
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE CIÊNCIAS

DEPARTAMENTO DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

VICTOR AGUIAR EVANGELISTA DE FARIAS

LOCAL DAMPENING: DIFFERENTIAL PRIVACY FOR NON-NUMERIC QUERIES

VIA LOCAL SENSITIVITY

FORTALEZA

2021



VICTOR AGUIAR EVANGELISTA DE FARIAS

LOCAL DAMPENING: DIFFERENTIAL PRIVACY FOR NON-NUMERIC QUERIES VIA

LOCAL SENSITIVITY

Tese apresentada ao Programa de Pós-graduação
em Ciência da Computação do Centro de
Ciências da Universidade Federal do Ceará,
como requisito parcial à obtenção do título de
doutor em Ciência da Computação. Área de
Concentração: Bancos de Dados

Orientador: Prof. Dr. Javam de Castro
Machado

FORTALEZA

2021



Dados Internacionais de Catalogação na Publicação 
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

F238l Farias, Victor Aguiar Evangelista de.
    Local Dampening : Differential Privacy for Non-numeric Queries via Local Sensitivity / Victor Aguiar
Evangelista de Farias. – 2021.
    100 f. : il. color.

     Tese (doutorado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em
Ciência da Computação , Fortaleza, 2021.
     Orientação: Prof. Dr. Javam de Castro Machado.

    1. Privacidade Diferencial. 2. Anonimização de dados. 3. Análise em grafos. 4. Árvores de decisão. I.
Título.
                                                                                                                                                  CDD 005



VICTOR AGUIAR EVANGELISTA DE FARIAS

LOCAL DAMPENING: DIFFERENTIAL PRIVACY FOR NON-NUMERIC QUERIES VIA

LOCAL SENSITIVITY

Tese apresentada ao Programa de Pós-
graduação em Ciência da Computação
do Centro de Ciências da Universidade
Federal do Ceará, como requisito parcial à
obtenção do título de doutor em Ciência da
Computação. Área de Concentração: Bancos
de Dados

Aprovada em:

BANCA EXAMINADORA

Prof. Dr. Javam de Castro Machado (Orientador)
Universidade Federal do Ceará (UFC)

Dr. Divesh Srivastava
AT&T Labs Research - USA

Profa. Dr. Agma Juci Machado Traina
Universidade de São Paulo – São Carlos (USP)

Prof. Dr. Altigran Soares da Silva
Universidade Federal do Amazonas (UFAM)

Prof. Dr. José Soares Andrade Junior
Universidade Federal do Ceará (UFC)

Prof. Dr. João Paulo Pordeus Gomes
Universidade Federal do Ceará (UFC)



Aos meu pais, por sempre terem acreditado em

mim.



ACKNOWLEDGEMENTS

This acknowledgement is to express my deep gratitude to all who were by my side

on this journey.

To my parents, Clara Maria Nantua Evangelista de Farias e Francisco Aguiar de

Farias Junior, for the care, patience, trust and education during my whole life. Everything I

achieved in this life, I own to them.

To my advisor and mentor, Prof. Dr. Javam de Castro Machado, for all the con-

tributions and opportunities given during this journey of ten years now, since when I was an

undergraduate student. He was crucial for my journey to become a researcher.

To Dr. Divesh Srivastava for welcoming me in AT&T Research Labs - NYC - USA

for ten months to work on this thesis. I’m really glad that we have been collaborating for this

time and this thesis is a product of this collaboration.

To Prof. Dr. Agma Juci Machado Traina, Prof. Dr. Altigran Soares da Silva, Prof.

Dr. José Soares Andrade Junior and Prof. Dr. João Paulo Pordeus Gomes, for accepting to be in

my thesis defense.

To my colleagues at AT&T labs research, Cheryl Flynn Brooks and Subho Majumdar,

for all the contributions to this work and my friend, Lauro Lins, at AT&T labs research for the

teachings about science and our good time in NYC.

To my girlfriend, Bruna Prudêncio de Mendonça, who faced my dream of pursuing

a Phd as her dream and for all the love, support, patience on the most hard and stressful times

during this journey.

To my friends, Felipe Timbó, and his wife, Isabelle Timbó, for companionship. I

appreciate all the help with this work and with the arrangements of my stay in NYC.

To my friends, Antônio, Camila, Gustavo and Lucas, that were always there for me

even in different countries and cities. To all my friends in NYC. To all my childhood friends

from the neighborhood where I grew up. To my friends and colleagues at LSBD, specially the

ones of laboratory 4.

To my colleague professors of UFC Quixadá campus where I have been working for

five years so far. To the professors of the computer science department of UFC for the motivation

over the years.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brasil (CAPES) - Finance Code 88887.364998/2019-00.



“No book can ever be finished. While working

on it we learn just enough to find it immature the

moment we turn away from it.”

(Karl Popper)



RESUMO

Privacidade diferencial é a definição formal do estado da arte para publicação de dados sob

fortes garantias de privacidade. Uma variedade de mecanismos foram propostos na literatura

para publicar as saídas de consultas numéricas (e.g., mecanismo de Laplace e o mecanismo

smooth sensitivity). Esses mecanismos garantem a privacidade diferencial adicionando ruído na

saída verdadeira da consulta. A quantidade de ruído adicionada é calibrada usando as noções

de sensibilidade global e sensibilidade local da consulta que medem o impacto da adição ou

remoção de um indivíduo na saída da consulta. Mecanismos numéricos que usam sensibilidade

local adicionam menos ruído e, consequentemente, tem uma resposta mais acurada. Contudo,

mesmo que também haja trabalhos para consultas não-numéricas usando sensibilidade global

(e.g., mecanismo exponencial), a literatura carece de mecanismos genéricos para publicação

de saídas não-numéricas que usem sensibilidade local para reduzir o ruído. Nesse trabalho,

remediamos essa deficiência apresentando o mecanismo local dampening. Nós adaptamos a

noção de sensibilidade local da configuração numérica para a configuração não-numérica e

a usamos para criar um mecanismo não-numérico genérico. Nós provemos uma comparação

teórica com o mecanismo exponencial e mostramos sob quais condições o mecanismo local

dampening é mais acurado que o mecanismo exponencial. Nós ilustramos a efetividade do

mecanismo local dampening aplicando-o em três problemas diversos: (i) Seleção de mediana.

Nós reportamos o elemento mediano de um banco de dados; (ii) Análise de nós influentes. Dado

uma métrica de influência, nós publicamos os top-k nós mais influentes da rede; (iii) Indução de

árvores de decisão. Nós provemos uma adaptação privada para o algoritmo ID3 para construir

árvores de decisão a partir de um dado tabular. Nossa avaliação experimental mostra que nós

reduzimos o erro para a aplicação de seleção de mediana em até 18%, reduzimos o uso de

orçamento de privacidade em 2 a 4 ordens de magnitude para a aplicação de análise de nós

influentes e aumentamos a acurácia em até 8% para árvores a aplicação em indução de árvores

de decisão quando comparado a abordagens que usam sensibilidade global.

Palavras-chave: Privacidade Diferencial. Anonimização de dados. Análise em grafos. Árvores

de decisão.



ABSTRACT

Differential privacy is the state-of-the-art formal definition for data release under strong privacy

guarantees. A variety of mechanisms has been proposed in the literature for releasing the output

of numeric queries (e.g., the Laplace mechanism and smooth sensitivity mechanism). Those

mechanisms guarantee different privacy by adding noise to the true query’s output. The amount

of noise added is calibrated by the notions of global sensitivity and local sensitivity of the

query that measure the impact of the addition or removal of an individual on the query’s output.

Mechanisms that use local sensitivity add less noise and, consequently, have a more accurate

answer. However, although there has been some work on generic mechanisms for releasing the

output of non-numeric queries using global sensitivity (e.g., the Exponential mechanism), the

literature lacks generic mechanisms for releasing the output of non-numeric queries using local

sensitivity to reduce the noise in the query’s output. In this work, we remedy this shortcoming

and present the local dampening mechanism. We adapt the notion of local sensitivity for the

non-numeric setting and leverage it to design a generic non-numeric mechanism. We provide

theoretical comparisons to the exponential mechanism and show under which conditions the

local dampening mechanism is more accurate than the exponential mechanism. We illustrate the

effectiveness of the local dampening mechanism by applying it to three diverse problems: (i)

median selection. We report the median element in the database; (ii) Influential node analysis.

Given an influence metric, we release the top-k most influential nodes while preserving the

privacy of the relationship between nodes in the network; (iii) Decision tree induction. We

provide a private adaptation to the ID3 algorithm to build decision trees from a given tabular

dataset. Experimental evaluation shows that we can reduce the error for median selection

application up to 18%, reduce the use of privacy budget by 2 to 4 orders of magnitude for

influential node analysis application and increase accuracy up to 8% for decision tree induction

when compared to global sensitivity based approaches.

Keywords: Differential Privacy. Data anonymization. Graph analysis. Decision Trees.
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1 INTRODUCTION

Many corporations, organizations, and government offices have been gathering data

over the last decades. The entity that manages this data is called curator. The curator is a trusted

tier that collects the data from individuals and then publishes valuable information for public use

or specialized analysts. It may publish aggregated information, statistics, or some analysis using

data mining algorithms. That is very useful to provide better services, more effective marketing,

or a population statistics publication.

However, most datasets contain private or sensitive information from individuals.

Recent regulations on data privacy, such as General Data Protection Regulation (GPDR) (EURO-

PEAN COMMISSION, 2018) and Lei Geral de Proteção de Dados Pessoais (LGPD) (BRASIL,

2018), pose the requirement of anonymity. Specifically, they require that an individual’s informa-

tion be rendered anonymous so that the individual is no longer identifiable from the published

information. In the literature, this process is known as data re-identification.

Many examples show that naive anonymization, i.e., removing all explicit identifiers,

does not prevent the re-identification of an individual from its data. One notable demonstration of

re-identification was carried out by Narayanan and Shmatikov (2008). In this work, the authors

proposed a de-anonymization technique and provided a practical analysis of the Netflix Prize

dataset. With little auxiliary information, the privacy of the Netflix users was broken. Given 8

movie ratings of a user where 2 of them can be completely wrong, and dates can have a 14-day

error, 99% of the records can be uniquely identified.

The fragility of naive anonymization was also shown in a case study involving

crawled data from Flickr and Twitter in 2007/2008 (NARAYANAN; SHMATIKOV, 2009).

One-third of Flickr and Twitter’s verifiable members could be recognized in the anonymous

Twitter network with a 12% error rate. To overcome that problem, many privacy models were

designed with their own privacy requirements. The privacy model is placed between individuals

and public users.

One of the most well-known privacy models is k-anonymity (SAMARATI; SWEENEY,

1998; SWEENEY, 2002). It requires that a published information from individual should not be

distinguishable from at least k−1 individuals in the release. Based on k-anonymity, other privacy

models have been proposed as l-diversity (MACHANAVAJJHALA et al., 2007), t-closeness (LI

et al., 2007; LI et al., 2009) and δ -presence (NERGIZ et al., 2007).

Those models have a common problem; they assume that the attacker has limited
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background knowledge. The attacker can acquire background information on many parts of the

process: the algorithm used for anonymization, domain knowledge, or public records.

An example is a class of attack based on the principle of minimality which many

algorithms satisfying k-anonymity had their privacy broken (CORMODE et al., 2010; JIN et

al., 2010; XIAO et al., 2010). Then, other attacks have been developed for those traditional

privacy models as the composition attack (GANTA et al., 2008) and foreground knowledge

attack (WONG et al., 2011).

1.1 Differential Privacy

Differential privacy (DWORK, 2011; DWORK et al., 2006b) is the state-of-the-art

formal definition for data release under strong privacy guarantees. It imposes near-indistingui-

shability on the released information whether an individual belongs to a sensitive database or

not. It assumes that the attacker knows about n−1 records of the sensitive dataset except for the

record that he/she is trying to learn about.

The fundamental intuition is that an analyst’s query is answered by a randomized

algorithm that queries the private database and returns a randomized answer sampled from

output distribution. A randomized algorithm is a differentially private mechanism (also referred

to as a mechanism in this work) if the probability distribution of the outputs does not change

significantly based on the presence or absence of an individual. It ensures statistical guarantees

against the inference of private information through the use of auxiliary information.

Figure 1 – Differentially private mechanism. A differentially private mechanism M should
produce any output r with almost the same probability whether any single user is in the database

(x) or not (x′).

x

x′

Pr[M(x) = r]≈ Pr[M(x′) = r]

Differentially
private

mechanism M
r

Source: elaborated by the author.

All mechanisms strive to shape the output distribution such that the true answer and

answers with high utility have a high probability of being sampled. Mechanisms that achieve

that provide useful information to the analyst. The formal notion of utility is discussed later in
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this section.

Algorithms can achieve differential privacy by employing output perturbation, which

releases the true output of a given non-private query f with noise injected. The magnitude of the

noise should be large enough to cover the identity of the individuals in the input database x.

In this work, we focus on non-numeric queries, i.e., queries where the range is

non-numeric. For instance, a query that returns the most frequent name from a database of

people’s names is non-numeric. In contrast, numeric queries return numeric answers, e.g., a

query that returns the mean salary of the company’s employees.

Given a non-numeric query f : Dn→R, where R is its non-numeric range, the

exponential mechanism (MCSHERRY; TALWAR, 2007) achieves differential privacy by sam-

pling elements from R based on the exponential distribution. This requires an utility function

u(x,r) that takes as input a database x and an element r ∈R and outputs a numeric utility score

that measures the utility of r. The larger u(x,r), the higher the probability of the exponential

mechanism outputting r. For instance, in the most commom name query, a reasonable utility

function u(x,r) returns the frequency of the name r in the database x as the utility score for r.

The noise added by the exponential mechanism is not numeric, so it is sampling

noise. The exponential mechanism can sample a name that is not the most frequent, i.e., a name

that does not have the best utility score. The amount of noise injected is proportional to the

concept of global sensitivity. The global sensitivity measures the worst-case impact on the utility

function u(x,r) of the addition or removal of an individual from x, for all databases x and all

r ∈R. Note that the global sensitivity does not depend on the input database. Given that, our

goal is to produce private algorithms with low sensitivity to inject less noise and, consequently,

have better accuracy.

Example 1.1.1 introduces the running example of this thesis. Example 1.1.2 describes

the global sensitivity concept we use in our running example, which is based on a graph analysis

centrality metrics, called Egocentric Betweenness Centrality (EBC).

Example 1.1.1. (Running Example) Here we introduce the running example of this thesis.

Consider an application where, given a graph G = (V,E), the analyst’s non-numeric query

should report the node with the largest EBC (FREEMAN, 1978; MARSDEN, 2002; EVERETT;

BORGATTI, 2005). The EBC metric measures the degree to which nodes stand between each

other, defined as



19

EBC(c) = ∑
u,v∈Nc|u6=v

puv(c)
quv(c)

,

where Nc = {v ∈ V |{c,v} ∈ E} is the set of neighbors of a given node c, quv(c) is

the number of shortest paths connecting u and v on the induced subgraph G[Nc∪{c}] and puv(c)

is the number of those paths that include c.

For instance, let G be the graph illustrated in Figure 2. Node a has EBC score equal

to 7.5 since there are
(6

2

)
= 15 pairs of neighbors of the form {vi,v j}, for 0 ≤ i < j ≤ 5, that

each contributes with 0.5 as they have two geodesic paths of length 2 from vi to v j, where only

one contains a. Pairs of the form {b,vi}, for 0≤ i≤ 5 do not contribute to the score of a since

there is only one geodesic path (length 1) from b to vi and it does not contain a.

Figure 2 – Egocentric betweenness sensitivity
a b

v5v4v3v2v1v0

Source: elaborated by the au-
thor.

Example 1.1.2. (Global Sensitivity) To compute global sensitivity, one should calculate the

difference of utility scores |u(x,r)−u(x′,r)| for all pairs of databases x and x′ that differ in one

individual and for elements r in the range of the numeric query. In our running example, the

utility function is EBC and x and x′ are graph database is a graph. We use edge differential

privacy where the information to be protect is the edges. Thus when computing |u(x,r)−u(x′,r)|

for x and x′ that differ in one edge.

The global sensitivity is usually given in closed form formula. We show the complete

development and proofs for that on Chapter 6. However, to illustrate this example we show

the pair x and x′ that maximizes |u(x,r)−u(x′,r)|. Let x be the graph in Figure 2 and x′ be the

graph obtained from x by removing the edge (a,b). The new EBC score of a is 15, 1 point for

each one of the 15 pairs {vi,v j}, 0≤ i≤ 5, as now there is only one geodesic path from vi to v j

which includes a (path < vi,a,v j >). The paths of the form < vi,b,v j > are not counted since b

no longer belongs to Na. Thus, the global sensitivity is equal to 7.5.

In this application (Example 1.1.2), the global sensitivity has a significant concern:

the gadget found this example, formed by two nodes with a high degree that share all neighbors,
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and those neighbors do not have an edge to each other, is unlikely to be found in real-world graphs.

Therefore, real-world graphs are far from the worst-case scenario, and mechanisms calibrated by

the global sensitivity may be unreasonably large, which implies adding overwhelming amounts

of noise.

For numeric queries, Nissim et al. (2007) proposed the smooth sensitivity framework

that adds instance-based noise calibrated as a function of x. They introduced the notion of local

sensitivity, which quantifies the impact of addition or removal of an individual for the input

database instance x, resulting in a lower bound to the global sensitivity. Note that the main

difference between the global sensitivity and local sensitivity is that the first is not dependent on

the input database x and the latter is. Many works use this notion to reduce the amount of noise

added to release more useful statistical information (BLOCKI et al., 2013; KARWA et al., 2011;

KASIVISWANATHAN et al., 2013; LU; MIKLAU, 2014; ZHANG et al., 2015).

Example 1.1.3 shows how local sensitivity would be measured in the non-numeric

graph application and that it is significantly smaller for more usual graphs.

Example 1.1.3. (Local Sensitivity Example) In this instance (Figure 3), verify that the node

a has EBC score equal to 6.5: 1 for each pair {v0,v2}, {v0,v3}, {v0,b}, {v1,v2}, {v1,v3} and

{v1,b} and 0.5 for {v2,v3}.

The worst measurement of the sensitivity (difference of EBC when adding/removing

an edge) the utility function for a node is given by removing the edge (a,v0). That reduces the

EBC score of a by only 3 (1 for each pair {v0,b}, {v0,v2} and {v0,v3} since v0 is no longer a

neighbor of a). This means that local sensitivity for this instance is 3, which is smaller than its

global sensitivity.

