propose a heuristic

strategy that tries to select, for each application, hosting nodes with low average response time

among all users requesting this application. Nevertheless, the proposed solution does not take

into consideration the response time deadline requirement that is particularly important for

latency-sensitive applications.
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In (GU et al., 2017), the authors also investigate both service placement and load dis-

tribution problems in MEC. Gu et al. (2017) formulate the optimization problem to minimize an

overall cost while satisfying the maximum tolerable delay of time-sensitive medical applications.

However, the authors only examine the application deployment in base stations of a cellular

network, ignoring other possible locations such as the core network and cloud data centers. In

addition, the work assumes that there are sufficient resources in the base stations to deploy all

applications while satisfying the delay requirement.

Yang et al. (2016) present a study for joint optimization of service placement and load

distribution problems in a static scenario. The authors design a two-step heuristic to minimize the

average response time of all application requests while satisfying the nodes capacity constraints.

First, the heuristic relaxes the problem by disregarding the node capacity constraint and solves

the relaxed problem using a linear programming solver. Then, a greedy strategy tries to obtain

a feasible solution for the original problem from the optimal solution of the relaxed problem.

A drawback of this work is the assumption that applications are homogeneous, as all requests

consume the same amount of resources to be processed.

In (KATSALIS et al., 2016), the authors investigate VM scheduling and placement

decision in MEC to (i) maximize infrastructure provider revenue, (ii) minimize SLA violations,

and (iii) ensure fairness in resource allocation among service providers. Even though the work

investigates SLA violation in terms of response time, it considers the processing time responsible

only for the response delay, neglecting the network delay. Furthermore, the work applies a

weighted sum scalarization to transform the multi-objective problem into a single-objective one.

Unfortunately, setting weights for each objective is not an easy task for a decision-maker.

3.2.3 Dynamic Placement without Load Distribution

A simple way to dynamically place services is to periodically reassess the placement

decision through a static approach. However, this strategy does not consider the cost of a service

migration operation. Hence, in this scenario, we only discuss dynamic assignment works that

address the trade-off between costs and benefits of service migrations. Nevertheless, this scenario

does not take into account load distribution.

Tärneberg et al. (2017) extend its static service placement by considering that

applications demand may vary over time due to mobile users, leading to application migrations.

In order to avoid network overload due to frequent application migrations, the authors add a
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penality/barrier to changing the current placement decision in the optimization formulation.

However, it is not easy to define the best penalty parameter values in a heterogeneous EC

environment.

In (WANG et al., 2017a), the authors aim to minimize the costs of place services

that arrive and leave the system over time. Two cost types are examined: local cost related to

the system performance at a specific time and service migration cost. Furthermore, the work

proposes two solutions to the formulated problem. The first solution assumes that the arrival

and departure time for all services are known, and it uses a look-ahead procedure to optimized

predicted costs periodically. In contrast, the second solution only defines a service place when it

arrives, but without changing the location of services already deployed. However, this work does

not consider that a system may have constraints (e.g., resource capacity) that invalidate some

placement options.

Most works in this scenario adopt the Follow-me Cloud/Edge approach to handle

dynamic loads caused by user mobility. In this approach, each user is associated with a dedicated

application to execute its offloaded tasks. Moreover, an application may be migrated to another

node to follow user mobility and maintain satisfactory service performance. For instance, Sun and

Ansari (2020) use this approach to minimize the non-green energy consumption while ensuring

end-to-end latency below a predefined requirement. Nevertheless, frequent migrations may in-

crease service interruption and resource consumption. To address this issue, the work (OUYANG

et al., 2018) applies a Lyapunov optimization to minimize time-average service latency under

a long-term migration cost budget. Ouyang et al. (2018) also propose a decentralized scheme

based on a non-cooperative congestion game to increase solution scalability. In (GAO et al.,

2019), the authors aim to minimize user delay comprising access queueing, communication, and

migration delays. They then design a heuristic algorithm with approximation guarantees that

only redistributes applications if the total non-migration delay of all users significantly exceeds

the total migration delay. Authors in (YU et al., 2019) adopt mobility prediction to pre-migrate

applications, and thus, avoiding the impact of migration delay in future user-perceived service

latency. However, a Follow-me Cloud/Edge approach usually ignores that several users may

request the same application, and multiple replicas of this application can be in the system.
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3.2.4 Dynamic Placement with Load Distribution

This scenario deals with service placement, service migration, and load distribution

in a dynamic EC system. The diverse decision factors make this a very challenging scenario to

be addressed.

Besides the static service placement, Yang et al. (2016) also examine dynamic service

placement. In this dynamic case, the authors take user mobility and access patterns to predict

future load. Then, a greedy algorithm jointly solves the service placement and load distribution

problems to minimize request latency, resource consumption, and migration cost within a look-

ahead prediction window. However, the proposed prediction model has low accuracy with a

non-short time window, affecting requests latency.

In (URGAONKAR et al., 2015), the authors jointly model service placement, service

migration, and load distribution problems as a Markov Decision Process to optimize transmission

and migration costs while providing maximum delay guarantees. Due to the computational

complexity, the work relaxed and decoupled the problem into independent sub-problems that

are solved periodically using heuristics based on the Lyapunov optimization technique (NEELY,

2010). However, this relaxation replaces the maximum delay constraints by queue stability

constraints, which only provides worst-case delay guarantees.

Authors in (YU et al., 2017) study dynamic Virtual Machine placement and request

distribution to minimize network traffic from requests data and VMs migration. They propose a

heuristic algorithm that prioritizes the placement of VMs for serving the most critical request

flows, which are flows with higher bandwidth requirements or with a larger number of requests.

Following the critical order, it searches available nearby nodes to place the VMs of each flow.

A shortcoming of this work is that the prioritization based only on bandwidth may affect the

performance of applications that have other requirements as critical, such as time-sensitive

applications.

The work in (FARHADI et al., 2019) addresses service placement and request

scheduling for data-intensive applications to maximize the expected number of served requests,

but decisions for these problems are separated in different time scales. Service placement happens

on a larger scale to prevent system instability, while requests are scheduled on a smaller scale to

support real-time services. It also imposes a budget constraint to control service migration costs.

Furthermore, the authors present an extended formulation that optimizes the service placement

problem across a predicted time window. However, they do not take into account that requests



63

may have QoS requirements (e.g., maximum response time) to be served.

3.2.5 Discussion

According to the presented taxonomy in Section 3.1, Tables 5 and 6 categorize the

surveyed works on static and dynamic service placement in Edge Computing, respectively. Based

on the provided tables, this subsection discusses and identifies some research gaps that we intend

to address in this thesis.

A differential aspect of Edge Computing over Cloud Computing is the inclusion

of time-sensitive applications. In general, those applications have a QoS requirement related

to the maximum delay (deadline) of accessing an application. However, some works, such as

(TÄRNEBERG et al., 2017), (ZHAO; LIU, 2018), (URGAONKAR et al., 2015) and (FARHADI

et al., 2019), disregard this requirement entirely, or they do not tackle the impact of the network,

processing, and migration delays on its assurance. Another identified limitation is the formulation

of hard constraints for this delay requirement by assuming that it is always possible to satisfy it

for all applications. In a practical scenario, some applications are deployed in a remote cloud data

center due to resource constraints on the edge layer, which may lead in some cases to violations

of the deadline requirement.

Regarding the optimization objective, most surveyed studies only have a single

objective. However, a single objective does not capture the diversity of goals and performance

metrics of different entities involved in the service placement problem. Moreover, many multi-

objective works transform the problem into a single-objective problem through some scalarization

method. Nevertheless, these methods require a global order of preference among the objectives,

which can be quite hard or even impossible to exist. Thus, the challenge is to develop methods

that directly address the optimization of multiple and conflicting objectives.

An application characteristic that lacks more exploration in the service placement

literature is the scalability support. This characteristic can play a crucial role in adapting

applications to a distributed, heterogeneous, and dynamic EC environment. In addition, different

applications may have distinct degrees of scalability, including not supporting it. However, few

works deal with different scalability degrees for heterogeneous applications.

A consequence of scalable applications is the possibility of load distribution to

improve performance. As service placement and load distribution decisions can affect each other,

a robust decision process may require a joint optimization of these two decisions. Although static
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assignment approaches, such as those in Table 5, can give us insights about some peculiarities

of service placement problem in EC, disregarding dynamic aspects of the system (e.g., service

migration and user mobility) may lead to undesired poor performance. Hence, a dynamic

approach is more suited for a real system than a static one, but it is the most challenging to

design. Consequently, only a few studies address service placement, service migration, and load

distribution in an EC environment at the same time.

In a dynamic placement, proactive behavior may be helpful or even required to

prevent the system from reaching undesired states, especially for applications with critical and

strict requirements. For instance, Yu et al. (2019) and Yang et al. (2016) try to predict user

mobility in their proactive and dynamic placement. However, in Table 6, none of the related

work on dynamic placement with load distribution addresses the impact of its decisions on the

performance (e.g., response time) of time-sensitive applications. Thus, the challenge is to design

dynamic and proactive approaches to the service placement problem.

A common point in most related works is the decision process being performed in a

centralized way. However, a centralized decision process may suffer scalability issues, which

can be a bottleneck in a vastly distributed environment. On the other hand, a decentralized

decision is highly scalable, but it may produce more inferior solutions than those obtained by a

centralized process due to a lack of a global system view. Hence, another challenge is to design

a non-centralized control with results close to those achieved by a central controller.
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3.3 Summary

This chapter investigated and classified existing works related to service placement

problem in Edge Computing based on a presented taxonomy. The investigation identified some

gaps found in these works, which are summarized as follows:

– Current works neglect the maximum delay requirement of time-sensitive applications, do

not consider different aspects that impact this requirement satisfaction (e.g., communica-

tion and processing delays), or assume there is enough resource in the edge layer to deploy

all applications;

– Most service placement approaches optimize a mono objective or transform multiple objec-

tives into a single one, and thus, a multi-objective optimization lacks further investigation;

– The application scalability property needs to be further examined when jointly optimizing

service placement and load distribution;

– Few works handle service placement, service migration, and load distribution proactively

in a dynamic system. Moreover, none of them address the impact of their decisions on the

performance of time-sensitive applications; and

– The vast majority of the service placement approaches have centralized control decisions

that may experience scalability issues in a large EC environment.

The next chapter presents a static service placement with load distribution addressing

the first three identified gaps. The next-to-last and last gaps are covered in Chapters 5 and 6,

respectively.
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4 A STATIC APPROACH FOR SERVICE PLACEMENT WITH LOAD DISTRIBU-

TION

In this chapter, we are interested in the service placement and load distribution

decisions in a static Edge Computing (EC) scenario. In this static scenario, all information

required in the decision-making process is provided in advance and does not change over time.

We address these decisions as an optimization problem that considers the EC infrastructure con-

straints and different application characteristics (response deadline, resource demand, scalability,

and availability). Moreover, the formulated problem aims to reduce Service Level Agreement

(SLA) violations in terms of application response deadlines and, at the same time, optimize other

conflicting performance-related objectives (e.g., operational cost and service availability). The

main contributions of this chapter are the following:

– We present a system model where multiple replicas of an application can be placed in

different parts of the EC infrastructure to distribute requests (load) among these replicas.

– We jointly formulate the service placement and load distribution as a single-objective

optimization problem to minimize the potential occurrence of SLA violations. We also

apply linear and relaxation transformations into the formulated problem to solve it using a

linear solver.

– The single-objective problem is extended to include multiple conflicting objectives. In

addition, the formulated multi-objective problem allows the prioritizing of metrics related

to time-sensitive applications.

– We propose a Genetic Algorithm (GA) to solve the formulated single and multi-objective

problems. The proposed algorithm combines BRKGA and NSGA-II with specific evolu-

tionary operations for the addressed problem in this chapter.

The remainder of the chapter is organized as follows. Section 4.1 presents the EC

system model. We formally formulate the service placement and load distribution problem in

Section 4.2. In Section 4.3, we describe our proposed GA to solve the formulated optimization

problem. Then, Section 4.4 analyses the performance of our proposal. Finally, Section 4.5

concludes this chapter.

4.1 System Model

Our Edge Computing system model consists of an Infrastructure Provider (InP),

various Application Service Providers (ASPs), and end-user devices. The InP owns and main-
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tains the EC infrastructure containing EC nodes geographically distributed between end-user

devices and a remote cloud data center. These EC nodes can provide diverse resources (e.g.,

processing, memory, storage, and networking resources) to host and operate applications through

virtualization technologies, such as VM or container. Moreover, some nodes also act as network

routers and (wireless) access points.

An ASP offers applications to end-user devices by renting on-demand resources

from the InP to deploy and operate its application on EC nodes. However, ASPs do not directly

determine where to place their applications. Usually, an ASP only signs a SLA defining the

Quality of Service (QoS) requirements to be fulfilled by the InP. In this way, the InP is responsible

for selecting the places to deploy applications based on the requirements specified by each ASP.

End-user devices are connected directly with access point nodes over wired or

wireless links. Over time, devices send requests or tasks to be processed by an application. A

device request is routed among the nodes up to a target node hosting the required application. As

an application can be deployed in multiple nodes in our system model, the target node is selected

based on a load distribution decision. In the target node, the application then puts the arrived

request in a waiting queue for processing. Finally, after completing the request processing, the

resulted response is sent back to the device.

Figure 13 illustrates our system model in a cellular network scenario with Edge

Computing capabilities (e.g., a 5G network). In this scenario, applications can be hosted on

nodes located on the Radio Access Network (RAN), Core Network, and Cloud Computing

regions. If an application runs on a Base Station (BS) in the RAN region, then a request may

be routed among neighboring Base Stations (BSs) to reduce traffic at the core and decrease

transmission delays. However, not all applications can be deployed to BSs because of the limited

computing resources in this region. Therefore, some applications are hosted in the core or the

cloud while carrying about not violating some placement constraints.

In the remainder of this section, we further detail the main features of the infrastruc-

ture, application, and user models. Moreover, Table 7 summarizes the main notations used in

this chapter.

4.1.1 Infrastructure Model

The EC infrastructure is modeled as an undirected and connected graph G = (V ,E ),

where the vertices V are EC nodes and the edges E are network links between the nodes. We



70

Figure 13 – Proposed Edge Computing system for 5G networks

Source: Author.

assume all vertices are accessible by any other vertex in the graph through multiple hops. In

addition, end-user devices and their connections are not represented in G. Figure 14 illustrates

the EC infrastructure presented in Figure 13 as an undirected and connected graph.

Figure 14 – Example of an EC infrastructure represented as a graph

Source: Author.

A link l = (m,n) ∈ E corresponds to a (physical or virtual) network connection

between nodes m and n, and it has the following attribute:

– Transmission Delay Dnet
a,l is the average amount of time it takes for a request for an

application a to be transmitted in the network link l.

In the proposed system model, we can specify different types of resources, where R

is the set of considered resources. For instance, the set R = {CPU,RAM,DISK} is made up of
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Table 7 – Main notations of the static service placement problem
Symbol Description

System Model

V ,E ,R,A ,U Set of nodes, links, resource types, applications, and users, respectively

Dnet
a,l Network delay for application (app) a in a link l

Ncap
n,r Total capacity of resource r on node n

Ncost
n (λ ) Resource allocation cost on node n for an app with workload λ

Navail
n Availability probability of node n

Ard
a Response deadline of app a

Amax
a Maximum number of replicas for app a

Ar
a(λ ) Demand of resource r for a replica of app a with workload λ

Awork
a CPU work size of a request for app a

Areq
a Request generation rate for app a

Aavail
a Availability probability of app a

Ua,n Set of users connected to node n requesting application a

Ua Set of all users requesting application a in the entire system

Problem Formulation

Fa,m,n Set of requests from users attached to node m to an instance of app a hosted on node n

Qa,m Number of requests for app a generated from users attached to node m

Qa Total number of requests for app a in the system

λa,n Request arrival rate of app a on node n

µa,n Service rate of app a on node n

x = (ρ,γ,δ ) Decision variables

ρa,n Whether node n hosts an instance of app a or not

γa,m,n Whether request flow Fa,m,n exists or not

δa,m,n Number of requests in the flow Fa,m,n

Ar
a,1,A

r
a,2 Constants of a linear resource demand function Ar

a(·)

Source: Author.

processing (CPU), Random-Access Memory (RAM) and disk storage resources (DISK). RAM

and disk storage are measured in bytes, while CPU can be measured in Instructions Per Second

(IPS).

In graph G, a node or vertex can represent a (mini) data center, a (wireless) access

point, a network router, or all of them at the same time if they are co-located in a physical

site. We also include cloud data centers as a single cloud node in the graph, i.e., {cloud} ⊂ V .

Furthermore, each node n ∈ V has the following parameters:

– Resource Capacity Ncap
n,r is a number describing the total capacity of resource r ∈R on
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node n.

– Usage Cost Ncost
n (λ ) is a function specifying the (monetary) cost of allocating resources

for an application with a workload λ ≥ 0 on the node. We define the workload λa,n as the

(average) arrival rate of requests for application a in node n.

– Availability Navail
n is the probability that the node n will not fail.

We assume that the cloud node has an unlimited capacity for all resources (i.e.,

Ncap
cloud,r = ∞,∀r ∈R) due to the capacity difference between the cloud and a mini data center

close to the users.

4.1.2 Application Model

Let A be the set of all different applications to be placed over the EC infrastructure.

We consider that one or more instances of these applications can be deployed within the system,

but these instances or replicas are independent of each other. In this way, an application instance

is designed to be self-contained and deployed as a single piece, such as a VM or container.

This application design was assumed to avoid additional delays in handling requests when

placing the necessary components for the request processing in different locations. Moreover, the

self-contained design follows the IoT architecture and operational pattern shown in Section 2.1.

Figures 15a and 15b exemplify an application composed of three functional com-

ponents designed as single or multiple pieces, respectively. In Figure 15a, user requests only

need to be dispatched to a node hosting the requested application to be processed. Meanwhile,

requests pass throughout three different nodes hosting the necessary application components to

be processed entirely in Figure 15b, resulting in additional network delays for response time

compared to the single-piece design in Figure 15a.

An application a ∈A has the following attributes:

– Response Deadline Ard
a is a number specifying the maximum time (i.e., deadline) allowed

for responding a request for application a.

– Maximum Number of Replicas Amax
a describes how application a scales horizontally.

For example, it can be set to Amax
a = 1, if the service does not allow replicas or Amax

a = ∞

if the maximum number of instances is undefined. Moreover, a node can only host one

instance of each application.

– Resource Demand Ar
a(λ ) denotes how an application scales vertically. In other words, it

is a non-decreasing function specifying the (average) amount of resources r ∈R required
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Figure 15 – Different application designs

(a) Application designed as a single piece

(b) Application designed as multiple pieces

Source: Author.

by a replica of application a with a workload λ . That is, if λ > λ ′, then Ar
a(λ )≥ Ar

a(λ
′).

For instance, we can define a constant function if the vertical scaling is not supported or

an increasing linear function if the amount of resources required is proportional to the

workload.

– CPU Work Size Awork
a is a value indicating the (average) amount of processing required to

get a response to a request for application a. It is measured by the number of instructions

or clock cycles required to process a request.

– Request Rate Areq
a is the average request generation rate of an end-user device requesting

application a. As common of IoT applications (METZGER et al., 2019), it follows a

Poisson distribution.

– Availability Aavail
a denotes the probability that an application replica is working without

internal failure.

4.1.3 User Model

Let U bet the set of all end-user devices (or simply called users) in the system and,

then, a user u ∈U has the following properties:

– Requested Application Uapp
u ∈A specifies the application requested by the user. For the

sake of simplicity, we assume that each user sends requests for only one application.

– Attached Node Unode
u ∈ V denotes the node acting as an access point where user u is

connected to send its requests. In the static approach, the user is fixed and always attached

to this node.
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Then, we define Ua,n as the set of all users connected to node n requesting application

a, and Ua is the set of all users requesting application a in the system.

4.2 Problem Statement and Formulation

In a practical scenario, it is not possible to place all applications on the edge of

the network given the resource limitations of EC nodes in this region. Consequently, some

applications are deployed further (i.e., in the core network or the cloud) from their users. This

considerable distance between node and user may result in the response time of a request to

exceed the deadline specified by some applications. Moreover, an overloaded node also increases

response time, thus distributing the load among application replicas may mitigate this issue.

Hence, both service placement and load distribution decisions may result in violations of the

response deadline requirement, which is an important metric to be minimized for time-sensitive

applications in an Edge Computings environment.

Infrastructure Provider and Application Service Providers often have many other

performance metrics to optimize instead of just a single one. However, those multiple metrics

are, in general, contradicting each other. For instance, an ASP wants to decrease response time

while reducing the monetary cost of allocating resources to its application. On the other hand,

decreasing costs implies using cheaper cloud resources and, thus, increasing response time due

to the distance between end-user devices and a remote cloud data center.

Given the above context, we formulate the joint problem of service placement and

load distribution to minimize deadline violation as a single objective, and multiple objectives

in this section. In this chapter, we are only interested in the static, or offline, approach of the

problem where applications and users do not move for a long time.

The remaining of this section is organized as follows. First, Subsection 4.2.1 presents

an estimation of the response time of a request. Then, Subsection 4.2.2 specifies the variables

and constraints of the problem. Subsection 4.2.3 presents a nonlinear and linear formulation of

the single-objective case. Finally, Subsection 4.2.4 formulates the multi-objective case.

4.2.1 Response Time Estimation

As requests can be distributed among multiple replicas of an application, we define a

request flow of an application as follows:
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Definition 4.1 (Static Request Flow) A request flow Fa,m,n is the set of requests for application

a ∈A generated by users attached to node m ∈ V (source node) and handled by a replica of a

placed on node n ∈ V (target node).

In this way, we are interested in estimating the response time of requests in each

existing request flow, i.e., |Fa,m,n| > 0. Thus, Equation (4.1) specifies the average response

time da,m,n of a request flow Fa,m,n, where dnet
a,m,n is the average time to send requests to a from

users in m to node n and dproc
a,n is the average processing time of requests on n. We estimate both

network and processing delays in the remainder of this subsection.

da,m,n = dnet
a,m,n +dproc

a,n (4.1)

4.2.1.1 Network Delay

The network delay of a request includes: (i) the communication delay between the

requesting end-user device and the node to which it is attached, and (ii) the transmission delay

from this latter node to a node hosting the application following a multi-hop routing path. It is

important to note that a node where a user is attached to it can also host the application processing

the user requests and, thus, the transmission delay of the second part is zero. Moreover, as

different locations to place an application in the infrastructure do not affect the communication

delay between devices and their attached nodes (ZHAO; LIU, 2018), we do not consider this

delay in the network delay estimation and, thus, in the placement decision process. Then, we

estimate the average network delay of a request flow Fa,m,n as:

dnet
a,m,n =

0 if m = n

∑l∈Pm,n Dnet
a,l otherwise

(4.2)

where Pm,n is the set of links in a routing path from m to n. This set can be predeter-

mined by some shortest routing path algorithm, such as the Floyd–Warshall algorithm (FLOYD,

1962; WARSHALL, 1962). Therefore, we assume that dnet
a,m,n is a constant value calculated

before starting the service placement decision process.

4.2.1.2 Processing Delay

For an application replica placed on a node, we model its request processing as

an M/M/1 queueing model (SHORTLE et al., 2018). Hence, this queuing model helps us to
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determine the processing delay of each application replica when distributing user-generated

requests among these replicas.

As specified in our system model in Section 4.1, users continuously generate requests

for an application a according to a homogeneous Poisson process with ratio Areq
a . Then, we

define the request arrival rate λa,n for the application a running on node n as the sum of

all requests arriving at this node. Equation (4.3) expresses this request arrival rate, where

δa,m,n = |Fa,m,n| ∈ [0,Qa,m] is an integer variable indicating the size of request flow Fa,m,n

(i.e., number of requests in the flow), Qa,m =
⌈
|Ua,m|Areq

a
⌉

is the total number of requests for

application a generated by users attached to node m, and |Ua,m| is the cardinality of set Ua,m.

λa,n = ∑
m∈V

δa,m,n (4.3)

Service times have an exponential distribution with rate parameter µ , where 1/µ is

the average service time in an M/M/1 queue. Thus, we express 1/µa,n as the time to perform a

request with CPU work Awork
a in a replica of application a in node n as:

1
µa,n

=
Awork

a
ACPU

a (λa,n)
(4.4)

where ACPU
a (λa,n) is the amount CPU resources allocated for the application replica

having request arrival rate λa,n.

Finally, Equation (4.5) gives the average processing time of requests for application

a running on node n according to the M/M/1 queueing model.

dproc
a,n =

1
µa,n−λa,n

(4.5)

4.2.2 Problem Variables and Constraints

In order to jointly formulate the service placement and load distribution problems,

we define x = (ρ,δ ,γ) as a triple of problem variables. We describe these variables as follows:

1. Application Placement ρ = {ρa,n | a ∈A and n ∈ V } is a set of binary variables, where

ρa,n ∈ {0,1} indicates whether a replica of an application a is placed on a node n or not.

2. Load Distribution δ = {δa,m,n | a ∈A and m,n ∈ V } is a set of variables related to how

requests are distributed, where δa,m,n ∈ Z+ is the size of request flow Fa,m,n.
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3. Request Flow Existence γ = {γa,m,n | a ∈A and m,n ∈ V } is an auxiliary set of binary

variables, where γa,m,n ∈ {0,1} specifies whether or not a request flow Fa,m,n exists

between nodes m and n for an application a. This auxiliary set of variables will help us to

linearize the formulated problem in Section 4.2.3.1.

A solution to the studied problem sets values for the above variables. Furthermore, a

solution is feasible only if all the following constraints are met:

1. Number of Replicas. A node can only host a single replica of a given application.

Moreover, the number of instances deployed in the system must respect the limits defined

by the applications (i.e., Amax
a ), and all of them need to be placed.

1≤ ∑
n∈V

ρa,n ≤ Amax
a ∀a ∈A (4.6)

2. Request Flow Existence. A request flow Fa,m,n only exists if a replica of application a is

placed on node n and there are users attached to m requesting a.

γa,m,n ≤ ρa,nQa,m ∀a ∈A ,∀m,n ∈ V (4.7)

3. Request Flow Size. If a flow Fa,m,n exists, its size must be at least one and at most equal

to Qa,m, the total number of requests generated by all users of application a connected to

node m.

γa,m,n ≤ δa,m,n ≤ γa,m,nQa,m ∀a ∈A ,∀m,n ∈ V (4.8)

4. Load Conservation. The aggregate size of all request flows for application a from

the same source node m is equal to the total number of requests generated by users of

application a connected to this node m. In other words, all requests must be distributed to

some nodes.

∑
n∈V

δa,m,n = Qa,m ∀a ∈A ,∀m ∈ V (4.9)

5. Node Capacity. The total amount of resources demanded by applications placed on a

node should not exceed its capacity.

∑
a∈A

ρa,nAr
a(λa,n)≤ Ncap

n,r ∀r ∈R,∀n ∈ V (4.10)

6. Queue Stability. An M/M/1 queue is stable only if the average service rate is larger than

its average arrival rate. This stability needs to be guaranteed for each application placed

on a node.

λa,n < µa,n ∀a,n(ρa,n = 1) ,a ∈A ,n ∈ V (4.11)
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Figure 16 illustrates the defined variables x = (ρ,δ ,γ) in a scenario with four nodes

and one application. In this figure, application 1 is placed on nodes 2 and 3. Then, ρ1,2 = ρ1,3 = 1

and ρ1,1 = ρ1,4 = 0. The five requests for application 1 generated by users attached to node 1,

i.e., Q1,1 = 5 , are only distributed to nodes hosting this application. Specifically, nodes 2 and 3

receive 3 and 2 requests, respectively. Thus, δ1,1,2 = 3 and δ1,1,3 = 2, whereas δ1,1,1 = δ1,1,4 = 0.

As a request flow only exists if the target node receives at least one request from the source node,

then γ1,1,2 = γ1,1,3 = 1 and γ1,1,1 = γ1,1,4 = 0.

Figure 16 – Example of the variables of the static service placement with load
distribution problem.

Source: Author.

4.2.3 Single-Objective Formulation

For the service placement problem with a single objective, our goal is to minimize

the deadline violation of the system, which we define for the static service placement approach

as the highest violation among all request flows in the system. We use this violation definition

because we can linearize it late in this subsection. Then, we specify the deadline violation

of an existing request flow Fa,m,n as the positive part of the difference between its average

response time da,m,n and the application response deadline Ard
a , i.e., max

(
0, γa,m,nda,m,n−Ard

a
)
.

Equation (4.12) expresses this objective function, where [z]+ = max(0, z) is the positive part of
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a real number z.

fdv(x) = max
x

{[
γa,m,nda,m,n−Ard

a
]+}

x = (ρ,δ ,γ)

(4.12)

Then, the static service placement problem as a single-objective optimization prob-

lem is formulated as:

min fdv(x)

s.t. x = (ρ,δ ,γ)

Equations (4.6) to (4.11)

(4.13)

4.2.3.1 Linearization and Relaxation

The optimization problem (4.13) is a Integer Nonlinear Programming (INLP) prob-

lem because constraints (4.10) and (4.11) and the objective function (4.12) are nonlinear. INLP

is usually difficult to solve due to its high computational complexity (BURER; LETCHFORD,

2012). One way to reduce this complexity is to apply linearization and relaxation techniques.

Therefore, we transform the problem (4.13) into a Mixed-Integer Linear Programming (MILP)

problem as follows.

4.2.3.1.1 Node Capacity Constraint

For an application a, its resource demand function Ar
a(λ ) may be nonlinear for a

specific resource type r ∈R. In this case, the function Ar
a(λ ) can be replaced by an over linear

estimator Ār
a(λ ) in the domain interval [0,Qa], as shown in Equation (4.14), where Ar

a,1, Ar
a,2 are

constants, and Qa is equal to ∑n∈V Qa,n.

Ār
a(λ ) = Ar

a,1λ +Ar
a,2 (4.14)

Given that requests only arrive at nodes running the requested application according

to Equations (4.3), (4.7) and (4.8), we have:

ρa,nλa,n = λa,n (4.15)

By applying Equations (4.14) and (4.15) to Equation (4.10), the node capacity

constraint can be rewritten as:

∑
a∈A

(
λa,nAr

a,1 +ρa,nAr
a,2
)
≤ Ncap

n,r ∀r ∈R,∀n ∈ V (4.16)
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4.2.3.1.2 Queue Stability Constraint

In order to have a linear queue stability constraint, we apply Equations (4.4)

and (4.14) to constraint (4.11) and obtain:

λa,n

(
ACPU

a,1 −Awork
a

)
+ACPU

a,2 > 0 ∀a,n(ρa,n = 1) ,a ∈A ,n ∈ V (4.17)

However, it must remove the strictness of the above inequality to obtain a standard

form of a MILP problem. For this, it is added a small constant Θ ∈ (0,1]. Furthermore, both

sides of the inequality are multiplied by ρa,n to ensure the queue existence constraint. Then, we

further have:

ρa,nλa,n

(
ACPU

a,1 −Awork
a

)
+ρa,nACPU

a,2 ≥ ρa,nΘ ∀a ∈A ,∀n ∈ V (4.18)

Finally, applying Equation (4.15) to the above result, we obtain the following linear

queue stability constraint:

λa,n

(
ACPU

a,1 −Awork
a

)
+ρa,nACPU

a,2 ≥ ρa,nΘ ∀a ∈A ,∀n ∈ V (4.19)

4.2.3.1.3 Objective Function

Problem (4.13) has a minmax f (x) objective, which is nonlinear because max func-

tion is nonlinear. This type of problem can be transformed into one without max function by

replacing minmax f (x) for minz, where z is a new variable, and adding a new constraint relating

this variable to f (x) (i.e., f (x) ≤ z). In this way, the objective is linear, but it is necessary to

check the linearity of the new constraint. Based on this transformation, we can add the following

constraint in the problem:

γa,m,nda,m,n−Ard
a ≤ ε ∀a ∈A ,∀m,n ∈ V (4.20)

where ε ≥ 0 is a new variable indicating the system deadline violation that we

want to minimize. Moreover, given Equations (4.1), (4.2), (4.4), (4.5) and (4.14), we rewrite

constraint (4.20) as:(
γa,m,nλa,ndnet

a,m,n− ελa,n−λa,nArd
a

)(
ACPU

a,1 −Awork
a

)
+ γa,m,n

(
ACPU

a,2 dnet
a,m,n +Awork

a

)
−ACPU

a,2

(
Ard

a + ε

)
≤ 0

∀a ∈ A ,∀m,n ∈ V (4.21)
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However, in constraint (4.21), both γa,m,nλa,n and ελa,n are bilinear terms (i.e.,

multiplication of two variables). We can relax these terms to obtain linear ones using McCormick

envelopes (MCCORMICK, 1976). That is, we replace these bilinear terms with new variables

(ϕa,m,n = γa,m,nλa,n and ψa,n = ελa,n) and add the following new linear constraints in the problem:

0≤ γa,m,n ≤ 1 and 0≤ λa,n ≤ Qa and 0≤ ε ≤ E ∀a ∈A ,∀m,n ∈ V (4.22a)

0≤ ϕa,m,n ≤ λa,n ∀a ∈A ,∀m,n ∈ V (4.22b)

Qa (γa,m,n−1)+λa,n ≤ ϕa,m,n ≤ Qaγa,m,n ∀a ∈A ,∀m,n ∈ V (4.22c)

0≤ ψa,n ≤ λa,nE and εQa +λa,nE−EQa ≤ ψa,n ≤ εQa ∀a ∈A ,∀m,n ∈ V (4.22d)

where E is a constant specifying the maximum deadline violation allowed. Then, we

can rewrite Constraint (4.21) with the two new variables to have a linear constraint:(
ϕa,m,ndnet

a,m,n−ψa,n−λa,nArd
a

)(
ACPU

a,1 −Awork
a

)
+ γa,m,n

(
ACPU

a,2 dnet
a,m,n +Awork

a

)
−ACPU

a,2

(
Ard

a + ε

)
≤ 0

∀a ∈ A ,∀m,n ∈ V (4.23)

4.2.3.1.4 Linear Formulation

Let ϕ = {ϕa,m,n | a ∈ A and m,n ∈ V }, ψ = {ψa,n | a ∈ A and n ∈ V }, and x =

(ρ,γ,δ ,ε,ϕ,ψ). Then, we use the above linearizations and relaxations to formulate the MILP

problem of the static service placement problem with a single objective as follows:

min
x

ε

s.t. x = (ρ,δ ,γ,ε,ϕ,ψ)

Equations (4.6) to (4.9), (4.16), (4.19), (4.22) and (4.23)

(4.24)

It is important to note that a solution to Problem (4.24) is also feasible for Prob-

lem (4.13), but it may present a higher objective value ε when applied to the original problem

due to the bilinear relaxation.

4.2.4 Multi-Objective Formulation

Based on the single objective optimization problem (4.13) and given F =( f1, f2, . . . , fM)

as a list of M performance-related functions, the multi-objective optimization problem for the
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static approach is formulated as:

min F(x) = ( f1(x), f2(x), . . . , fM(x))

s.t. x = (ρ,δ ,γ)

Equations (4.6) to (4.11)

(4.25)

According to the InP or ASPs wishes, different objectives can be optimized. Some

non-exhaustive performance-related functions are listed below:

– Deadline Violation fdv. The violation level of the system defined in Equation (4.12) is a

relevant metric to minimize for latency-sensitive applications.

– Operational Cost fcost. Deploying applications on the system is not a free operation.

Indeed, there is a cost charged, possibly monetary, to ASPs for the resources used by their

applications according to the pay-as-you-go pricing model. For this reason, a provider aims

to reduce the cost of running a product. Given Ncost
n (·) as the allocation cost function on a

node n described in Section 4.1, then the total operational cost for an application is simply

the sum of costs on each node hosting an application replica, i.e., ∑n∈V ρa,nNcost
n (λa,n).

Considering all applications, a performance metric to minimize is the overall operational

cost, which is defined as:

fcost(x) = ∑
a∈A

∑
n∈V

ρa,nNcost
n (λa,n)

x = (ρ,δ ,γ)

(4.26)

– Unavailability ffail. ASPs also want high availability for their applications. An application

becomes unavailable when all of its replicas become unavailable. A replica is unavailable

when there is a failure in the node hosting it, or an internal failure occurs in its software.

In other words, a replica is available if there is no hardware and software failure. We

formulate this unavailability of an application as ∏n∈V
(
1−ρa,nNavail

n Aavail
a
)
, where Navail

n

and Aavail
a are the availability probability of node n and application a respectively. In this

way, maximizing the average availability or minimizing the average unavailability across

all applications is a metric to be optimized, which we formally specify as follows:

ffail(x) =
1
|A | ∑

a∈A
∏
n∈V

(
1−ρa,nNavail

n Aavail
a

)
x = (ρ,δ ,γ)

(4.27)

Unlike single-objective optimization problems that may have a unique optimal

solution, in multi-objective optimization problems, conflicts among objectives usually prevent
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from having a single optimal solution that can optimize all objectives simultaneously. In this

way, improvement of one objective may lead to deterioration of another. For instance, reducing

unavailability or increasing availability of applications means raising costs by placing more

replicas. On the other hand, decreasing costs implies using more cloud resources as they are

generally cheaper than edge resources and, thus, increasing the deadline violation. Therefore, it

is necessary to search for a set of best optimal compromise solutions by considering trade-offs

among the conflicting objectives.

In the case where there is no preference among the objective functions, we can use

the Pareto dominance operator, defined in Section 2.3.1, to obtain the set of optimal solutions

for a multi-objective problem. However, for the optimization problem (4.25), it is important to

improve the performance of time-sensitive applications, which can be considered a preference

information. Moreover, we assume that a decision maker either does not have a preference

order for other objectives or has difficulties obtaining it. Motivated by this fact, we propose the

following modification of Pareto dominance:

Definition 4.2 (Preferred Dominance) Let f1 be the highest priority function to be optimized

among the list of objective functions F = ( f1, f2, . . . , fM). A feasible solution x1 dominates

another solution x2, expressed as x1 ≺1 x2, when

x1 ≺1 x2 iff f1(x1)< f1(x2)

or ( f1(x1) = f1(x2) and x1 ≺ x2)

In other words, the dominance operator ≺1 prioritizes a selected function f1 and,

then, it is sufficient that a solution x1 has a smaller value than another solution x2 in f1 in order

for x1 dominates x2. Otherwise, if they have equal values for f1, then the traditional Pareto

dominance operator ≺ is used instead. Therefore, we can select a performance-related function

to time-sensitive applications as a priority goal. For instance, we can set the deadline violation in

Equation (4.12) as the primary objective to be optimized, i.e., f1 = fdv.

4.3 A Genetic-Based Proposal

Although well-known linear solvers, such as IBM ILOG CPLEX1, can solve MILP

problems, these problems are generally NP-Hard (ZHAO; LIU, 2018). Moreover, problem (4.24)

is highly time-consuming due to a large number of variables. Another limitation of these solvers
1 https://www.ibm.com/products/ilog-cplex-optimization-studio

https://www.ibm.com/products/ilog-cplex-optimization-studio
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is that they only address single-objective optimization problems. A way to overcome this

limitation is transforming a multi-objective optimization into a single-objective problem through

scalarizing methods, such as weighted sum. However, these methods assume that there is a

global preference order among all objectives to be optimized, which may be hard to define in

practical cases. Furthermore, in many multi-objective optimizations, it is difficult to obtain the

exact Pareto optimal set. Therefore, we propose a meta-heuristic based on Genetic Algorithms to

obtain near-optimal solutions. Some advantages of a genetic approach are that it is not limited to

linear or single-objective problems and it could be implemented in a parallel environment (CUI

et al., 2017).

Despite the advantages of GAs, they are usually employed for unconstrained opti-

mization problems. A simple method for incorporating constraints into a GA is by adding a

penalty factor into the objective function based on how severe is the constraints violation in a

specific solution. However, it may be hard to estimate good penalty factors or even generate

feasible solutions for complex optimization problems (COELLO, 2002). Therefore, we can apply

BRKGA, described in Section 2.4.1, to handle constrained optimization problems by establishing

special solution representation and genetic operators to preserve solutions feasibility.

As BRKGA was initially designed for single-objective optimizations, it lacks support

for pure multi-objective problems. On the other hand, GAs are suited for multi-objective

problems due to the simultaneous evaluation of many candidate solutions. Hence, we extend

BRKGA by incorporating the idea of Pareto optimality during the better fit selection process.

More specifically, we include the non-dominance sorting and diversity preservation mechanism

of the NSGA-II, presented in Section 2.4.2, in the population classification strategy of BRKGA.

Figure 17 shows the flowchart of our genetic algorithm, called BRKGA+NSGA-II,

that combines BRKGA and NSGA-II. Initially, the first population is made up of randomly

generated and pre-determined individuals. In each generation or iteration, the feasible solution of

every individual in the population is obtained through a decoder algorithm. This decoding proce-

dure can be parallelized to speed up the overall algorithm execution (GONÇALVES; RESENDE,

2011). After evaluating each feasible solution according to the objective functions, the population

is sorted based on the non-dominated and crowding distance operations. Before partitioning the

population into elite and non-elite groups, only the Npop best-ranked individuals/solutions are

kept, where Npop > 0 is the population size of each generation. A new generation of individuals

is then produced by copying the elite members and through mutation and crossover procedures.
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Finally, the iterative process is repeated until a stopping criterion is met.

Figure 17 – BRKGA+NSGA-II flowchart

Source: Author.

In the next subsections, we detail the main evolutionary operations of the proposed

genetic algorithm. More specifically, we describe our proposed chromosome representation

and decoder in Subsection 4.3.1. Next, Subsection 4.3.2 describes how to form the initial

population. Then, the next population generation and stopping criteria procedure are detailed

in Subsection 4.3.3. Finally, we analyze the overall complexity of our genetic algorithm in

Subsection 4.3.4.

4.3.1 Chromosome Representation and Decoder

In BRKGA as well in BRKGA+NSGA-II, the chromosome representation and

decoder algorithm play essential roles as the problem-dependent part of these genetic algorithms.

Consequently, we need to design a chromosome representation and decoder algorithm to produce

feasible solutions to problem (4.25). Then, our proposed chromosome representation and the

description of its parts are given below:

C =
[
CI

1,C
I
2, . . . ,C

I
|A |,

CII
1,1,C

II
1,2, . . . ,C

II
1,|V |, . . . ,C

II
|A |,1,C

II
|A |,2, . . . ,C

II
|A |,|V |,

CIII
1 ,CIII

2 , . . . ,CIII
Q

]
1. CI

a ∈ [0,1] is used to define the number of nodes to be selected as host candidates of an

application a ∈A . As a result, it upper limits the number of application replicas to be

placed.

2. CII
a,n ∈ [0,1] specifies the priority to place a replica of application a ∈A in a node n ∈ V .
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3. CIII
q ∈ [0,1] is related to the order of a request q assigned to a replica, where q ∈

{1,2, . . . ,Q} and Q = ∑a∈A ∑m∈V Qa,m is the total number of requests.

4.3.1.1 Decoder Algorithm

The proposed Algorithm 2 decodes the above chromosome representation into a

feasible solution. Its basic idea is to first select the potential placement locations of each

application (lines 4 to 7). For this, it takes the first part of the chromosome (CI
a) to define the

number of nodes to be selected as candidates to host an application replica (line 5). The quantity

of selected nodes is upper limited by the total number of nodes in the system (|V |) and the

maximum allowed number of replicas (Amax
a ). Then, nodes with high values in the second part

of the chromosome (CII
a,n) are chosen as potential deployment sites for an application. The cloud

node is also added as a possible location to ensure that there are resources to deploy at least one

replica of each application on the network.

The second step of Algorithm 2 is the load/request distribution (lines 8 to 21).

It creates a sequence of all requests conforming to the third part of the chromosome (CIII
q ).

Following this sequence, requests are assigned one at a time among the nodes selected in the

first step of the algorithm. For a request, the decoder looks for a node with short response time

and sufficient resources to receive it. When the first envisioned target node is found, it sets to

place a replica of the requested application on this node and assigns the request to this replica.

As we assume that the cloud node has unlimited capacity and is included in the selected nodes

set, it is always possible to find a target node with available resources to receive an additional

request. Moreover, Algorithm 2 indicates that a request is assigned to an application replica

by incrementing this replica workload (line 14 and 18 ).After increasing an application replica

workload, the decoder updates the free resources on the node hosting this replica and the replica

response time. Note that only the processing delay may be affected by a growing workload in

our response time estimation. Thus, using the estimated response time to select the target node is

a way to distribute load among nodes without ignoring the network delay.

Finally, the decoder algorithm verifies that the maximum number of replicas of an

application is respected and replaces surplus replicas with the cloud node (lines 22 to 25).

In order to exemplify how Algorithm 2 works, let us define a simple system model

with three nodes (one base station, the core, and the cloud), and one application, as shown

in Figure 18a. In this system model, the first and only application specifies that a maximum
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Algorithm 2: Chromosome decoder for the static service placement problem
Data: individual
Result: Decoded solution (ρ,δ ,γ)

1 initialize ρa,n, γa,m,n, δa,m,n← 0;
2 initialize da,m,n← dnet

a,m,n;
3 CI,CII,CIII← individual.chromosome;
/* Step I: Node Selection */

4 forall a ∈A do
5 z←min

(
|V |,

⌈
CI

aAmax
a
⌉)

;
6 Va← select z nodes with higher CII

a,n, n ∈ V ;
7 Va←Va∪{cloud};
/* Step II: Request Distribution */

8 L← list of requests sorted by CIII in descending order;
9 forall r ∈ L do

10 a← appr; // requested application of r
11 m← sourcer; // source node of r
12 sort nodes n in Va by da,m,n in ascending order;
13 forall n ∈Va do
14 l← δa,m,n +1;
15 if (ρa,n = 1, γa,m,n = 1, δa,m,n = l) respects constraints (4.10) and (4.11) then
16 ρa,n← 1;
17 γa,m,n← 1;
18 δa,m,n← l;
19 update free resources on node n given (ρ,δ ,γ);
20 update da,m,n by Equation (4.1) and current (ρ,δ ,γ);
21 break;

/* Step III: Feasibility Verification */
22 forall a ∈A do
23 z← Amax

a −∑n∈V ρa,n;
24 if z > 0 then
25 replace z+1 replicas of a with the cloud node;

of four replicas can be placed in the system (i.e., Amax
1 = 4), and it has three requests to

be distributed. Moreover, the base station has resources available to receive a maximum of

one request, while the core node can receive two requests, and the cloud has no restriction.

Figure 18b shows the chromosome of an individual in this defined system. This chromosome

leads the decoder algorithm to select only two nodes as candidates to host the application because⌈
CI

1Amax
1
⌉
= d0.5×4e= 2. More specifically, the base station and core nodes are selected because

they have higher values in the second part of the chromosome (i.e., CII
1,1 = 0.7,CII

1,2 = 0.4). The

third part of the chromosome indicates that request CIII
2 is assigned first and followed by requests

CIII
1 and CIII

3 . According to the shortest response time order in the second step of Algorithm 2, a
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replica of the application with request CIII
2 is placed in the base station and, then, another replica

with the remaining requests CIII
1 and CIII

3 are placed in the core node. According, Figure 18c

shows the feasible solution decoded from the exemplified chromosome.

Figure 18 – Decoding example for Algorithm 2

(a) System model

CI
1 CII

1,1 CII
1,2 CII

1,3 CIII
1 CIII

2 CIII
3

0.5 0.7 0.4 0.1 0.6 0.8 0.3

(b) Chromosome as an input parameter

ρ1,1 ρ1,2 ρ1,3 δ1,1,1 δ1,1,2 δ1,1,3

1 1 0 1 2 0

(c) Feasible solution decoded

Source: Author.

4.3.1.2 Complexity Analysis

Let A = |A |,V = |V | and R = |R|. The first outermost loop of Algorithm 2 (lines 4

to 7) has complexity O(AV logV ) due to the sorting procedure on line 6. Line 8 has complexity

O(Q logQ), where Q is the total number of requests. By maintaining the current amount of free

resources on each node, checking the satisfaction of constraints on line 15 can be done in O(R).

The update of variables between lines 16 and 20 has complexity O(1). Then the complexity of the

second outermost loop (lines 9 to 21) is O(QV logV +QV R). The loop between lines 22 and 25

has complexity O(AV ). Thus, Algorithm 2 has complexity O((A+Q)V logV +Q(V R+ logQ)).

As O(logn) ∈ O(n) for n > 0, then Algorithm 2 has polynomial complexity.

4.3.2 Initial Population

Along with randomly generated individuals, the initial population of BRKGA+NSGA-

II also includes a few solutions obtained from simple heuristic methods for the specific opti-

mization problem being solved. This strategy may help speed up the algorithm convergence

and improve the quality of the final solutions. Hence, we add to the initial population individu-
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als generated by the following heuristics that encode some feasible solutions to the proposed

chromosome representation:

– Cloud. A simple solution is to place all applications in the cloud. According to Algorithm 2

(lines 4-7), it is sufficient that CI
a = 0 to only select the cloud node. The remaining

chromosome parts can have any value, but we set to zero as a default value. Thus, the

solution is encoded as:

CI
a = 0 ∀a ∈A

CII
a,n = 0 ∀a ∈A ,∀n ∈ V

CIII
q = 0 ∀q ∈ [1,Q]

– Deadline. Another heuristic is to prioritize requests for applications with shorter deadline

requirements. Given Ard
appq

as the application deadline requirement of request q, the request

prioritization is established in the third chromosome part by normalizing Ard
appq

against the

maximum deadline requirement among all applications and subtracting the normalized

result from one. In this way, requests with short deadlines have high priorities. In addition,

the heuristic selects as many nodes as possible, i.e., CI
a = 1, for an application to reduce

response time and deadline violations. The second chromosome part is set to the default

value, i.e., CII
a,n = 0, which informs that node ranking is not a concern of this heuristic.