Figure 3 – Egocentric betweenness sensitivity - Local Sensitivity
a b

v5v4v3v2v1v0

Source: elaborated by the au-
thor.

Furthermore, we identified that we could explore a more specific notion of local

sensitivity which we call element local sensitivity. Traditional local sensitivity measures the

largest impact of the addition or deletion of an individual to the input database over all outputs

r ∈R. Element local sensitivity computes this impact, but only for some given element r ∈R.
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That allows us to explore local measurements of the sensitivity of f even if traditional local

sensitivity is near the global sensitivity, but, for most elements in R, the element local sensitivity

is low. Example 1.1.4 shows a case where element local sensitivity is significantly smaller than

global and traditional local sensitivity for some elements r ∈R.

Example 1.1.4. (Element Local Sensitivity) Consider the graph in Figure 2. The removal of edge

(a,b) sets the traditional local sensitivity to 7.5 which is also the case for global sensitivity. But

measurements of sensitivity per node (element) are much smaller. For instance, the sensitivity

for a node vi (0≤ i≤ 5) is 1 which is set by the removal of edge (a,b) where EBC(vi) increases

from 0 to 1 (path < a,vi,b >).

A non-numeric mechanism applying local sensitivity could add less noise to the

output than a global sensitivity-based approach. To the best of our knowledge, the literature

lacks generic mechanisms that apply local sensitivity to non-numeric settings, which arises as a

great research opportunity.

This thesis introduces the local dampening mechanism, a novel framework to provide

differential privacy for non-numeric queries using local sensitivity. Also, we extend the local

dampening mechanism to provide better accuracy for element local sensitivity. We develop a

theoretical accuracy analysis and a guide to construct accurate local dampening instances.

1.2 Problem Statement

In this thesis, we address the problem of releasing the output of a non-numeric

function using differential privacy. Let x be a sensitive database and f a non-numeric function to

be evaluated on x. The database is represented as vector x ∈Dn where each entry represents an

individual tuple, and D is the set of all possible tuple values. The function f : Dn→R receives

the dataset x ∈Dn to be evaluated and outputs an element r in its non-numeric range R.

The task is to release the output f (x) without leaking much information about the

individuals using differential privacy. For that, we need to design a randomized algorithm (A)(x)

that adds noise to f (x) such that it satisfies the formal definition of differential privacy (Definition

2.2.4).

The exponential mechanism is an example of a mechanism that uses this setup. A

mechanism that addresses this problem is a natural building block to compose other complex pri-

vate algorithms and can potentially be used in any work in the literature that uses the exponential
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mechanism as in (ZHANG et al., 2017; FRIEDMAN; SCHUSTER, 2010, 2010; MCSHERRY,

2009; MOHAMMED et al., 2011; HARDT et al., 2012).

1.3 Applications

We illustrate the effectiveness of our approach by applying it to three very different

problems: median selection, influential node analysis, and decision tree induction.

Median selection. Median selection is a commonly addressed problem to show

the accuracy of differentially private mechanisms. The task is to report the label of the median

element in a given database.

Influential node analysis. Identifying influential nodes in a network is an important

task for social network marketing (MA et al., 2008). The goal is to search for central nodes in a

graph database. Given a centrality/influence metric, we release the label of the top-k most central

nodes while preserving the privacy of the relationships between nodes in the graph. In this work,

we use EBC as an influence metric. EBC metric identifies influential nodes that are important in

different loosely connected parties. This is the graph application shown in Examples 1.1.2, 1.1.3

and 1.1.4.

Decision tree induction. We tackle a data mining problem which is constructing

decision trees for classification. We provide a private adaptation to the ID3 algorithm to build a

decision tree from a given tabular dataset. For the automatic tree induction, we use Information

Gain (IG) as the split criterion for choosing an attribute to branch.

1.4 Thesis Contribution

Most of the contributions of this thesis were previously published in our paper

(FARIAS et al., 2020):

– FARIAS, V. A. E. de; BRITO, F. T.; FLYNN, C.; MACHADO, J. C.; MAJUMDAR,

S.;SRIVASTAVA, D. Local dampening: Differential privacy for non-numeric queries via

local sensitivity. Proc. VLDB Endow., v. 14, n. 4, p. 521–533, 2020. Available in:

http://www.vldb.org/pvldb/vol14/p521-farias.pdf.

The main contributions of this thesis are the following:

– We adapt the concept of local sensitivity originally defined for the numeric setting to the

non-numeric setting.
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– We introduce the notion of element local sensitivity to the non-numeric setting, which is

a specialized definition of local sensitivity where the sensitivity is measured for a single

element in the range of the function to be evaluated.

– We propose the local dampening mechanism, an output perturbing non-numeric differen-

tially private mechanism that applies the notion of local sensitivity for the non-numeric

setting to attenuate the utility function in order to reduce the amount of noise injected com-

pared to traditional global sensitivity based approaches. Local dampening also employs

the exponential distribution as the exponential mechanism.

– We present the second version of our approach named the shifted local dampening mecha-

nism, which can effectively use the element local sensitivity to improve accuracy.

– We develop a theoretical and empirical accuracy analysis where we enumerate some

conditions in which the local dampening mechanism benefits from the local sensitivity

notions. Under those conditions, we show that the exponential mechanism is an instance

of the local dampening mechanism, and it is the worst instance of the local dampening

mechanism in terms of accuracy. Also, we discuss the scenario where those conditions are

not met and how we can still have good accuracy.

– We tackle the median selection problem where a private mechanism should report the label

of the median element. Empirical results show that the local dampening mechanism can

improve up to 29% about global sensitivity approaches.

– We apply the local dampening mechanism to construct differentially private algorithms

for a graph problem called Influential Node Analysis using Egocentric Betweenness

Centrality as the influence metric, and we show how to compute local sensitivity for this

application. Experimental results show that our approach could be as accurate as global

sensitivity-based mechanisms using 2 to 4 orders of magnitude less privacy budget than

global sensitivity-based approaches.

– We address the application of building private algorithms for decision tree induction as

an example data-mining application for tabular data. We present a differentially private

adaptation of the entropy-based ID3 algorithm using the local dampening mechanism, and

we provide a way to compute the local sensitivity efficiently. We can improve accuracy up

to 5% compared to previous works.
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1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we introduce

the main concepts of differential privacy. Particularly, we present the definition of differential

privacy, non-numeric differential privacy, the notions of global and local sensitivity, and the

composition theorems.

Chapter 3 describes the essential elements that compose this thesis: the element local

sensitivity, admissible functions, and the dampening function of the utility function. Given that,

we propose the local dampening mechanism and prove it to be differentially private. Also, we

present the related work, the well-known exponential mechanism, and permute-and-flip.

In Chapter 4, we introduce the shifted local dampening mechanism. We analyze

some problems of the original local dampening mechanism and how the shifted local dampening

aims to solve them. Also, we provide an accuracy analysis where we show theoretical analysis

and a guide to build a good shifted local dampening instance.

The median selection problem is tackled in Chapter 5. In Chapter 6, we apply the

local dampening mechanism to the influential node analysis problem using EBC and present the

related work to this application. Chapter 7 address the decision tree induction problem using IG

as the split criterion and also present the related work for this problem.

Finally, Chapter 8 we draw conclusions and propose future works based on this

thesis.
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2 DIFFERENTIAL PRIVACY

In this chapter, we describe the main concepts on Differential Privacy that compose

this thesis.

2.1 Privacy Model

Differential privacy is the state-of-the-art framework for private data analysis and

publishing. It provides rigorous privacy guarantees for releasing information from sensitive

databases.

The differential privacy model assumes that the attacker may have knowledge about

arbitrary background information except the record that he/she wants to learn from. It is assumed

that the attacker may have knowledge of n−1 tuples of the sensitive database as background

information. Then he/she wants to learn about the n-th tuple. Without privacy protection, the

attacker could just submit a query to get aggregate information of the n tuples and compare to

the background information of the n−1 tuples. This simple comparison could leak the existence

of the n-th tuple in the database and any kind of sensitive information.

This way, the intuition is that the released information can not reveal the existence of

a tuple in a database. It imposes near-indistinguishability on the released information whether an

individual belongs to a sensitive database or not. A differently private algorithm is a randomized

algorithm for which the output distribution does not change significantly based on the presence

or absence of an individual. This way, an attacker cannot draw conclusion about the n-th tuple

from the background information.

In this model, the analyst does not submit his/her queries directly to the database.

There is the role of the curator. The curator is in charge of collecting the data from individuals to

constitute the database. Also, the curator is responsible for answering the queries of the analyst

by consulting the sensitive database and releasing a differentially privately answer.

Curators can achieve differential privacy by employing output perturbation, which

releases the true output of a given non-private query f with noise injected (Figure 4).

2.2 Basic Definitions

A privacy mechanism is a randomized algorithm that takes the database as input and

output a differentially private answer. A randomized algorithm with domain A and range R is
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Figure 4 – Differential Privacy Model - Output Perturbation
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f

f (x)+noise

Curator
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Source: elaborated by the author.

Figure 5 – Two neighboring databases, i.e., d(x,y) = 1
t1

t2

tn

..
.x =

t1

t ′2

tn

..
.y =

Source: elaborated by the author.

associated with a probability simplex over R, denoted by ∆(R):

Definition 2.2.1. (Probability Simplex (DWORK et al., 2014)) Given a discrete set R, the

probability simplex over R, denoted by ∆(R) is defined to be:

∆(R) =

{
x ∈ R|R| | xi ≥ 0 for all i and

|R|

∑
i=1

xi = 1

}

Definition 2.2.2. (Randomized Algorithm (DWORK et al., 2014)) A randomized algorithm M

with domain A and discrete range R is associated with a mapping M : A→ ∆(R). On input

a ∈ A, the algorithm M outputs M(a) = r with probability (M (a))r for each r ∈R.

A database x is represented as a vector, x ∈Dn, where D is the tuple domain. The

notion of distance between two databases measures how many tuples two given databases differ:

Definition 2.2.3. (Distance Between two Databases) The distance between d(x,y) two databases

x and y is the hamming distance H(x,y):

H(x,y) = |{i | xi 6= yi, i = 1...n}|

Figure 5 illustrates two databases which are at distance 1. Two databases are said to

be neighbors if the distance between them is 1.
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As we mentioned before, the output f (x) must be released without leaking much

information about the individuals. A private mechanism needs not to change its output probability

by a multiplicative factor exp(ε) under the presence or absence of single tuple. For that, we need

to design a randomized algorithm M(x) that adds noise to f (x) such that it satisfies the definition

of differential privacy stated below.

Definition 2.2.4. (ε-Differential Privacy (DWORK et al., 2006a; DWORK et al., 2006b)). A

randomized algorithm M : Dn→R satisfies ε-differential privacy, if for any two databases x

and y satisfying d(x,y)≤ 1 and for any possible output r ∈R, we have

Pr[M(x) = r]≤ exp(ε) Pr[M(y) = r]

where Pr[·] denotes the probability of an event.

The parameter ε dictates how close the distribution of the outputs differs between

the databases x and y. Small values of ε means that those two distributions must be really

close which hurts accuracy but provides a better indistinguishability, i.e., a better privacy level.

For large ε , the opposite happens, the two distributions can differ more which means a better

accuracy and a lower level of privacy. The value of ε is given by the data holder to the analyst.

Thus, this parameter controls how much privacy the data holder wants to provide.

The analyst may want to submit multiple queries to the database. The parameter ε is

also called as the privacy budget since each query submitted to the database consumes a part of

the budget. The analyst decides how much budget he/she spends in each query. In section 2.5,

we describe how the budget can be used by the analyst to execute his/her queries.

2.3 The Non-numeric Setting

We consider two settings when building private mechanism: the numeric setting and

the non-numeric setting. The numeric setting is when one needs to construct a private mechanism

for a function f : Dn→R where f outputs a vector of numeric values, i.e., R = Rd . In this

case, the Laplace Mechanism applies (DWORK et al., 2006b).

In this work, we address the non-numeric setting. We aim to build a private mech-

anism for a function f : Dn→R where f outputs non-numeric values, i.e., we refer R as a

discrete set of outputs R = {r1,r2,r3, . . .}.
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In the non-numeric setting, the analyst provides an utility function u : Dn×R→ R

that takes a database x and an output r ∈R and produces an utility score u(x,r). The utility

function is application-specific and each application requires its own utility function.

The utility score represents how good an output r is for the dataset x. This means

that, for a given input database x, the analyst prefers that the mechanism outputs the elements

with high utility score. Thus a mechanism answering to f needs to output a high utility output

with higher probability.

Recalling the "most common name" query presented in Chapter 1. The task is to

return the most frequent name from a database of people’s names is a non-numeric query. A

suitable utility function produces a utility score u(x,name) as the frequency of the output name

in the database x.

2.4 Sensitivity on the non-numeric setting

Differentially private mechanisms usually perturbs the true output with noise. The

amount of noise added to the true output of a non-numeric function f : Dn→R is proportional

to the sensitivity of the utility function u : Dn×R→ R. The various notions of sensitivity used

in this work are presented in this section.

2.4.1 Global Sensitivity

The global sensitivity of u is defined as the maximum possible difference of utility

scores at all possible pairs of database entries x,y and all possible elements r ∈R:

Definition 2.4.1. (Global Sensitivity ∆u (MCSHERRY; TALWAR, 2007)). Given a utility function

u : Dn×R → R that takes as input a database x ∈ Dn and an element r ∈R and outputs a

numeric score for r in x. The global sensitivity of u is defined as:

∆u = max
r∈R

max
x,y|d(x,y)≤1

|u(x,r)−u(y,r)|.

Intuitively, the global sensitivity measures the maximum change on the utility score

over all r ∈R between any two neighboring databases in the universe of all databases. Figure 6

illustrates the global sensitivity. The edges represent the term maxr∈R |u(x,Di)−u(y,D j)| for



29

two neighbors Di and D j. The global sensitivity is the maximum value among all red edges.

Refer to Example 1.1.2 for an illustration in our running example.

Figure 6 – Global Sensitivity. The edges represent the term maxr∈R |u(x,Di)−u(y,D j)| for two
neighbors Di and D j. The global sensitivity is the maximum value among all red edges.
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Source: elaborated by the author.

2.4.2 Local Sensitivity

The local sensitivity was originally proposed to the numeric setting in (NISSIM et

al., 2007). In this work, we provide an adaptation of the local sensitivity to the non-numeric

setting.

The concept of local sensitivity captures the sensitivity locally on the input database

x instead of searching for the sensitivity in the universe of databases Dn. Figure 7 depicts the

local sensitivity. The edges represent the term maxr∈R |u(x,Di)−u(y,D j)| for two neighbors Di

and D j. The local sensitivity LSu(D0) is the maximum value among all red edges incident on D0.

Refer to Example 1.1.3 for an illustration in our running example.

The local sensitivity for the non-numeric setting is given as:

Definition 2.4.2. (Local Sensitivity, adapted from (NISSIM et al., 2007)). Given a utility function

u : Dn×R → R that takes as input a database x ∈ Dn and an element r ∈R and outputs a

numeric score for r in x, the local sensitivity of u is defined as

LSu(x) = max
r∈R

max
y|d(x,y)≤1

|u(x,r)−u(y,r)|

Observe that the global sensitivity is given as the maximum local sensitivity over the

set of all databases, ∆u = maxx LSu(x).



30

Figure 7 – Local Sensitivity. The edges represent the term maxr∈R |u(x,Di)−u(y,D j)| for two
neighbors Di and D j. The local sensitivity LSu(D0) is the maximum value among all red edges

incident on D0.
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Source: elaborated by the author.

However, using solely the local sensitivity to build a mechanism is not enough to

satisfy differential privacy. Thus, as the smooth sensitivity framework (NISSIM et al., 2007),

a part of our solution is based on local sensitivity at distance t. We adapt the notion of local

sensitivity at distance t (NISSIM et al., 2007) to the non-numeric setting for the use on this work:

Definition 2.4.3. (Local Sensitivity at distance t, adapted from (NISSIM et al., 2007)). Given a

utility function u : Dn×R→ R that takes as input a database x ∈ Dn and an element r ∈R

and outputs a numeric score for r in x. The local sensitivity at distance t of u is defined as

LSu(x, t) = max
y|d(x,y)≤t

LSu(y)

Local sensitivity at distance t, LSu(x, t), measures the maximum local sensitivity

LSu(y) over all databases y at maximum distance t, i.e., we allow t modifications on the database

before computing its local sensitivity. Note that LSu(x,0) = LSu(x) which is shown in Figure

7. In Figure 8, we illustrate the local sensitivity at distance 1. The edges represent the term

maxr∈R |u(x,Di)− u(y,D j)| for two neighbors Di and D j. The local sensitivity at distance 1

LSu(D0,1) is the maximum value among all red edges incident on all the database at most

distance 1 from D0 (which includes itself).

A concrete example of the local sensitivity at distance 1 is given in Example 2.4.1.

Example 2.4.1. (Local sensitivity at distance 1) Consider the graph G of Figure 9c. The local

sensitivity at distance t allows t extra modifications before measuring local sensitivity. As

discussed in Example 1.1.3, the local sensitivity of G is 3 (at distance 0): LSEBC(G,0) = 3.
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Figure 8 – Local sensitivity at distance 1. The edges represent the term
maxr∈R |u(x,Di)−u(y,D j)| for two neighbors Di and D j. The local sensitivity at distance 1
LSu(D0,1) is the maximum value among all red edges incident on all the database at most

distance 1 from D0 (which includes itself).
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Source: elaborated by the author.

Now to compute local sensitivity at distance 1, we need to find which edge to add or

remove in order to compute the maximum local sensitivity at distance 1. This case is found by

removing edge (a,v0) as shown in Figure 9d obtaining G′. Then the local sensitivity of G′ is 5

where node b increases by 5 units when adding edge (b,v0) (1 for each pair {v0,v2}, {v0,v3},

{v0,v4}, {v0,v5} and {v0,a}). This means that LSEBC(G,1) = 5

Figure 9 – Local Sensitivity at distance 1
a b
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(d) G′ at distance 1 from G

Source: elaborated by the author.