Therefore, the following encoded solution is produced:

CI
a = 1 ∀a ∈A

CII
a,n = 0 ∀a ∈A ,∀n ∈ V

CIII
q = 1−

Ard
appq

maxa∈A
{

Ard
a
} ∀q ∈ [1,Q]

– Net Delay. Zhao and Liu (2018) propose a heuristic that selects nodes with the lowest

network latency to all other nodes as candidates to host an application. In order to prioritize

a node according to this heuristic, we assign CII
a,n to the normalized accumulative network

delay for application a between node n and all nodes. We then subtract the normalized

result from one as the proposed decoder algorithm selects nodes with higher CII
a,n values.

Moreover, we set CI
a = 1 to pick as many nodes as possible and CIII

q = 0 so that request
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sorting is not a heuristic concern. Hence, we encode this heuristic as follows:

CI
a = 1 ∀a ∈A

CII
a,n = 1−

∑i∈V dnet
a,i,n

max j∈V

{
∑i∈V dnet

a,i, j

} ∀a ∈A ,∀n ∈ V

CIII
q = 0 ∀q ∈ [1,Q]

– Cluster. A heuristic is to place replicas of an application in regions where users of this

application are located. We can define a region as a set of close nodes where there are

users attached to them. Moreover, we apply the K-medoids clustering technique (PARK;

JUN, 2009) to detect these regions. The K-medoids algorithm is a variation of the classical

K-means algorithm. Despite the similarity between these two algorithms, the K-medoids

algorithm chooses points in the dataset as centers or medoids of the clusters based on any

arbitrary distance function. In contrast, in K-means, a cluster center is not necessary a

point in the dataset. Moreover, Park and Jun (2009) propose a simple and fast K-metoids

algorithm with time complexity of O(NK), where N is the dataset size and K is the

number of clusters. For each application a ∈A , these K-medoids characteristics allow

us to partition nodes n ∈ V where |Ua,n|> 0 in clusters using the network delay dnet
a,m,n to

other nodes m ∈ V as the distance function. Let Ma be the set of medoids obtained after

performing the clustering algorithm for application a with a maximum of Amax
a clusters.

Then, the heuristic prioritizes the application placement in nodes near to a center of |Ma|

regions. By applying the similar normalization procedure of Deadline and Net Delay

heuristics, the Cluster heuristic is formally encoded as:

CI
a = 1 ∀a ∈A

CII
a,n = 1−

mini∈Ma

{
dnet

a,i,n

}
max j∈V mini∈Ma

{
dnet

a,i, j

} ∀a ∈A ,∀n ∈ V

CIII
q = 0 ∀q ∈ [1,Q]

– Combined Solution. Given S as a set of random-key chromosome vectors and vi the

i-th element of a vector v ∈S with length N, then we can combine two or more heuristic

solutions by summing their encoded vectors as specified below:

v+i =
1
|S | ∑

v∈S
vi ∀i ∈ {1, . . . ,N}

Indeed, we combine in pairs all vectors created by Cloud, Deadline, Net Delay, and Cluster

heuristics. Then, the resulted individuals are added to the initial population.
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– Complementary Solution. In order to add more diversity to the initial population, we can

add complementary solutions to those obtained by the above heuristics. As each element

in a chromosome v is in the range [0,1], we can then obtain the complementary solution of

v by doing the following operation:

v−i = 1− vi ∀i ∈ {1, . . . ,N}

4.3.2.1 Complexity Analysis

In order to generate the random individuals, it is required O
(
NpopN

)
computations,

where Npop is the population size and N is the chromosome vector length. For our chromosome

representation in Subsection 4.3.1, the vector length N is equal to A+AV +Q, where A =

|A |,V = |V |, and Q is the total number of requests. Thus, O
(
NpopN

)
= O

(
Npop(AV +Q)

)
.

Cloud and Deadline heuristics have complexity O(N) = O(AV +Q) because they

basically iterate over the vector elements. As Combined and Complementary solutions go over a

constant number of individuals, their complexities are also O(AV +Q). Meanwhile, Net Delay

complexity is O
(
AV 2 +Q

)
due to the summation in the chromosome third part. Before the

vector elements iteration, Cluster performs K-medoids for each application with a maximum

of V clusters and V points in the dataset. Therefore, the complexity of the Cluster heuristic is

O
(
AV 2 +N

)
= O

(
AV 2 +Q

)
.

By considering the randomly and heuristically generated individuals, the overall

time complexity of initial population formation is O
(
Npop(AV +Q)+AV 2).

4.3.3 Next Population and Stopping Criteria

In BRKGA+NSGA-II, a new population is created by including (i) elite individuals

of the current population, (ii) mutant individuals, and (iii) offspring individuals. The proposed

GA generates a mutant individual as a simple vector of random values. Thus, it adds a specified

number of mutant individuals in the new population. Then, BRKGA+NSGA-II completes

the population with offspring. Each new offspring individual is produced by combining two

randomly selected solutions as parents from the current population. In this selection, a parent

comes from the elite group and the other solution from the non-elite group. Moreover, the

offspring genes (i.e., vector values) are defined by the parameterized uniform crossover described

in Section 2.4.1, where Pelite is the probability of the offspring inherits a gene of its elite parent.
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After generating a new population, BRKGA+NSGA-II decodes the individuals

in this population into feasible solutions. Next, it applies non-dominated and crowding dis-

tance sorting to rank the individuals based on the evaluation of their decoded solutions. In

this sorting procedure, either the Pareto ≺ or preferred ≺1 dominance operators can be used.

Then, BRKGA+NSGA-II only keeps the best-ranked individuals in the population of the next

generation.

The above-discussed procedure for generating the next population is repeated until

a stopping criterion is met. For BRKGA+NSGA-II, we select two stopping criteria: (i) the

maximum number of generations tmax and (ii) the MGBM criteria. As discussed in Section 2.4.3,

MGBM tries to detect situations where no further progress will be made in the GA by designing a

progress estimator Îmdr(t). Thus, the proposed GA terminates either when it reaches a maximum

number of generations (i.e., t ≥ tmax) or when the progress estimation falls below a defined

threshold (i.e., Îmdr(t) < Îmin
mdr). Here, tmax and Îmin

mdr are parameters to be set, and t ≥ 1 is the

generation/iteration index.

4.3.4 Complexity Analysis of the Genetic Algorithm

In an iteration or generation of BRKGA+NSGA-II, the operations shown in Figure 17

have the following complexities:

– Decoding Npop individuals by Algorithm 2 is O
(
NpopD

)
, where D = (A+Q)V logV +

Q(V R+ logQ).

– Evaluating M objective functions for Npop solutions is O
(
NpopMF

)
, where O(F) is the

worst-case complexity of computing an objective function. For instance, function fdv(·) in

Equation (4.12) requires O
(
AV 2) computations to obtain the deadline violation of each

request flow.

– Sorting all solutions is O
(
MN2

pop
)

as described in Section 2.4.2.

– As discussed in Section 2.4.3, checking the MGBM stopping criteria is also O
(
MN2

pop
)
.

– After the sorting procedure, keeping the best individuals and classifying them as elite or

non-elite is O
(
Npop

)
.

– Generating the next population by mutation and crossover operations has complexity

O
(
NpopN

)
, where N = A+AV +Q is the length of chromosome vector presented in

Section 4.3.1.

The time complexity of a single iteration is then O
(
Npop

(
D+MF +MNpop

))
.
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Given that there are at most tmax iterations and O
(
Npop(AV +Q)+AV 2) is the complexity

of the initial population generation, the overall complexity of BRKGA+NSGA-II is equal to

O
(
tmaxNpop

(
D+MF +MNpop

)
+AV 2) when the chromosome representation and decoder de-

scribed in Section 4.3.1 are used. By assuming O
(
AV 2) ∈ O(F), the time complexity of our

genetic algorithm can be reduced to O
(
tmaxNpop

(
D+MF +MNpop

))
. This assumption is valid,

for instance, if an objective function, such as fdv(·), evaluates each request flow.

Therefore, the population decoding, evaluation, and sorting procedures govern the

computational complexity of our genetic algorithm. Despite that, the decoding and evaluation

procedures involve independent computations for each individual and can then be parallelized to

accelerate the algorithm execution.

4.4 Performance Analysis

In this section, we present the performance (i.e., the optimality) results of our

proposed GA by comparing it with benchmarking algorithms over a cellular network (5G) with

Edge Computing (EC) capabilities.

This section is structured as follows. First, Subsection 4.4.1 presents the performance

metrics. Next, Subsection 4.4.2 describes the evaluated algorithms. Then, Subsection 4.4.3

details the experiment setup. In Subsection 4.4.4, we define the values of key parameters of the

proposed GA. Finally, we analyze the obtained experimental results in Subsection 4.4.5.

4.4.1 Performance Metrics

We select the deadline violation fdv, operational cost fcost , and service unavailability

f f ail as performance-related functions to be optimized. We chose these functions because they are

relevant in the context of EC, and there are conflicts between them, as discussed in Section 4.2.4.

It is important to note that we can use other objectives since the proposed algorithm has no

restrictions on this aspect.

4.4.2 Evaluated Algorithms

An overview of the compared algorithms is given below:

– MILP returns the optimal solution for the relaxed MILP problem (4.24), which it found by

the branch and cut technique in the CPLEX linear solver. We also use a timeout parameter
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equal to 2 hours as a stopping criterion of the solver tool.

– Cloud simply places everything in the cloud node.

– NetDelay+DL combines the Net Delay and Deadline heuristics presented in Section 4.3.2.

We combine these two heuristics to have both node and request priorities well defined in

the resulting chromosome vector. Then, Algorithm 2 decodes the combined chromosome

vector into a feasible solution.

– Cluster+DL combines the Cluster and Deadline heuristics presented in Section 4.3.2.

Like NetDelay+DL, the combined chromosome vector of Cluster+DL defines priorities to

nodes and requests, and Algorithm 2 decodes this vector into a feasible solution.

– MOHGA(≺1) is the proposed GA for multi-objective using the heuristic initialization and

the dominance operator ≺1.

– MOHGA(≺) is similar to MOHGA(≺1) but using the Pareto dominance operator≺ instead.

– MOGA(≺1) is the same as MOHGA(≺1) but without using the heuristic initialization.

That is, the first population is only randomly generated.

– SOHGA( f ) uses the proposed GA with heuristic initialization to optimize a single objective

function f ∈ { fdv, fcost, ffail}.

4.4.3 Analysis Setup

We conduct the experiment in Python with the CPLEX solver (CPLEX, 2009) to

evaluate the performance of the above-mentioned algorithms in a 5G network scenario. Moreover,

we use a server machine with Intel Xeon E5-2630 @ 2.60GHz, 24 CPUs, and 64 GB of RAM to

run the compared algorithms.

In the experiment scenario, Base Stations (BSs) are equally distributed in a grid area,

and there is a network link between neighboring BSs. These BSs are also connected to a core

node, which is connected to the cloud on the other side. All of these nodes (BSs, core, and cloud)

have hosting capabilities, and their total resource capacities are reduced as we descend from

cloud to BSs. Table 8 summarizes the major experiment parameters.

We use the three types of applications specified for 5G networks,whose characteris-

tics are described as follows (ALLIANCE, 2015):

– massive Machine Type Communications (mMTC) has low resource usage, a high dead-

line tolerance, and a large number of users;

– Ultra Reliable Low Latency Communications (URLLC) has low resource usage, a
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Table 8 – Performance evaluation parameters for the static service placement problem
Parameter Value

System

CPU (MIPS) Cloud: ∞, Core: 200000, BS: 40000

Storage Disk (MB) Cloud: ∞, Core: 32000, BS: 16000

RAM (MB) Cloud: ∞, Core: 8000, BS: 4000

Node Availability Navail
n (%) Cloud: 99.9, Core: 99.0, BS: 90.0

Usage Cost Ncost
n,1 ,Ncost

n,2 Cloud: 0.025, Core: 0.05, BS: 0.1

User Proportion (%) 70 mMTC, 20 eMBB, 10 URLLC

App. Proportion (%) 34 mMTC, 33 eMBB, 33 URLLC

Applications

Max. Replicas Amax
a [1, |V |]

Deadline Ard
a (ms) mMTC: [100,1000], URLLC: [1,10], eMBB: [10,50]

Areq
a (requests/ms) mMTC: [0.0002,0.001], eMBB: [0.001,0.01], URLLC: [0.02,0.2]

App. Availability Aavail
a (%) mMTC, eMBB: [80.0,90.0], URLLC: [90.0,99.0]

CPU Work Awork
a (MI) mMTC, URLLC: [1,5], eMBB: [1,10]

RAM, Disk Ar
a,1,A

r
a,2 mMTC, URLLC: [1,10], eMBB: [1,50]

CPU Ar
a,1,A

r
a,2 Awork

a , Awork
a /Ard

a +1

Net. Delay Dnet
a,m.n (ms)

neighbor BS-BS, BS-Core
mMTC, URLLC: [1,2], eMBB: [1,5]

Net. Delay Dnet
a,m.n (ms)

Core-Cloud
mMTC, URLLC: [10,12], eMBB: [10,15]

Source: Author.
Note: An interval [a,b] means that a value is chosen randomly within this range.

strict deadline, and a small volume of users; and

– enhanced Mobile Broadband (eMBB) has high resource usage, a medium deadline, and

an intermediate number of users.

Although IoT applications are generally classified as mMTC or URLLC types,

we also include eMBB in our experiments to have a diversity of applications expected in the

heterogeneous scenario of Edge Computing.

Then, we randomly assign the value of the application parameters based on the above

characteristics and some predictions for 5G discussed by Schulz et al. (2017) (response deadline

and request rate). For evaluation purposes, we assume that it is sufficient to use relative values for

the parameters among different application types instead of applying more realistically accurate

values. In addition, we also assume that the application resource demand Ar
a(·) and node usage

cost Ncost
n (·) functions are linear according to Equations (4.14) and (4.28), respectively, where
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Ar
a,1,A

r
a,2,N

cost
n,1 , and Ncost

n,2 are constants. In Equation (4.28), Ncost
n (·) is composed of the cost of

placing an application replica plus the cost of allocating each resource for this replica.

Ncost
n (λa,n) = Ncost

n,1 ρa,n + ∑
r∈R

Ncost
n,2 Ar

a(λa,n)

= Ncost
n,1 ρa,n + ∑

r∈R

(
Ncost

n,2 Ar
a,1λa,n +Ncost

n,2 Ar
a,2
) (4.28)

In order to have different user densities, users are distributed either uniformly or

through isotropic Gaussian blobs (SCIKIT-LEARN, 2020) in the grid area. Then, a user is

attached to the nearest BS. Finally, each test case is executed 30 times to obtain results with a

95% confidence interval (JAIN, 1991).

4.4.4 Different Parameters Settings

Regarding the parameters of the proposed MOHGA(≺1), we analyze its performance

in terms of the optimization objectives against different values of these parameters.

4.4.4.1 Elite and Mutant Group Size

In a GA with elitist strategy and random mutants, some parameters to be defined

are the number of individuals in the elite and mutant sets. Figure 19 presents the influence of

these parameters in the objective functions for MOHGA(≺1) with a population size of 100. We

observe that parameter values in the range between 10% and 20% produce better results for all

three objectives. These values allow the algorithm to have a diversity of solutions within the

search space and still benefit from the elitist strategy. Therefore, we select the number of elite

and mutant individuals to be both 10% of all population.

4.4.4.2 Elite Probability

In the crossover operation described in Sections 2.4.1 and 4.3.3, a parameter to be

defined is the probability Pelite to an offspring inheriting a gene of its elite parent. Figure 20

presents the impact of different values of Pelite on the objectives functions. We can see that this

parameter does not have much influence on the objectives, but Pelite = 0.6 has a slightly better

results, specially for service availability in Figure 20c.
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Figure 19 – Performance of different elite and mutant group sizes

(a) Max. Deadline Violation (b) Overall Operational Cost

(c) Avg. Service Unavailability

Source: Author.

4.4.4.3 Stopping Criteria Threshold

We examine the performance of different stopping threshold Îmin
mdr ∈ [0,0.5] values

for MOHGA(≺1) with a maximum of 100 generations and a population size of 100 for each

generation. Regarding the optimization objectives, the algorithm performs better when the

threshold is below 0.2. However, a small threshold implies that the algorithm iterates over more

generations, consequently, resulting in longer execution time, as shown in Figure 21d. Hence,

we select Îmin
mdr = 0.1 as a trade-off between optimality and execution time.

4.4.5 Results and Discussion

We evaluated the performance of the examined algorithms for each metric in scenar-

ios with different amounts of applications, users, and nodes.
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Figure 20 – Performance of different elite probability Pelite values

(a) Max. Deadline Violation (b) Overall Operational Cost

(c) Avg. Service Unavailability

Source: Author.

4.4.5.1 Maximum Deadline Violation

Figure 22a presents the impact on the system deadline violation level by increasing

the number of deployed applications in a scenario with a two-dimensional grid of 5x5 BSs and

10,000 users. In all algorithms, the violation level grows as more applications compete for the

fixed amount of node resources. More specifically, Cloud heuristic has the worst results due to

the distance between the users and the cloud node. Meanwhile, the optimum solutions of MILP

present, as expected, the best results. When we compare MOHGA(≺1) with MOGA(≺1) and

MOHGA(≺), a drastic performance improvement of the GA is observed due to the inclusion of

the heuristics initialization and preferred dominance operator≺1. MOHGA(≺1) also outperforms

both NetDelay+DL and Cluster+DL heuristics, which are used at its initialization. Furthermore,

the multi-objective MOHGA(≺1) has similar results obtained by only optimizing the deadline

violation in SOHGA( fdv) because the dominance operator ≺1 prioritizes time-sensitive applica-
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Figure 21 – Performance of different stopping criteria threshold Îmin
mdr values

(a) Max. Deadline Violation (b) Overall Operational Cost

(c) Avg. Service Unavailability (d) Avg. Execution Time

Source: Author.

tions with strict deadline requirements. Both MOHGA(≺1) and SOHGA( fdv) perform near the

optimum results of MILP.

The growth in users number also affects the demand of node resources and, con-

sequently, the level rise of deadline violation, as shown in Figure 22b. Cloud heuristic is an

exception in this figure with constant results due to the unlimited capacity of the cloud node.

Besides that, the growth slope is less steep for MOHGA(≺), MOGA(≺1), Cluster+DL, and

NetDelay+DL algorithms when the number of users is greater than 4,000 due to surplus requests

being processed in the cloud node. The other algorithms, MILP, SOHGA( fdv), and MOHGA(≺1),

tend to have a linear growth behavior presumably because resource demand also increases

linearly with the number of users in the tested scenario.

On the other hand, more nodes mean more resources available to meet application

requirements. Figure 22c shows the deadline violation performance of the algorithms by varying

the number of base stations with 50 applications and 10,000 users. Cluster+DL, NetDelay+DL,
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Figure 22 – Maximum deadline violation

(a) 10,000 users and 5x5 BSs (b) 50 apps and 5x5 BSs

(c) 10,000 users and 50 apps (d) Legend

Source: Author.

MILP, SOHGA( fdv), and MOHGA(≺1) exhibit violation decrease by adding more nodes, while

Cloud and MOHGA(≺) have similar results in all tested variations. However, MOGA(≺1)

produces worse results with more base stations, possibly due to many possible chromosome

combinations.

4.4.5.2 Overall Operational Cost

Figure 23 presents the performance of the compared algorithms according to cost

function fcost . In the tested scenarios, the optimum solution to minimize the overall operational

cost is to place only one replica of each application in the cloud node, which has the cheapest

resources. Thus, Cloud heuristic is the optimum solution in this case. As solution SOHGA( fcost)

includes the Cloud heuristic and only optimizes the cost function fcost , it also achieves an

optimal solution. In addition, the multi-objective algorithms MOHGA(≺1), MOHGA(≺), and

MOGA(≺1) have slightly better results than NetDelay+DL and Cluster+DL by varying the
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number of applications and users, as shown in Figures 23a and 23b, respectively.

In Figure 23c, all algorithms present a linear cost increase by varying the number of

nodes but with a fixed number of users and applications. This behavior is explained by how we

estimate the number of requests generated. More specifically, we assume that at least one request

comes from a node with users attached by defining the number of requests as Qa,m =
⌈
|Ua,m|Areq

a
⌉

in Section 4.2.1.2. Moreover, users will be more distributed in the test scenario by increasing

the number of BSs. Consequently, there are more nodes with attached users and, thus, more

requests are generated even if the number of users and applications does not change. As a result,

increasing the number of requests implies more resource consumption and higher operational

costs.

Figure 23 – Overall operational cost

(a) 10,000 users and 5x5 BSs (b) 50 apps and 5x5 BSs

(c) 10,000 users and 50 apps (d) Legend

Source: Author.
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4.4.5.3 Average Service Availability

Figures 24a, 24b and 24c relate the impact of service availability or unavailability

with the variation of the number of applications, users, and nodes, respectively. In these

figures, the Cloud heuristic has the worst results due to the placement of a single replica for

each application. All compared genetic algorithms outperform NetDelay+DL and Cluster+DL.

Moreover, MOHGA(≺1) has slightly lower availability than other GAs in Figures 24a and 24b.

Meanwhile, the performance difference between MOHGA(≺1) and the other GAs is most notable

in Figure 24c. This performance degradation may be explained by the trade-off of solution

MOHGA(≺1) having less deadline violation.

Figure 24 – Average service availability

(a) 10,000 users and 5x5 BSs (b) 50 apps and 5x5 BSs

(c) 10,000 users and 50 apps (d) Legend

Source: Author.

In Figures 24a and 24b, we observe a considerable loss of availability for NetDe-

lay+DL and Cluster+DL heuristic by increasing the number of applications or users on a grid

of 5x5 BSs. As these heuristics may prioritize the same EC nodes for applications with some
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similar characteristics (e.g., network latency and user distribution), so there is more competition

for these nodes by increasing the number of applications or users. As a result, NetDelay+DL

and Cluster+DL deploy fewer application replicas resulting in decreased service availability.

Meanwhile, the other compared algorithms do not have large variations in their performance,

which may be explained by the use of the cloud node to receive the increased resource demand.

Figure 24c shows that the majority of compared algorithms improve their perfor-

mance by adding more hosting nodes in the system. As the number of nodes grows, it is possible

to place more application replicas on the system and, thus, increasing service availability. Cloud

is the only algorithm without improvement as the number of replicas deployed per application is

fixed.

4.5 Summary

In this chapter, we addressed the research question RQ1: "How to make service

placement and load distribution decisions to deploy multiple IoT applications or services in an

EC infrastructure according to certain infrastructure constraints, application requirements, and

performance criteria?". In order to answer this question, we jointly formulated the static service

placement and load distribution as an optimization problem by considering diverse application

characteristics (e.g., response deadline, resource demand, scalability, and availability). The

formulated problem aims to minimize SLA infringements caused by violations of the deadline

requirement and as well optimize other possibly conflicting objectives (e.g., operational cost

and service availability). Then, we proposed a multi-objective genetic algorithm based on

BRKGA and NSGA-II to obtain feasible solutions close to the Pareto optimal front. We

also modified the Pareto dominance operator to prioritize applications with strict deadline

requirements. Furthermore, we included heuristic solutions during the initialization of the

proposed genetic algorithm to improve its solution results.

We analyzed the efficiency of the proposed algorithm through simulations. Our

experimental results show that the proposed multi-objective GA achieves values close to the

optimum of the MILP formulation in terms of deadline violation, and still generally outperforms

the benchmark heuristics for the other analyzed objectives (operational cost and service avail-

ability). Moreover, we observed that the results of the proposed GA are related to the deadline

prioritization and the heuristic initialization.

In the next chapter, we investigate the dynamic (or online) service placement and
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load distribution problems, which includes application migration, and dynamic incoming load

due to user mobility or time-varying workload pattern.
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5 A DYNAMIC AND CENTRALIZED APPROACH FOR SERVICE PLACEMENT

WITH LOAD DISTRIBUTION

In this chapter, we extend the static service placement and load distribution problem

of the previous chapter by taking into account that application loads might vary in both spatial

and temporal domains due to, for instance, user mobility and workload patterns. Consequently,

a decision-making process needs to adjust the placement and distribution decisions in order to

handle load fluctuations. Moreover, this decision-making process should consider the benefits

and costs of decision adjustments. For instance, a readjusted decision can be the migration of

an application to a new location to keep a short response time. However, a migration operation

takes time to be completed, which may negatively affect the application response time.

Therefore, in this chapter, we design a centralized controller responsible for dynamic

service placement and load distribution decisions. The designed controller adopts a proactive ap-

proach that prepares the Edge Computing (EC) system in advance for predicted load fluctuations.

The main contributions of this chapter are the following:

– We include support for dynamic request loads of end-user devices in the Edge Computing

system modeled in Chapter 4. In this way, it is possible to migrate applications and

redistribute load over time.

– Using the Limited Look-ahead Control (LLC) concept presented in Chapter 2, we estimate

how the modeled EC system evolves under controllable (placement and distribution) de-

cisions and uncontrollable (user-generated load) events. Then, we jointly formulate the

service placement and load distribution as an optimization problem of multiple perfor-

mance criteria over a look-ahead prediction horizon while satisfying a set of constraints.

– We use a genetic algorithm to solve the formulated problem in a discrete prediction horizon

with length H. We first propose a chromosome representation and a decoder algorithm

to obtain a single and valid control decision when H = 1. Then, two heuristics extending

this genetic solution are proposed to solve the problem when H > 1. The first heuristic

generates simple sequences of control decisions over the prediction window, while the

second one produces more general control sequences.

The remainder of this chapter is structured as follows. Section 5.1 presents the EC

system model with dynamic loads. In Section 5.2, we formulate the dynamic service placement

and load distribution problem using the LLC concept. Then, Section 5.3 presents our proposed

algorithms to solve the formulated problem. Next, we conduct performance evaluations of the
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proposed algorithms in Section 5.4. Finally, Section 5.5 concludes this chapter.

5.1 System Model

Based on the system model presented in Chapter 4, we consider a dynamic Edge

Computing system consisting of an Infrastructure Provider (InP), multiple Application Service

Providers (ASPs), and several end-user devices. In this way, the InP offers on-demand different

types of (virtual) resources to deploy applications of the ASPs within the EC infrastructure.

Then, end-user devices attached to (wireless) access points requests services of the deployed

applications. Furthermore, the InP is responsible for resource allocation decisions, such as

application (service) placement and load distribution.

Unlike the system model in Chapter 4, users may move or be inactive without sending

requests in the dynamic system, thereby changing the number of active devices attached to each

access point node over time. As a result, the overall request load generated by users can vary

in the spatial and temporal domains. Figure 25 illustrates the EC system model in a cellular

network where users can be mobile or inactive. Moreover, applications can be deployed on

different network regions, and requests from end-user devices are routed over the network to a

node hosting the requested application.

Figure 25 – Proposed Edge Computing system with mobile and inactive devices

Source: Author.



107

In the next subsections, we describe the main features of the infrastructure, applica-

tion, and user models for an EC system with dynamic application loads. In addition, Table 9

presents the main notations used in this chapter.

Table 9 – Main notations of the dynamic service placement problem
Symbol Description

System Model

V ,E ,R,A ,Ut Set of nodes, links, resource types, applications, and users, respectively

Lbw
l ,Lpd

l Bandwidth and propagation delay of link l, respectively

Ncap
n,r Total capacity of resource r on node n

Ncost
n,r (x) Cost of allocating a specific amount x of resource r on node n

Ard
a Response deadline of app a

Amax
a Maximum number of replicas for app a

Ar
a(λ ) Demand of resource r for a replica of app a with workload λ

Awork
a CPU work size of a request for app a

Areq
a Request generation rate for app a

Adata
a Request data length of app a

ua,n(t) Number of active users connected to node n requesting app a at time t

System Dynamics

s(t), e(t), c(t) System state, environment input, and control input at time step t, respectively

ρa,n(t) Whether or not a replica of app a should be placed on node n at time t

δa,m,n(t) Fraction of requests for app a that should be distributed from node m to node n at time t

Qa,n(t) Request generation rate from users of app a attached to node n at time t

da,m,n(t) Response time of requests for app a from node m to n at time t

qa,n(t) Number of requests waiting in a queue of app a placed on node n at time t

Problem Formulation

Λa,n(t), λa,n(t) Request arrival rate in app a placed on node n before and after load distribution at time t

µ i
a,n(t) Processing rate in app a placed on node n at time t

AD+R
a (λ ) Content size of app a with workload λ

Ts Time step duration

Source: Author.

5.1.1 Infrastructure Model

Similar to the system model in Chapter 4, graph G = (V ,E ) represents the EC

infrastructure composed of EC nodes and network links connecting them. We also assume that

the infrastructure graph and its properties are immutable over time. We justify this assumption
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by focusing on networks with fixed infrastructure, such as 5G networks, where their properties

do not change, or possible changes occur less frequently than a dynamic application load. For

instance, an application may have a day/night workload cycle pattern, whereas a cellular network

topology may remain unchanged for months.

In graph G, each link l = (m,n) ∈ E corresponds to a network connection between

two nodes (m and n), and it has the following properties:

– Bandwidth Lbw
l is the average transmission rate between end-points of link l.

– Propagation Delay Lpd
l is the time required for bits to reach the other end of link l.

We use the above two properties instead of the one defined in Section 4.1.1 as there

are now two types of traffic in the system: (i) request traffic and (ii) application migration traffic.

As a result, the transmission delay for a request or application migration can be estimated using

the bandwidth and propagation delay properties.

Regarding a node n ∈ V , it has a total capacity of Ncap
n,r for a resource r ∈R, where

R is the set of all resource types provided by the InP. We still assume that the cloud node has

unlimited resource capacity. Moreover, Ncost
n,r (x) is the (monetary) cost function of allocating a

specific amount x of resource r ∈R to an application on the node n. Note that it is possible to

include other node attributes, for instance, when required by an optimization metric.

5.1.2 Application Model

Given A as the set of all applications to be placed in the system, an application

a ∈ A has the response deadline Ard
a , maximum number of replicas Amax

a , resource demand

function Ar
a(·), CPU work size Awork

a , and request rate Areq
a properties defined in Section 4.1.2.

Also, let Adata
a be the request data length, i.e., the amount of data (in bits or bytes) in a request for

the application a sent over the network.

For the sake of simplicity, we consider that set A and the above-mentioned applica-

tion properties do not change over time. For instance, this set can include all applications that

need to be deployed in the system over an experiment. Nonetheless, as we are interested in the

system behavior under a dynamic application load, this dynamism is expressed in the user model.

5.1.3 User Model

Let Ut be the set of all end-user devices at a particular time t, then a user u ∈Ut has

the following characteristics:
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– Requested Application Uapp
u . We consider that a user sends requests for the same appli-

cation at any time, i.e., Uapp
u is a constant.

– Attached Node Unode
u (t). It denotes the node acting as an access point where the user is

attached at time t. As a user can be mobile in the dynamic approach, the attached node

may change over time.

– User Status Uon
u (t) ∈ {0,1}. A user can be either active or inactive during a time interval.

In an inactive status (Uon
u (t) = 0), the user does not send requests to an application. On

the other hand, an active user (Uon
u (t) = 1) sends requests according to the request rate

defined in the application model. This status parameter can also vary over time.

Given the above-mentioned user characteristics, Equation (5.1) defines the total

number of active users connected to node n requesting application a at a time t. In other words,

this equation specifies the load variation of an application in both spatial and temporal domains

in our system model.

ua,n(t) =
∣∣∣{u ∈Ut

∣∣Uapp
u = a and Unode

u (t) = n and Uon
u (t) = 1

}∣∣∣ (5.1)

5.2 Problem Statement and Formulation

As an application load might vary in spatial and temporal domains, the service

placement and load distribution decisions should be re-evaluated to maintain satisfactory system

performance. The re-evaluated decision may involve redistributing the load or even migrating an

application replica to a new location in order to, for example, keep low latency/response time.

However, decision adjustments could also lead to additional operational or performance costs.

For instance, excessive reallocation, especially for large applications, may result in network

overload or even latency degradation due to the migration operation itself (YU et al., 2019; GAO

et al., 2019). Therefore, a dynamic approach for service placement should consider the benefits

and costs of service migrations.

Given the above context, we intend to mitigate the burden of service migration

operations on system performance by adopting a proactive approach that prepares the system

for load fluctuations in advance. For example, a proactive decision can be to pre-deploy an

application to avoid the impact of migration delay in future application response time.

Therefore, we adopt the Limited Look-ahead Control concept introduced in Sec-
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tion 2.5 to define a proactive approach for service placement and load distribution in an EC

system with dynamic application loads. The design of an LLC approach has the following main

components: (i) a discrete-time model capturing the system behavior under controllable actions

and uncontrollable events, (ii) the optimization problem to be solved at any time step, and (iii) a

strategy to solve the formulated problem. We present the dynamic model and problem formula-

tion in Subsections 5.2.1 and 5.2.2, respectively. Then, Section 5.3 presents our genetic-based

algorithms to solve the formulated problem.

5.2.1 Modeling the System Dynamics

Following the LLC concept, the dynamics of our EC system are described by the

following discrete-time state-space equation:

s(t +1) = Φ(s(t),c(t),e(t)) (5.2)

Here, the behavioral model Φ(·) captures the relationship between the system state

s(t) and the inputs (control input c(t) and environment input e(t)) that adjust the state parameters

at any discrete time step t ≥ 0. Moreover, a centralized limited look-ahead controller continuously

monitors the current state and environment input of the entire system. Then, the controller uses

the observation results and the behavioral model to re-adjust the controllable system parameters

in order to optimize the forecast system behavior over a limited look-ahead prediction horizon

with length H > 0.

An important observation is that a centralized controller means a logically single

entity responsible for control decisions. In practice, it is possible to add redundancy to this entity

in order to mitigate failure issues.

Since we are interested in the service placement and load distribution decisions, we

design the following adjustable system parameters as the control input c(t) = (ρ(t),δ (t)):

– Application Placement ρ(t) = {ρa,n(t) | a ∈A and n ∈ V } is a set of binary variables,

where ρa,n(t) ∈ {0,1} indicates whether or not a replica of application a should be placed

on a node n at time step t.

– Load Distribution δ (t) = {δa,m,n(t) | a ∈ A and m,n ∈ V } is a set of real variables,

where δa,m,n(t) ∈ [0,1] establishes the fraction of requests for an application a that should

be distributed from a node m to another node n at time t.

Note that the above system parameters as control input are similar to the decision
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variables for the static service placement approach in Chapter 3. However, unlike the static

approach, the decision variables can vary over time in the dynamic approach. Moreover, we

use real variables in the [0,1] interval for load distribution instead of integer ones in the static

approach to have an upper bound limit when dealing with dynamic loads.

Regarding the environment input as uncontrollable events that also affect the system

state, we define this input e(t) = (Q(t)) as follows:

– User-Generated Request Rate Q(t) = {Qa,n(t) | a ∈A and n ∈ V }. Here, Qa,n(t) is the

observed request generation rate from all users of an application a attached to a node n at

time step t.

At the current time t, the environment input value can be inferred from the observed

number of active users and the application request rate, i.e., Qa,n(t) = Areq
a ua,n(t). However, the

actual value for an environment input within the prediction horizon cannot be obtained until the

next measuring samples. Hence, a forecasting technique (e.g., ARIMA) can be applied to predict

the environment input, expressed as Q̂a,n(k), for each time step k > t along the prediction horizon

H. Moreover, it is possible to use different forecasting techniques for different applications, but

the adequate selection of a forecasting technique is out of the scope of this thesis.

In order to observe the impact of control and environment inputs on the system state,

let us define a dynamic request flow as follows:

Definition 5.1 (Dynamic Request Flow) A request flow Fa,m,n(t) is the requests rate for ap-

plication a from node m (source node) being handled by a replica of application a on node n

(target node) during time step t.

Furthermore, as the application response time is a relevant performance-related

metric to observe in Edge Computing, we define the system state s(t) = (d(t),q(t)) at time t as

follows:

– Response Time d(t) = {da,m,n(t) | a ∈A and m,n ∈ V } is the average response time of

each request flow Fa,m,n(t) at the beginning of time step t.

– Queue Length q(t) = {qa,n(t) | a ∈A and n ∈ V } is the number of requests waiting in a

queue to be processed on each application replica deployed on the system at the beginning

of time step t.

Based on the above system parameters, we develop the behavioral model Φ(·) in the

remainder of this subsection.
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5.2.1.1 System State Estimation

Given a system state s(k) and environment input e(k) at time k ∈ [t, t +H−1] within

the prediction horizon H starting at the current time t, the behavioral model Φ(·) determines

the next system state s(k+1) when a control input c(k) is applied in the system at time step k.

Thus, we need to estimate the response time d(k+1) and queue length q(k+1) of system state

s(k+1).

As shown in Figure 26, the response time estimation includes the initialization delay

in addition to the network and processing delays already considered in the static approach.

This initialization delay is related to the time to place an application replica in a new location

during a time step. Thus, Equation (5.3) formally expresses the response time of a request flow

Fa,m,n(k+1) where dnet
a,m,n(k+1), dproc

a,n (k+1), and dinit
a,n (k+1) are the network, processing, and

initialization delays, respectively.

da,m,n(k+1) = dnet
a,m,n(k+1)+dproc

a,n (k+1)+dinit
a,n (k+1) (5.3)

Figure 26 – Response time estimation for a dynamic request flow

Source: Author.

Next, we specify the network, processing, and initialization delays for a request flow

Fa,m,n(k+1).

Network Delay. Equation (5.4) denotes the average time to send requests over the

network from the source node m to the target node n, where Pm,n contains the links in a routing

path from m to n. Similar to the static approach, this path can be obtained a priori by some

shortest routing path algorithm.

dnet
a,m,n(k+1) =


0 if m = n

∑
l∈Pm,n

(
Adata

a

Lbw
l

+Lpd
l

)
otherwise

(5.4)
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Processing Delay. Another similarity with the static approach is using an M/M/1

queue to model the requests processing. Besides that, the load to be distributed in the dynamic

approach comprises the requests generated by users during time step k and requests waiting

to be processed in the application queues. Thus, let Λa,n(k) and λa,n(k) be the request arrival

rate before and after load distribution for application a in node n at time step k, respectively. In

Equation (5.5), the arrival rate Λa,n(k) is given by the predicted environment input Q̂a,n(k) plus

the estimated queue length, which is converted to a rate value using Ts as the sampling period,

i.e., the time step duration. Meanwhile, the control input δ (k) regulates the arrival rate λa,n(k),

as shown in Equation (5.6).

Λa,n(k) = Q̂a,n(k)+
qa,n(k)

Ts
ρa,n(k−1) (5.5)

λa,n(k) = ∑
m∈V

δa,m,n(k)Λa,m(k) (5.6)

In Equation (5.7), the average processing rate µa,n(k) is determined by the CPU

speed ACPU
a (·) allocated to the application replica at time k, and the amount of CPU work Awork

a

necessary to process a request for this application.

1
µa,n(k)

=
Awork

a
ACPU

a (λa,n(k))
(5.7)

According to the M/M/1 queueing model, Equation (5.8) and Equation (5.9) estimate

the average queue length qa,n(k+1) and the average processing delay dproc
a,n (k+1), respectively.

qa,n(k+1) =
λa,n(k)

µa,n(k)−λa,n(k)
−

λa,n(k)
µa,n(k)

(5.8)

dproc
a,n (k+1) =

1
µa,n(k)−λa,n(k)

(5.9)

Initialization Delay. In order to initialize the placement of an application on a

selected node, an EC system migrates or replicates an instance of this application over the

network from another node, called origin, already hosting it to the selected node. A migration

process removes the application instance from the origin node hosting it, whereas a replication

procedure keeps it in the origin node. Despite this difference, both migration and replication

operations take the same time to complete and, thus, we use the migration term to indicate

a migration or replication process. Furthermore, the application migration delay impacts the

response time, as requests arriving at the selected node for this application need to wait for the

migration conclusion before they can be processed. Hence, we determine this migration delay

as the time to transfer the application content, which includes the storage (DISK) and memory
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(RAM) volumes, from the nearest node hosting the application, as shown in Equation (5.10).

Moreover, we disregard the migration delay at the first time step (k = 0) for the sake of simplicity.

dmig
a,n (k) =


(1−ρa,n(k−1))ρa,n(k) min

m∈V

{
dmig

a,m,n(k)ρa,m(k−1)
}

if k > 0

0 otherwise
(5.10a)

dmig
a,m,n(k) = ∑

l∈Pm,n

(
AD+R

a (λa,m(k−1))
Lbw

l
+Lpd

l

)
(5.10b)

AD+R
a (λ ) = ADISK

a (λ )+ARAM
a (λ ) (5.10c)

We assume that a migration process starts and finishes at the same time step. Conse-

quently, not all requests and their response time are impacted by this process. Moreover, let us

define an application initialization delay as the impact of a migration procedure in the response

time. By following the Poisson arrival process in an M/M/1 queue, a node n receives λa,n(k)∆t

requests on average for an application a during a time interval ∆t. We can split the migration

delay into M = ddmig
a,m,n(k)e consecutive intervals of one unit of time (e.g., ∆t = 1s). Then, during

the i-th migration interval, λa,n(k) requests arrive and wait for M− i+1 units of time until the

migration is complete. We calculate dinit
a,n (k+ 1) as a weighted average by using the arrived

requests of each migration interval against all requests during sampling period Ts. We then

approximate it by setting M ≈ dmig
a,m,n(k), as shown in Equation (5.11).

dinit
a,n (k+1) =

∑
M
i=1 λa,n(k)(M− i+1)

λa,n(k)Ts
≈

dmig
a,n (k)

(
dmig

a,n (k)+1
)

2Ts

(5.11a)

M = ddmig
a,n (k)e (5.11b)

We exemplify how the migration delay may have different impacts on distinct

requests in Figure 27. In this figure, a migration operation starts at the beginning of time step

k, and it finishes at the same time step. In addition, three requests (A, B, and C) arrive at

different time instants. Request A arrives at the beginning of the migration and waits for the

entire migration procedure before being processed. Then, request B arrives in the middle of

the migration and only waits half of the entire migration delay. After finishing the migration

operation, request C arrives and is not impacted by this operation.

Once we specified the behavioral model Φ(·) by Equations (5.3) to (5.11), we

formulate the optimization problem that adjusts control decisions over time to improve system

performance in the next subsection.
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Figure 27 – Impact of a migration delay in different requests

Source: Author.

5.2.2 Optimization Formulation

Let F = ( f1, . . . , fi, . . . , fM) be a list of M functions and fi(s(k + 1),c(k),e(k)) a

function that associates some performance for reaching and maintaining a system state s(k+1)

given control input c(k) and environment input e(k) applied in the system. Then, at each time

step t, the centralized limited load-ahead controller aims to optimize the following problem:

min
c(k)∈C

t+H−1

∑
k=t

F (s(k+1),c(k),e(k)) (5.12a)

s.t. s(k+1) = Φ(s(k),c(k),e(k)) ∀k ∈ [t, t +H) (5.12b)

1≤ ∑
n∈V

ρa,n(k)≤ Amax
a ∀a ∈A ,∀k ∈ [t, t +H) (5.12c)

δa,m,n(k)≤ ρa,n(k) ∀a ∈A ,∀m,n ∈ V ,∀k ∈ [t, t +H) (5.12d)

∑
i∈V

δa,n,i(k)Λa,n(k) = Λa,n(k) ∀a ∈A ,∀n ∈ V ,∀k ∈ [t, t +H) (5.12e)

∑
a∈A

ρa,n(k)Ar
a (λa,n(k))≤ Ncap

n,r ∀r ∈R,∀n ∈ V ,∀k ∈ [t, t +H) (5.12f)

λa,n(k)< µa,n(k) ∀a,n(ρa,n(k) = 1) ,∀k ∈ [t, t +H) (5.12g)

where C is the set of all possible control inputs, Equation (5.12a) is the optimization

objective, and Equation (5.12b) estimates the next system state according to the behavioral

model. Furthermore, a feasible solution for problem (5.12) is associated with a sequence of

control decisions πc = {c(k) | k ∈ [t, t +H−1]} that satisfies all the following constraints within

the prediction horizon. First, Equation (5.12c) constraints the allowed number of application

replicas placed in the system. Then, Equation (5.12d) restricts load distribution to nodes that

host the requested application, whereas Equation (5.12e) ensures the distribution of all loads.

Finally, Constraint (5.12f) assures that the amount of resources allocated on a node does not

exceed its capacity, and (5.12g) guarantees the processing queue stability.

After solving problem (5.12) and obtaining a control sequence πc at the beginning of

time step t, the controller only applies the first control input c(t) in this sequence to the system.
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This decision-making process is repeated at the next time step t + 1 when the new measured

system state s(t +1) and environment input e(t +1) are available. However, a control algorithm

that evaluates all possible control inputs to solve problem (5.12) presents an exponential increase

in worst-case complexity with an increasing number of control inputs and longer prediction

horizons (ABDELWAHED et al., 2004). Even for a single time step (i.e., H = 1), this problem

can be seen as an MINLP problem, which is generally NP-Hard. Furthermore, not all control

inputs in C produce a feasible solution satisfying all problem constraints. Therefore, it necessary

to develop more efficient control algorithms, which is the focus of the next section.

5.3 Control Algorithms

In order to alleviate the complexity overhead in the centralized controller when solv-

ing problem (5.12), we propose two (meta-)heuristic algorithms that find sub-optimal solutions

in a reasonable time and, thus, trading optimization for speed. First, we present a genetic-based

algorithm that solves the problem for a single time step in Subsection 5.3.1. Then, we extend

this algorithm by taking into account a prediction horizon H > 1 in Subsection 5.3.2.

5.3.1 One-Time Step Algorithm

In addition to the static service placement problem in Chapter 4, the genetic algorithm

BRKGA+NSGA-II can also solve problem (5.12) when the prediction horizon H = 1. In

BRKGA+NSGA-II, the chromosome representation and decoder need to be specified for a

particular optimization problem as the problem-dependent part of the meta-heuristic. However,

the chromosome representation and decoder algorithm for the static service placement cannot be

directly employed in the dynamic approach. More specifically, the chromosome vector length

presented in Section 4.3.1 depends on the number of requests. Consequently, the same vector

cannot be used to build a feasible solution at any time step because the number of requests varies

along time in the dynamic case. Moreover, the decoder algorithm for the static approach only

places an application replica on a node if this replica receives some non-empty load. Nevertheless,

we would like to support the pre-deployment of an application to a node with no incoming load

at the current time, but which will soon receive requests.
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5.3.1.1 Chromosome Representation

To address the above-mentioned issues, we need to design a new chromosome

representation and decoder algorithm to (i) produce feasible control inputs at any single time

step within the prediction horizon and (ii) support pre-deployment operations. Therefore, the

following one-time step chromosome encode is proposed:

C =
[
CI

1,C
I
2, . . . ,C

I
|A |,

CII
1,1,C

II
1,2, . . . ,C

II
1,|V |, . . . ,C

II
|A |,1,C

II
|A |,2, . . . ,C

II
|A |,|V |,

CIII
1,1,C

III
1,2, . . . ,C

III
1,|V |, . . . ,C

III
|A |,1,C

III
|A |,2, . . . ,C

III
|A |,|V |

]
where each part of this representation is described below:

1. CI
a is the fraction of nodes to be candidates for hosting application a.

2. CII
a,n is the priority to place application a in node n.

3. CIII
a,m is the priority to distribute requests for application a from a (source) node m.

Compared to the chromosome representation in Section 4.3.1, the above chromosome

has its third part (CIII) based on the application and node sets instead of request numbers.

Furthermore, as we assume that the numbers of applications and nodes do not change over time,

the length of the one-time step chromosome representation is the same for any time step.

5.3.1.2 Chromosome Decoder

Algorithm 3 decodes a chromosome with the above representation into a valid control

input. This algorithm operates in three steps: (i) nodes selection, (ii) load distribution, and (iii)

local search. First, it selects nodes as potential placement locations for each application (lines 3

to 5). For this, the first part of the chromosome (CI) delimits the number of nodes to be selected

on line 4. Then, the next line selects nodes with high values in the second part of the chromosome

(CII) as host candidates.

The second step (lines 6 to 24) of Algorithm 3 is related to load distribution. It first

orders all possible load sources according to the third part of the chromosome (CIII) on line 6.

Following this order, it distributes the total loads Λa,m(k) of a source in chunks λ ∗ among the

nodes selected in the first step plus the cloud node. The cloud node addition ensures there are

enough resources to deploy at least one replica of each application. Note that the chunk size

λ ∗ = Λa,m(k)λ% can be an algorithm input by setting parameter λ% ∈ (0,1]. Line 13 orders the

selected nodes by response time estimated in Equation (5.3). Then, while there are still loads
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to be dispatched, the decoder searches in the sorted nodes for one with sufficient resources to

receive an additional chunk of load. When the first envisioned target node is found on line 17, it

sets to place a replica of the requested application on this node and assigns an additional chunk

to the replica.