Local sensitivity tends to be smaller than global sensitivity for a variety of problems

(BLOCKI et al., 2013; KARWA et al., 2011; KASIVISWANATHAN et al., 2013; LU; MIKLAU,

2014; NISSIM et al., 2007; ZHANG et al., 2015). In those problems, the real-world databases

are very different from the worst case scenario of the global sensitivity and they have a low

observed local sensitivity. Recall that the noise injected by mechanisms are proportional to the

sensitivity. Thus, in those problems, the local sensitivity is a way to reduce noise.
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2.5 Composition

The analyst can pose several queries to the database to compose complex differ-

entially private algorithms. There are two types of composition: sequential composition and

parallel composition.

The sequential composition happens when a set of mechanisms is executed against a

dataset. This implies that the privacy budget used on each computation sums up:

Theorem 2.5.1. (Sequential composition (MCSHERRY; TALWAR, 2007; MCSHERRY, 2009)) Let

Mi : Dn→Ri be an εi-differentially private algorithm for i∈ [k]. Then M(x)= (M1(x), · · · ,Mk(x))

is (∑k
i=1)-differentially private.

The Theorem 2.5.1 implies that if an analyst is given a privacy budget ε , he/she can

execute any number of private queries as long as the sum of the budget used in each execution

accumulates to ε .

On the other hand, if queries are applied to disjoint subsets of the database, then we

can save privacy budget. This is the scenario for parallel composition. When the analyses is

carried with many εi-differentially private mechanisms operating on disjoint subsets, it composes

a maxi εi-differentially private mechanism which has a lower privacy cost.

Theorem 2.5.2. (Parallel composition (MCSHERRY, 2009)) Let Mi : Dn→Ri be a εi-differentially

private algorithm for i∈ [k] and x1, ...,xk be disjoint subsets of Dn. Then M(x)= (M1(x1), · · · ,Mk(xk))

is (maxi εi)-differentially private.

2.6 Discussion

In this chapter, we provided some background concepts. We formally defined the

differential privacy model for non-numeric queries which is the model that our approach satisfies,

Chapter 3 contains the formal proof.

We introduced various notions of sensitivity. Specifically, we presented the notion of

global sensitivity and provided the adaption of the two definitions of local sensitivity that were

originally proposed to the numeric setting. Applying local sensitivity to the non-numeric setting

to reduce noise is the novelty of this work.

Lastly, we discussed some theorems that allows us to compose complex algorithms

from the execution of simpler queries and, still, have an algorithm that satisfies differential
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privacy. This is specially useful in our application chapters.
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3 LOCAL DAMPENING MECHANISM

This chapter presents the local dampening mechanism for answering queries with

non-numeric output under differential privacy. Our approach uses the non-numeric setting for

differential privacy (Section 2.3).

Our approach requires the computation of any of the sensitivity notions described

in the Section 2.4. Additionally, we introduce a new notion of sensitivity called element local

sensitivity. It measures the worst impact on the sensitivity for a given element r ∈R when adding

or removing an individual from the input database x, i.e., the largest difference |u(x,r)−u(y,r)|

for all neighbors y of x.

The local dampening mechanism applies a sensitivity function to dampen the utility

function u and construct its dampened version, referred to Du,δ u . Specifically, we attenuate

u such that the signal-to-sensitivity ratio (i.e. u/sensitivity) is larger which results in higher

accuracy. A sensitivity function is a function that computes one of the notions of sensitivity or an

upper bound on the sensitivity. This concept is specially useful when computing the sensitivity is

not possible or efficient but computing an upper bound is simpler, as it can be NP-hard (NISSIM

et al., 2007; ZHANG et al., 2015).

We lay the groundwork of our analysis with the definition of element local sensitivity

in Section 3.1. We then define local dampening in Section 3.3, and provide a privacy guarantee

for our mechanism in Section 3.5.

3.1 Element Local Sensitivity

The local sensitivity LSu(x, t) quantifies the maximum sensitivity of u over all

elements r ∈ R for an input database x with t modifications (Definition 2.4.3). That gives

a high-level description of the variation of u in neighboring databases. However, if just one

element in R has a high value of sensitivity (close to ∆u), LSu(x, t) will be equally large. That is

ineffective in a scenario where most of the elements have low sensitivity and just few have high

sensitivity, which makes LSu(x, t) large and consequently hurts accuracy.

We introduce a more specialized definition of local sensitivity named element local

sensitivity, denoted as LSu(x, t,r), which measures the sensitivity of u for a given r ∈R for an

input database x at distance t (definition 3.1.1). This allows us to grasp the sensitivity of u for a

single element.
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Figure 10 – Element local sensitivity at distance 1, LSu(D0,1,r). The edges represent the term
|u(x,Di)−u(y,D j)| for two neighbors Di and D j. LSu(D0,1,r) is the maximum value among all

red edges.
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Source: elaborated by the author.

LSu(x, t,r) = max
y|d(x,y)≤t,d(y,z)≤1

|u(x,r)−u(y,r)|

Definition 3.1.1. (Element Local Sensitivity at distance t). Given a utility function u(x,r) that

takes as input a database x and an element r and outputs a numeric score for x, the element local

sensitivity at distance t of u is defined as

LSu(x, t,r) = max
y∈Dn|d(x,y)≤t,z∈Dn|d(y,z)≤1

|u(y,r)−u(z,r)|,

where d(x,y) denotes the distance between two databases.

Intuitively, to compute element local sensitivity, one needs to identify which addition

or removal of an individual on the input database x causes the most impact on the utility

score of a given element r, i.e., the largest difference |u(x,r)− u(y,r)| for all neighbors y of

x. Note that we can obtain LSu(x, t) from this definition: LSu(x, t) = maxr∈R LSu(y, t,r) as

LSu(x, t,r) = maxy|d(x,y)≤t LSu(y,0,r).

Example 3.1.1. (Element local sensitivity) We illustrate this definition with the same setup

from previous examples. Let G be the graph from Figure 9c. Suppose we want to compute the

element local sensitivity for v4, LSu(G,0,v4). We measure only the worst impact of the addition

or removal of an edge on the value of the EBC score for v4. This is obtained by adding the

edge (v0,v4) (Figure 11). The EBC score increases by 2 (1 for each pair {b,v0} and {v0,v5}).

Thus LSu(G,0,v4) = 2 which is smaller than local sensitivity LSu(G,0) = 3 (Example 1.1.3) and

∆u = 7.5 (Example 1.1.2).
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Figure 11 – Element Local Sensitivity for v4
a b

v5v4v3v2v1v0

Source: elaborated by the au-
thor.

3.2 Sensitivity Functions

Computing local sensitivity LSu(x, t) or element local sensitivity LSu(x, t,r) is not

always feasible, as it can be NP-hard (NISSIM et al., 2007; ZHANG et al., 2015). To navigate

this problem, we can relax the need for the computation of LSu(x, t) or LSu(x, t,r) and build

a computationally efficient function δ u(x, t,r) that computes an upper bound for LSu(x, t) or

LSu(x, t,r) that is still smaller than ∆u. We refer to δ u as a sensitivity function that has the

following signature δ u : Dn×N0×R→ R. Note that δ u(x, t,r) = ∆u, δ u(x, t,r) = LSu(x, t) or

δ u(x, t,r) = LSu(x, t,r) are sensitivity functions.

We define a classification for sensitivity functions according to four aspects: admis-

sibility, boundedness, monotonicity and stability.

3.2.1 Admissibility

The sensitivity function δ u needs to have some properties to be admissible in the

local dampening mechanism to guarantee differential privacy:

Definition 3.2.1. (Admissibility). A sensitivity function δ u(x, t,r) is admissible if:

1. δ u(x,0,r)≥ LSu(x,0,r), for all x ∈Dn and all r ∈R

2. δ u(x, t +1,r)≥ δ u(y, t,r), for all x,y such that d(x,y)≤ 1 and all t ≥ 0

The global sensitivity ∆u is admissable as any constant value would trivially satisfy

Definition 3.2.1. We also show that the function LSu(x, t,r) itself is admissible (Lemma 3.2.1).

Lemma 3.2.1. The element local sensitivity LSu(x, t,r) is admissible.

Proof. We need to satisfy the two conditions of the admissibility of functions.

1. LSu(x,0,r)≥ LSu(x,0,r)

2. Since {y|d(x,y)≤ t} ⊂ {y|d(x′,y)≤ t +1} for any neighboring databases x,x′, we have

that
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LSu(x, t,r) = max
y|d(x,y)≤t,z|d(y,z)≤1

|u(y,r)−u(z,r)|

≤ max
y|d(x′,y)≤t+1,z|d(y,z)≤1

|u(y,r)−u(z,r)|

= LSu(x′, t +1,r)

Thus LSu(x, t,r) is an admissible function.

In Section 3.2.3, we discuss that LSu(x, t) and LSu(x, t,r) are also admissible func-

tions.

3.2.2 Boundedness

Some sensitivity functions, such as LSu(x, t) and LSu(x, t,r), converge to ∆u, by

design, as t grows. This follows from the fact that the maximum distance of two databases is at

most n by the hamming distance definition. Thus when t = n, LSu(x, t) and LSu(x, t,r) measure

sensitivity in all possible databases. We refer to those functions as bounded functions.

Definition 3.2.2. (Boundedness) A sensitivity function δ u(x, t,r) is said to be bounded if

δ u(x, t,r) = ∆u for all t ≥ n.

Figure 12 – Boundedness - δ u(x, t,r) converges to ∆u when t ≥ n where n is the size of the
database.

n

∆u

δ u(x, t,r)

t

Source: elaborated by the author.
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Note that, one can easily force a given function δ u(x, t,r) to be bounded by replacing

it by its bounded version min(δ u(x, t,r),∆u). We now show that min(δ u(x, t,r),∆u) is admissible

and bounded.

Lemma 3.2.2. If δ u(x, t,r) is admissable, then min(δ u(x, t,r),∆u) is admissable and bounded.

Proof. We show that min(δ u(x, t,r),∆u) is admissible. First we show that min(δ u(x,0,r),∆u)≥

LSu(x,0,r). Thus, as δ u(x,0,r) ≥ LSu(x,0,r) and ∆u ≥ LSu(x,0,r) we have that

min(δ u(x,0,r),∆u)≥ LSu(x,0,r).

Now, Suppose that t > 0, let y be a neighboring database of x. We have that

δ u(x, t + 1,r),∆u) ≥ δ u(y, t,r),∆u) as δ u is admissible. This, min(δ u(x, t + 1,r),∆u) ≥

min(δ u(y, t,r),∆u) holds. Thus min(δ u(x, t,r),∆u) is admissible.

We move to show that min(δ u(x, t +1,r),∆u) is bounded. Suppose that t ≥ n The

maximum hamming distance between two datasets is at most n. Thus {y|d(x,y)≤ n}= Dn. So

we have:

LSu(x, t,r) = max
y|d(x,y)≤t

LSu(y,0,r) = max
y∈Dn

LSu(y,0,r) = ∆u

Therefore, we have that δ u(x, t,r) ≥ LSu(x, t,r) since δ u is admissible. Thus it

implies that δ u(x, t,r) = ∆u. Finally, min(δ u(x, t,r),∆u) = ∆u for any t > n.

Thus, we can replace δ u(x, t,r) with min(δ u(x, t,r),∆u) since its admissable. In

terms of accuracy, this replacement is beneficial. We have that δ u(x, t,r)≥min(δ u(x, t,r),∆u)

for all database x, t ≥ 0 and r ∈ R. Thus δ u(x, t,r) is always larger than min(δ u(x, t,r),∆u)

meaning that local dampening injects less noise as sensitivity is proportional to the noise. This

means that we can impose boundedness for any function and, beyond that, we have gains in

accuracy as it injects less noise.

3.2.3 Monotonicity

We introduce the notion of monotonicity in our context. When the utility score

u(x,r) is a monotonic function of δ u(x, t,r) over r ∈R, we say that δ u(x, t,r) is monotonic. We

have three classifications for monotonicity.
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Definition 3.2.3. (Non-decreasing Monotonicity) Let u(x,r) be an utility function and δ u(x, t,r)

be a sensitivity function. δ u(x, t,r) is said to be monotonically non-decreasing if δ u(x, t,r) ≥

δ u(x, t,r′) for all x ∈Dn, r,r′ ∈R, t ≥ 0 such that u(x,r)≥ u(x,r′).

And its symmetric definition is:

Definition 3.2.4. (Non-increasing Monotonicity) Let u(x,r) be an utility function and δ u(x, t,r)

be a sensitivity function. δ u(x, t,r) is said to be monotonically non-increasing if δ u(x, t,r) ≥

δ u(x, t,r′) for all x ∈Dn, r,r′ ∈R, t ≥ 0 such that u(x,r)≤ u(x,r′).

Also, a sensitivity can be flat:

Definition 3.2.5. (Flat Monotonicity) Let u(x,r) be an utility function and δ u(x, t,r) be a

sensitivity function. δ u(x, t,r) is said to be flat if δ u(x, t,r) = δ u(x, t,r′) for all x ∈Dn, r,r′ ∈R,

t ≥ 0.

Figure 13 – Non-decreasing monotonicity - The larger δ u(x, t,r), larger the u(x,r).
δ u(x, t,r)

u(x,r)

Source: elaborated by the author.

We refer to a monotonic function as a function that is either flat, monotonically

non-decreasing or monotonically non-increasing.

Note that flat sensitivity functions are independent on r and they are both monotonic

non-increasing and monotonic non-decreasing. The global sensitivity ∆u and the local sensitivity

LSu(x, t) are flat sensitivity functions since they do not depend on r.

Additionally, given an utility function u and an sensitivity function δ u(x, t,r), one

can build a function δ̂ u(x, t,r) from δ u(x, t,r) such that δ̂ u(x, t,r) is flat.

δ̂
u(x, t,r) = max

r′∈R
δ

u(x, t,r′).
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Basically, δ̂ u(x, t,r) increases the value for a given r ∈R and t ≥ 0 to the maximum

value for δ (x, t,r′) among all r′ ∈R. This results in the same value δ̂ u(x, t,r) for any given r. A

drawback of using δ̂ u(x, t,r) is that δ̂ u(x, t,r)≥ δ u(x, t,r), for all x, t ≥ 0 and r ∈R meaning

that δ̂ u(x, t,r) returns a large upper bound for sensitivity and, consequently, hurts accuracy.

An intermediate result shows that δ̂ u(x, t,r) is admissible:

Lemma 3.2.3. Let δ1(x, t,r), . . . ,δp(x, t,r) be admissible functions. Then δ (x, t,r) defined as

δ (x, t,r) = max(δ1(x, t,r), . . . ,δp(x, t,r)) is an admissible function.

The proof of Lemma 3.2.3 is immediate given by the admissibility of δ1(x, t,r), . . . ,δp(x, t,r).

Lemma 3.2.3 entails in some important results: (i) δ̂ u(x, t,r) is admissible if δ u is admissible

and (ii) LSu(x, t) is an admissible function once LSu(x, t) = maxr∈RLSu(x, t,r) and LSu(x, t,r) is

an admissible function (Theorem 3.2.1).

3.2.4 Stability

An important classification that will be used in our accuracy analysis is the stability.

Definition 3.2.6. (Stability) A sensitivity function δ u(x, t,r) is stable if δ u is admissible, bounded

and monotonic.

Meeting all three requirements (admissibility, boundedness and monotonicity) for

designing a stable function may sound very restrictive. However, for all definitions of sensitivity,

two of them are naturally stable: global sensitivity ∆u and local sensitivity LSu(x, t). Only

the element local sensitivity LSu(x, t,r) can be non-monotonic and, consequently, non-stable.

Nevertheless, in Section 4.4.3, we argue that the requirement of strict monotonicity can be

relaxed and an admissable bounded function with "weak" monotonicity can perform well in the

local dampening mechanism.

Besides, for any function, the requirement of boundedness can be easily imposed as

shown in Section 3.2.2 while still providing lower sensitivity.

3.3 Dampening Function

A crucial part of our mechanism is the dampening function. We now define the

dampening function Du,δ u(x,r), which uses an admissible sensitivity function δ u(x, t,r) to return

a dampened and scaled version of the original utility function.
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Figure 14 – Dampening function Du,δ u
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Source: elaborated by the author.

Definition 3.3.1. (Dampening function). Given a utility function u(x,r) and an admissible func-

tion δ u(x, t,r), the dampening function Du,δ u(x,r) is defined as a piecewise linear interpolation

over the points:

< .. . ,(b(x,−1,r),−1),(b(x,0,r),0),(b(x,1,r),1), . . . >

where b(x, i,r) is given by:

b(x, i,r) :=


∑

i−1
j=0 δ (x, j,r) if i > 0

0 if i = 0

−b(x,−i,r) otherwise

Therefore,

Du,δ u(x,r) =
u(x,r)−b(x, i,r)

b(x, i+1,r)−b(x, i,r)
+ i

where i is defined as the smallest integer such that u(x,r) ∈ [b(x, i,r),b(x, i+1,r)).

Figure 14 shows the general scheme of Du,δ u . A crucial property of Du,δ u is that it

scales u so that the sensitivity of Du,δ u is bounded to 1 (Lemma 3.3.1).

Lemma 3.3.1. |Du,δ u(x,r)−Du,δ u(y,r)| ≤ 1 for all x,y such that d(x,y)≤ 1 and all r ∈ R if δ u

is admissible.

Proof. Fix a database x ∈ Dn and let y ∈ Dn be a neighbor of x such that d(x,y)≤ 1. Assume

u(x,r) lies in [b(x, i,r),b(x, i+1,r)) for some i∈Z. We first show that Du,δ u(x,r)−Du,δ u(y,r)≤

1. We analyse it in two cases: (1) u(x,r)≥ 0 and (2) u(x,r)< 0.
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Case (1). Assume u(x,r)≥ 0. By construction of the dampening function Du,δ , i≥ 0

holds. Thus, one can find bounds for u(y,r) using the definition of LSu and the admissibility of

δ u.

u(y,r)≥ u(x,r)−LSu(x,0,r)

≥ b(x, i,r)−δ
u(x,0,r)

=
i−1

∑
j=1

δ
u(x, j,r)≥

i−2

∑
j=0

δ
u(y, j,r)

= b(y, i−1,r)

and

u(y,r)≤ u(x,r)+LSu(x,0,r)

≤ b(x, i+1,r)+δ
u(x,0,r)

=
i

∑
j=0

δ
u(x, j,r)+δ

u(x,0,r)

≤
i+1

∑
j=1

δ
u(y, j,r)+δ

u(x,0,r) = b(y, i+2,r)

Thus u(y,r) ∈ [b(y, i−1,r),b(y, i+2,r)). We split the argument in three subcases:

(1.1) u(y,r) ∈ [b(y, i− 1,r),b(y, i,r)). (1.2) u(y,r) ∈ [b(y, i,r),b(y, i+ 1,r)) and (1.3) u(y,r) ∈

[b(y, i+1,r),b(y, i+2,r)).

Case (1.1). Assume that u(y,r) ∈ [b(y, i−1,r),b(y, i,r)). Thus we get the following:

Du,δ u(x,r)−Du,δ u(y,r) (3.1)

=
u(x,r)−b(x, i,r)

b(x, i+1,r)−b(x, i,r)
+ i−

− u(y,r)−b(y, i−1,r)
b(y, i,r)−b(y, i−1,r)

− i+1 (3.2)

≤ u(x,r)−b(x, i,r)−u(y,r)+b(y, i−1,r)
b(y, i,r)−b(y, i−1,r)

+1 (3.3)

≤ u(x,r)−b(x, i,r)−u(x,r)+δ (x,0,r)+b(y, i−1,r)
b(y, i,r)−b(y, i−1,r)

+1 (3.4)

≤ −b(x, i,r)+b(x, i,r)
b(y, i,r)−b(y, i−1,r)

+1≤ 1 (3.5)
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The rationale for the equations above is the following: Equation (3.2) follows from the application

of the definition of Du,δ u ; Equation (3.3), as b(x, i+1,r)−b(x, i,r) = δu(x, i,r)≥ δu(y, i−1,r) =

b(y, i,r)−b(y, i−1,r), we have that:

u(x,r)−b(x, i,r)
b(x, i+1,r)−b(x, i,r)

≤ u(x,r)−b(x, i,r)
b(y, i,r)−b(y, i−1,r)

Equation (3.4) holds since u(y,r)≥ u(x,r)−LSu(x,0,r)≥ u(x,r)−δ u(x,0,r). That

Du,δ u(y,r)−Du,δ u(x,r)≤ 1 follows by symmetry.

Case (1.2). Assume that u(y,r) ∈ [b(y, i,r),b(y, i + 1,r)) which entails that

Du,δ u(y,r) ∈ [i, i+ 1). Likewise, as u(x,r) ∈ [b(x, i,r),b(x, i+ 1,r)) by assumption, it holds

that Du,δ u(x,r) ∈ [i, i+1). In what follows, we get that:

|Du,δ (x,r)−Du,δ (y,r)| ≤ 1

Case (1.3). Assume that u(y,r) ∈ [b(y, i+ 1,r),b(y, i+ 2,r)). This case follows

similar reasoning to the case (1.1), so we omit this part of the proof.

Case (2). Assume u(x,r) < 0. This case is symmetric to the case (1) as Du,δ is

symmetric.

Given that, |Du,δ (x,r)−Du,δ (y,r)| ≤ 1 holds for all pairs of neighboring databases

x,y ∈ Dn where d(x,y)≤ 1 and for all r ∈ R.

3.4 Local Dampening Mechanism

We now state the local dampening mechanism a generic non-numeric differentially

private mechanism. It takes a database x, the privacy budget ε , the utility function u, an

admissable sensitivity function δ u and the range R of the function to be sanitized.

It samples an element from r ∈R based on its dampened utility score Du,δ u(x,r).

The larger the score, the higher the probability of sampling it.

Definition 3.4.1. (Local dampening mechanism). The local dampening mechanism MLD(x,ε,u,δ u,R)

selects and outputs an element r ∈R with probability proportional to exp
( ε Du,δu(x,r)

2

)
.

This version of the local dampening mechanism is specially effective when the

sensitivity function is flat. In the following example, we demonstrate the process operation of

the local dampening mechanism.
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Example 3.4.1. (Local dampening mechanism) This example explores the local dampening

mechanism using the local sensitivity definition while the element local sensitivity is addressed

in Chapter 4. Let G be the graph of Figure 9c. As we have discussed in Example 2.4.1,

we have that LSEBC(G,0) = 3 and LSEBC(G,1) = 5. The EBC scores for the vertices are

EBC(a) = EBC(b) = 6.5 and EBC(vi) = 0, for 0≤ i≤ 5. Their dampened EBC scores are:

DEBC,LSEBC(G,a) = DEBC,LSEBC(G,b) = 1.7

DEBC,LSEBC(G,vi) = 0, for 0≤ i≤ 5

For instance, assuming ε = 2.0, the probability for each node to be selected is:

Pr[a is selected] = Pr[b is selected] ∝ exp(1.7) = 5.47

Pr[vi is selected] ∝ exp(0) = 1.0, for 0≤ i≤ 5

Normalizing, we have that Pr[a is selected] = Pr[b is selected] = 0.32 and Pr[vi is selected] =

0.06. Thus the local dampening mechanism samples a element with those probabilities.

3.5 Privacy Guarantee

We now prove that the local dampening mechanism MLD ensures ε-differential

privacy (Theorem 4.3.1). The privacy correctness proof follows from the exponential mechanism

correctness (MCSHERRY; TALWAR, 2007) and Lemma 3.3.1.

Theorem 3.5.1. MLD satisfies ε-Differential Privacy if δ is admissible.

Proof. Given two neighboring databases x,y ∈ Dn (i.e., d(x,y)≤ 1) and an output r ∈R. We

show that the ratio of the probability of r being produced by local dampening mechanism on

database x and y is bounded by exp(ε).

Px(r)
Py(r)

=
P[MLD(x,u,R) = r]
P[MLD(y,u,R) = r]

=

(
exp(

εDu,δ (x,r)
2 )

∑r′∈R exp(
εDu,δ (x,r′)

2 )

)
(

exp(
εDu,δ (y,r)

2 )

∑r′∈R exp(
εDu,δ (y,r′)

2 )

)

=

(
exp( εDu,δ (x,r)

2 )

exp( εDu,δ (y,r)
2 )

)
·

∑r′∈R exp( εDu,δ (y,r
′)

2 )

∑r′∈R exp( εDu,δ (x,r′)
2 )


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≤ exp
(

ε(Du,δ (x,r′)−Du,δ (y,r′))
2

)

·

∑r′∈R exp( ε(Du,δ (x,r
′)+1)

2 )

∑r′∈R exp( εDu,δ (x,r′)
2 )


≤ exp

(
ε

2

)
· exp

(
ε

2

)
·

∑r′∈R exp( εDu,δ (x,r
′)

2 )

∑r′∈R exp( εDu,δ (x,r′)
2 )


= exp(ε)

The two inequalities follow from lemma 3.3.1. By symmetry, P[MLD(x,u,R)=r]
P[MLD(y,u,R)=r] ≥ exp(−ε) holds.

3.6 Related Work

There is a vast literature on differential privacy for numeric queries, and we refer the

interested reader to (MACHANAVAJJHALA et al., 2017) for a recent survey. In this section, we

discuss differential privacy approaches for the non-numeric setting.

3.6.1 Exponential Mechanism

The exponential mechanism MEM (MCSHERRY; TALWAR, 2007) is the most used

approach for providing differential privacy to the non-numeric setting. It uses a notion of global

sensitivity ∆u (Definition 2.4.1), adapted from Dwork et al. (2006b).

The exponential mechanism privately answers a function f : Dn→R applied to

database x by sampling an element r ∈R with probability proportional to its utility score u(x,r).

It uses the exponential distribution to assign probabilities for each r ∈ R. The exponential

mechanism is stated as follows:

Definition 3.6.1. (Exponential Mechanism (MCSHERRY; TALWAR, 2007)). The exponential

mechanism MEM(x,ε,u,R) selects and outputs an element r ∈R with probability proportional

to exp
(

ε u(x,r)
2∆u

)
.

McSherry and Talwar (2007) showed that the exponential mechanism satisfies ε-

differential privacy.

In Chapter 4, we show that, under some conditions, the exponential mechanism

is never worse than the local dampening in terms of accuracy. Additionally, we carry out an
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experimental evaluation with the two applications that we tackle in this work: influential node

analysis (Chapter 6) and decision tree induction (Chapter 7).

Example 3.6.1. (Comparison local dampening mechanism with exponential mechanism) We

make a simple comparison of the probabilities of the local dampening mechanism with the

exponential mechanism in Example 3.4.1.

In example Example 3.4.1, we have that Pr[a is selected] = Pr[b is selected] = 0.32

and Pr[vi is selected] = 0.06. While, according to Definition 3.6.1, the exponential mechanism

obtained that Pr[a is selected] = Pr[b is selected] = 0.22 and Pr[vi is selected] = 0.09. Thus

local dampening yields a higher probability of choosing the node with highest score.

3.6.2 Permute-and-Flip

The permute-and-flip MPF (MCKENNA; SHELDON, 2020) mechanism is recent

work that also address differential privacy for the non-numeric setting. It is defined as an iterative

algorithm that employs the exponential distribution to assign probabilities for each element r.

Algorithm 1 formally defines permute-and-flip.

Algorithm 1: Permute-and-Flip
1 Procedure MPF(Database x, Privacy Budget B, utility function u,

Range set R)

2 u∗ = maxr∈R u(x,r)
3 for r ∈ RandomPermutation(R) do
4 pr = exp

(
ε

2∆u(u(x,r)−u∗)
)

5 if Bernoulli(pr) then
6 return r
7 end
8 end

Basically, the algorithm iterates over a random permutation of the elements r ∈R

and then flip a biased coin with probability ε

2∆u(u(x,r)−u∗). u∗ is the maximum utility observed

over all elements in the range set R given the input database x. Thus, the closer u(x,r)− u∗,

more likely is r to be outputted. The mechanism is guaranteed to terminate with a result because

if u(x,r) = u∗, then the probability of heads is 1.

McKenna and Sheldon (2020) show that their approach is also never worse than

the exponential mechanism in terms of accuracy. We conduct an empirical comparison of

permute-and-flip mechanism to local dampening in Chapters 6 and 7.
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3.7 Discussion

The concept of local sensitivity was introduced in (NISSIM et al., 2007) for numeric

queries. The authors proposed the smooth sensitivity framework, which is a generic approach for

numeric queries. They applied it to compute the median, the cost of a minimum spanning tree, the

count of triangles in a graph and k-means. Also local sensitivity was used in many other works

(ZHANG et al., 2015; KARWA et al., 2011; CORMODE et al., 2012; KASIVISWANATHAN

et al., 2013; RASTOGI et al., 2009).

On the other hand, many differential privacy works have tackled non-numeric prob-

lems using non-numeric queries as part of their approaches (ZHANG et al., 2017; HARDT et

al., 2012; FRIEDMAN; SCHUSTER, 2010; MOHAMMED et al., 2011; HARDT et al., 2010;

CORMODE et al., 2012). However, to the best of our knowledge, the literature lacks a generic

framework for providing differential privacy for non-numeric queries using local sensitivity. Our

work fills this gap.

We adapted and defined notion of local sensitivity for non-numeric queries. Also

we defined the family of sensitivity function which include the definitions of local sensitivity

and provided a classification for them. Given that, we proposed the local dampening mechanism

that uses the local sensitivity to attenuate the utility function and reduce the noise injected to the

output.

In next chapter, we provide a new version of the local dampening mechanism and

theoretical accuracy guarantees for it.
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4 SHIFTED LOCAL DAMPENING MECHANISM

In this chapter, we present a second version of the local dampening mechanism name

shifted local dampening mechanism MSLD. This version is designed for non-flat monotonic

sensitivity functions which is the most usual case in our experiments.

We develop an insightful discussion on accuracy of the shifted local dampening

mechanism. We provide tools to compare two instances of the shifted local mechanism in terms

of accuracy. Also, these tools guide on the design of good sensitivity functions that provide

accurate MSLD instances. We show that, with a stable sensitivity function, the local dampening

mechanism is never worse than the exponential mechanism. Additionally, even if the stability

condition is not met, we discuss how to construct good sensitivity functions.

4.1 Inversion problem

First, we exemplify an anomaly that happens when the sensitivity function is not

monotonic.

Consider the scenario where we dampen the utility scores of the elements r ∈R with

the sensitivity function δ u that is not monotonic. This might be the case when we use δ u(x, t,r)

as the element local sensitivity, δ u(x, t,r) = LSu(x, t,r).

In this scenario, Example 4.1.1 illustrates a case where the local dampening change

the relative order of the dampened utility scores compared to the original utility scores. We refer

to this problem as the inversion problem.

Example 4.1.1. (Inversion problem) Consider the following setup: R = {r1,r2}, δ u(x,0,r1) = 1,

δ u(x,1,r1) = 2, δ u(x,0,r2) = 4, u(x,r1) = 3 and u(x,r2) = 4. When applying Du,δ u to r1 and r2,

we obtain Du,δ u(x,r1) = 2 and Du,δ u(x,r2) = 1. Originally, r2 is more useful than r1 but after

dampening it inverts. This hurts accuracy since the local dampening mechanism will choose r1

with higher probability.

4.2 Shifted Local Dampening

The key idea for this extension is the use of shifting in the utility score to take

advantage of non-flat monotonic sensitivity functions δ u. The discussion in this section is

focused on non-flat monotonic sensitivity functions. However, we show later that the shifted
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local dampening also performs well for non strictly monotonic functions.

Example 4.2.1 shows a case where shifting increases the probability of high utility

elements to be chosen (i.e. improves accuracy) when δ u is monotonically non-decreasing.

Example 4.2.1. (Utility function shifting) Consider the graph G from figure 15. For nodes

a and b, their measured element local sensitivities are: LSEBC(G,0,a) = LSEBC(G,0,b) = 3

and LSEBC(G,1,a) = LSEBC(G,1,b) = 5. For a node vi, for 0≤ i≤ 5, its measured sensitivity

is LSEBC(G,0,vi) = 2. We observe the non-decreasing monotonicity of LSEBC, since the EBC

scores are EBC(a) = EBC(b) = 6.5 and EBC(vi) = 0, for 0≤ i≤ 5.

Figure 15 – Original Graph G
a b

v5v4v3v2v1v0

Source: elaborated by the au-
thor.

For instance, shifting the EBC scores by−7, we get that EBC′(a) =EBC′(b) =−0.5

and EBC′(vi) =−7, for 0≤ i≤ 5. Then we compute their dampened EBC′ scores:

DEBC′,LSEBC(G,a) = DEBC′,LSEBC(G,b) = 0.1

DEBC′,LSEBC(G,vi) =−2, for 0≤ i≤ 5

Let ε = 2.0. The probability for each node to be selected is:

Pr[a is selected] = Pr[b is selected] ∝ exp(0.1) = 0.44

Pr[vi is selected] ∝ exp(−2) = 0.13, for 0≤ i≤ 5

Normalizing, we have that Pr[a is selected] = Pr[b is selected] = 0.472 and Pr[vi is selected] =

0.0046. Recall that, the exponential mechanism obtained that Pr[a is selected] =

Pr[b is selected] = 0.22 and Pr[vi is selected] = 0.09 (Example 3.6.1) and, for the unshifted local

dampening mechanism, (Example 3.4.1), we have that Pr[a is selected] = Pr[b is selected] =

0.32 and Pr[vi is selected] = 0.06. The nodes with highest score increase probability compared

to the unshifted local dampening and the exponential mechanism.

For the sake of argument, suppose that δ u(x, t,r) is monotonically non-decreasing.

We design the shifting in a way that it rearranges the utilities scores such that the distribution of

the utility scores is more spread.
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The idea is the following: we shift left enough so that all utility scores are negative.

The elements with larger utility score are the elements with smallest absolute value after shifting.

Thus, these shifted scores are dampened with large δ u(x, t,r) (by assumption of non-decreasing

monotonicity). This implies that large utility scores are dampened closer to 0 and the opposite

happens to elements with small utility scores. The elements with small utility scores are

dampened with small δ u(x, t,r) and, consequently, the scores are less attenuated and far from 0.

This implicates in more spread distribution of utility scores.

Hereby we propose to replace the original utility function u with its shifted version

us where s is the utility score shift and

us(x,r) = u(x,r)− s

One could design a private query, consuming part of the privacy budget, to choose

s such that it minimizes some loss function to optimize accuracy. In this work, we set s to a

value that does not depend on private data, s→ ∞. In what follows, the shifted local dampening

mechanism is stated as follows:

Definition 4.2.1. (Shifted Local Dampening Mechanism - non-decreasing sensitivity function).

The shifted local dampening mechanism MSLD(x,ε,u,δ u,R) outputs an element r ∈ R with

probability equals to

lim
s→∞

 exp
(

ε Dus,δu(x,r)
2

)
∑r′∈R exp

(
ε Dus,δu(x,r′)

2

)
 .

When δ u is monotonically non-increasing the following definition of the shifted

local dampening mechanism applies:

Definition 4.2.2. (Shifted Local Dampening Mechanism - non-increasing sensitivity function).

The shifted local dampening mechanism MSLD(x,ε,u,δ u,R) outputs an element r ∈ R with

probability equals to

lim
s→−∞

 exp
(

ε Dus,δu(x,r)
2

)
∑r′∈R exp

(
ε Dus,δu(x,r′)

2

)
 .
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For the case of functions that do not depend on r, both versions of the shifted local

dampening mechanism are applicable.

4.3 Privacy Guarantee

We now prove that the shifted local dampening mechanism MSLD ensures ε-differential

privacy. For the privacy guarantee, the sensitivity function δ u just needs to be admissable and

bounded but not necessarily monotonic. Recall that boundedness can be easily achieved (Section

3.2.2).

We first show an intermediate result:

Lemma 4.3.1. If δ u is admissible and bounded sensitivity function then
exp(ε Dus,δu(x,r)/2)

∑r′∈R exp(ε Dus,δu(x,r′)/2) =

exp(ε Dus0 ,δu(x,r)/2)
∑r′∈R exp(ε Dus0 ,δu(x,r′)/2) for s≥ s0 where s0 = n∆u+maxr′∈R u(x,r′) and n is the size of the input

database.