In the last step, Algorithm 3 performs a local search around the placement decision

from line 25 to 32. If the number of replicas deployed by previous steps exceeds the maximum

allowed, it replaces surplus replicas with one on the cloud node. Otherwise, the decoder tries

to place an application replica on each node selected by the first algorithm step. This former

case allows the pre-deployment of an application that may be requested in the next time steps,

avoiding future migration burden on response time.

Complexity Analysis. Let A = |A |,V = |V |, R = |R|, and L = d1/λ%e. The

complexity of Algorithm 3 is upper bounded by its second step (lines 6 to 24). Due to sorting

procedures, lines 6 and 13 have complexity O(AV logAV ) and O(V logV ), respectively. By

assuming that the constraints checking on line 17 is O(R), the inner loop between lines 14 and

24 is O(LV R). Then, the overall complexity of Algorithm 3 is O(AV (logA+V logV +LV R)),

which is a polynomial complexity.

In order to exemplify how Algorithm 3 works, Figure 28a presents a simple scenario

composed of 4 nodes and one application. This figure also shows the values considered for

the network delay, node capacity, and user-generated request rate parameters. Moreover, let us

set Amax
1 = 4 and Ar

1(λ ) = λ for application 1. For time step t = 0, Algorithm 3 decodes the

chromosome vector in Figure 28b as follows. In the first step, the decoder selects dCI
aAmax

a e=

d0.75×4e= 3 nodes as candidates to host application 1, which are nodes 1, 2, and 3 because

they have the highest values in the second vector part. According to the third vector part, requests

from users attached to node 1 are distributed first. By setting λ% = 0.25, these requests are

distributed in 4 chunks of Λ1,1(t)λ% = 8×0.25 = 2 req/s, where Λ1,1(t) = Q1,1(t) = 8 req/s at

t = 0. Then, Algorithm 3 first tries to assign these chunks to node 1 because it has the shortest

response time among the selected nodes to the source node, which is the node 1 itself. Only

one chunk of 2 req/s is actually assigned to node 1 due to its resource capacity. The remaining

chunks are then assigned to node 3 because it has the second shortest response time/network

delay and enough capacity to receive these chunks. As a consequence of these distributions, the

control input is set to ρ1,1(t) = 1, ρ1,3(t) = 1, δ1,1,1(t) = 1/4, and δ1,1,3(t) = 3/4. In the third

step, the decoder determines the pre-deployment of an application replica in node 2 because this
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Algorithm 3: Chromosome decoder for the dynamic service placement problem with a
single time step

Data: individual, s(k), e(k), λ%← 0.25
Result: Control input c(k) = (ρ(k),δ (k))

1 initialize ρa,n(k), δa,m,n(k), λa,n(k)← 0;
2 CI,CII,CIII← individual.chromosome;
/* Step I: Nodes Selection */

3 forall a ∈A do
4 z←min(|V |,dCI

aAmax
a e);

5 Va← select z nodes with higher CII
a,n, n ∈ V ;

/* Step II: Load Distribution */
6 L← list of pairs (a,m) ∈A ×V sorted by CIII

a,m in descending order;
7 forall (a,m) ∈ L do
8 r← Λa,m(k); // remaining load to be distributed
9 λ ∗← Λa,m(k)λ%; // load chunk

10 V ′a←Va∪{cloud};
11 forall n ∈V ′a do
12 da,m,n(k+1)← by Equation (5.3) and c(k) = (ρ(k) = {1},δ (k));
13 sort nodes n ∈V ′a by da,m,n(k+1) in ascending order;
14 while r > 0 do
15 forall n ∈V ′a do
16 l← λa,n(k)+λ ∗;
17 if (ρa,n(k) = 1, λa,n(k) = l) respects constraints (5.12f) and (5.12g) then
18 ρa,n(k)← 1;
19 λa,n(k)← l;
20 δa,m,n(k)← δa,m,n(k)+λ ∗/Λa,m(k);
21 r← r−λ ∗;
22 λ ∗←min{r,λ ∗};
23 update free resources on node n given c(k) = (ρ(k),δ (k));
24 break;

/* Step III: Local Search */
25 forall a ∈A do
26 z← Amax

a −∑n∈V ρa,n(k);
27 if z > 0 then // Surplus nodes
28 replace z+1 replicas of a with the cloud node;
29 else
30 forall n ∈Va do // Pre-deployment
31 if (ρa,n(k) = 1, λa,n(k)) respects constraints (5.12f) and (5.12g) then
32 ρa,n(k)← 1;

node was selected in the algorithm first step. Finally, Figure 28c presents the decoded control

input for the chromosome vector.
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Figure 28 – Decoding example for Algorithm 3

(a) System scenario

CI
1 CII

1,1 CII
1,2 CII

1,3 CII
1,4 CIII

1,1 CIII
1,2 CIII

1,3 CIII
1,4

0.75 0.9 0.4 0.7 0.1 0.8 0.2 0.5 0.6

(b) Chromosome as an input parameter

ρ1,1(t) ρ1,2(t) ρ1,3(t) ρ1,4(t) δ1,1,1(t) δ1,1,2(t) δ1,1,3(t) δ1,1,4(t) δ1,n,m(t),n > 1

1 1 1 0 0.25 0.0 0.75 0.0 0.0

(c) Control input decoded for time step t = 0

Source: Author.

5.3.1.3 Genetic Operations

In order to obtain control inputs for a time step k ∈ [t, t+H−1], the initial population

of BRKGA+NSGA-II is composed of random-generated individuals, elite members from the GA

results of the previous time step (i.e., k−1), and individuals generated by the Cloud, Deadline,

Net Delay, Cluster, Combined Solution, and Complementary Solution heuristics described

in Section 4.3.2. These heuristics can be easily adapted to the one-time step chromosome

representation. For Cloud, Net Delay, and Cluster heuristics, their first and second chromosome

parts remain unchanged, and the third part is now CIII
a,m = 0. The Deadline heuristic also keeps its

first two parts, but its last part is set to CIII
a,m = 1−

(
Ard

a /maxi∈A
{

Ard
i
})

. Meanwhile, Combined

Solution and Complementary Solution heuristics continue the same.

Regarding stopping criteria, we include an execution timeout parameter in addition

to the criteria mentioned in Section 4.3.3. For the other genetic operations (e.g., crossover,

classification, and selection operations), we can use the same ones utilized in the static approach.
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5.3.2 H-Steps Look-Ahead Algorithm

For problem (5.12) with a prediction horizon H > 1, instead of directly establishing

a control input sequence for this prediction horizon, let πC = {C(k) | k ∈ [t, t +H − 1]} be

a sequence of chromosome vectors using the one-time step representation and C(k) be the

chromosome selected for a time step k. Then, Algorithm 4 describes how to obtain a control

input sequence from πC. For each time step k, Algorithm 4 firstly decodes the chromosome vector

C(k) to a control input c(k) by Algorithm 3, current system state s(k), and environment input

e(k). Then, it uses the behavioral model Φ(·) and a forecasting method to estimate the system

state s(k+ 1) and environment input e(k+ 1) of the next algorithm iteration (i.e., k = k+ 1).

As Algorithm 3 always decodes a chromosome to a valid control input, a control sequence

generated by Algorithm 4 is a feasible solution for problem (5.12). Moreover, Algorithm 4

has O(H) times the complexity of Algorithm 3 when considering that environment inputs are

predicted before the algorithm execution. That is, the computational complexity of Algorithm 4

is O(HAV (logA+V logV +LV R)), where A is the number of applications, V is the number of

nodes, R is the number of resource types, and L is related to the load chunk size parameter of

Algorithm 3.

An evaluation of all possible πC sequences may present a similar computational

complexity issue to the control input sequence case. Therefore, we propose two heuristics

in the rest of this section to obtain chromosome sequences that are decoded to solutions for

problem (5.12).

Algorithm 4: The procedure of obtaining a control input sequence from a chromosome
sequence for the dynamic service placement problem

Data: πC = {C(t), . . . ,C(t +H−1)}, s(t), e(t)
Result: πc = {c(t), . . . ,c(t +H−1)}

1 forall k ∈ [t, t +1, . . . , t +H−1] do
2 c(k)← Algorithm 3 with C(k), s(k), e(k);
3 s(k+1)←Φ(s(k),c(k),e(k));
4 e(k+1)← by a forecasting method;

5.3.2.1 Simple Sequence

Given a one-time step chromosome vector C, this heuristic creates a simple sequence

only containing this chromosome, i.e., πC = {C(k) =C | k ∈ [t, t+H−1]}. Figure 29a illustrates
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this simple sequence generation from a chromosome vector C and prediction horizon H =

2. The basic idea is to explore how the system state evolves when control inputs generated

by the same chromosome are applied to the system through the prediction horizon. In this

way, BRKGA+NSGA-II can solve problem (5.12) by using the one-time step chromosome

representation and Algorithm 5 as the decoder algorithm. Algorithm 5 creates the simple

chromosome sequence of an individual chromosome and, then, it uses Algorithm 4 to obtain a

control input sequence as the associated solution for this individual. Consequently, Algorithm 5

has the same computational complexity as Algorithm 4.

Algorithm 5: Chromosome decoder for the dynamic service placement problem with
multiple look-ahead time steps and simple sequence generation

Data: individual, s(t), e(t)
Result: πc = {c(t), . . . ,c(t +H−1)}

1 C← individual.chromosome;
2 πC←{C(k) =C | k ∈ [t, t +H−1]};
3 πc← by Algorithm 4 with πC, s(t), e(t);

Figure 29 – Chromosome sequence generation examples

(a) Simple sequence generation (b) General sequence generation

Source: Author.

5.3.2.2 General Sequence

Another heuristic to generate a control input sequence within the prediction horizon

H is to encode this sequence in a chromosome and leaving for a GA this generation task.

For this, we design a new chromosome representation C′ with length |C′| = H × |C|, where

|C| is the vector length of the one-time step chromosome representation. By using this new

representation and Algorithm 6 as the decoder method, we can perform BRKGA+NSGA-II to

find sub-optimal solutions for problem (5.12). The basic idea of Algorithm 6 is to split vector C′

into H consecutive parts with length |C|, resulting in a sequence of one-time step chromosome

vectors. Then, Algorithm 4 is performed to decode this chromosome sequence into a sequence
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of control inputs. Figure 29b illustrates the general sequence generation by slicing chromosome

C′ into H = 2 parts, creating a sequence of two one-time step vectors. Observe that this new

representation can be seen as the concatenation of a sequence of on-time step chromosome

vectors. Hence, the new presentation C′ allows the generation of any one-time step chromosome

vector sequence.

Algorithm 6: Chromosome decoder for the dynamic service placement problem with
multiple look-ahead time steps and general sequence generation

Data: individual, s(t), e(t)
Result: πc = {c(t), . . . ,c(t +H−1)}

1 C′← individual.chromosome; // Vector length |C′|= H×|C|
2 πC = {C(k) | k ∈ [t, t +H)}← by splitting C′ into H consecutive parts with length |C|;
3 πc← by Algorithm 4 with πC, s(t), e(t);

Finally, Table 10 summarizes our three control algorithms. They all perform the

genetic algorithm BRKGA+NSGA-II to solve problem (5.12) but with different prediction

horizon lengths, chromosome representations, and decoder algorithms.

Table 10 – Proposed control algorithms

Control Algorithm Horizon
Length GA Chromosome

Representation Decoder

One-Time Step H = 1 BRKGA+NSGA-II C = [CI,CII,CIII] Algorithm 3

H-Steps
Look-Ahead

Simple Sequence H > 1 BRKGA+NSGA-II C = [CI,CII,CIII] Algorithm 5
General Sequence H > 1 BRKGA+NSGA-II C′, |C′|= H×|C| Algorithm 6

Source: Author.

5.4 Performance Analysis

This section presents the analytical evaluation of our proposed control algorithms

by comparing them with benchmarking algorithms over a cellular network (5G) with Edge

Computing capabilities.

This section is organized as follows. First, Subsection 5.4.1 describes the evaluated

algorithms. Next, Subsection 5.4.2 presents the performance metrics. Then, Subsection 5.4.3

details the experiment setup. In Subsection 5.4.4, we define the values of key parameters of the

control algorithms. Finally, we analyze the obtained experimental results in Subsection 5.4.5.
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5.4.1 Evaluated Algorithms

An overview of the compared algorithms is given below:

– Cloud. It places all applications in the cloud node.

– Net delay + Deadline (N+D). It is a combination of Net Delay and Deadline heuristics

presented in Section 5.3.1. We combine these two heuristics to have well-defined values

for the second and third parts of the one-time step chromosome vector. For the first vector

part, we set CI
a = 1 to place as many replicas as possible for any application a ∈A . Then,

Algorithm 3 decodes the combined chromosome vector into a control input.

– One-Time Step (H1). We use the genetic algorithm BRKGA+NSGA-II with the one-

time step chromosome representation and decoder described in Section 5.3.1 when the

prediction horizon H = 1. We also include in BRKGA+NSGA-II the preferred dominance

operator defined in Section 4.2.4.

– Static. This algorithm outputs a fixed placement decision and load distribution without

much change throughout the experiment. For this, it performs the H1 algorithm only in

the first time step of the experiment. Then, the resulted control decision is maintained

almost without changes for the remaining time steps. Control decisions may change when

an application replica cannot handle a load increase due to a lack of resources and, then,

this excess load is sent to the cloud node.

– Simple Sequence (SS). It is the BRKGA+NSGA-II with the preferred dominance operator

and the simple sequence generation heuristic presented in Section 5.3.2 when the prediction

horizon H > 1, which allows pre-deployment exploration. Moreover, we use ARIMA

as the forecasting method and the auto-ARIMA algorithm proposed by Hyndman and

Khandakar (2008) to automatically identify the most optimal parameters for an ARIMA

model.

– General Sequence (GS). It is similar to SS, but using the general sequence generation

heuristic instead.

5.4.2 Performance Metrics

We define the following metrics as the optimization objectives upon which we

evaluate the compared algorithms:

– Deadline Violation. Equation (5.13) expresses the weighted average deadline violation
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among all request flows at a time step, where [z]+ =max(0,z). Each request flow Fa,m,n(k)

contributes to this violation according to its request transmission rate δa,m,n(k)Λa,m(k) as

a weight. Given the importance of keeping response time below its deadline, we select this

metric as the primary objective function in the preferred dominance operator. Furthermore,

we normalize the result of this objective function by using the Cloud solution as the base.

fdv (s(k+1),c(k),e(k)) =
∑a∈A ∑m,n∈V

[
da,m,n(k+1)−Ard

a
]+

δa,m,n(k)Λa,m(k)

∑a∈A ∑m,n∈V δa,m,n(k)Λa,m(k)
(5.13)

– Operational Cost. Equation (5.14) specifies the operational cost during a time step as the

total cost of the resources allocation for all deployed application replicas.

fcost (s(k+1),c(k),e(k)) = ∑
a∈A

∑
n∈V

ρa,n(k)Ts ∑
r∈R

Ncost
n,r (Ar

a (λa,n(k))) (5.14)

– Migration Cost is the ratio of application replicas migrated/replicated in the system at a

time step, as shown in Equation (5.15). The application content size AD+R
a (·) is a weight

in this metric as large applications may take longer to be transferred and consume more

network resources.

fmig (s(k+1),c(k),e(k)) =
∑a∈A ∑n∈V AD+R

a (λa,n(k))ρa,n(k)(1−ρa,n(k−1))

∑a∈A ∑n∈V AD+R
a (λa,n(k))ρa,n(k)

(5.15)

5.4.3 Analysis Setup

We developed the experiments using Python in a server machine with Intel Xeon

E5-2630 @ 2.60GHz, 24 CPUs, and 64 GB of RAM to run the compared algorithms. As shown

in Figure 30, the experiment scenario consists of a 5G network with nine BSs, forming a 3×3

grid network. These BSs are also connected to a core node, which is connected to the cloud on

the other side. All of these nodes (BSs, core, and cloud) have hosting capabilities, and their total

resource capacities are lower as we descend from cloud to BSs. On the other hand, the resource

allocation cost increases as nodes get closer to end users due to resource scarcity. Besides, we

consider a linear function to the node usage cost Ncost
n,r (·). Table 11 presents the main evaluation

parameters.

Similar to the evaluation in Chapter 4, we analyze the placement of the three types

of applications specified for a 5G network. First, mMTC applications are characterized by

low resource requirements, delay tolerance, and a quite large number of users. Then, eMBB

applications have high resource demand, a medium deadline, and an intermediate number of users.

Finally, URLLC applications have low resource usage, a strict deadline, and a small number
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Figure 30 – Experiment network scenario for the
dynamic service placement problem

Source: Author.

of users. Based on these characteristics, we randomly assign the values for the application

parameters. Moreover, application resource demands Ar
a(·) are considered to be linear functions.

In the CPU demand case, the linear constants are selected based on queue stability and deadline

requirements.

Each user is randomly attached to a BS, and it generates requests with an unchanged

average rate to a single application selected according to the user proportion parameter in Table 11.

Despite this constant rate, we create a synthetic dynamic load by changing the number of active

users for each application in each node according to the Stable, Growing, Cycle/Bursting, or

On-and-Off workload patterns for cloud environments discussed in (LORIDO-BOTRAN et al.,

2014). Along with the cloud patterns, we also include a random load generation. These workload

patterns are implemented as follows:

– Stable Pattern. A stable workload is characterized by a constant number of requests per

time unit. In this way, we apply Equation (5.16) to generate a stable load at each time step

t of the experiment, where the constant parameter c is randomly selected.

Lstable(t) = c, c ∈ [0,1] (5.16)

– Growing Pattern. It shows a load that increases due to, for instance, an application

becoming popular. We also support the inverse of this pattern where a load decreases along

the time. This pattern is implemented by the linear function in Equation (5.17), where the

constant a is randomly chosen and Tmax is the total number of time steps in the evaluation.

Lgrow(t) = t
(

b−a
Tmax

)
+a, a ∈ [0,1], b =

0 if a > 0.5

1 otherwise
(5.17)
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Table 11 – Performance evaluation parameters for the dynamic and
centralized service placement problem

Parameter Value

Infrastructure

CPU (MIPS) Cloud: ∞, Core: 2×104, BS: 104

DISK (GB) Cloud: ∞, Core: 32, BS: 16

RAM (GB) Cloud: ∞, Core: 16, BS: 8

Usage Cost
for resource/second

Ncost
n,r (x) = a×10−b(x+1)

a = Cloud: 0.25, Core: 0.5, BS: 1
b = CPU: 12, DISK: 18, RAM: 15

Bandwidth (Gbps) BS-BS:0.1, BS-Core:1, Core-Cloud:10

Propagation Delay (ms) BS-BS:1, BS-Core:1, Core-Cloud:10

User Proportion (%) mMTC:70, eMBB:20, URLLC:10

App. Proportion (%) mMTC:34, eMBB:33, URLLC:33

Applications

Max. Replicas Amax
a [1, |V |]

Deadline Ard
a (s) mMTC:[0.1,1], eMBB:[0.01,0.1], URLLC:[0.001,0.01]

λa (requests/s) mMTC: [0.1,1], eMBB: [1,100], URLLC: [1,100]

Data Adata
a (Kb) mMTC: [0.1,1], eMBB: [1,10], URLLC: [0.1,1]

CPU Work Awork
a

(CPU Instructions) mMTC, URLLC: [1,5]×106, eMBB: [5,10]×106

RAM, DISK Demand
Ar

a(λ ) = bλ + c (MB)
b = mMTC, URLLC: [0.1,1], eMBB:[1,10]
c = mMTC, URLLC: [10,100], eMBB: [100,1000]

CPU Demand (IPS)
Ar

a(λ ) = bλ + c
b = Awork

a +1
c = Awork

a /αArd
a +1, α = [0.1,0.5]

Genetic Algorithm

Max. Generations 50

Population Size 100

Execution Timeout (s) 60

Source: Author.
Note: An interval [x,y] means that a value is chosen randomly within this range.

– Cyclic/Bursting Pattern. This workload pattern may present regular periods or bursts

of loads (e.g., daytime has more workload than nighttime). We split this pattern into

cyclic and bursting patterns. The trigonometric function in Equation (5.18) creates the

cyclic pattern, where both period p and phase shift θ parameters are randomly picked.

Meanwhile, Equation (5.19) produces a bursting pattern using the probability density

function of the Beta distribution B(α,β ), where the pair (α,β ) is randomly selected from

set {(2,2),(2,3),(3,2),(1,5),(5,1)} to generate different curves. This probability density

function is used by the 3rd Generation Partnership Project (3GPP) to model the burst traffic
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of IoT devices in cellular networks (METZGER et al., 2019).

Lcycle(t) = cos(2πt/p−θ) , p ∈ {Tmax/2,Tmax}, θ ∈ [0,π] (5.18)

Lburst(t) =
1

B(α,β )

(
t

Tmax

)α−1(
1− t

Tmax

)β−1

(5.19)

– On-and-Off Pattern. In this pattern, workloads are processed periodically or occasionally

processed in batches. We implement this pattern using a two-state Markov chain, as shown

in Figure 31. In the On state, the normalized load L1−0(t) is equal to 1, whereas the

load is a constant c ∈ [0,0.5] randomly chose in the Off state. Furthermore, the transition

probabilities (p10, p01) are randomly picked from set {(0.1,0.1),(0.2,0.2),(0.3,0.3)},

which contains low values to produce consecutive time steps with the same state.

– Random Pattern. In this pattern, the normalized load Lrnd(t) is uniformly drawn over the

interval [0,1] for each experiment time step t.

Figure 31 – On-and-Off workload pattern as a two-state
Markov chain

Source: Author.

For all samples produced by the above workload patterns, we add to it a white

Gaussian noise with zero mean and standard deviation equal to 0.01, i.e., the white noise follows

the normal distribution N (0,0.012). Then, the resulted values are normalized to be in the

interval [0,1]. Figure 32 illustrates the normalized load with white noise over time steps for all

the aforementioned workload patterns. Moreover, let La,n be the normalized samples from a

randomly selected workload pattern, then the load Qa,n(t) generated by users of application a

attached to node n is determined for each experiment time step t as follows:

Qa,n(t) = Areq
a Ua,nLa,n(t)

where Ua,n is the total number of users of application a attached to node n, and Areq
a

is the application request rate.

A test case of the evaluated scenario consists of 48 time steps with 30 minutes of

duration each, totaling one day. In this way, it is possible to make, apply, and measure the result
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Figure 32 – Synthetic workload patterns

Source: Author.

of a control decision in a single time step. We conduct test case experiments according to the

flowchart shown in Figure 33. Initially, all parameters of the evaluation scenario are generated

and saved in a data set, including the dynamic loads as environment inputs. For each time step,

we get the environment input of this time step to execute the controller optimizer using one

of the compared algorithms. After obtaining the control input from the optimizer, we apply

the behavioral model to update the system state. Then, we evaluate the algorithm performance

according to the optimization objectives and the updated system state. This process is repeated

until the maximum number of time steps is reached.

Figure 33 – Experiment flowchart for the dynamic service placement problem

Source: Author.

Finally, the results presented in the following sub-sections come from an average of

30 different random runs for each test case and compared algorithm.
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5.4.4 Different Parameters Settings

This subsection analyzes the performance in terms of the optimization objective

against different values for key parameters (load chunk size and prediction horizon length) of the

proposed control algorithms.

5.4.4.1 Load Chuck Size

In Algorithm 3, the total application request load from a source node is distributed

in chunks whose size depends on the parameter λ% ∈ (0,1]. A small value for λ% means a small

chunk size and, thus, a more fine-grained load distribution. On the other hand, a large λ% implies

a coarse-grained distribution. For example, λ% = 1 means that Algorithm 3 tries to find a single

target node to receive the total application load from a source node. Meanwhile, λ% = 0.5 means

that the entire load is split in half, and each half load can be distributed to a different target

node. However, as each loop iteration assigns a single load chunk to a target node, a small chunk

requires more iterations than a large one to distribute all load.

Figure 34 presents the performance influence of different chunk load sizes in a sce-

nario with 10 applications and 10,000 users for H1, which uses Algorithm 3 as the chromosome

decoder. In Figure 34a, we observe slight increases in deadline violation from λ% = 0.1 to 0.5,

respectively, and a more pronounced increase from 0.5 to 1. Similar result pattern is presented

for migration cost in Figure 34c. On the other hand, Figure 34b shows that the operational cost

slightly decreases from λ% = 0.1 to 0.5 and, then, this cost drops more accentuated when λ% = 1.

These result patterns can be due to the cloud node being more used to receive large chunks of

load per time by having unlimited and inexpensive resources. However, a small chunk implies

more execution time, as shown in Figure 34d. Hence, we select λ% = 0.25 as a trade-off between

performance, especially for deadline violation, and execution time.