Proof. Let r ∈R be an output element. By definition of us, observe that

us(x,r) = u(x,r)− s≤ u(x,r)−n∆u−max
r′∈R

u(x,r′) = us0(x,r)

since s≥ s0. And also, as n≥ 0, we get that

us0 = u(x,r)−n∆u−max
r′∈R

u(x,r′)≤−n∆u≤ 0

This means that us0(x,r) is non-positive and, by consequence, us(x,r) is also non-

positive for all s > s0 and all r ∈ R. Therefore, by the construction of Dδ u,u, we have that

us0 ∈ [b(x, i,r),b(x, i+1,r)) for some i≤ 0 since us0(x,r)≤ 0. As δ u is bounded:

b(x, i,r)≤ us0(x,r)

⇒−
−i−1

∑
j=0

δ
u(x, j,r)≤ u(x,r)−n∆u−max

r′∈R
u(x,r′)

⇒ (i+1)∆u≤−n∆u

⇒ i+1≤−n

⇒ n≤−i−1
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This last fact, the admissibility and convergence (δ u is bounded) of δ u lead us to

show that the difference b(x,k,r)−b(x, i,r) is equal to (k− i)∆u for all k ≤ i < 0. We will use

this fact posteriorly.

b(x,k, i)−b(x, i,r) = (4.1)

=−
−k−1

∑
j=0

δ
u(x,− j,r)+

−i−1

∑
j=0

δ
u(x,− j,r) (4.2)

=−
−k−1

∑
j=−i

δ
u(x,− j,r) (4.3)

=−
−k−1

∑
j=−i

δ
u(x,n,r) (4.4)

= (k− i)∆u (4.5)

Note that us ∈ [b(x,k,r),b(x,k+1,r)) for some k≤ i≤ 0 since us(x,r)≤ us0(x,r)≤

0. Given that, we calculate the difference:

Dus0 ,δ u(x,r)−Dus,δ u(x,r) (4.6)

=
us0(x,r)−b(x, i,r)

b(x, i+1,r)−b(x, i,r)
+ i

− us(x,r)−b(x,k,r)
b(x,k+1,r)−b(x,k,r)

− k (4.7)

=
us0(x,r)−b(x, i,r)−us(x,r)+b(x,k,r)

∆u
− k+ i (4.8)

=
us0(x,r)−b(x, i,r)−us0(x,r)− s0 + s+b(x,k,r)

∆u

− k+ i (4.9)

=
s− s0

∆u
+

b(x,k,r)−b(x, i,r)
∆u

− k+ i (4.10)

=
s− s0

∆u
+

(k− i)∆u
∆u

− k+ i =
s− s0

∆u
(4.11)

Equation (4.9) holds since us(x,r) = u(x,r)− s = us0(x,r)+ so− s and equation 4.10 follows

from equation 4.5.

Finally,

exp(ε Dus,δ u(x,r)/2)

∑r′∈R exp(ε Dus,δ u(x,r′)/2)
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=
exp(ε (Dus0 ,δ u(x,r)− (s− s0)/∆u)/2)

∑r′∈R exp(ε (Dus0 ,δ u(x,r′)− (s− s0)/∆u)/2)

=
exp(−ε(s− s0)/2∆u).exp(ε Dus0 ,δ u(x,r)/2)

exp(−ε(s− s0)/2∆u).∑r′∈R exp(ε Dus0 ,δ u(x,r′)/2)

=
exp(ε Dus0 ,δ u(x,r)/2)

∑r′∈R exp(ε Dus0 ,δ u(x,r′)/2)

Lemma also 4.3.1 gives hint about the implementation. It suffices to shift by n∆u+

maxr′∈R u(x,r′) to meet the definition of the shifted local dampening. Also, from Lemma 4.3.1,

it follows directly (Corollary 4.3.1).

Corollary 4.3.1. lims→∞

 exp
(

ε Dus,δu (x,r)
2

)
∑r′∈R exp

(
ε Dus,δu (x,r′)

2

)
 exists and is equal to

exp(ε Dus,δu(x,r)/2)
∑r′∈R exp(ε Dus,δu(x,r′)/2)

for s≥ s0 where s0 = n∆u+maxr′∈R u(x,r′) and n is the size of the input database.

The privacy correctness proof follows from the exponential mechanism correctness

(MCSHERRY; TALWAR, 2007), Lemma 3.3.1 and Corollary 4.3.1. In this proof we use the

non-decreasing admissable function version of the local dampening (Definition 4.2.1). The

non-increasing version (Definition 4.2.2) privacy guarantee proof is symmetric.

Theorem 4.3.1. MSLD satisfies ε-Differential Privacy if δ u is admissible and bounded.

Proof. Given two neighboring databases x,y ∈ Dn (i.e., d(x,y) ≤ 1) and an output r ∈ R. We

need show that the ratio of the probability of r being produced by shifted local dampening

mechanism on database x and y is bounded by exp(ε).

Px(r)
Py(r)

=
P[MSLD(x,ε,u,δ u,R) = r]
P[MSLD(y,ε,u,δ u,R) = r]

=

lims→∞

 exp
(

ε Dus,δu (x,r)
2

)
∑r′∈R exp

(
ε Dus,δu (x,r′)

2

)


lims→∞

 exp
(

ε Dus,δu (y,r)
2

)
∑r′∈R exp

(
ε Dus,δu (y,r′)

2

)


= lim
s→∞

exp
(

εDus,δu(x,r)
2

)
exp
(

εDus,δu(y,r)
2

) · ∑r′∈R exp
(

εDus,δu(y,r′)
2

)
∑r′∈R exp

(
εDus,δu(x,r′)

2

)


≤ lim
s→∞

(
exp
(

ε(Dus,δ (x,r′)−Dus,δ (y,r′))
2

)
·
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∑r′∈R exp( ε(Dus,δu(x,r′)+1)
2 )

∑r′∈R exp( εDus,δu(x,r′)
2 )

)

≤ lim
s→∞

exp
(

ε

2

)2
·

∑r′∈R exp( εDus,δu(x,r′)
2 )

∑r′∈R exp( εDus,δu(x,r′)
2 )


= lim

s→∞
(exp(ε)) = exp(ε)

The two inequalities follow from Lemma 3.3.1 and the limit operations are allowed

since lims→∞

 exp
(

ε Dus,δu (x,r)
2

)
∑r′∈R exp

(
ε Dus,δu (x,r′)

2

)
 and lims→∞

 exp
(

ε Dus,δu (y,r)
2

)
∑r′∈R exp

(
ε Dus,δu (y,r′)

2

)
 exist. By symmetry,

P[MSLD(x,ε,u,δ u,R)=r]
P[MSLD(y,ε,u,δ u,R)=r] ≥ exp(−ε) holds.

4.4 Accuracy Analysis

In this section, we provide theoretical analysis on the accuracy. We aim to answer

to the following questions: i) How to compare two instances of the local dampening with two

different admissible functions?; ii) Under which conditions does the local dampening performs

more accurately than the exponential mechanism?; iii) If those conditions are not met, how to

build good admissible functions? and iv) How does local dampening compare to the exponential

mechanism in terms of accuracy?.

We evaluate the accuracy of a given mechanism M by studying the error random

variable E . E gives how much the element sampled by M differ from the optimal element in

terms of utility.

E (M,x) = u∗−u(x,M(x))

where u∗ is the optimal utility score, u∗ = maxr∈R u(x,r).

To compare two instances of the local dampening for the same problem, we need

to analyse the features of the function δ u. We develop a discussion on accuracy guarantees for

stable functions where we show how to compare two stable functions and show that, using a

stable function, the local dampening mechanism is never worse than the exponential mechanism

in terms of accuracy.
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4.4.1 Accuracy Analysis for Stable Sensitivity Functions

Two instances of the local dampening mechanism can be compared by their stable

sensitivity functions. As lower sensitivity means higher accuracy, a stable sensitivity function

that produces lower values implies in higher accuracy. For that analysis we establish a relation

of dominance between two stable sensitivity functions:

Definition 4.4.1. (Dominance) Let δ u(x, t,r) and δ̄ u(x, t,r) be two stable sensitivity functions

and x be a database. Let α(x, t,r) be referred to the gap between δ u(x, t,r) and δ̄ u(x, t,r):

δ u(x, t,r) = δ̄ u(x, t,r)+α(x, t,r). Assume that R = {r1, ...,rq} is ordered such that u(x,r1)≥

·· · ≥ u(x,rq). If α(x, t,r1) ≥ α(x, t,r2) ≥ ·· · ≥ α(x, t,rq) ≥ 0 for all t ≥ 0 then δ u(x, t,r)

dominates δ̄ u(x, t,r).

Given that, we can affirm that an instance of the local dampening mechanism using

δ u(x, t,r) is never worse than an instance using the dominated δ̄ u(x, t,r):

Lemma 4.4.1. (Local Dampening Accuracy) Let δ u(x, t,r) and δ̄ u(x, t,r) be two stable functions

and x be a database. If δ u(x, t,r) dominates δ̄ u(x, t,r) then:

1. Pr[E (MSLD,x)≥ θ ]≤ Pr[E (MSLD,x)≥ t] for all θ ≥ 0,

2. E[E (MSLD,x)]≤ E[E (MSLD,x)],

where MSLD represents an instance of the shifted local dampening mechanism using δ u as

sensitivity function while MSLD is an instance using δ̄ u.

The proof of Lemma 4.4.1 is deferred to the Appendix A. We can use Lemma 4.4.1

as tool understand the accuracy of the local dampening mechanism. It suggests that a sensitivity

function should be as inclined as possible, i.e., a higher difference between two gaps α(x, t,ri)

and α(x, t,ri+1) implies in higher accuracy. Also, the gaps α(x, t,ri) should be as large as

possible.

4.4.2 Comparison to the Exponential Mechanism

A very useful property of both versions of the local dampening mechanism is that

the exponential mechanism is an instance of the local dampening mechanism. The exponential

mechanism is obtained by setting δ u(x, t,r) = ∆u in an instance of the shifted local dampening.

Thus we can use Lemma 4.4.1 to compare any instance of the exponential mechanism

using a given stable function δ u(x, t,r) against the exponential mechanism. Note by the assump-
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tion of boundedness of the stable sensitivity function δ u(x, t,r) we have that δ u(x, t,r) ≤ ∆u,

for all x, t ≥ 0 and r ∈R. It implies that δ u(x, t,r) dominates ∆u. Thus the following corollary

holds:

Corollary 4.4.1. Let δ u be a stable function. The shifted local dampening mechanism

MSLD(x,ε,u,δ u,R) is never worse than the exponential mechanism MEM(x,ε,u,R), that is:

1. Pr[E (MSLD,x)≥ t]≤ Pr[E (MEM,x)≥ t] for all t ≥ 0,

2. E[E (MSLD,x)]≤ E[E (MEM,x)].

Note that this results implies that we can use local sensitivity LSu(x, t) safely since

LSu(x, t) is a stable sensitivity function, i.e., using the shifted local dampening mechanism with

LSu(x, t) as sensitivity function is never worse than the exponential mechanism. Yet, it suggests

that the larger the difference between LSu(x, t) and ∆u, the more accurate it is in relation to the

exponential mechanism.

This result also suggests that using the ∆u as a sensitivity function is the worst case

stable function. Given that, what would be the best stable function? The element local sensitivity

LSu(x, t,r) function is a good candidate. As shown before, LSu(x, t,r) is admissable and bounded.

However, LSu(x, t,r) is not necessarily monotonic. We demonstrate that LSu(x, t,r) is minimum

admissable, i.e. it dominates all admissable functions:

Lemma 4.4.2. LSu(x, t,r) is minimum admissable, i.e. LSu(x, t,r) dominates any admissible

sensitivity function δ u(x, t,r).

Proof. We show that LSu(x, t,r) is less than or equal any admissible sensitivity function δ u(x, t,r)

by induction on t.

Basis: for t = 0, LSu(x,0,r) ≤ δ u(x,0,r) holds since δ u is admissible for all x ∈

Dn,r ∈ R

Inductive step: suppose that LSu(x, t,r)≤ δ u(x, t,r) is true for all x ∈Dn,r ∈ R. We

must show that LSu(x, t +1,r)≤ δ u(x, t +1,r) is true for all x ∈ Dn,r ∈ R. By the definition of

element local sensitivity:

LSu(x, t +1,r) = max
y|d(x,y)≤t+1

LSu(y,0,r)

= max
y|d(x,y)≤1

max
y|d(y,z)≤t

LSu(z,0,r)
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≤ max
y|d(x,y)≤1

δ
u(y, t,r)≤ δ

u(x, t +1,r)

First inequality holds by hypothesis and the second inequality follows by the admis-

sibility of δ u. Thus LSu(x, t +1,r)≤ δ u(x, t +1,r) for all x ∈ Dn,r ∈R, t ≥ 0.

Even if LSu(x, t,r) happens to be non monotonic, we devote next subsection to

discuss that only a "weak" monotonicity is enough for our mechanism. Also, we discuss other

cases where the local dampening mechanism also performs well.

4.4.3 Relaxing Monotonicity

We have shown theoretical guarantees for the accuracy of the shifted local dampening

mechanism using stable functions. For sensitivity function like the global sensitivity ∆u and the

local sensitivity LSu(x, t) we have strong accuracy guarantees.

Strict monotonicity may be a complex goal to achieve. In the applications and

datasets analysed in our experimental section, none of them satisfy the strict monotonicity re-

quirement. Yet, the shifted local dampening mechanism outperforms the exponential mechanism

in our experiments.

For those sensitivity functions that violates monotonicity, we use the results on

Section 4.4.1 as guide to construct a good sensitivity function. The same analysis also work here,

Lemma 4.4.1 suggests that a sensitivity function should be as inclined as possible, i.e., a higher

difference between two gaps α(x, t,ri) and α(x, t,ri+1) implies in higher accuracy. Also, the

gaps α(x, t,ri) should be as large as possible.

For the running example of this thesis (Example 1.1.2), we designed an admissible

function δ EBC stated in Definition 6.3.1 for the use of the shifted local dampening mechanism.

Figure 16 displays the value of u(x,r) on the x-axis against δ u(x,0,r) for the Enron graph

database (LESKOVEC; KREVL, 2014). This example clearly violates strict monotonicity. But it

shows a weak monotonicity for the sensitivity function δ EBC in the sense that EBC(x,r) is still

positively correlated with δ EBC(x, t,r) with respect to r.

We argue that this kind of behavior is enough for a good performance of the shifted

local dampening. Our empirical results corroborates with this argument.

Additionally, Lemma 4.4.1 also suggests that functions that do not exhibit correlation

but have lower value than ∆u also perform well which is the case for local sensitivity LSu(x, t).
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Figure 16 – Correlation between EBC(x,r) and δ EBC(x,0,r) for EBC metric for Enron Dataset.

Source: elaborated by the author.

4.5 Conclusion

In this chapter, we introduced an extension to the local dampening mechanism. This

version fixes the inversion problem that happens to the standard local dampening mechanism

when the sensitivity function is monotonic. The ideia of the shifted local dampening mechanism

is to shift the utility function such that the utility scores of the elements become more spread

which translates in a higher accuracy. We prove it to satisfy ε-differential privacy.

We provided a theoretical analysis of the accuracy of the shifted local dampening

mechanism. We show that when the sensitivity function is stable, the shifted local dampening is

never worse than the exponential mechanism in terms of accuracy. Also, we discussed how to

build sensitivity functions that produces instances of the shifted local dampening mechanism

with high accuracy. Lastly, building a stable sensitivity function can be a hard task for some

problems. Thus we argued that even with the sensitivity function violates the hardest condition

to achieve stability, the monotonicity, it suffices to have a correlation between the utility function

and the sensitivity. In the next chapters, we provide an empirical evaluation to demonstrate that.



59

5 APPLICATION 1: MEDIAN SELECTION

Median selection is a known basic problem for testing the accuracy of private

mechanisms. A median selection algorithm should output the label of the element with the

closest value to the median.

Nissim et al. (2007) McKenna and Sheldon (2020) tackled a different version of this

problem. Nissim et al. (2007) tackled the numeric version of the median selection problem where

the task is to return the median value itself and not the label of the median element. McKenna

and Sheldon (2020) addressed binned version of the median selection problem where the data

is binned in k buckets and the goal is to return the median bin. The latter version has a low

global sensitivity. We provide an experimental comparison against the exponential mechanism

(MCSHERRY; TALWAR, 2007) and permute-and-flip (MCKENNA; SHELDON, 2020).

5.1 Problem Statement

Given a database x ∈ Rn represented as vector of real numbers < x1, · · · ,xn >.

Suppose that x is ordered such that x1 ≤ ·· · ≤ xn. Also suppose that all the values lies in [0,Λ],

0≤ x1 ≤ ·· · ≤ xn ≤ Λ.

The task is to return the index i where its element xi is as close as possible to the

median element xm where m = dn
2e. Note that R = {1, · · · ,n}. The utility function for a given

index i is the distance from xi to xm multiplied by −1 so that closer elements have higher utility

score:

Definition 5.1.1. (Utility function for median selection problem). umed(x, i) =−|xm− xi|.

5.2 Private Mechanism and Sensitivity Analysis

This problem is solved by a single call to a non-numeric mechanism. Here we use the

exponential mechanism and the permute-and-flip mechanism to compare to the local dampening

mechanism. The exponential mechanism and the permute-and-flip mechanism require the

computation of the global sensitivity ∆umed while the local dampening mechanism requires the

computation of the element local sensitivity umed .
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5.2.1 Global Sensitivity

The global sensitivity ∆umed is set by the following example: let x∈Rn be a database

where x1 = x2 = · · ·= xn−1 = 0 and xn =Λ. Let y=< y1, · · · ,yn >∈Rn be a neighboring database

of x obtained from x by changing the value of xn to 0, yn = 0. Thus we have that y1, ...,yn = 0. In

what follows, u(x,n) = Λ and u(y,n) = 0 as xm = ym = 0 which implies that u(x,n)−u(y,n) = Λ.

∆umed = max
i∈{1,...,n}

max
x,y|d(x,y)≤1

|u(x, i)−u(y, i)| (5.1)

This happens to be the largest possible |u(x, i)−u(y, i)| since |u(x, i)−u(y, i)| ≤ Λ

for any x,y ∈ realn and i ∈ [1,n]. The latter follows from the fact that the distance from xi to xm

is positive and smaller than Λ, 0≤ u(x, i)≤ Λ and 0≤ u(y, i)≤ Λ.

Lemma 5.2.1. (Median Selection Global Sensitivity.) ∆umed = Λ.

5.2.2 Element local sensitivity

Element local sensitivity at distance 0. Before calculating the element local

sensitivity of umed at distance t, we discuss how to compute the element local sensitivity at

distance 0 LSumed(x,0, i).

Observe that a naive computation of LSumed(x,0, i) is infeasible. It needs to iterate

over each neighboring database y of x and take |u(x,r)−u(y,r)|. The number of neighboring

databases is infinite because we can set a given xi to any real value in [0,Λ].

LSu(x,0,r) = max
y|d(x,y)≤1

|u(x,r)−u(y,r)|

Thus we provide a way to efficiently compute LSumed(x,0, i) in O(1) time complexity.

Lemma 5.2.2. (Median Selection Element Local Sensitivity at distance 0)

LSumed(x,0, i) = max(|xm− xi|,xm+1− xm,xm− xm−1, p(x, i),q(x, i)),

where

p(x, i) = max


Λ− xi if i > m

Λ− xm+1 if i = m

Λ+ xi−3xm + xm+1 i < m

,
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q(x, i) = max


xi if i > m

xm−1 if i = m

3xm− xi− xm−1 i < m

,

and 0≤ x1 ≤ ·· · ≤ xn ≤ Λ.

The proof of Lemma 5.2.2 is deferred to the Appendix A.

Element local sensitivity at distance t. Now we proceed to compute LSumed(x, t,r).

LSumed(x, t,r) = max
y|d(x,y)≤t

LSumed(y,0,r)

Given a distance t, our task is to compute LSu(y,0,r) over all y such that d(x,y)≤ t.

A naive brute force approach would be infeasible since there are infinite databases at distance t

from x as discussed previously for the computation of element local sensitivity at distance 0.

However, there is a small subset, referred to candidates(x, t,r), of {y|d(x,y) ≤

t} where we can evaluate LSu(y,0,r) only on the databases of candidates(x, t,r) to obtain

LSu(x, t,r). We show in our proofs that the databases {y|d(x,y) ≤ t}− candidates(x, t,r) are

safe to discard, i.e., it exists a database y ∈ candidates(x, t,r) where LSu(x, t,r) = LSu(y,0,r).

So we rewrite the element local sensitivity of umed as:

Lemma 5.2.3. (Element local sensitivity at distance t for median selection)

LSumed(x, t,r) = max
candidates(x,t,r)

LSumed(y,0,r).

The algorithm 2 depicts how to compute candidates(x, t,r). The algorithm candidates(x, t,r)

returns a subset of only 6 elements of {y|d(x,y)≤ t} that maximizes maxy|d(x,y)≤t LSumed(y,0,r).

The proof of Lemma 5.2.3 is deferred to the Appendix A.

5.3 Experimental Evaluation

Datasets. We tested most of the datasets from Hay et al. (2016). Many of them

have the local sensitivity near the global sensitivity and some have the local sensitivity far from

the global sensitivity, then our approach is beneficial. We report the results for two datasets
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Algorithm 2: Candidates Algorithm
1 Procedure Candidates(Dataset x, distance t, range element r)
2 if t = 0 then
3 return (x)
4 end
5 if t = 1 then
6 Obtain x′1 from x by moving xr to Λ

7 Obtain x′2 as a copy of x′1
8 Obtain x′3 from x by moving xr to 0
9 Obtain x′4 as copy of x′4

10 Obtain x′5 from x by moving the median element xm to Λ

11 Obtain x′6 from x by moving the median element xm to 0
12 return (x′1,x

′
2,x
′
3,x
′
4,x
′
5,x
′
6)

13 end
14 x1,x2,x3,x4,x5,x6 =Candidates(x, t−1,r)
15 Obtain x′1 from x1 by moving the median element xm to to 0
16 Obtain x′2 from x2 by moving the median element xm to to Λ

17 Obtain x′3 from x3 by moving the median element xm to to 0
18 Obtain x′4 from x4 by moving the median element xm to to Λ

19 Obtain x′5 from x5 by moving the median element xm to to 0
20 Obtain x′6 from x6 by moving the median element xm to to Λ

21 return (x′1,x
′
2,x
′
3,x
′
4,x
′
5,x
′
6)

where the local sensitivity is reasonably smaller from the global sensitivity: PATENT dataset

and HEPTH dataset. Also we show one dataset where the local sensitivity is very close to the

global sensitivity to show our approach behaves on this scenario: INCOME dataset.

Methods. We test three approaches for the median selection problem: i) EMMedi-

anSelection, the exponential mechanism using global sensitivity; ii) PFMedianSelection, the

permute-and-flip mechanism using the global sensitivity and iii) LDMedianSelection, the local

dampening mechanism using local sensitivity.

Evaluation. We measure the error: |retrieved_median_value−true_median_value|.

For the EMMedianSelection and LDMedianSelection methods, we report the expected error and

for the PFMedianSelection we report the mean error over 10,000 runs. We vary ε ∈ [10−3,103].

Figure 17 displays the results. For PATENT dataset, we observe a mean reduction of

18% in the error by the LDMedianSelection in relation to both the EMMedianSelection and the

PFMedianSelection over all tested values for ε . This reduction is specially noticeable for higher

values of ε . For HEPTH dataset, the reduction is at most 12% and the mean 4% for all tested

values.

For the INCOME dataset, we show that the LDMedianSelection has the same
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EMMedianSelection PFMedianSelection LDMedianSelection
Figure 17 – Expected error for the EMMedianSelection and LDMedianSelection methods and

mean error over 10,000 runs for PFMedianSelection. ε ∈ [10−3,103]
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Source: elaborated by the author.

accuracy as the EMMedianSelection and the PFMedianSelection in the scenario where the local

sensitivity is near to the global sensitivity. This behavior is similar to the other datasets from

Hay et al. (2016) not presented here.

5.4 Conclusion

In this chapter, we presented the non-numeric version of the median selection

problem. This application is a commonly addressed in other works as a example of application

to differently private mechanisms since it can be solved by a single call to a non-numeric

mechanism.

Our goal is to assess the accuracy of the local dampening mechanism compared to

global sensitivity based approaches: the exponential mechanism and permute-and-flip mechanism.
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For that, we also calculated the global sensitivity for the use of the exponential mechanism

and permute-and-flip mechanism and also the element local sensitivity for the local dampening

mechanism.

Experimental results show that the local dampening mechanism outperforms the

global sensitivity based approaches on the datasets where the local sensitivity is lower than the

global sensitivity.
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6 APPLICATION 2: INFLUENTIAL NODE ANALYSIS

Identifying influential nodes in a network is an important task for social network

analysis for marketing purposes (MA et al., 2008). This analysis has great value for making

a more effective marketing campaign since influential nodes have great capacity to diffuse a

message through the network.

This chapter addresses the Influential Node Analysis problem. We present i) the

formal problem statement ii) a private mechanism that tackles this problem iii) the sensitivity

analysis of the private queries of the mechanism and iv) an experimental comparison to global

sensitivity based approaches and also with a related approaches.

6.1 Problem statement

Formally, influential node analysis is a query over an input graph database G = (V,E)

that releases the labels of the top k nodes that maximize a given influence metric. The task is to

design a private mechanism that answers to the influential node analysis query.

Specifically, we use Egocentric Betweenness Centrality (EBC) (Definition 6.1.1) as

an influence measure. EBC allows to identify influential nodes that are important in different

loosely connected parties.

Definition 6.1.1. (Egocentric Betweenness Centrality (EBC) (EVERETT; BORGATTI, 2005;

FREEMAN, 1978))

EBC(c) = ∑
u,v∈Nc|u6=v

puv(c)
quv(c)

,

where Nc = {v ∈V |{c,v} ∈ E} is the set of neighbors of the central node c, quv(c)

is the number of geodesic paths connecting u and v on the induced subgraph G[Nc∪{c}] and

puv(c) is the number of those paths that include c.

We use edge differential privacy for graph databases where the goal is to protect

sensitive information about the edges in G (KASIVISWANATHAN et al., 2013). The graph G is

denoted as a vector belonging to {0,1}(
n
2) where n is the number of nodes in the input graph and

each entry on this vector represents the existence of an edge in G, 1 means that it exists and 0

means otherwise. By Definition 2.2.3 neighboring graphs differ in exactly one edge.
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6.2 Private Mechanism

We propose PrivTopk, a top-k algorithm template which chooses iteratively k nodes

that maximize EBC (Algorithm 3). In each iteration, the algorithm makes a call to a non-numeric

mechanism (line 5) that returns a node which maximizes EBC that was not previously chosen.

We experiment with four instances of this algorithm template:

1. EMPrivTopk, where we replace line 5 with an exponential mechanism call

2. PFPrivTopk, where we replace line 5 with a permute-and-flip mechanism call

3. LDPrivTopk where we replace line 5 with a local dampening call

4. SLDPrivTopk where we replace line 5 by a shifted local dampening mechanism.

Algorithm 3: PrivTopk
1 Procedure PrivTopk(Graph G = (V,E), Privacy Budget ε, Integer k)
2 ε ′ = ε/k
3 Ω = /0
4 for j← 1 to k do
5 v = MEC(G,ε ′,EBC,V ) // Non-numeric mechanism call

6 Ω = Ω∪{v}
7 end
8 return Ω

The privacy correctness of the algorithm follows from the sequential composition

property of differential privacy (MCSHERRY; TALWAR, 2007). Our algorithm issues k calls

to a private mechanism with privacy budget ε ′ = ε/k. By the sequential composition theorem

(Theorem 2.5.1) the total privacy budget consumed in the entire algorithm is ε ′×k = (ε/k)×k =

ε . Thus Algorithm 3 satisfies ε-differential privacy.

6.3 Sensitivity Analysis

First we need to show a useful lemma that is an intermediate result that helps on the

proof of the sensitivity. The proof of lemma 6.3.1 is deferred to the appendix.

Lemma 6.3.1. Let G and G′ be two neighboring graphs and v a node belonging to V (G) and

V (G′), we have that:

max
G,G′|d(G,G′)≤1

|EBCG(v)−EBCG′(v)|= max
(

dG(v)(dG(v)−1)/4,dG(v)
)
,

where dG(v) denotes the degree of v in G, i.e., dG(v) = |NG
v |.
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Global Sensitivity. We provide the global sensitivity for EBC to the exponential

mechanism and to the permute-and-flip mechanism:

Lemma 6.3.2. (EBC global sensitivity) The global sensitivity ∆EBC for EBC is given by

∆EBC = max
(

∆(G)(∆(G)−1)
4

,∆(G)

)
,

where ∆(G) is the maximum degree of the input graph G. In this work, we assume

the maximum degree is public information or that we have an upper bound for it.

Lemma 6.3.2 is a direct consequence of Lemma 6.3.1 given that ∆(G) is the degree

of the node with largest degree.

Element local sensitivity. For the local dampening call, we provide an upper bound

to the element local sensitivity using the admissible sensitivity function δ EBC:

Definition 6.3.1. (Sensitivity function δ EBC(G, t,v)). The sensitivity function δ EBC for EBC is

defined as

δ
EBC(G, t,v) = max

(
(dG(v)+ t)(dG(v)+ t−1)

4
,dG(v)+ t

)
.

We also show that δ EBC(G, t,v) is admissible (Lemma 6.3.3). Note that δ EBC is not

naturally bounded, however, we use the method described on Section 3.2.2 to transform it in a

bounded function.

Lemma 6.3.3. The sensitivity function δ EBC(G, t,v) is an admissible sensitivity function.

Proof. We show that the sensitivity function δ EBC(G, t,v) is admissible. First, we show that

δ EBC(G,0,v)= (d(d−1)/4,d)≥ LSEBC(G,0,v) where d is the degree of v. Lemma 6.3.1 proves

that for every pair of neighboring graphs G′,G∗, |EBCG′(v)−EBCG∗(v)|= max(d(d−1)/4,d).

By fixing G, we obtain that

LSEBC(G,0,v) = max
G′,d(G,G′)≤1

|EBCG(v)−EBCG′(v)|

≤max
(

dG(v)(dG(v)−1)/4,dG(v)
)
= δ

EBC(G,0,v)
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It remains to demonstrate that δ EBC(G, t,v)≤ δ EBC(G′, t +1,v) for all neighboring

graphs G′ of G. We first show that |dG− dG′| ≤ 1 where dG and dG′ are the degree of v in G

and G′ respectively G and G′ differ in just one edge, say e. Suppose e belongs to G and not to

G′, if e is not incident on v in G then |dG−dG′|= 0. Otherwise, if e is incident on v in G then

dG−dG′ = 1. So dG−dG′ ≤ 1. By symmetry, dG′−dG ≤ 0 holds. Then |dG−dG′| ≤ 1

Applying this last fact to δ EBC(G, t,v) we have:

δ
EBC(G, t,v) = max

(
(dG + t)(dG + t−1)

4
,dG + t

)
≤max

(
(dG′+ t +1)(dG + t)

4
,dG + t +1

)
= δ

EBC(G′, t +1,v)

In terms of correlation between EBC(v) and degG(v)+ t, note that for a given node

v with degree dG(v), there are
(dG(v)

2

)
= (degG(v) · (degG(v)−1))/2 terms in the EBC equation

for v (Definition 6.1.1), i.e., pairs (u,z) ∈ NG
v . As each term contributes at most 1 to EBC, it

suggests that there is a correlation between EBC(v) and degG(v)+ t and consequently, between

EBC(v) and δ EBC(G, t,v). Empirical observation of the datasets confirmed that correlation. For

this reason, the shifted local dampening mechanism call in SLDPrivTopk is suitable.

6.4 Related Work

The literature provides some work to release statistics on graphs which are presented

in this section. Also, we present some work on releasing linear statistics over relational databases

that can be used to release EBC and compare experimentally to our approach.

6.4.1 Differentially Private Graph Analysis

Kasiviswanathan et al. (2013) observed that the sensitivity of many graph problems

is a function of the maximum degree of the input graph G, so they proposed a generic projection

that truncates the maximum degree of G. This projection is built upon smooth sensitivity

framework (NISSIM et al., 2007) but the target query is answered using the global sensitivity
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on the truncated graphs which may still be high. Moreover, it satisfies a weaker definition of

privacy: (ε,δ )-differential privacy.

There is a number of works that aims to publish subgraph counting as k-triangles,

k-stars and k-cliques. Kasiviswanathan et al. (2013) also addresses this problem applying a

linear programming-based approach that release those counts for graphs that satisfies α-decay.

A new notion of sensitivity called restricted sensitivity was introduced by Blocki et

al. (2013) to answer subgraph counts. In this setting, the querier may have some belief about the

structure of the input graph, so the restricted sensitivity measures sensitivity only on the subset

of graphs which are believed to be inputs to the algorithm. However, this work satisfies only

(ε,δ )-differential privacy.

Blocki et al. (2013) introduced the ladder functions to answer to subgraph counts. A

latter function is a structure built upon the local sensitivity of the subgraph count. It rank the

possible outputs of the subgraph count query and sample a given output using the exponential

mechanism with low sensitivity.

The work presented in (KARWA et al., 2011) is directed application of the smooth

sensitivity framework (NISSIM et al., 2007) also for answering to subgraph count queries. The

authors provide the bounds of the local sensitivity of k-triangles and k-stars and show that they

are more accurate than related work.

About centrality metrics. A recent work Laeuchli et al. (2021) analyzes three

centrality measures on graphs: eigenvector, laplacian and closeness centrality. The result is

that releasing those metrics using either the laplace mechanism (based on global sensitivity) or

the smooth sensitivity framework (based on local sensitivity) is infeasible. To show that, they

demonstrate that the local sensitivity is unbounded or, even it is bounded, it is too large and it

results in overwhelming addition of noise.

To the best of out knowledge, in the literature, none of the works on graph analysis

tackles top-k or EBC release.

6.4.2 Releasing Linear Statistics over Relational Databases

A body of work is available in the literature on answer linear queries, i.e. queries

that can be answered by linear aggregation, over relational databases using SQL unde differential

privacy.

As will be shown in Section 6.5.1, the EBC metric can be computed by issuing a set
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of count SQL queries with cyclic joins and GROUP BY clauses over a graph stored in relational

database. Thus we survey works that can possibly answer to this kind of query.

Local sensitivity has been used for answering full acyclic join queries (TAO et al.,

2020). This approach lacks generality since it cannot compute SQL queries with cyclic joins

and GROUP BY clauses which it is not the case for EBC queries. The recursive mechanism

(CHEN; ZHOU, 2013) can answer linear queries with unrestricted joins with GROUP BY

clauses, however it requires the target function f to be monotonic, i.e., inserting a new individual

in the database always causes f to increase (or always decrease). This monotonicity condition is

not satisfied by EBC.

6.4.2.1 Privatesql

PrivateSQL (KOTSOGIANNIS et al., 2019) is an approach that can answer linear

queries with cyclic joins and correlated subqueries with GROUPBY clauses. The architecture of

PrivateSQL is displayed in Figure 19.

Figure 19 – PrivateSQL’s System Architecture (KOTSOGIANNIS et al., 2019).

Source: elaborated by Kotsogiannis et al. (2019).

This approach requires a representative workload Q as input, a primary relation in the

database. The representative workload is used in the VSelector module to identify a set of views

over the base relations that support the analyst queries and then generates a set of views that can

answer all the the analyst’s queries. The VRewrite module rewrite using truncation operators

and semijoin operators to bound the sensitivity. Therefore, the sensitivity for each query is

computed in the SensCalc module and a fraction of the budget is given to each query in the

BudgetAllocator module. The PrivSynGen generates a synopsis for each view. A synopsis is a

compact representation of a view that capture important information from it and can approximate

the answer of a given query on the view. The private synopses are released under differential
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privacy and queries can be executed over them without using privacy budget. The synopsis

generation is based on non-negative least squares inference (LI et al., 2015). The sensitivity

computation for each view is based on Flex (JOHNSON et al., 2018) augmented with truncation

operators.

Then when a new query is issued to the system, this query is rewritten as linear

queries over the private views’ synopsis in the MapQuery module. Since graph databases can

be modeled as a table Node(id) and a table Edge(source, target), we carry out an experimental

evaluation in Section 6.5.1.

6.5 Experimental Evaluation

Datasets. We use three real-world graph datasets: 1) Enron is a network of email

communication obtained from around half million emails. Each node is an email address and an

edge connects a pair of email addresses that exchanges emails (|V |= 36,692 , |E|= 183,831 and

∆(G) = 1,383); 2) DBLP is a co-authorship network where two authors (nodes) are connected if

they published at least one paper together (|V |= 317,080, |E|= 1,049,866 and ∆(G) = 343);

3) Github is a network of developers with at least 10 stars on the platform. Developers are

represented as nodes and an edge indicates that two developers follow each other (|V |= 37,700,

|E| = 289,003 and ∆(G) = 9,458). V is the set of vertices, E is the set of edges and ∆(G) is

the maximum degree of a graph G. All datasets can be found on Stanford Network Dataset

Collection (LESKOVEC; KREVL, 2014).