5.4.4.2 Prediction Horizon Length

We also examine the performance of different prediction horizon lengths for SS

and GS algorithms in a scenario with 10 applications and 10,000 users. SS does not present

significant performance changes by increasing the horizon length for the metrics in Figure 35.

For GS, the results between H = 2 and 4 differ less than 7% on average for deadline violation,

operation cost, and migration cost in Figures 35a, 35b, and 35c, respectively. Regarding the
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Figure 34 – Performance of different load chunk size λ% values

(a) Deadline Violation (b) Operational Cost

(c) Migration Cost (d) Execution Time

Source: Author.

execution time, Figure 35d shows a 12% time increase from H = 2 to 3, reaching the specified

maximum execution time. This increase in time can be due to the growth of the chromosome

vector length used in GS, which depends on the prediction horizon length.

Nonetheless, it is sufficient to set the prediction horizon H to 2 as we specify the

time step duration to be large enough to start and complete a migration operation. In this way,

applications can be pre-deployed in the first time step in the prediction horizon. Then, in the

second time step, loads can be distributed to the pre-deployed applications without the migration

drawbacks.

5.4.5 Results and Discussion

We evaluated the performance of the examined algorithms for each optimization

objective in scenarios with different amounts of applications and users.
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Figure 35 – Performance of different prediction horizon H values

(a) Deadline Violation (b) Operational Cost

(c) Migration Cost (d) Execution Time

Source: Author.

5.4.5.1 Deadline Violation

Figures 36a and 36b show the normalized deadline violation per time step when

increasing the number of applications and users, respectively. This normalization uses Cloud

results as the base. In both figures, we can see that GS achieves lower violation levels than the

other algorithms. On average, GS has 24% and 21% fewer violations than the other algorithms

when varying the number of applications and users, respectively. Meanwhile, SS presents on

average 15% and 8% fewer deadline violations than H1, Static, and N+D solutions when varying

the number of applications and users, respectively.

We also observe that GS reduces deadline violations in Figure 36a when there are

more applications but keeping the total number of users fixed. This drop can be an effect of

having fewer users per application, especially for the URLLC type that is characterized by low

user percentages and strict deadlines. On the other hand, violations rise when the number of
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users increases with a fixed number of applications in Figure 36b. This is caused by the growth

of requests traffic to the remote cloud node when there is more competition for resources on the

other nodes.

Figure 36 – Average deadline violation per time step

(a) 10,000 users (b) 5 applications

Source: Author.

5.4.5.2 Operational Cost

We observe an augmentation of operational costs per time step by having more

applications or users in Figures 37a and 37b, respectively. Cloud exhibits the lowest costs

because only one replica of each application is placed in the system, and cloud resources are

cheaper than in other locations. Meanwhile, N+D tends to place as many replicas as possible,

having the highest cost. The other compared algorithms have similar costs when varying the

number of applications or users.

5.4.5.3 Migration Cost

Regarding migration costs in Figures 38a and 38b, Cloud and Static present no

migration as expected. In both figures, GS has the highest costs, which is a trade-off of prioritizing

deadline violation. In addition, migration costs for H1, SS, and GS initially decrease from 5

to 10 applications and then increase after ten applications in Figure 38a. This cost turning

point happens because of two aspects that impact the volume of migration traffic: (i) the total

number of application replicas that increase with more applications, and (ii) their content size

that shrinks when there are fewer users per application. In Figure 38b, migration costs fall when
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Figure 37 – Average operational cost per time step

(a) 10,000 users (b) 5 applications

Source: Author.

there are more than 10,000 users for a fixed number of applications. As well as the rise of

deadline violation in Figure 36b, this migration cost reduction is also a consequence of cloud

traffic growth.

Figure 38 – Average migration cost per time step

(a) 10,000 users (b) 5 applications

Source: Author.

Although GS has the highest migration costs among the algorithms in Figures 38a

and 38b, its results indicate that less than 0.7% of all application contents in a time step comes

from migration operations. Hence, these results are still low and can be considered an acceptable

compromise for GS to have the lowest deadline violations. Furthermore, our other dynamic

control algorithms (SS and H1) also present low migration costs and have deadline violations

less than or equal to Static, N+D, and Cloud solutions.
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5.5 Summary

In this chapter, we aimed to answer the research question RQ2: "How to reassess the

service placement and load distribution decisions due to dynamic application loads by taking into

account the benefits and costs of service migrations?". We addressed this question by proposing

a centralized controller that uses a limited look-ahead prediction strategy to handle the impact of

service migration on application response time while optimizing multiple performance-related

objectives. In this strategy, we designed a genetic algorithm to solve the formulated problem for

a single time step, and two extensions of this algorithm, SS and GS, when looking at more time

steps within a prediction horizon.

Evaluations has shown that our proposed SS and GS algorithms outperform other

benchmark algorithms in terms of deadline violations while having similar operational cost. A

consequence of prioritizing deadline violation minimization by our proposals was the occurrence

of more service migrations.

In the next chapter, we address the scalability issue of a centralized controller in a

large Edge Computing environment by designing a distributed control strategy.
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6 A DYNAMIC AND DISTRIBUTED APPROACH FOR SERVICE PLACEMENT

WITH LOAD DISTRIBUTION

This chapter addresses the scalability issue of the centralized controller presented

in the previous chapter when taking control decisions in a large-scale Edge Computing (EC),

i.e., an infrastructure with many EC nodes. Hence, we propose a hierarchical distributed limited

look-ahead control approach to reduce the dimensionality of the overall control problem by

decomposing this problem into a set of local control problems solved in a hierarchical cooperative

fashion. The main contributions of this chapter are the following:

– We design a two-layer hierarchical control architecture. At the upper control layer, a global

controller receives system-wide information and provides local control restrictions for the

lower control layer, which is composed of local controllers that may exchange information

to coordinate their control decisions.

– For the global controller, we propose to use a simplified or aggregated view of the system

to reduce the dimensionality of taking control decisions for the entire system. Based on this

simplified system model, we formulate a global control decision problem to optimize the

overall system performance. We then apply the BRKGA+NSGA-II to solve the formulated

problem, in which the obtained solution is communicated to local controllers as additional

constraints in their control decision problems.

– We develop a local controller to make control decisions for a subset of EC nodes based on

dynamics, constraints, objectives, and environment disturbances in this node subset. As a

control decision in a local controller may affect the performance on nodes controlled by

another controller, we implement a cooperative strategy where local controllers exchange

information to coordinate their control actions.

The remainder of this chapter is organized as follows. In Section 6.1, we present our

hierarchical distributed control architecture. Section 6.2 describes the global controller, whereas

Section 6.3 defines the local controllers and their cooperation. Next, we conduct performance

evaluations in Section 6.4. Then, Section 6.5 concludes this chapter.

6.1 Hierarchical Distributed Control Design

As shown in Figure 39a, the centralized controller presented in Chapter 5 receives

information about the entire system and must decide the control inputs for each node in the Edge

Computing infrastructure. Moreover, control decisions involve solving the optimization control
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problem (5.12) at each time step. However, the centralized approach may suffer scalability

issues to solve this problem within a time step duration in a large-scale Edge Computing system.

In order to address this issue, we adopt a distributed control approach wherein the overall

control problem is decomposed into a set of local control problems to be solved in a hierarchical

cooperative fashion.

Figure 39 – Control architectures

(a) Centralized control (b) Hierarchical distributed control

Source: Author.

The adopted distributed control architecture is illustrated in Figure 39b, which is

based on a distributed control structure proposed by Abdelwahed et al. (2004) for load distribution

in a Cloud Computing system. In the adopted distributed architecture for an EC system, all EC

nodes are partitioned into disjoint subsets called subsystems. For instance, nodes can be grouped

in the same subsystem if they are geographically close. However, it is out of the scope of this

thesis to define how to do this partition. In addition, the distributed architecture contains two

layers of limited look-ahead controllers, which are described as follows.

At the lowest level, a subsystem has its own local controller responsible for control

decisions (e.g., application placement and load distribution) only on its underlying nodes, which

are fewer than the total number of nodes in the entire system. Consequently, there are fewer

decision variables in a local controller compared to the centralized approach. Each local controller

makes its own control decisions based on dynamics, constraints, objectives, and environment

disturbances of the subsystem under consideration. Unlike the distributed architecture proposed
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by Abdelwahed et al. (2004), local controllers may also exchange information (e.g., control

inputs and subsystem states) in our distributed control system to coordinate their decision-making

processes as subsystems interactions may influence their performance. For example, a fraction

of request load from a subsystem can be distributed to another subsystem, affecting application

workloads in both subsystems and, thus, application response time. In this way, the local

controller of a subsystem can use the load distribution information from other controllers to

make its own load distribution decision in order to improve its subsystem performance.

On top of local controllers, a global controller receives system-wide information and

takes control decisions based on dynamics, constraints, objectives, and environment disturbances

of the overall system. These global control decisions are then communicated to local controllers

as additional restrictions on their decision-making processes towards optimizing the overall

system performance while satisfying global constraints. For instance, a global constraint can

be the maximum number of application replicas to be placed over the entire system. However,

the global controller has a more simplified view of the entire system instead of considering a

detailed system model like the one used by the centralized approach. This simplified view is

used to reduce the dimensionality of taking control decisions and is provided by the aggregated

model that aggregates or averages information from the subsystems over some time interval.

Furthermore, controllers at different levels in the hierarchy can operate at different

time scales. As the global controller uses aggregated information about the subsystems, it

typically operates on a longer time scale when compared to the local controllers. Hence, global

decisions can be seen as coarse-grained control actions that impose long-term restrictions while

local controllers have short-term and fine-grained control of their subsystems.

In the next two sections, we detail the distributed control approach in a top-bottom

fashion, where Table 12 summarizes the main notations used in this chapter. More specifically,

Sections 6.2 and 6.3 describe the global and local controllers, respectively.

6.2 Global Controller

The global controller delimits the number of application replicas placed in each

subsystem and the amount of load dispatched between subsystems. By having a global view

of the entire system, the global controller can specify these delimit values as control actions

to optimize the overall system performance while satisfying global constraints, such as the

maximum number of application replicas allowed to be placed in the entire system.
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Table 12 – Main notations of the distributed service placement problem
Symbol Description

Lbw
l ,Lpd

l Bandwidth and propagation delay of link l, respectively

Ncap
n,r , Ncost

n,r (x) Total capacity and allocation cost of resource r on node n, respectively

Ard
a , Amax

a , Adata
a Response deadline, max. number of replicas, and request data length of app a, respectively

Awork
a , Areq

a CPU work size of a request and request generation rate for app a, respectively

Ar
a(λ ) Demand of resource r for a replica of app a with workload λ

AD+R
a (λ ) Content size of app a with workload λ

ua,n(t) Number of active users connected to node n requesting app a at time t

Global Controller

VG, Vi Set of all subsystems and nodes in subsystem i, respectively

ρG
a,i(tG) Number of replicas of app a to be placed in subsystem i at global time step tG

δ G
a,i, j(tG) Fraction of requests for app a that should be distributed from subsystem i to j at time tG

QG
a,i(tG) Request generation rate from users of app a in subsystem i at time tG

dG
a,i, j(tG) Response time of requests for app a from subsystem i to j at time tG

qG
a,i(tG) Number of requests waiting in the queue of a single app replica a in subsystem i at time tG

TG, TL Global and local time step duration, respectively

ΛG
a,i(tG), λ G

a,i(tG) Request arrival rate in an app a on subsystem i before and after load distribution at time tG

iC Central node of subsystem i

Dnet(x,m,n) Network delay between nodes m and n for data with length x

Amin
a,i , Amax

a,i Min. and max. number of app replicas a that can be placed in subsystem i, respectively

Λmax
a,i, j Max. load of app a that can be dispatched from subsystem i to j

Local Controller

V−i,V ′i Set of neighbor subsystems and interactable entities of subsystem i, respectively

ρ i
a,n(tL), δ i

a,m,n(tL) App placement and load distribution variables in subsystem i at local time step tL

Qi
a,n(tL) Request generation rate from users of app a in entity n ∈ V ′i at time tL

di
a,m,n(tL) Response time of requests for app a from entity m to n ∈ V ′i at time tL

qi
a,n(tL) Number of requests waiting in the app a queue on node n ∈ Vi at time t

Λi
a,n(tL), λ i

a,n(tL) Request arrival rate in an app a in n ∈ V ′i before and after load distribution at time tL

αa,i(tL) Load spreading factor in subsystem i for app a at time tL

λ
−i
a, j(k) Load from outside subsystem i to an app a in subsystem j at time tL

Pa,i(tL) Total number of replicas of app a placed in subsystem i at time tL

Λmax
a,i, j(tL) Max. load that can be dispatched from subsystem i to j at time tL

Source: Author.

According to the Limited Look-ahead Control (LLC) concept, we first model the

system dynamics used by the global controller in Subsection 6.2.1. Then, we formulate the

global control optimization problem in Subsection 6.2.2. Finally, we present a genetic-based
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algorithm to solve the formulated problem in Subsection 6.2.3.

6.2.1 System Dynamics

Instead of considering all nodes in the Edge Computing, the global controller uses

a simplified system model where all EC nodes in a subsystem are seen as a single entity

representing the subsystem. Let V be the set of all EC nodes in the system, VG be the set of all

subsystems, and Vi ⊆ V be the set of nodes in a subsystem i ∈ VG. Then, the total capacity for

resource r ∈R in a subsystem i is the aggregated capacity of all nodes in the subsystem, i.e.,

Ncap
i,r = ∑n∈Vi Ncap

n,r . Meanwhile, the resource allocation cost in subsystem i is determined by the

average allocation cost among all nodes in this subsystem, i.e., Ncost
i,r (x) = 1

|Vi|∑n∈Vi Ncost
n,r (x).

Regarding system dynamics, we also use a simplified model to describe how the

system behaves when applications are placed in the subsystems and application loads are

distributed among subsystems. Thus, the global controller uses the following behavioral model

ΦG(·) to characterize the dynamics of an EC system partitioned into subsystems:

sG(tG +1) = ΦG (sG(tG),cG(tG),eG(tG)) (6.1)

where tG is the time step index of the global controller. The parameters sG(·), cG(·),

and eG(·) are the system state, control input, and environment input, respectively.

For the behavioral model ΦG(·), the control input cG(tG) = (ρG(tG),δG(tG)) is given

by the following decision variables:

– Application Placement ρG(tG) = {ρG
a,i(tG) | a ∈A and i ∈ VG}. Unlike the centralized

approach that uses binary variables, here, ρG
a,i(tG)≥ 0 is an integer variable specifying the

number of replicas of application a to be placed inside subsystem i at time step tG as a

subsystem can be composed of various nodes with hosting capability.

– Load Distribution δG(tG) = {δ G
a,i, j(tG) | a ∈A and i, j ∈ VG}. Similar to the centralized

approach, δ G
a,i, j(tG) ∈ [0,1] is the fraction of requests for an application a to be distributed

from a source subsystem i to a target subsystem j at time tG.

The environment input eG(tG) = (QG(tG)) is defined as:

– User-Generated Request Rate QG(tG) = {QG
a,i(tG) | a ∈A and i ∈ VG}, where QG

a,i(tG)

is the aggregated average load generated by all users of an application a attached to nodes

in subsystem i during global time step tG.

As the global controller operates at a slower time scale when compared to local



141

controllers, the global time step duration TG is τ times longer than a time step of a local controller,

i.e., TG = τTL, where TL is the local time step duration and τ > 1 is a positive integer. This time

scale difference between global and local controllers is illustrated in Figure 40 when τ = 2. Let

QG
a,i(tG) be the user-generated load in a subsystem i seen by the global controller. We can define

QG
a,i(tG) as the average of aggregated loads estimated by the local controller of this subsystem

over a period of τ local time steps. That is, QG
a,i(tG) is given as:

QG
a,i(tG) =

1
τ

τ−1

∑
k=0

∑
n∈Vi

Q̂i
a,n(tL + k) (6.2)

where tL is the local time step at the beginning of global time step tG and Q̂i
a,n(tL+k)

is the estimated load for an application a from users attached to a node n in subsystem i at local

time step tL + k, k ∈ [0,τ−1].

Figure 40 – Example of time scale difference
between global and local controllers

Source: Author.

Similar to the centralized approach, the system state sG(tG) = (dG(tG),qG(tG)) at

time step tG is given as:

– Response Time dG(tG) = {dG
a,i, j(tG) | a∈A and i, j ∈VG}, where dG

a,i, j(tG) is the average

response time of requests for application a from source subsystem i to target subsystem j

at the beginning of time step tG.

– Queue Length qG(tG) = {qG
a,i(tG) | a ∈ A and i ∈ VG}, where qG

a,i(tG) is the average

number of requests for a replica of application a waiting to be processed on subsystem i at

the beginning of time step tG.

At the current global time step tG, we estimate qG
a,i(tG) as the averaged values

observed by the local controller of subsystem i. Equation (6.3) presents this estimation, where

qi
a,n(tL) is the observed queue length at beginning of local time step tL for a replica of application

a placed on a node n inside subsystem i, and ρ i
a,n(tL−1) is a binary variable specified by the
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local controller related to the application placement.

qG
a,i(tG) =


∑n∈Vi qi

a,n(tL)ρ
i
a,n(tL−1)

∑n∈Vi ρ i
a,n(tL−1)

if ∑n∈Vi ρa,n(tL−1)> 0

0 otherwise

(6.3)

Next, we estimate system states within the prediction horizon with length HG em-

ployed by the global controller.

6.2.1.1 System State Estimation

Given a system state sG(k) and environment input eG(k) at time k ∈ [tG, tG+HG−1],

we estimate the next system state sG(k+1) for the behavioral model ΦG(·) when a control input

cG(k) is applied to the system at time step tG.

In a system state sG(k+ 1), the response time dG
a,i, j(k+ 1) comprises the network

delay dG,net
a,i, j (k+ 1) and processing delay dG,proc

a, j (k+ 1), as shown in Equation (6.4). We do

not consider the initialization delay as the migration delay can be neglected due to the longer

duration of a global time step. We estimate both network and processing delays in the remainder

of this subsection.

dG
a,i, j(k+1) = dG,net

a,i, j (k+1)+dG,proc
a, j (k+1) (6.4)

Network delay dG,net
a,i, j (k+1). Regarding the source and target subsystems, we have

two cases to consider: they are the same (i.e., i = j), or they are different subsystems (i.e., i 6= j).

For the network delay between two different subsystems, we estimate it as the network delay

between the central nodes of these subsystems. The central node iC of a subsystem i is defined as

the node with the lowest network delay between all other nodes inside the subsystem. We adopt

this network delay estimation based on central nodes to have an approximate distance between

any two nodes in different subsystems. Moreover, Equation (6.5) determines this central node iC,

where Pm,n is the shortest path between nodes m and n, and Lbw
l and Lpd

l are the bandwidth and

propagation delay of a link l in this path, respectively.

iC = argmin
n∈Vi

{
∑

m∈Vi

Dnet(1,m,n)

}

Dnet(x,m,n) =


0 if m = n

∑
l∈Pm,n

x
Lbw

l
+Lpd

l otherwise

(6.5)
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For the case where the source and target subsystems are the same, we estimate the

network delay as being inversely proportional to the number of application replicas placed in

the subsystem. The reason for this estimation is as follows. On the one hand, the network delay

is zero when an application replica is placed in every node inside the subsystem. The idea is

that loads are processed in their source nodes and, thus, there is no request transmission over

the network between nodes inside the subsystem. On the other hand, the network delay is the

average network delay between the central node and other nodes inside the subsystem when there

is at most one application replica placed in this subsystem. For other numbers of application

replicas placed in the subsystem, the network delay follows a linear relationship between these

two extreme values.

Finally, Equation (6.6) expresses the network delay based on the above-discussed

two cases for the source and target subsystems.

dG,net
a,i, j (k+1) =


Dnet(Adata

a , iC, jC) if i 6= j(
1− ρG

a,i(k)
|Vi|

)(
1

|Vi|−1

)
∑m∈Vi Dnet(Adata

a ,m, iC) if i = j and |Vi| ≥ 2

0 otherwise

(6.6)

Processing delay dG,proc
a, j (k + 1). Like the centralized approach, the aggregated

request arrival rate before load distribution ΛG
a, j(k) for application a in all nodes inside subsystem

j is also given by the predicted environment input Q̂G
a, j(k) and the estimated queue length qG

a, j(k),

as shown in Equation (6.7). Moreover, we simplify the load after distribution by considering the

request are uniformly distributed among all application replicas placed in a subsystem. In this

way, Equation (6.8) describes the request arrival rate after load distribution in a single replica of

application a placed in subsystem j, and Equation (6.9) gives the processing rate µG
a, j(k) of this

replica.

Λ
G
a, j(k) = Q̂G

a, j(k)+
qG

a, j(k)

TG
ρ

G
a, j(k−1) (6.7)

λ
G
a, j(k) =


1

ρG
a, j(k)

∑i∈VG
δ G

a,i, j(k)Λ
G
a,i(k) if ρG

a, j(k)> 0

0 otherwise
(6.8)

1
µG

a, j(k)
=

Awork
a

ACPU
a

(
λ G

a, j(k)
) (6.9)

As we assume that every replica of application a placed in subsystem j has the same

arrival and processing rate, then each of these replicas has the same processing time and queue
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length. According to the M/M/1 queueing model, Equations (6.10) and (6.11) determine the

average processing time and queue length of an application replica, respectively.

dG,proc
a, j (k+1) =

1
µG

a, j(k)−λ G
a, j(k)

(6.10)

qG
a, j(k+1) =

λ G
a, j(k)

µG
a, j(k)−λ G

a, j(k)
−

λ G
a, j(k)

µG
a, j(k)

(6.11)

Finally, the behavioral model ΦG(·) is specified by Equations (6.4) to (6.11). That is,

it estimates the next system state sG(k+1) given the current state sG(k), a control input cG(k),

and an environment input eG(k).

6.2.2 Optimization Formulation

Let FG be a list of performance-related functions to be optimized. Then, the global

controller solves problem (6.12) at the beginning of each time step tG. In this problem, Equa-

tions (6.12b) to (6.12g) are similar to the constraints of optimization problem (5.12) in the

centralized approach. Additionally, Equation (6.12h) ensures that the number of application

replicas placed in a subsystem does not exceed the number of nodes inside this subsystem. The

reason for this is that only a single replica of an application is placed per node. Constraint (6.12i)

guarantees that all applications are deployed in the cloud subsystem, which is the subsystem

containing the cloud node. This constraint allows that local controllers can always dispatch load

to the cloud node. Equation (6.12j) limits that resources allocated to a single application replica
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do not surpass the average node capacity in a subsystem.

min
cG(k)∈C

tG+HG−1

∑
k=tG

FG (sG(k+1),cG(k),eG(k)) (6.12a)

s.t. sG(k+1) = ΦG (sG(k),cG(k),eG(k)) ∀k ∈ [tG, tG +HG) (6.12b)

1≤ ∑
j∈VG

ρ
G
a, j(k)≤ Amax

a ∀a ∈A ,∀k ∈ [tG, tG +HG) (6.12c)

δ
G
a,i, j(k)≤ ρ

G
a, j(k) ∀a ∈A ,∀i, j ∈ VG,∀k ∈ [tG, tG +HG) (6.12d)

∑
j∈VG

δ
G
a,i, j(k)Λ

G
a,i(k) = Λ

G
a,i(k) ∀a ∈A ,∀i ∈ VG,∀k ∈ [tG, tG +HG) (6.12e)

∑
a∈A

ρ
G
a, j(k)A

r
a

(
λ

G
a, j(k)

)
≤ Ncap

j,r ∀r ∈R,∀ j ∈ VG,∀k ∈ [tG, tG +HG) (6.12f)

λ
G
a, j(k)< µ

G
a, j(k) ∀a, j

(
ρ

G
a, j(k)> 0

)
,∀k ∈ [tG, tG +HG) (6.12g)

0≤ ρ
G
a, j(k)≤ |V j| ∀a ∈A ,∀ j ∈ VG,∀k ∈ [tG, tG +HG) (6.12h)

ρ
G
a,cloud(k)≥ 1 ∀a ∈A ,∀k ∈ [tG, tG +HG) (6.12i)

ρ
G
a, j(k)A

r
a

(
λ

G
a, j(k)

)
≤ ρ

G
a, j(k)

Ncap
j,r

|V j|
∀a, j,r ∈A ×VG×R,∀k ∈ [tG, tG +HG) (6.12j)

There are fewer decision variables in problem (6.12) than in centralized optimization

problem (5.12) as long as the number of subsystems is much less than the number of nodes in the

entire system, i.e., |VG| � |V |. Hence, the global controller is more scalable than the centralized

controller and can still maintain some control of the entire system. We describe this control in

detail in the rest of this subsection.