Methods. We compare the four versions of PrivTopk (algorithm 3): 1) EMPrivTopk,

using the exponential mechanism, 2) PFPrivTopk, using permute-and-flip mechanism, 3) LD-

PrivTopk using local dampening mechanism and 4) SLDPrivTopk using shifted local dampening

mechanism.

Evaluation. We evaluate the accuracy by the percentage of common nodes to

the retrieved top-k set and the true top-k set, i.e., (|retrieved_topk∩ true_topk|)/k. We report

the mean accuracy in 100 simulations. We set k ∈ {5,10,20} and a range for privacy budget

B ∈ [10−3,104].

Figure 20 displays the results. We first note that the global sensitivity based ap-

proaches, EMPrivTopk and PFPrivTopk, exhibit low accuracy for low values of B. This is due

to the high global sensitivity: ∆EBC = 22,361,076.5 for github dataset, ∆EBC = 477,826.5

for DBLP dataset and ∆EBC = 29,326.5 for Enron dataset. Also, the LDPrivTopk algorithm
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suffers from the inversion problem (Section 4.1) while SLDPrivTopk could exploit the correlation

between EBC and δ EBC to fix this problem.

SLDPrivTopk (k=5) SLDPrivTopk (k=10) SLDPrivTopk (k=20)
LDPrivTopk (k=5) LDPrivTopk (k=10) LDPrivTopk (k=20)
EMPrivTopk (k=5) EMPrivTopk (k=10) EMPrivTopk (k=20)
PFPrivTopk (k=5) PFPrivTopk (k=10) PFPrivTopk (k=20)

Figure 20 – Accuracy for PrivTopk algorithm for k ∈ {5,10,20} and B ∈ [10−3,104].
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(d) Enron - ε ∈ [10−3,104]
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(e) DBLP - ε ∈ [10−3,104]
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(f) Github - ε ∈ [10−3,104]

Source: elaborated by the author.

We observe a clear pattern where the methods perform worse as k grows. This is

explained by the fact that each call to the non-numeric mechanism uses B/k of the total privacy

budget B (Algorithm 3). Thus, larger k implies that less of the privacy budget is used in each

non-numeric mechanism call which hurts accuracy.

For SLDPrivTopk, we note that we need different level of privacy budget for each

dataset reasonable accuracy. This is explained by a number of factors. For Github dataset, the

distribution of EBC is heavy tailed thus the nodes with high EBC have a higher probability to be

correctly picked with low privacy budget. On the other hand, for the DBLP dataset we need need
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more privacy budget as it has roughly 10 times more nodes than the other datasets, which dilute

the probability of the nodes with higher EBC.

Our approach SLDPrivTopk achieves the same level of accuracy with privacy values

3 to 4 orders of magnitude less than EMPrivTopk and 2 to 4 orders of magnitude less than

PFPrivTopk.

6.5.1 Comparison to PrivateSQL

We carry out an experimental comparison of local dampening mechanism to the

PrivateSQL on Influential Node Analysis problem. For this application, PrivateSQL is not

particularly scalable (as discussed further) so we performed the experiments with smaller datasets

and test with fewer values for the privacy budgets.

PrivateSQL addresses the Influential Node Analysis problem by computing the

counts quv(c) and puv(c) for all u,v ∈ Nc (Definition 11) to compute EBC and takes the top-k

nodes with highest EBC score. Note that it considers only for the terms puv(c)/quv(c) where the

distance from u to v in G[Nc∪{c}] is 2 which is the maximum possible distance as u,v ∈ Nc. If

their distance is 1 (i.e. u and v are neighbors), the term puv(c) is 0 since the geodesic path of

length 1 from u to v (u,v 6= c) cannot contain c. Thus, for PrivateSQL, we pose private queries

Q(u,v,c) (see Appendix B) that returns 1) 0 if u and v are neighbors, 2) 0 if the distance from u

to v is larger than 2 and 3) quv(c), otherwise.

Therefore, when Q(u,v,c) is not equal to 0, it means that the term puv(c)/quv(c)

should be accounted in the EBC definition. In that case, we obtain a noisy estimate for quv(c)

from Q(u,v,c). A noisy estimate for puv(c) can be derived from noisy quv(c) by setting puv to 0

if quv(c) = 0 or to 1 if quv(c)> 0. The rationale is that exactly one of the paths of length 2 from

u to v contains c as u,v ∈ Nc.

The set Nc is itself private information. Hence, to compute EBC(c) for every

c ∈V (G) we need to compute Q(u,v,c) for every u,v ∈V (G). This results in a total number of

O(n3) queries which poses a scalability problem. For this reason, we perform experiments with

samples S of the graphs which are obtained by choosing a node sample Sn in breadth-first search

fashion with a random seed node and then we set S = G[Sn].

Table 1 displays the mean accuracy for 10 runs on 10 sample graphs with |Sn| =

50 nodes with k ∈ {1,2,3} for each B ∈ {0.1,0.5,1.0,5.0,10.0}. We compare the best local

dampening based algorithm SLDPrivTopk (PTK) with the PrivateSQL based approach (PSQL).
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PrivateSQL approach generated one private view for each node in the graph. Thus,

the privacy budget needs to be divided by the number of nodes n which implies that accuracy is

hurt as n grows. Moreover, the sensitivity for each view is high, e.g, sensitivity is 1448 when

∆(G) = 10. This entails in a poor performance for the PrivateSQL based approach.

Table 1 – Mean accuracy for SLDPrivTopk (PTK) and PrivateSQL (PSQL) over 10 runs on 10
sample graphs with 50 nodes with k ∈ {1,2,3} for each B ∈ {0.1,0.5,1.0,5.0,10.0}.

Enron DBLP Github
B PTK PSQL PTK PSQL PTK PSQL

0.1 0.06 0.01 0.05 0.02 0.07 0.02
0.5 0.45 0.01 0.27 0.02 0.49 0.02
1.0 0.60 0.16 0.44 0.05 0.69 0.02
5.0 0.84 0.20 0.87 0.11 0.86 0.03
10.0 0.88 0.21 0.92 0.21 0.91 0.07

Source: elaborated by the author

6.6 Conclusion

In the chapter, we defined the Influential Node Analysis application where the goal

is to release the top-k most influential nodes of a given graph according to a influence metric. In

this work, we use EBC centrality as influence metric.

Then we have introduced a template of a private mechanism that releases the top-k

influential nodes. In this template we can apply any non-numeric mechanism. We applied the

exponential mechanism, the permute-and-flip mechanism, the local dampening mechanism and

the shifted local dampening mechanism. To apply those mechanisms we provided the global

sensitivity and upper on the local sensitivity of the EBC metric and showed to be admissible.

In our experimental evaluation, we first compare the proposed mechanism with the

exponential mechanism, the permute-and-flip mechanism, the local dampening mechanism and

the shifted local dampening mechanism. The results show that the shifted local dampening

mechanism significantly reduces the use of privacy budget by 2 to 4 with the same level of

accuracy compared to the global sensitivity based approaches (exponential mechanism and

permute-and-flip mechanism).

After this, we compared the local dampening mechanism to the PrivateSQL approach.

PrivateSQL had poor performance since it needs to generate a view for each node. Then the

privacy budget used to construct each view is divided by the number of nodes.
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7 APPLICATION 3: ID3 DECISION TREE INDUCTION

Classification based on decision tree is an important tool for data mining (KOT-

SIANTIS et al., 2007). Specifically, decision trees are a set of rules that are applied to the input

attributes to decide to which class a given instance belongs. Figure 22 shows an example of a

decision (Y or N) that is taken by checking the attributes Outlook and Wind of the input row.

Figure 22 – Example of Decision Tree.

Outlook

Y
sun

Wind

Y
weak

N
strong

rain

Source: elaborated by the author.

Creating a decision tree manually is a burden. Thus many approaches for automati-

cally building decision trees were proposed. One of the most known tree induction algorithms is

the ID3 algorithm (QUINLAN, 1986). A tree induction algorithm receives a dataset and outputs

a decision tree. Table 2 shows an example of a dataset regarding weather.

Table 2 – Sample dataset.
Outlook Wind Decision

rain strong Y
rain weak N
sun strong Y
sun weak N
sun strong N

Source: elaborated by the author

The ID3 algorithm (QUINLAN, 1986) starts with the root node containing the

original set. Then the algorithm greedly chooses an unused attribute to split the set and generate

child nodes. The selection criterion is Information Gain (IG), given by the entropy before

splitting minus the entropy after splitting. It expresses how much entropy was gained after the

split. This process continues recursively for the child node until splitting does not reduce entropy

or the maximum depth is reached.
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7.1 Problem Statement

A decision tree induction algorithm takes as input a dataset T with attributes

A = {A1, . . . ,Ad} and a class attribute C and produces a decision tree. The task is to build a

decision tree in a differentially private manner. Specifically, we base our approach in one of the

most known tree induction algorithms, the ID3 algorithm.

The notation for this chapter is summarized in Table 3. All logarithms are in base 2.

When it is clear from the context, we drop the superscript T from the notations.

Table 3 – Notation table for private decision tree induction
Variable Definition
IG Information Gain
T Dataset
A Attribute set
Ai i-th attribute
C Class attribute
τT Cardinality of a dataset T : τT = |T |
rA Values of an attribute A in a record r
rC Values of the class attribute C in a record r

T A
j

Set of records r ∈T where attribute A
takes value j: T A

j = {r ∈T : rA = j}
τ

A,T
j Cardinality of T A

j : τ
A,T
j = |T A

j |

τT
c

Number of records r ∈T where class
attribute C takes value c:
τT

c = |r ∈T : rC = c|

τ
A,T
j,c

Number of records r ∈T where attribute A
takes value j and class attribute C takes
value c: τ

A,T
j,c = |r ∈T : rA = j∧ rc = c|

Source: elaborated by the author

7.2 Related Work

Blum et al (BLUM et al., 2005) presented the SuLQ framework that provides

primitives for data mining algorithms. As an application, they introduced a differentially private

adaptation for ID3 algorithm where it computes the information gain based on the noisy counts

provided by SuLQ. This approach applies two operators from SuLQ: 1) NoisyCount that uses

Laplace mechanism to return private estimate of a count query, and 2) Partition that splits the

dataset in disjoint subsets so that the privacy budgets for the queries over each subset do not sum

up (parallel composition, Theorem 2.5.2) meaning that we can make a more efficient use of the

privacy budget. A major drawback of this algorithm is that it requires to query the noisy counts

(via NoisyCounts) for each attribute, so the privacy budget needs to be split to those queries.
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This entails in a small budget per query and in a larger noise magnitude.

To overcome this, Friedman and Schuster (2010) introduced a variation of the SuLQ

algorithm (Algorithm 4). This algorithm replaces the many NoisyCount calls for a single call to

the exponential mechanism. Line 12 (Algorithm 4) is the call for the exponential mechanism

that was previously several calls to NoisyCount.

The procedure Build_Di f f PID3 in algorithm 4 starts by checking for the construc-

tion of a leaf node (Line 5-7). It verifies if there the dataset has any remaining attribute and if

there is enough instances to make new splits. In lines 8-10, it partitions the data based on the

class attribute C, it privately queries the count of each partition and create a leaf with the class

label of the largest partition. The Lines 12-15 creates a new decision rule recursively. It starts by

privately choosing the attribute with largest IG using the exponential mechanism then it partition

the dataset using the chosen attribute and call Build_Di f f PID3 with each partition to create the

sub-trees.

Algorithm 4: GlobalDiffPID3
1 Procedure GlobalDiffPID3(Dataset T , Attribute Set A , Class

attribute C, Depth d, Privacy Budget B)
2 ε = B/(2(d +1))
3 return Build_DiffPID3(T , A , C, d, ε)
4 Procedure Build_DiffPID3(T , A , C, d, ε)

5 t = maxA∈A |A|
6 NT = NoisyCountε(T )

7 if A = /0 or d = 0 or NT
t|C| <

√
2

2 then
8 Tc = Partition(T ,∀c ∈C : rc = c)
9 ∀c ∈C : Nc = NoisyCountε(Tc)

10 return a leaf labeled with argmaxc(Nc)

11 end
12 Ā = E (T ,ε, IG,A ) // Exp. mechanism call

13 Ti = Partition(T ,∀i ∈ Ā : rĀ = i)
14 ∀i ∈ Ā : Subtreei = Build_DiffPID3(Ti,A \ Ā,C,d−1,ε)
15 return a tree with a root node labeled Ā and edges labeled 1 to Ā each going to

Subtreei

To the best of our knowledge, our work is the first to apply local sensitivity to

single trees which was an open question pointed out in a recent survey on private decision trees

(FLETCHER; ISLAM, 2019).

Many other works address the private construction of random forests (FLETCHER;

ISLAM, 2015a; FLETCHER; ISLAM, 2015b; FLETCHER; ISLAM, 2017; JAGANNATHAN
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et al., 2009; PATIL; SINGH, 2014; RANA et al., 2015). Interestingly, local sensitivity was used

for building random forests (FLETCHER; ISLAM, 2015b; FLETCHER; ISLAM, 2017) using

smooth sensitivity. This shows a promising future direction of our work which is applying local

dampening to construct random forests.

7.3 Private Mechanism

We use the algorithm GlobalDiffPID3 (FRIEDMAN; SCHUSTER, 2010) (Algorithm

4) as a template. We aim to adapt it for the use of the local dampening mechanism and to the

shifted local dampening producing the LocalDiffPID3 and ShiftedLocalDiffPID3, respectively.

In the following, we make a discussion about the split criterion, the global sensitivity of the split

criterion for the exponential mechanism and the element local sensitivity for the local dampening.

Split criterion. In this work, we address one of the most traditional split criterion,

information gain (IG). It is given by the entropy of the class attribute C in T minus the obtained

entropy of C splitting the tuples according to an attribute A ∈A .

IG(T ,A) = HC(T )−HC|A(T ),

where HC(T ) is entropy with respect to the classe attribute C

HC(T ) =−∑
c∈C

τc

τ
log

τc

τ
,

and HC|A(T ) is the entropy obtained by splitting the instances according to attribute A

HC|A(T ) = ∑
j∈A

τA
j

τ
.HC(T

A
j ).

Since HC(T ) does not depend on A, we can further simplify the utility function IG:

IG(T ,A) =−τ.HC|A(T ) (7.1)

=−∑
j∈A

∑
c∈C

τ
A
j,c. log(

τA
j,c

τA
j
). (7.2)

Global sensitivity. The exponential mechanism requires the computation of the

global sensitivity for IG. It is given by ∆IG = log(N +1)+1/ ln2 (FRIEDMAN; SCHUSTER,
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2010) where N is the size of the dataset T . The global sensitivity case can be achieved by T

and T ′ where:

1. T has all tuples with values for A equal to a single value j ∈ A and all tuples class attribute

C are set to a value different from a given value c ∈C (i.e. τA
j = τ and τA

j,c = 0);

2. T ′ is obtained from T by adding a tuple r where rA = j and rC = c.

Element local sensitivity. In our experiments, we observed that this mentioned case

for the global sensitivity is not frequent in real datasets. For those datasets, a local measurement

of the sensitivity can be about one order of magnitude lower than the global sensitivity. To this

matter, we replace line 12 of algorithm 4 for a local dampening mechanism call producing the

algorithm LocalDiffPID3.

Element Local Sensitivity at distance 0. To use local dampening mechanism, we

provide means to efficiently compute the element local sensitivity for IG (Lemma 7.3.2). The

element local sensitivity at distance t measures LSIG(T ′,0,A) for all datasets T ′ such that

d(T ,T ′)≤ t. We first show how to obtain LSIG(T ′,0,A):

Lemma 7.3.1. (Element local sensitivity at distance 0 for IG). Given a dataset T and the

attribute set A, LSIG(T ,0,A) produces the element local sensitivity for IG at distance 0:

LSIG(T ,0,A) = max
j∈A,c∈C

h(τA,T
j ,τA

j,cT ),

where

h(a,b) = max( f (a)− f (b),g(b)−g(a)),

g(x) = x.log((x−1)/x)− log(x−1),

f (x) = x.log((x+1)/x)+ log(x+1).

Assume that g(x) = 0 for x ≤ 1 and f (x) = 0 for x ≤ 0. Note that, the expression

g(τA,T
j,c )−g(τA,T

j ) measures the impact of the removal of a tuple r such that rA = j and rC = c and

the expression f (τA,T
j )− f (τA,T

j,c ) measures the addition of tuple r. Thus to obtain LSIG(T ,0,A),

we need to measure, for all j ∈ A and c ∈C, the addition or removal of the tuple r where rA = j

and rC = c, i.e. h(τA,T
j ,τA,T

j,c ) = max( f (τA,T
j )− f (τA,T

j,c ),g(τA,T
j,c )−g(τA,T

j )).

Element local sensitivity at distance t. We use a similar idea to compute

LSIG(T , t,A). LSIG(T , t,A) searches for the largest LSu(T ′,0,A) over all datasets T ′ where

d(T ,T ′)≤ t:
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LSIG(T , t,A) = max
T ′|d(T ,T ′)≤t

LSu(T ′,0,A)

= max
c∈C, j∈A

max
T ′|d(T ,T ′)≤t

h(τA,T ′
j ,τA,T ′

j,c ).

Exhaustively iterating over all T ′ to compute h(τA,T ′
j ,τA,T ′

j,c ) is not feasible since

the number of datasets T ′ grows exponentially with respect to t. However, we can restrict the

number of evaluations of h by discarding some of the datasets T ′.

To this end, we introduce the algorithm Candidates(T , t, j,c) (Algorithm 5) that

produces a subset of the set of the pairs (τA,T ′
j , τ

A,T ′
j,c ) of all datasets T ′ such that d(T ,T ′) = t,

i.e., Candidates(T , t, j,c)⊆ {(τA,T ′
j ,τA,T ′

j,c ) | d(T ,T ′) = t}.