Once the problem (6.12) is solved, the global controller uses the obtained solution

as a sequence πc = {cG(k) | k ∈ [tG, tG +HG−1]} of control inputs to indirectly control the

system by delimiting control actions of local controllers. In the obtained control sequence, we

use the first control input cG(tG) = (ρG(tG),δG(tG)) to define upper and lower limits related to

application placement and load distribution decisions for each local controller. More specifically,

these limits are described as follows:

– Maximum Application Replicas Amax
a,i . For each subsystem i and application a, Equa-

tion (6.13) specifies the maximum number of application replica that a local controller can

place in this subsystem based on the control input selected by the global controller.

Amax
a,i = ρ

G
a,i(tG) (6.13)

– Minimum Application Replicas Amin
a,i . It is the minimum number of replicas of applica-

tion a that should be placed in subsystem i. As shown in Equation (6.14), this lower limit
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is just used to ensure that all applications are deployed in the cloud subsystem.

Amin
a,i =

1 if i = cloud

0 otherwise
(6.14)

– Maximum Load Distribution Λmax
a,i, j. Equation (6.15) specifies Λmax

a,i, j as the maximum

load (i.e., requests rate) of an application a that can be dispatched from a subsystem i to

another subsystem j. Moreover, we do not impose limits to loads dispatched to the cloud

or the same subsystem.

Λ
max
a,i, j =

∞ if j = cloud or i = j

δ G
a,i, j(tG)Λ

G
a,i(tG) otherwise

(6.15)

The global controller then informs the aforementioned limits to local controllers as

constraints that should be satisfied by their control decisions until the next global time step when

the above decision-making process may adjust these limits.

6.2.3 Control Algorithm

Although problem (6.12) is reduced in terms of decision variables when compared

with the centralizer optimization problem, it is yet an MINLP problem and, consequently,

NP-Hard. Hence, we can apply the genetic algorithm BRKGA+NSGA-II to find sub-optimal

solutions for problem (6.12). In the same fashion as the centralized approach, we first propose a

genetic-based algorithm to solve the problem for a single time step. Then, this algorithm can be

extended to consider a prediction horizon with multiple time steps.

In order for algorithm BRKGA+NSGA-II to solve problem (6.12) when the predic-

tion horizon HG = 1, we need to define a new chromosome representation and decoder algorithm.

This new design is necessary because the global controller employs integer variables for the

application placement decisions as multiple replicas of an application can be deployed in a

subsystem. Hence, the chromosome for the one-time step algorithm used by the global controller
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is a random-key vector represented as follows:

C =
[
CI

1,C
I
2, . . . ,C

I
|A |,

CII
1 ,C

II
2 , . . . ,C

II
|A |,

CIII
1,1,C

III
1,2, . . . ,C

III
1,|VG|, . . . ,C

III
|A |,1,C

III
|A |,2, . . . ,C

III
|A |,|VG|,

CIV
1,1,C

IV
1,2, . . . ,C

IV
1,|VG|, . . . ,C

IV
|A |,1,C

IV
|A |,2, . . . ,C

IV
|A |,|VG|

CV
1,1,C

V
1,2, . . . ,C

V
1,|VG|, . . . ,C

V
|A |,1,C

V
|A |,2, . . . ,C

V
|A |,|VG|

]
where the five parts of the above representation are detailed below:

1. CI
a is related to the total number of replicas of application a to be placed in the entire

system.

2. CII
a is the fraction of subsystems to be selected as candidates for deployment places of

application a.

3. CIII
a, j is the priority to select a subsystem j to be a deployment place of application a.

4. CIV
a, j is related to the number of replicas of application a to be placed in subsystem j.

5. CV
a,i is the priority to distribute requests for application a from a subsystem i.

Compared with the one-time step chromosome for the centralized approach presented

in Section 5.3.1, the above chromosome representation has two additional parts, CI and CIV.

These additional parts address the issue that the number of subsystems selected to host application

replicas does not imply knowing the total number of replicas to be placed in the entire system

because a single subsystem can host multiple replicas. Therefore, it is necessary to specify the

total number of application replicas placed in the entire system and each subsystem.

Algorithm 7 decodes a vector with the above chromosome representation into a

control input for problem (6.12). This algorithm is an adaptation of Algorithm 3 to take into

account integer variables for the placement decisions. The main difference between these two

algorithms is the first step. For each application, the first step of Algorithm 7 not only selects

a subset of subsystems as candidates to host the application but also defines the number of

application replicas that should be placed in each selected subsystem. For this, lines 4 and 5

determine the number of replicas and subsystems based on CI and CII, respectively. Then, line 6

selects the subsystems as candidates to host a specific application by CIII. The cloud subsystem

is also added to the selected subsystems set in line 7. Next, it is ensured that each selected

subsystem can host at least one replica of the specified application between lines 8 to 10. Finally,

from lines 12 to 16, the total amount of replicas is split among the selected subsystems based on
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Algorithm 7: Chromosome decoder for the global one-time step representation
Data: individual, sG(k), eG(k)
Result: Control input cG(k) = (ρG(k),δG(k))

1 initialize ρG
a, j(k), δ G

a,i, j(k), λ G
a, j(k)← 0;

2 CI,CII,CIII,CIV,CV← individual.chromosome;
3 forall a ∈A do /* Step I: Subsystems Selection */
4 r←min(∑i∈VG

|Vi|, dCI
a(A

max
a −1)e);

5 z←min(r, dCII
a (|VG|−1)e);

6 Va← select z subsystems with higher CIII
a, j, j ∈ VG \{cloud};

7 Va←Va∪{cloud};
8 forall j ∈Va do
9 Pa, j← 1;

10 CIV
a, j← (CIV

a, j +1)/(|Va|+∑i∈Va CIV
a,i); // normalized value

11 r←min(r, ∑i∈Va |Vi|)−|Va|; // remaining replicas to be distributed
12 while r > 0 do
13 forall j ∈Va do
14 p←max(1,brCIV

a, jc);
15 if Pa, j + p≤ |V j| and r > 0 then
16 Pa, j← Pa, j + p; r← r− p;

/* Step II: Load Distribution */
17 L← list of pairs (a, i) ∈A ×VG sorted by CV

a,i in descending order;
18 forall (a, i) ∈ L do
19 r← ΛG

a,i(k); λ ∗← ΛG
a,i(k)λ%;

20 forall j ∈Va do
21 dG

a,i, j(k+1)← by Equation (6.4) and cG(k) =
(
ρG(k) = {Pa, j},δG(k)

)
;

22 sort subsystems j ∈Va by dG
a,i, j(k+1) in ascending order;

23 while r > 0 do
24 forall j ∈Va do
25 l← λ G

a, j(k)+λ ∗/Pa, j;

26 if
(

ρG
a, j(k) = Pa, j, λ G

a, j(k) = l
)

respects (6.12f), (6.12g), and (6.12j) then
27 ρG

a, j(k)← Pa, j; λ G
a, j(k)← l;

28 δ G
a,i, j(k)← δ G

a,i, j(k)+λ ∗/ΛG
a, j(k);

29 r← r−λ ∗; λ ∗←min{r,λ ∗};
30 update free resources on subsystem j given cG(k) = (ρG(k),δG(k));
31 break;

32 forall a ∈A do /* Step III: Local Search */
33 forall j ∈Va do // Pre-deployment

34 if
(

ρG
a, j(k) = Pa, j, λ G

a, j(k)
)

respects (6.12f), (6.12g), and (6.12j) then
35 ρG

a, j(k)← Pa, j;
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CIV. The basic idea of this splitting is to give more application replicas to subsystems with high

values for CIV.

The second and third steps of Algorithm 7 work similarly to the corresponding steps

of Algorithm 3. Nevertheless, instead of placing a single application replica in a subsystem, the

number of replicas to be placed in a subsystem is defined by the first step of Algorithm 7.

Let A = |A |, G = |VG|,V = |V | = ∑i∈VG
|Vi|, R = |R|, and L = d1/λ%e. Then,

the first step of Algorithm 7 has complexity equals to O(A(G logG+V )) due to the sorting

procedure in line 6, and the number of replicas to split (lines 12 to 16) can be in the worst-case

equal to the total number of nodes in the system. For the same reason used for Algorithm 3, the

rest of Algorithm 7 (i.e., second and third steps) has complexity O(AG(logA+G logG+LGR)).

Therefore, the overall complexity of Algorithm 7 is O(AG(logA+G logG+LGR)+AV ).

For a prediction horizon HG > 1, the global controller can apply the simple or

general sequence heuristic described in Section 5.3.2 to obtain a sequence of control inputs for

problem (6.12).

6.3 Local Controller

A local controller can be seen initially as a centralized controller that only considers

control actions regarding application placement and load distribution on nodes inside a subsystem.

However, subsystems do not work, in general, isolated in the Edge Computing infrastructure and,

thus, control decisions in a subsystem may affect other subsystems and vice versa. For instance,

a local controller can decide to dispatch application requests from a subsystem to another due

to the lack of available resources in the former subsystem to handle these requests. Therefore,

a local controller should also take into account interactions between external subsystems and

control restrictions imposed by the global controller.

We then design in this section a local controller based on the consideration mentioned

above. First, we describe the dynamics of a subsystem in Subsection 6.3.1. Then, we formalize

the optimization problem solved by each local controller in Subsection 6.3.2. Subsection 6.3.3

presents the proposed algorithm that obtains solutions for the formulated problem. Finally,

we design how local controllers cooperate with each other to decide their control actions in

Subsection 6.3.4.
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6.3.1 System Dynamics

For a subsystem i ∈ VG, we incorporate the interaction with its neighbor subsystems

to model the dynamic behavior of this subsystem. A subsystem j is said to be a neighbor of

subsystem i if the global controller allowed them to exchange request loads for some application.

Equation (6.16) determines the set V−i of neighbor subsystems of subsystem i, where Λmax
a,i, j and

Λmax
a, j,i are load distribution limits imposed by the global controller.

V−i =
{

j ∈ VG \{i} | ∃a ∈A , Λ
max
a,i, j +Λ

max
a, j,i > 0

}
(6.16)

Given Vi as the set of all EC nodes inside a subsystem i, we define V ′i = Vi∪V−i as

the extension of this set of nodes by including each neighbor subsystem represented as a single

entity. Then, we use V ′i to model the dynamic behavior of subsystem i, including neighbor

subsystems interactions, as follows:

si(tL +1) = ΦL (si(tL),ci(tL),ei(tL)) (6.17)

where tL is the time step index of a local controller and ΦL(·) is the subsystem behav-

ioral model. For the subsystem state si(tL), control input ci(tL), and environment input ei(tL), we

define them in the same way as in the centralized approach but using V ′i instead of V . Control

input ci(tL) = (ρi(tL),δi(tL)) is related to application placement ρi(tL) = {ρ i
a,n(tL) ∈ {0,1} |

a ∈ A and n ∈ V ′i } and load distribution δi(tL) = {δ i
a,m,n(tL) ∈ [0,1] | a ∈ A and m,n ∈ V ′i }.

Subsystem state si(tL) = (di(tL),qi(tL)) comprises the response time di(tL) = {di
a,m,n(tL) | a ∈

A and m,n ∈ V ′i } and queue length qi(tL) = {qi
a,n(tL) | a ∈A and n ∈ V ′i }, and the application

load Qi(tL) = {Qi
a,n(tL) | a ∈ A and n ∈ V ′i } is the environment input ei(tL). For a neighbor

subsystem n ∈ V−i, Qi
a,n(tL) can be seen as the request load for application a dispatched from

this subsystem to be handle in subsystem i.

An important observation is that a local controller does not actually decide the

placement of applications in neighbor subsystems, but we include this decision to simplify our

model. For the same simplification reason, we represent a neighbor subsystem as a single entity

instead of including all nodes inside this neighbor subsystem to reduce decision variables without

disregarding interaction with neighbors.

Next, we describe how the behavioral model ΦL(·) estimates subsystem states within

a prediction horizon with length HL.
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6.3.1.1 System State Estimation

By disregarding neighbor subsystems, a subsystem state si(k+ 1) at a time step

within a prediction horizon HL, i.e., k ∈ [tL, tL +HL−1], is estimated in the same fashion as a

system state in the centralized approach. However, we need to extend this estimation to consider

external influence from these neighbor subsystems on a local subsystem state. Hence, we further

detail this extension in the rest of this subsection.

The response time di
a,m,n(k+ 1) in a state of subsystem i involves, such as in the

centralized approach, the network, processing, and initialization delays. For nodes inside

subsystem i, i.e., m and n ∈ Vi, these three factors are estimated as described for the centralized

approach in Section 5.2.1. When a neighbor subsystem is involved, i.e., m or n ∈ V−i, we use

its central node to represent it and still continue adopting the network and initialization delays

estimation defined for the centralized approach. However, a processing delay in a subsystem

is more complicated to estimate by the local controller of another subsystem because it does

not know the dynamic behavior of external subsystems. Hence, a local controller uses an

approximation of this behavior to determine processing delays in neighbor subsystems.

For a neighbor subsystem n ∈ V−i, its request rate before the distribution Λi
a,n(k) is

the load dispatched from this subsystem to subsystem i, as shown in Equation (6.18). Then, this

load can be distributed among nodes inside subsystem i or to the cloud subsystem. After the load

distribution, the request rate arriving in a neighbor subsystem includes not only loads dispatched

from nodes inside subsystem i but also loads from other nodes over the Edge Computing

infrastructure. Moreover, as a subsystem can host multiple replicas of an application, request

arriving in this subsystem must be distributed among these replicas. Equation (6.19) determines

the request arrival rate in a single application replica placed in the neighbor subsystem n, where

λ−i
a,n(k) is the load from nodes outside subsystem i to this application replica, and αa,n(k) ∈ [0,1]

is a spreading factor. This spreading factor is applied to approximate how requests for application

a are distributed among all replicas of this application placed in subsystem n at time step tL.

Λ
i
a,n(k) = Q̂i

a,n(k) n ∈ V−i (6.18)

λ
i
a,n(k) = λ

−i
a,n(k)+αa,n(k) ∑

m∈V ′i

δ
i
a,m,n(k)Λ

i
a,m(k) n ∈ V−i (6.19)

Given the above arrival rate after load distribution, the processing rate, queue length,

and processing delay for a neighbor subsystem can be estimated in the same fashion as for a
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node inside the subsystem. That is, we use the estimations presented in Section 5.2.1.1 for the

centralized approach.

6.3.2 Optimization Formulation

Give a list FL of performance-related functions to be optimization in each subsystem,

the local controller of a subsystem i ∈ VG independently solves the following problem at each

local time step tL:

min
ci(k)∈C

tL+HL−1

∑
k=tL

FL (si(k+1),ci(k),ei(k)) (6.20a)

s.t.si(k+1) = ΦL (si(k),ci(k),ei(k)) ∀k ∈ [tL, tL +HL) (6.20b)

δ
i
a,m,n(k)≤ ρ

i
a,n(k) ∀a ∈A ,∀m,n ∈ V ′i ,∀k ∈ [tL, tL +HL) (6.20c)

∑
n∈V ′i

δ
i
a,m,n(k)Λ

i
a,m(k) = Λ

i
a,m(k) ∀a ∈A ,∀m ∈ V ′i ,∀k ∈ [tL, tL +HL) (6.20d)

∑
a∈A

ρ
i
a,n(k)A

r
a
(
λ

i
a,n(k)

)
≤ Ncap

n,r ∀r ∈R,∀n ∈ Vi,∀k ∈ [tL, tL +HL) (6.20e)

λ
i
a,n(k)< µ

i
a,n(k) ∀a,n

(
ρ

i
a,n(k) = 1

)
,∀k ∈ [tL, tL +HL) (6.20f)

Amin
a,i ≤ ∑

n∈Vi

ρ
i
a,n(k)≤ Amax

a,i ∀a ∈A ,∀k ∈ [tL, tL +HL) (6.20g)

∑
m∈V ′i

δ
i
a,m,n(k)Λ

i
a,m(k)≤ Λ

max
a,i,n(k) ∀a ∈A ,∀n ∈ V−i,∀k ∈ [tL, tL +HL) (6.20h)

δ
i
a,m,n(k) = 0 ∀a ∈A ,∀m ∈ V−i,∀n ∈ V−i \{cloud},k ≥ tL (6.20i)

ρ
i
a,n(k) = Pa,n(k) ∀a ∈A ,∀n ∈ V−i,∀k ∈ [tL, tL +HL) (6.20j)

where Equation (6.20c) limits load distribution to nodes or neighbor subsystems

hosting the requested application, whereas Equation (6.20d) ensures the distribution of all loads.

Equation (6.20e) assures that the maximum resource capacity of any node inside subsystem

i is not violated, while Equation (6.20f) ensures queue stability for each application replica.

Equations (6.20g) and (6.20h) set the constraints imposed by the global controller regarding

application placement and load distribution, respectively. Constraint (6.20i) specifies that loads

from neighbor subsystems are handled in nodes inside subsystem i or the cloud subsystem. As a

result, this constraint prevents requests from getting stuck in a load redistribution loop between

subsystems. Finally, Equation (6.20j) establishes that the decision variables for application

placement in neighbor subsystems are actually constants. We discuss later in Section 6.3.4 how

to obtain the values of these constants Pa,n(k).
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6.3.3 Control Algorithm

Due to the similarity between problem (6.20) and problem (5.12) defined for the

centralized approach, the genetic algorithm BRKGA+NSGA-II can still solve the former

problem with a one-time or multiple-time step prediction horizon, i.e., HL = 1 or HL > 1.

Moreover, problem (6.20) has fewer decision variables than problem (5.12) as |Vi| � |V | and

|V−i| < |VG| � |V |, which may result in faster decision making by a local controller. How-

ever, Algorithm 3, the chromosome decoder for the one-time step representation, needs fewer

adaptations to include the new constraints introduced by problem (6.20). These adaptations are

described below.

Algorithm 8 is the modification of Algorithm 3 that incorporates problem (6.20)

specificity to decode a one-time step chromosome vector into a feasible control input. The main

modifications are the following. For each application, the first step of Algorithm 8 selects a set

of nodes inside a subsystem i as hosting candidates for the application whose set size is upper

limited by the global controller. Then, the second step adds to the set of hosting candidates for an

application, the cloud subsystem and neighbor subsystems containing at least one replica of this

application. Next, application loads are distributed among this expanded candidates set while

respecting constraints of problem (6.20). Finally, the last step of Algorithm 8 tries to place an

application replica in every node selected in the first step. An important observation is that these

modifications do not increase the algorithm complexity and, thus, Algorithm 8 has the same time

complexity as Algorithm 3.

Furthermore, either the simple or general heuristic of Section 5.3.2 can be applied to

solve problem (6.20) when HL > 1 and Algorithm 8 as the one-time step decoder.

6.3.4 Cooperative Control Design

In order to solve problem (6.20), a local controller of a subsystem needs certain in-

formation regarding the control decisions in neighbor subsystems. For instance, this information

includes the number of application replicas placed in a subsystem and the amount of request load

dispatched to other subsystems. However, these control decisions are not known in advance by a

local controller because local controllers make their decisions in parallel, i.e., at the same time.

The above issue can be addressed by allowing cooperation among local controllers

through exchanges of information in their decision-making processes. Christofides et al. (2013)
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Algorithm 8: Chromosome decoder for the local one-time step representation
Data: individual, si(k), ei(k)
Result: Control input ci(k) = (ρi(k),δi(k))

1 initialize ρ i
a,n(k), δ i

a,m,n(k), λ i
a,n(k)← 0;

2 initialize ρ i
a,n(k)← Pa,n(k), n ∈ V−i;

3 CI,CII,CIII← individual.chromosome;
4 forall a ∈A do /* Step I: Nodes Selection */
5 z←min(|Vi|,dCI

aAmax
a,i e);

6 Va← select z nodes with higher CII
a,n, n ∈ Vi;

/* Step II: Load Distribution */
7 L← list of pairs (a,m) ∈A ×V ′i sorted by CIII

a,m in descending order;
8 forall (a,m) ∈ L do
9 r← Λi

a,m(k); // remaining load to be distributed
10 λ ∗← Λi

a,m(k)λ%; // load chunk
11 V ′a←Va∪{cloud}∪{n ∈ V−i | ρ i

a,n(k) = 1};
12 forall n ∈V ′a do
13 update response time di

a,m,n(k+1) given ci(k) = (ρi(k) = {1},δi(k));

14 sort nodes n ∈V ′a by di
a,m,n(k+1) in ascending order;

15 while r > 0 do
16 forall n ∈V ′a do
17 l← λ i

a,n(k)+λ ∗;
18 if

(
ρ i

a,n(k) = 1, λ i
a,n(k) = l

)
respects (6.20e), (6.20f), (6.20h)–(6.20j) then

19 ρ i
a,n(k)← 1;

20 λ i
a,n(k)← l;

21 δ i
a,m,n(k)← δ i

a,m,n(k)+λ ∗/Λi
a,m(k);

22 r← r−λ ∗;
23 λ ∗←min{r,λ ∗};
24 update free resources on node/subsystem n given ci(k) = (ρi(k),δi(k));
25 break;

26 forall a ∈A do /* Step III: Local Search */
27 forall n ∈Va do // Pre-deployment
28 if

(
ρ i

a,n(k) = 1, λ i
a,n(k)

)
respects constraints (6.20e) and (6.20f) then

29 ρ i
a,n(k)← 1;

present an iterative cooperation strategy for distributed Model Predictive Control. At each

iteration of this strategy, each controller optimizes its own set of control inputs assuming that

control inputs of other controllers are fixed to the last agreed value at the previous iteration.

Then, all controllers share their resulting optimal control input sequences. Based on the newly

received control sequences, the iteration process is repeated until a stopping criterion is satisfied.

However, Christofides et al. (2013) specify that control decisions are exchanged among all
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controllers, which may cause scalability issues for the cooperative strategy if there are a large

number of controllers. In our distributed control approach, a local controller only needs to send

information about its control decisions to controllers of neighbor subsystems, generally a subset

of all subsystems. Therefore, our implementation of the iterative cooperation strategy is the

following:

1. At time step t, all controllers receive the monitored state s(t) and environment input e(t)

from their subsystems.

2. At iteration it (it ≥ 1):

2.1 If it is the first iteration, each controller guesses the control information of its neighbor

controllers1.

2.2 Each controller evaluates its own future control input sequence based on its local

subsystem information (s(t) and e(t)) and the last received control information of

the neighbor controllers.

2.3 Neighbor controllers exchange their latest future control information.

3. If a stopping criterion is satisfied, each controller applies its control input c(t) into its

subsystem. Otherwise, go to Step 2 and it← it +1.

In order to use the above iterative cooperation strategy in the decision-making

process of each local controller in our EC system„ we need to specify these three aspects: (i)

what information is shared, (ii) how to guess this information at the first iteration, and (iii) what

is the stopping criterion.

As discussed in Sections 6.3.1 and 6.3.2, Pa,i(k),αa,i(k), Q̂
j
a,i(k),λ

− j
a,i (k), and Λmax

a, j,i(k)

are parameters used by the local controller of a subsystem j that depend on neighbor subsystems

i ∈ V− j. These parameters can be determined by neighbor subsystem controllers sharing infor-

mation related to their control decisions. Thus, after solving problem (6.20), the local controller

of subsystem i sends to each controller of its neighbor subsystems the information below:

– Amount of Application Replicas {Aa,i(k) = ∑n∈Vi ρ i
a,n(k)}. For an application a ∈ A ,

Aa,i(k) is the total number of application replicas to be placed in nodes inside subsystem

i at a time step k within the prediction horizon. According to this data, neighbor con-

trollers of subsystem i update the application placement Pa,i(k) and spreading factor αa,i(k)
1 A neighbor controller is the local controller of a neighbor subsystem.
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parameters as follows:

Pa,i(k) =

1 if Aa,i(k)> 0

0 otherwise
(6.21)

αa,i(k) =


1

Aa,i(k)
if Aa,i(k)> 0

0 otherwise
(6.22)

– Amount of Load Dispatched {Λa,i, j(k) = ∑n∈Vi δ i
a,n, j(k)Λ

i
a,n(k)}. Here, Λa,i, j(k) is an

estimation of the amount of load generated by users of application a in subsystem i that

will be dispatched to a neighbor subsystem j ∈ V−i at a time step k within the prediction

horizon. The local controller of this neighbor subsystem j uses this information to update

its environment inputs as below:

Q̂ j
a,i(k) = Λa,i, j(k) (6.23)

– Application Replica Workload {λa,i(k) =∑n∈Vi λ i
a,n(k)/Aa,i(k)}. At a time step k within

the prediction horizon, λa,i(k) is the average load received by each replica of application a

placed in subsystem i. Based on this data, the controller of a neighbor subsystem j updates

the following parameter:

λ
− j
a,i (k) = max{0, λa,i(k)−αa,i(k) ∑

n∈V ′j

δ
j

a,n,i(k)Λ
j
a,n(k)} (6.24)

– Amount of External Load Not Handled Locally {Λa, j,−i(k) = ∑n∈V−i δ i
a, j,n(k)Λ

i
a, j(k)}.

As the name suggests, Λa, j,−i(k) is the amount of load for application a from a neighbor

subsystem j to subsystem i that is not then distributed to nodes inside subsystem i at a

time step k. The local controller of subsystem j uses this received information to update

the maximum load that can be dispatched to other subsystems, as shown below:

Λ
max
a, j,i(k) = max{0, Λ

max
a, j,i(k)−Λa, j,−i(k)} (6.25)

At the first iteration, local controllers guess the values of the above-mentioned

parameters as follows:

– Aa,i(k) = Amax
a,i , where Amax

a,i is a parameter defined by the global controller, as described in

Section 6.2.2.

– Λa,i, j(k) = Λmax
a,i, j, where Λmax

a,i, j is another parameter determined by the global controller.

The idea here is that a local controller assumes the worst case in which a neighbor

subsystem dispatches the maximum load allowed by the global controller.
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– λa,i(k) = 0. A local controller takes a simple assumption that application replicas in other

subsystems are not busy, i.e., they do not have workloads.

– Λa, j,−i(k) = 0 and Λmax
a, j,i(k) = Λmax

a, j,i. Another simple assumption is that all external loads

are handle on nodes inside a subsystem. Moreover, the maximum load that can be

distributed to other subsystem is initially set to values defined by the global controller.

Then, these values can only be reduced in the next iterations according to Equation (6.25).

The idea behind this is to prevent a subsystem from sending more load to another subsystem

that this latest one can handle.

Regarding the stopping criteria, we use the maximum number of iterations itmax.

Moreover, this parameter value should be smaller in order not to increase the decision-making

time. When the maximum number of iterations is reached, each local controller applies the first

control input of its latest obtained control sequence into its subsystem and also sends this input

to the global controller.

6.4 Performance Analysis

This section presents the preliminary evaluation of our distributed control proposal

when comparing its results with the centralized approach. First, Subsection 6.4.1 describes

the evaluated algorithms. Next, Subsection 6.4.2 presents the performance metrics. Then,

Subsection 6.4.3 details the experiment setup. Finally, we analyze the obtained experimental

results in Subsection 6.4.4.

6.4.1 Evaluated Algorithmic Solutions

We consider the following algorithmic solutions for the experiment conducted in this

chapter:

– Cloud. It places all applications in the cloud node/subsystem.

– Centralized. It is our centralized approach using BRKGA+NSGA-II and the general

sequence heuristic detailed in Section 5.3.2. For this centralized algorithm, we use the

same prediction horizon length and time step duration of local controllers in the distributed

approach, i.e., H = HL and TS = TL.

– Coop. It is our distributed approach. For the global controller, we set the prediction horizon

HG = 1, the time step duration TG = 2TL, and BRKGA+NSGA-II with Algorithm 7 as
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the chromosome decoder. For the local controller, we also use BRKGA+NSGA-II but

with Algorithm 8 as the control input decoder and the general sequence heuristic to

obtain control sequences within the prediction horizon HL = 2. Moreover, we allow that

local controller cooperates by distributing load among subsystems and using the iterative

cooperation strategy explained in Section 6.3.4. In this strategy, we set the maximum

number of iterations to itmax ∈ {1,2}.

– Non-Coop. It is similar to Coop but without allowing loads to be distributed among

subsystems, except for the cloud subsystem. That is, the global controller sets Λmax
a,i, j = 0

when i 6= j and j 6= cloud. Thus, local controllers do not cooperate in their decision-making

processes. Besides, application requests from a subsystem are handled either inside this

subsystem or in the cloud subsystem.

6.4.2 Performance Metrics

Regarding the global controller, we use the deadline violation, operation cost, and

weighted average response time defined in Equations (6.26), (6.27), and (6.28), respectively. The

f G
dv(·) and f G

cost(·) functions are similar to the functions defined in Equations (5.13) and (5.14),

respectively, but adapted for the global control context. Moreover, we select f G
dv(·) as the primary

objective in the preferred dominance operator, and we add f G
rt (·) to have a non-primary conflicted

objective for the operation cost function.

f G
dv (sG(k+1),cG(k),eG(k)) =

∑a∈A ∑i, j∈VG

[
dG

a,i, j(k+1)−Ard
a

]+
δ G

a,i, j(k)Λ
G
a,i(k)

∑a∈A ∑i, j∈VG
δ G

a,i, j(k)Λ
G
a,i(k)

(6.26)

f G
cost (sG(k+1),cG(k),eG(k)) = ∑

a∈A
∑

j∈VG

ρ
G
a, j(k)TG ∑

r∈R
Ncost

j,r (Ar
a(λ

G
a, j(k))) (6.27)

f G
rt (sG(k+1),cG(k),eG(k)) =

∑a∈A ∑i, j∈VG
dG

a,i, j(k+1)δ G
a,i, j(k)Λ

G
a,i(k)

∑a∈A ∑i, j∈VG
δ G

a,i, j(k)Λ
G
a,i(k)

(6.28)

For a local controller, we select the same objective functions (deadline violation,

operation cost, and migration cost) as the centralized approach experiment in Chapter 5 but

adjusted for the subsystem context. Equations (6.29), (6.30), and (6.31) present the deadline
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violation, operation cost, and migration cost adaptations for a subsystem i ∈ VG, respectively.

f L
dv (si(k+1),ci(k),ei(k)) =

∑a∈A ∑m,n∈V ′i

[
di

a,m,n(k+1)−Ard
a
]+

δ i
a,m,n(k)Λ

i
a,m(k)

∑a∈A ∑m,n∈V ′i δ i
a,m,n(k)Λi

a,m(k)
(6.29)

f L
cost (si(k+1),ci(k),ei(k)) = ∑

a∈A
∑

n∈Vi

ρ
i
a,n(k)TL ∑

r∈R
Ncost

n,r
(
Ar

a
(
λ

i
a,n(k)

))
(6.30)

f L
mig (si(k+1),ci(k),ei(k)) =

∑a∈A ∑n∈V ′i AD+R
a

(
λ i

a,n(k)
)

ρ i
a,n(k)

(
1−ρ i

a,n(k−1)
)

∑a∈A ∑n∈V ′i AD+R
a

(
λ i

a,n(k)
)

ρ i
a,n(k)

(6.31)

In order to compare the system performance between the centralized and distributed

approaches, we need first to transform the distributed control decisions of all local controllers

into a control decision of a centralized controller. In this way, we can use the deadline violation

fdv(·), operational cost fcost(·), and migration cost fmig(·) defined in Equations (5.13), (5.14),

and (5.15), respectively, to evaluate both centralized and distributed approaches.

Equation (6.32) describes how to compose a control input c(k) = (ρ(k),δ (k)) for the

centralized approach given the control inputs selected by each local controller. In this equation,

we form the application placement decision ρ(k) = {ρa,n(k)} for the centralized approach by

simply joining the placement variables of all subsystems. On the other hand, the load distribution

δ (k) = {δa,m,n(k)} between any two nodes needs to consider two main cases. If these two nodes

are inside the same subsystems, we use the load distribution decision of the local controller

responsible for this subsystem. Otherwise, if two nodes belong to different subsystems, the load

distribution is the combination of a load distribution chain between neighbor subsystems.

ρa,n(k) = ρ
i
a,n(k) a ∈A ,n ∈ Vi (6.32a)

δa,m,n(k) =


δ i

a,m,n(k) if m,n ∈ Vi

δ
i
a,m, j(k)δ

j
a,i,n(k)+ ∑

l∈V−i\{ j}
δ

i
a,m,l(k)δ

l
a,i, j(k)δ

j
a,l,n(k) otherwise

(6.32b)

6.4.3 Analysis Setup

We use the same experiment scenario and parameters defined for the centralized

approach analysis in Section 5.4.3. We adopt this scenario due to the computational limitation

when executing distributed decision-making processes of several subsystems in a single machine.

Nevertheless, it is still possible to evaluate the performance of the compared algorithms in this

scenario.
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For the distributed approach, we partitioned the Base Station nodes with hosting

capabilities into different subsystems cases, as shown in Figure 41. In the first case, all 3×3 Base

Stations are included in a single subsystem. The second case divides BSs into three subsystems

containing the same number of nodes. In the last case, each BS has an exclusive subsystem.

In each partition case, both core and cloud nodes also have their particular subsystem, and all

subsystems have their own local controller.

Figure 41 – Subsystems scenario cases

(a) 3 subsystems (b) 5 subsystems (c) 11 subsystems

Source: Author.

6.4.4 Results and Discussion

We evaluated the performance of the examined algorithms in a scenario with 10

applications and 10,000 users.

Figure 42a presents the obtained results for the average normalized deadline viola-

tions per time step in the three subsystems cases. To normalize the values of function fdv(·), we

use the Cloud solution as the base. In this figure, we can observe that Cloud and Centralized

solutions have the same results for different subsystem cases on the x-axis because they do not

consider that system partition into subsystems. However, the Coop performance is significantly

impacted by the number of nodes in a subsystem. In the case of three subsystems where all BS

nodes are in a single subsystem, Coop with maximum iterations equal to 1 or 2 has about double

of deadline violations than the Centralized solution, i.e., a 100% increase. On the other hand, in

the case of 11 subsystems where each BS has its own subsystem, Coop presents a 35% average

increase in deadline violations than the Centralized solution. Regarding the Non-Coop solution,

it is also affected by the number of nodes in a subsystem, but its results do not improve as much

as those of Coop when decreasing the number of BS nodes in a subsystem. Moreover, Non-Coop

has worse results than Coop in every subsystem case. This outcome can be explained by the fact
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that Non-Coop does not distribute loads between subsystems, except for the cloud subsystem.

Figure 42 – Performance for different numbers of subsystems with 10 applications and 10,000
users

(a) Normalized Deadline Violation (b) Operational Cost

(c) Migration Cost

Source: Author.

The average operational cost fcost(·) per time slot is shown in Figure 42b. As

expected, Cloud presents the lowest cost due to cloud resources being cheaper than in other

locations. In contrast, the Centralized solution has the highest cost in almost all subsystem cases

because it allocates more resources in BSs close to users, which we assume to be more expensive.

Coop raises its operational cost by increasing the number of subsystems. This cost increase

can be explained by Coop allocating more resources in the BS nodes to deploy applications.

Another consequence of using more resources from BSs is the deadline violation reduction, as

shown in Figure 42a. Non-Coop also presents a cost increase from 3 to 5 subsystems due to the

increase of allocation of BS resources. However, we observe a slight cost reduction from 5 to 11

subsystems. As a subsystem can only dispatch load to itself or the cloud subsystem in Non-Coop,

more loads will be dispatched to this cloud subsystem from a subsystem with fewer nodes and
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more resource competition to handle its user-generated load. Consequently, Non-Coop uses more

cloud resources for the 11 subsystem case, where each subsystem contains a single node, than

for 5 subsystems case.

In Figure 42c, we can see that the Cloud solution has no migration cost fmig(·) as

its placement decisions do not change over time. Non-Coop presents an increase then decrease

pattern due to the same cloud usage reason explained for its operational cost results. Instead of

changing a placement decision, Non-Coop tends to send surplus load to the cloud node and, thus,

it has the second-lowest migration cost. We observe that the migration cost of Coop declines,

especially for itmax = 1, when the system is partitioned into more subsystems. This migration

reduction can be caused by having fewer placement options in a subsystem with few nodes and,

thus, a local controller does not change so much its placement decisions during a global time

step duration.

Figure 43a shows the average execution time per global time step of the global

controller in the distributed solutions, i.e., Non-Coop and Coop. For comparison reason, we

also include in this figure the execution time of Cloud and Centralized solutions, which have a

centralized control architecture. We can observe an execution time increase for the global con-

troller in both Non-Coop and Coop solutions when partitioning the system into more subsystems.

This time increase is due to the global chromosome decoder (Algorithm 7) complexity, which

depends on the total number of subsystems. As the Cloud and Centralized do not rely on the

system partition, it has constant execution times when increasing the number of subsystems. The

Cloud solution has the best results, 2ms on average, as it does not search for control decisions,

but instead, it has a fixed decision. In contrast, the Centralized solution presents the worst results

because it has more control decision variables than the global controller in Non-Coop and Coop

solutions as |V |= 11≥ |VG| ∈ {3,5,11} and H = 2 > HG = 1.

Figure 43b depicts the average execution time per local time step among all local

controllers in a distributed solution. In this figure, the execution time decreases for local

controllers in Non-Coop and Coop when there are more subsystems and, thus, fewer EC nodes

per subsystem. Moreover, Coop with itmax = 2 presents double execution time than Coop with

itmax = 1 because local controllers perform BRKGA+NSGA-II twice according to the iterative

cooperation strategy when the maximum number of iterations is equal to 2. Similar to Figure 43a,

we included the execution time results of Cloud and Centralized solutions, which are also the

best and worst results in Figure 43b, respectively.
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Figure 43 – Execution time of the hierarchical distributed controllers

(a) Global Controller (b) Local Controllers

Source: Author.

Figure 44 shows the average overall number of application replicas placed in different

network parts per time step. In this figure, we can see an increase in the number of application

replicas placed on BS nodes for the distributed solutions (Coop and Non-Coop) by partitioning

the system into more subsystems. Along with the results in Figure 42a, we can conclude that the

global controller underestimates the necessary number of application replicas inside a subsystem

to have low deadline violations if this subsystem contains many nodes. However, a large number

of subsystems containing fewer nodes results in increasing the global controller execution time,

as shown in Figure 43a. Therefore, how an EC system is partitioned affects the trade-off between

system performance and decision scalability.

Figure 44 – Average number of application replicas placed in different network
parts

Source: Author.

Another observation is that Coop with itmax = 1 and itmax = 2 show similar results
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in Figures 42, 43a and 44 for almost all compared cases. These results can be an indication

that local controllers are dispatching the maximum load allowed by the global controller to

other subsystems, which is the value estimated at the first iteration of the cooperation strategy

described in Section 6.3.4.

6.5 Summary

In this chapter, we addressed the research question RQ3: "How to make scalable and

optimized (service placement, load distribution, and service migration) decisions in a large EC

environment?". In order to answer this question, we proposed a hierarchical distributed limited

look-ahead control approach that reduces the dimensionality of a centralized control decision. In

this hierarchical distributed control, all EC nodes are partitioned into clusters called subsystems.

Each subsystem is managed by a local controller responsible for control decisions (service

placement, load distribution, and service migration) regarding nodes within this subsystem.

On top of local controllers, the global controller receives simplified system-wide information

and provides additional control restrictions for local controllers towards optimizing the overall

system performance while satisfying global constraints. Furthermore, neighbor local controllers

exchange subsystem information to coordinate their control decisions.

Preliminary evaluations shows that the performance, especially in terms of deadline

violations, of our distributed approach that solves the control problem in a hierarchical coopera-

tive fashion depends on how the EC system is partitioned into subsystems. In a subsystem with

many nodes, the simplified system model used by the global controller simplifies or disregards

some interaction aspects between nodes inside the subsystem that may affect system performance.

In contrast, a system split into many subsystems containing fewer nodes has less interactions

between nodes in a subsystem, but it may cause scalability issues in control decisions of the

global controller. Therefore, the challenge is to consider detailed system dynamics while having

scalable control decisions.
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7 CONCLUSION

Edge Computing and 5G networks are promising technologies to enable a myriad

of IoT applications, especially time-sensitive applications, by providing Cloud Computing

capabilities, low latency, reduced core traffic load, low energy consumption, and local-context

awareness. However, Edge Computing faces several challenges to become a reality. In particular,

an important issue is to decide the ideal places (edge nodes or cloud servers) to deploy multiple

applications or services while meeting their demands, respecting specified constraints, and

optimizing desired performance metrics. Moreover, service placement is a non-trivial problem

due to the vast distributed, heterogeneous, and dynamic EC environments.

In this thesis, we were interested in the service placement problem, including load

distribution and service migration sub-problems, in the context of cellular networks with EC

capabilities, such as 5G networks. Hence, we first studied related works according to their

problem formulation, system model, controller design, and algorithm solution technique in order

to identify research gaps. We then proposed decision-making approaches to cover the identified

aspects not fully considered by related works, such as time-sensitive application requirements and

performance metrics, multi-objective optimization, proactive control decisions, and distributed

control architecture.

The remainder of this chapter is organized as follows. We summarize the main

contributions of this thesis in Section 7.1. In Section 7.2, we discuss possible future work.

7.1 Contributions

Given the difficult task of jointly deciding service placement, load distribution, and

service migration in a large-scale EC system, we addressed this problem throughout this thesis

in increased complexity steps. First, we only considered service placement and load distribution

in a static decision approach. Then, we included service migration in a dynamic and centralized

decision approach. At last, we distributed the decision-making process to handle with the

large-scale characteristic of an EC system. Therefore, these steps are related to our three main

contributions.

In our first main contribution, we jointly formulated the static service placement

and load distribution in Edge Computing as an optimization problem that takes into account

diverse application characteristics (e.g., response deadline, resource demand, scalability, and
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availability) and nodes’ resource constraint. The formulated problem aims to minimize SLA

infringements caused by violations of the deadline requirement and as well as to optimize other

conflicting objectives, such as operational cost and service availability. Then, we proposed an

approach based on genetic algorithms called BRKGA+NSGA-II to obtain feasible solutions

close to the Pareto optimal front. Moreover, we modified the Pareto dominance operator to

prioritize time-sensitive applications. Our analytical analysis has shown that the proposed

algorithm achieves deadline violation results close to the optimum of the MILP formulation and

still outperforming the compared heuristics for the other analyzed objectives (operational cost

and service availability).

In the second main contribution, we considered that application workload might

vary in spatial and temporal domains. To handle this dynamic load, we proposed a centralized

proactive controller that makes application placement, load distribution, and service migration

decisions over time to optimize multiple performance-related objectives, while regarding decision

readjustment costs. Then, we adapted BRKGA+NSGA-II to this dynamic control approach.

Specifically, the adapted BRKGA+NSGA-II produces sequences of control actions over a

look-ahead prediction horizon that optimize system performance based on the specified multi-

objectives. Moreover, evaluations has shown that our proposal outperformed other benchmark

algorithms in terms of deadline violations prevention while having similar operational costs, but

it presented more service migrations. Nevertheless, the presented migration results are still low.

Our third contribution addressed the scalability issue of a centralized decision-

making process in a large EC system. To this end, we designed a hierarchical distributed limited

look-ahead control approach that reduces the dimensionality of the overall control problem by

decomposing this problem into a set of local control problems solved in a hierarchical cooperative

fashion. At the upper control layer, the global controller receives system-wide information and

provides local control restrictions for the lower control layer towards optimizing the overall

system performance while satisfying global constraints. The lower control layer is composed

of local controllers that exchange information to coordinate their control decisions. Moreover,

the global controller considers slower time scales and larger systems more abstractly, whereas

local controllers consider faster time scales and smaller (sub)systems in a more detailed way.

Preliminary evaluations showed that the proposed distributed control performance could be

close to the centralized control performance depending on how the EC system is partitioned into

subsystems. However, the trade-off between system performance and scalable decisions needs
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further analysis.

In summary, we proposed in this thesis decision-making approaches for service

placement and its sub-problems (load distribution and service migration) that take into account

distinct characteristics of EC (a large, distributed, heterogeneous, and dynamic environment) and

time-sensitive application requirements.

Finally, Table 13 shows the publications as a primary or secondary result of this thesis

contributions. A secondary publication means that it is not directly related to our contributions,

but it helped us acquire knowledge during this doctoral research. Moreover, all codes of the

experiments carried out in this thesis are available at https://bit.ly/2M062CF.

7.2 Perspectives

The work carried out throughout this thesis allows the emergence of some insights

for potential future works, which are described below.

Network resource provisioning: In this thesis, we focus on allocating resources

provided by computer-based nodes, such as computing, memory, and storage, to deploy ap-

plications efficiently. Moreover, some network aspects, such as bandwidth and routing path,

can also be considered in resource management to improve application QoS. In this regard,

the Network Slicing paradigm can play an essential role by providing on-demand end-to-end

virtual network, including virtual network links and nodes, tailored to the requirements of a

specific application or service. Therefore, the service placement decision-making process can be

improved by integrating it with network slicing technologies.

Dynamic infrastructure and applications: In our dynamic service placement ap-

proaches, we consider that end-user devices are responsible for the EC system dynamics by

changing their overall generated load. The dynamics of a system can also be related to infras-

tructure and application characteristics. For instance, an EC infrastructure can have a dynamic

topology where nodes enter and leave the system over time, such as in a Vehicle-to-everything

(V2X) network where vehicles act as nodes with hosting capabilities. Similarly, applications

may enter and leave the system, and their requirements can also change over time. Therefore, a

service placement approach can be improved by taking into account these dynamic infrastructure

and application aspects.

Multi-component placement: In our service placement approaches, we consider

that all functional components of an application required to handle user requests are placed

https://bit.ly/2M062CF


168

Table 13 – Primary and secondary publications of this thesis
Reference Status BR Qualis AU CORE

Primary Publications

A. M. Maia, Y. Ghamri-Doudane, D. Vieira and M. F. de Castro,
"Optimized Placement of Scalable IoT Services in Edge Com-
puting," 2019 IFIP/IEEE Symposium on Integrated Network
and Service Management (IM), Arlington, VA, USA, 2019, pp.
189-197.

published A2 A

A. M. Maia, Y. Ghamri-Doudane, D. Vieira and M. F. de Castro,
"A Multi-Objective Service Placement and Load Distribution in
Edge Computing," 2019 IEEE Global Communications Confer-
ence (GLOBECOM), Waikoloa, HI, USA, 2019, pp. 1-7.

published A1 B

A. M. Maia, Y. Ghamri-Doudane, D. Vieira and M. F. de Castro,
"Dynamic Service Placement and Load Distribution in Edge
Computing," 2020 16th International Conference on Network
and Service Management (CNSM), Izmir, Turkey, 2020, pp.
1-9.

published A2 B

A. M. Maia, Y. Ghamri-Doudane, D. Vieira and M. F. de Castro,
"An Improved Multi-Objective Genetic Algorithm with Heuris-
tic Initialization for Service Placement and Load Distribution
in Edge Computing", Computer Networks, v. 194, p. 108146,
2021.

published A1 A

A Hierarchical Distributed Limited Look-ahead Control for
Service Placement in Edge Computing. Under preparation to be
submitted to a journal.

to be submitted

Secondary Publications

A. M. Maia, D. Vieira, M. F. de Castro, and Y. Ghamri-
Doudane, "A fair QoS-aware dynamic LTE scheduler for
machine-to-machine communication," Computer Communica-
tions, Volumes 89–90, 2016, Pages 75-86.

published A2 C

R. M. Carvalho, R. M. Andrade, J. Barbosa, A. M. Maia, B. A.
Junior, P. A. Aguilar, C. I. M. Bezerra, K. M. Oliveira, "Evaluat-
ing an IoT application using software measures," International
Conference on Human-Computer Interaction (HCII), Vancouver,
Canada, 2017, pp. 22-33

published B2 B

Source: Author.

jointly as a single piece. We assumed this application design to avoid additional delays in

response time when these components are placed in different locations over the EC infrastructure.

For some time-tolerant applications, some of their functional components can be independently

placed and then shared by application replicas or instances to reduce operational cost. Hence, we

can enhance the decision-making process by having a fine-grained placement of an application

composed of multiple functional components.

Multi-domain resource allocation: Another assumption along this thesis is that a

single Infrastructure Provider owns and maintains the entire EC infrastructure from nodes near

to end-user devices to cloud servers. In a more realistic scenario, multiple InPs offer resources in
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different parts of the network or in different geographic locations. For example, there are several

mobile operators in different countries that can provide EC capabilities in their cellular networks

in addition to diverse cloud providers, such as Google, Amazon, and Microsoft. Hence, we can

consider the resource allocation for service placement in a multi-domain scenario, i.e., a scenario

with multiple InPs.

AI-based control: In a large-scale EC system, it is hard to accurately model the

dynamic behavior of the entire system given the complex interaction among infrastructure,

applications, and end-user devices. On the one hand, a detailed model can imply many control

decision options, which is not scalable. On the other hand, a simplified model reduces the

control decision dimensionality, but it may omit some aspects that affect system performance.

Therefore, we can alleviate the burden of explicitly model the system dynamics and still having

scalable control decisions by using Artificial Intelligence (AI) techniques. For example, some

Machine Learning techniques that combine Reinforcement Learning and Deep Learning, such as

Deep Q-learning, are model-free and can provide real-time proactive control by offline training.

Furthermore, we can also use AI techniques in our distributed approach to partition the EC

system and its EC nodes in subsystems according to local contextual information (e.g., user

density).

Experiments through test-bed or EC simulator: In order to have more realistic

data, we can conduct experiments to evaluate the performance of our proposals through test-beds

or Edge Computing simulator that supports simulation of both network and processing parts of

an EC system.
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