Algorithm 5: Candidates Algorithm
1 Procedure Candidates(Dataset T , distance t, attribute value j, class

attribute value c)
2 if t = 0 then
3 return {(τA

j ,τ
A
j,c)}

4 end
5 candidates = /0
6 for each pair (a,b) ∈Candidates(T , t−1, j,c) do
7 if a > 0 and b > 0 then
8 candidates = candidates∪{(a−1,b−1)}
9 end

10 if a < τ then
11 candidates = candidates∪{(a+1,b)}
12 end
13 end
14 return candidates

The Candidates algorithm has two important properties:

1. Candidates(T , t, j,c) contains the pair (τA,T ′
j , τ

A,T ′
j,c ) such that h(τA,T ′

j , τ
A,T ′
j,c ) is maxi-

mum, i.e., h(τA,T ′
j , τ

A,T ′
j,c ) = maxT ′|d(T ,T ′)=t h(τA,T ′

j ,τA,T ′
j,c ) (Lemma 7.3.2);

2. It is cacheable, when computing DIG,δ IG , we evaluate LSIG(T ′, t,A) several times in

increasing order of t then one can cache calls to Candidates(T , t − 1, j,c) to execute

Candidates(T , t, j,c) (line 6) efficiently.

Thus LSIG(T , t,A) is given by:
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Lemma 7.3.2. (Element local sensitivity at distance t for IG) Given an input table T , a distance

t and an attribute set A, LSIG(T , t,A) produces the element local sensitivity at distance t for IG.

LSIG(T , t,A) = max
j∈A,c∈C,

0≤t ′≤t

max
(a,b)∈Candidates(T ,t ′, j,c)

h(a,b).

In turn, the computation of LSIG(T , t,A) is also cacheable. One can store a previous

call to LSIG(T , t−1,A) to compute LSIG(T , t,A) as:

LSIG(T , t,A) =max

 max
j∈A,c∈C,

(a,b)∈Candidates(T ,t, j,c)

h(a,b), LSIG(T , t−1,A)

.

In the datasets used in our experiments, LSIG and IG shows correlation. Conse-

quently, we also replace the exponential mechanism call on line 12 in algorithm 4 by a call to the

Shifted local dampening with LSIG, which produces the ShiftedLocalDiffPID3.

Continuous attributes support. An important feature introduced in C4.5 algorithm

(SALZBERG, 1993) is the support for continuous attributes. To support continuous attributes, we

use a simpler approach that performed well in our experiments and it is also used in (FRIEDMAN;

SCHUSTER, 2010). We discretize the continuous attributes in b evenly spaced bins on the

dataset and use them as discrete attributes.

7.4 Experimental Evaluation

Datasets. We use of three tabular datasets: 1) National Long Term Care Survey

(NLTCS) (MANTON, 2010) is a dataset that contains 16 binary attributes of 21,574 individuals

that participated in the survey, 2) American Community Surveys (ACS) dataset (SERIES, 2015)

includes the information of 47,461 rows with 23 binary attributes obtained from 2013 and 2014

ACS sample sets in IPUMS-USA and 3) Adult dataset (BLAKE; MERZ, 1998) contains 45,222

records (excluding records with missing values) with 12 attributes where 8 are discrete and 4 are

continuous.

Methods. We compare the three versions of the DiffPID3 (algorithm 4): 1) Glob-

alDiffPID3 using exponential mechanism, 2) LocalDiffPID3 using local dampening mechanism

and 3) ShiftedLocalDiffPID3 using local dampening mechanism with shifting.
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Evaluation. We evaluate the accuracy of the approach by reporting the mean

accuracy across the 10 runs of a 10-fold cross validation. We set depth ∈ {2,5} and ε ∈

{0.01,0.05,0.1,0.5,1.0,2.0}.
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(d) Depth=5
Source: elaborated by the author.

Figure 23 – NLTCS dataset

Figure 23 presents the results for NLCTS dataset. We observe that the LocalDiffPID3

improves on the GlobalDiffPID3 in almost every privacy budget value, up to 5%. While

ShiftedLocalDiffPID3 improves a little more in relation to the LocalDiffPID3, up to 1%.

ShiftedLocalDiffPID3 LocalDiffPID3 GlobalDiffPID3

0.01 0.05 0.1 0.5 1.0 2.0

0.7

0.8

0.9

B

A
cc

ur
ac

y

(c) ACS dataset - Depth=2
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(d) ACS dataset - Depth=5
Source: elaborated by the author.

Figure 24 – ACS dataset

For the ACS dataset, Figure 24, the inversion problem (Section 4.1) appears. Specif-
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ically, for depth = 2, the second and the third attributes with largest IG become the third and

second attributes, respectively, with larger Dampened IG. As a consequence, as B grows, Lo-

calDiffPID3 tends to pick the first and the third attributes with largest Information which is

sub-optimal. ShiftedLocalDiffPID3 is less prone to suffer from the inversion problem in larger

depths, i.e. depth=5, since it can pick, in deeper levels, those attributes that loose rank (see

Figure 24d). ShiftedLocalDiffPID3 improves at most 8% on GlobalDiffPID3.

Figure 25 – Adult dataset
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Source: elaborated by the author.

Fot the Adult Dataset, Figure 25, the LocalDiffPID3 improves just a little over the

GlobalDiffPID3. However, ShiftedLocalDiffPID3 improves over GlobalDiffPID3 up to 4%.

7.5 Conclusion

In this section, we introduced the notions of decision tree and automatic tree induc-

tion. We state the problem for this section which is to build private tree induction algorithm

based on ID3 algorithm.

We use the same algorithm template as (FRIEDMAN; SCHUSTER, 2010). We

replace the exponential mechanism call to choose the attribute to split the dataset using IG for a

call to the local dampening mechanism or the shifted local dampening mechanisms. For that, we

provided the element local sensitivity.

The experimental results compare the algorithm using the local dampening mecha-

nism and the shifted local dampening mechanism to one using exponential mechanism using 3
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real world datasets. The results show that our approach outperforms the exponential mechanism

based algorithm in most of the values for privacy budget, values for depth and datasets tested in

terms of accuracy. The improvement on accuracy was up to 8%.
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8 CONCLUSION AND FUTURE WORK

In this thesis, we introduced the local dampening mechanism, a novel framework to

provide differential privacy for non-numeric queries using local sensitivity. We have shown that

using local sensitivity on non-numeric queries reduces the noise added to achieve differential

privacy which makes the answer of those queries more useful. We discuss that we can use

the local sensitivity or an upper bound for it through a sensitivity function. We classify than

sensitivity functions according to four aspects: admissibility, boundedness, monotonicity and

stability.

We proposed a second version of the local dampening mechanism called the shifted

local dampening where we can benefit from monotonic sensitivity functions. We provide a

theoretical accuracy analysis and guide to construct sensitivity functions that provide better

accuracy on the shifted local dampening mechanism.

We evaluated our approach on three applications:

1. Median selection. We showed that local dampening mechanism can select elements 18%

closer to the median compared to global sensitivity based approaches.

2. Influential node analysis. This application benefited greatly from the use of local sensitivity.

In our experiments we could reduce the use of privacy budget by 2 to 4 while keeping the

same accuracy level.

3. Decision Tree induction. Our approach improves on approaches that use the exponential

mechanism for this task based on Information Gain. In our experiments, the improvement

of accuracy is up to 8%.

8.1 Future Work

Our work has laid the foundations for providing differential privacy for non-numeric

queries using local sensitivity. There are many interesting directions of future work. Any

problem in the literature that has used the Exponential mechanism for non-numeric queries

to guarantee DP is a candidate problem that could potentially benefit from using our local

dampening mechanism instead, and worthy of future work. Some example of future direction

include:

1. Address other graph influence/centrality metrics for Influential Node analysis. Specifically,

egocentric measures are good candidates since many of them have low local sensitivity as
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the egocentric density;

2. Apply the local dampening mechanism to private random forest algorithms. Many private

random forest algorithms already use local sensitivity through the smooth sensitivity

framework to add numeric noise. For some of those algorithms, replacing the numeric

mechanism to a non-numeric mechanism can reduce the number of differentially private

queries issued which saves privacy budget. This is the same improvement that (FRIED-

MAN; SCHUSTER, 2010) provided over (BLUM et al., 2005);

3. We envision to tackle the problem of differentially private multivariate non-numeric queries.

The setting to this problem is similar to the non-numeric setting. However, the difference

is that the analyst has more than one utility functions and he/she wants to chose the best

answer that maximizes all utility functions.
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APPENDIX A – PROOFS

A.1 Proof of Lemma 4.4.1

Lemma 4.4.1. (Local Dampening Accuracy) Let δ u(x, t,r) and δ̄ u(x, t,r) be two stable functions

and x be a database. If δ u(x, t,r) dominates δ̄ u(x, t,r) then:

1. Pr[E (MSLD,x)≥ θ ]≤ Pr[E (MSLD,x)≥ t] for all θ ≥ 0,

2. E[E (MSLD,x)]≤ E[E (MSLD,x)],

where MSLD represents an instance of the shifted local dampening mechanism using δ u as

sensitivity function while MSLD is an instance using δ̄ u.

Proof. We first prove point 1. Let t be a real number larger than 0. we need to show that the

following expression if non-positive.

Pr[E (MSLD,x)≥ θ ]−Pr[E (MSLD,x)≥ θ ] (A.1)

= ∑
r∈R|u∗−u(x,r)≥θ

Pr[MSLD(x) = r]−Pr[MSLD(x) = r] (A.2)

= ∑
r∈R|u∗−u(x,r)≥θ

lim
s→∞

 exp
(

ε Dus,δ (x,r)
2

)
∑r′∈R exp

(
ε Dus,δ (x,r′)

2

)
− lim

s→∞

 exp
(

ε Dus,δ̄ (x,r)
2

)
∑r′∈R exp

(
ε Dus,δ̄ (x,r

′)

2

)
 (A.3)

= ∑
r∈R|u∗−u(x,r)≥θ

 exp
(

ε Dus0 ,δ (x,r)
2

)
∑r′∈R exp

(
ε Dus0 ,δ (x,r

′)

2

) − exp
(

ε Dus0 ,δ̄ (x,r)
2

)
∑r′∈R exp

(
ε Dus0 ,δ̄ (x,r

′)

2

)
 (A.4)

= ∑
r∈R|u∗−u(x,r)≥θ

 exp
(

ε Dus0 ,δ (x,r)
2

)
∑r′∈R exp

(
ε Dus0 ,δ̄ (x,r

′)

2

)
∑r′,r′′∈R exp
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ε Dus0 ,δ (x,r

′)

2

)
exp
(

ε Dus0 ,δ̄ (x,r
′′)
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) (A.5)

−
exp
(

ε Dus0 ,δ̄ (x,r)
2
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ε Dus0 ,δ (x,r

′)

2
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∑r′,r′′∈R exp

(
ε Dus0 ,δ (x,r

′)

2

)
exp
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ε Dus0 ,δ̄ (x,r
′′)

2
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 (A.6)

=

∑r|u∗−u(x,r)≥θ ∑r′∈R exp
(

ε (Dus0 ,δ (x,r)+Dus0 ,δ̄ (x,r
′))

2
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(
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′)

2
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exp
(

ε Dus0 ,δ̄ (x,r
′′)

2

) (A.7)
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−
∑r|u∗−u(x,r)≥θ ∑r′∈R exp

(
ε (Dus,δ̄ (x,r)+Dus,δ (x,r

′))

2

)
∑r′,r′′∈R exp

(
ε Dus,δ (x,r′)

2

)
exp
(

ε Dus,δ̄ (x,r
′′)

2

) (A.8)

=

∑r|u∗−u(x,r)≥θ

r′|u∗−u(x,r)<θ

exp
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ε (Dus0 ,δ (x,r)+Dus0 ,δ̄ (x,r
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r′|u∗−u(x,r)≥θ

exp
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′))
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)
∑r′,r′′∈R exp
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′)
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exp
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′′)
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−
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exp
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exp
(
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(A.9)

=

∑r|u∗−u(x,r)≥θ

r′|u∗−u(x,r′)<θ

(
exp
(

ε (Dus0 ,δ (x,r)+Dus,δ̄ (x,r
′))

2

)
− exp

(
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exp
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2
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≤ 0 (A.11)

The Line A.4 follows from the Lemma 4.3.1 where s0 = ∆u+u∗. The last inequality

(Line A.11) follows from the following:

Dus,δ (x,r
′)−Dus,δ (x,r) (A.12)

=
us0(x,r′)−∑

n−1
t=0 δ (x, t,r′)

∆u
+n−

us0(x,r)−∑
n−1
t=0 δ (x, t,r)

∆u
−n (A.13)

=
us0(x,r′)+∑

n−1
t=0 (δ̄ (x, t,r

′)+αx,t,r′)

∆u
−

us0(x,r)+∑
n−1
t=0 (δ̄ (x, t,r)+αx,t,r)

∆u
(A.14)

=
us0(x,r′)+∑

n−1
t=0 δ̄ (x, t,r′)+∑

n−1
t=0 αx,t,r′

∆u
−

us0(x,r)+∑
n−1
t=0 δ̄ (x, t,r)+∑

n−1
t=0 αx,t,r

∆u
(A.15)

= Dus,δ̄ (x,r
′)+

∑
n−1
t=0 αx,t,r′

∆u
−Dus,δ̄ (x,r)−

∑
n−1
t=0 αx,t,r

∆u
(A.16)

≥ Dus,δ̄ (x,r
′)−Dus,δ̄ (x,r) (A.17)

Line A.13 follows from the definition of the shifted local dampening when using

shifting by s0. The last inequality (Line A.17) is due to the dominance of δ u over δ̄ u and as

u(x,r′)> u(x,r).
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A.2 Proof of Lemma 5.2.2

Lemma 5.2.2. (Median Selection Element Local Sensitivity at distance 0)

LSumed(x,0, i) = max(|xm− xi|,xm+1− xm,xm− xm−1, p(x, i),q(x, i)),

where

p(x, i) = max


Λ− xi if i > m

Λ− xm+1 if i = m

Λ+ xi−3xm + xm+1 i < m

,

q(x, i) = max


xi if i > m

xm−1 if i = m

3xm− xi− xm−1 i < m

,

and 0≤ x1 ≤ ·· · ≤ xn ≤ Λ.

Proof. For this proof, we restate the definitions. The utility function is given by

umed(x,r) = |vx(medx)− vx(r)|

, where vx(r) is the value of the element r in x, medx ∈R is the element with m− th largest

value in x and m = dn
2e.

Thus, the element local sensitivity LSumed(x,0,r) for umed is rewritten as:

LSumed(x,0,r) = max(|vx(medx)− vx(r)|︸ ︷︷ ︸
(1)

, ||vx(medx)− vx(r)|− |vx(med+
x )− vx(r)||︸ ︷︷ ︸

(2)

,

||vx(medx)− vx(r)|− |vx(med−x )− vx(r)||︸ ︷︷ ︸
(3)

, p(x,r)︸ ︷︷ ︸
(4)

,q(x,r)︸ ︷︷ ︸
(5)

)

where

p(x,r) = max



Λ− vx(med+
x )︸ ︷︷ ︸

(4.1)

if r = med

Λ− vx(r)︸ ︷︷ ︸
(4.2)

else if vx(r)>= vx(med)

|vx(medx)− vx(r)−Λ+ vx(med+
x )|︸ ︷︷ ︸

(4.3)

otherwise

,
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q(x,r) = max



vx(med−x )︸ ︷︷ ︸
(5.1)

if r = med

|vx(r)− vx(medx)− vx(med−x )|︸ ︷︷ ︸
(5.2)

if vx(r)>= vx(med)

vx(r)︸︷︷︸
(5.3)

otherwise

,

where med+
x ∈R and med−x ∈R are the elements with the m+1-ith and m−1-ith largest value,

respectively.

We first prove that for every case above there is a neighboring database y of x which

|u(x,r)−u(y,r)| is larger than it:

(1) Let y be a database obtained from x by changing the value of r to vx(medx),

vy(r) = vx(medx). Thus |u(x,r) − u(y,r)| = ||vx(medx) − vx(r)| − |vx(medx) − vy(r)|| =

|vx(medx)− vx(r)| as vy(medy) = vx(medx) and vy(r) = vx(medx).

(2) Let y be a database obtained from x by changing the value of medx to Λ,

vy(medx) = Λ. This way, vy(medy) = vx(med+
x ) and vy(r) = vx(r). Then |u(x,r)− u(y,r)| =

||vx(medx)− vx(r)|− |vy(medy)− vy(r)||= ||vx(medx)− vx(r)|− |vx(med+
x )− vx(r)||.

(3) Let y be a database obtained from x by changing the value of medx to 0,

vy(medx) = 0. This way, vy(medy) = vx(med−x ) and vy(r) = vx(r). Then |u(x,r)− u(y,r)| =

||vx(medx)− vx(r)|− |vy(medy)− vy(r)||= ||vx(medx)− vx(r)|− |vx(med−x )− vx(r)||.

(4.1) Let y be a database obtained from x by changing the value of r to Λ,

vy(r) = Λ. In this case, r = medx, so vy(medy) = vx(med+
x ). Then, we have that |u(x,r)−

u(y,r)| = ||vx(medx)− vx(r)| − |vy(medy)− vy(r)|| = ||vx(medx)− vx(medx)| − |vx(med+
x )−

Λ||= |vx(med+
x )−Λ|= Λ = vx(med+

x ).

(4.2) Let y be a database obtained from x by changing the value of r to Λ, vy(r) = Λ.

In this case, vx(r)>= vx(med), so vy(medy) = vx(medx). Then, we have that |u(x,r)−u(y,r)|=

||vx(medx)− vx(r)|− |vy(medy)− vy(r)||= |vx(r)− vx(medx)−Λ+ vx(medx)|= Λ− vx(r).

(4.3) Let y be a database obtained from x by changing the value of r to Λ, vy(r) = Λ.

In this case, vx(r)< vx(med), so vy(medy) = vx(med+
x ). Then, we have that |u(x,r)−u(y,r)|=

||vx(medx)− vx(r)|− |vy(medy)− vy(r)||= |vx(medx)− vx(r)−Λ+ vx(med+
x )|.

(5.1) Let y be a database obtained from x by changing the value of r to 0, vy(r) =

0. In this case, r = medx, so vy(medy) = vx(med−x ). Then, we have that |u(x,r)− u(y,r)| =

||vx(medx)− vx(r)|− |vy(medy)− vy(r)||= |vx(med−x )−0|= vx(med−x ).
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(5.2) Let y be a database obtained from x by changing the value of r to 0, vy(r) = 0.

In this case, vx(r)>= vx(med), so vy(medy) = vx(med−x ). Then, we have that |u(x,r)−u(y,r)|=

||vx(medx)− vx(r)|− |vy(medy)− vy(r)||= |vx(r)− vx(medx)− vx(med−x )|.

(5.3) Let y be a database obtained from x by changing the value of r to 0, vy(r) = 0.

In this case, vx(r)< vx(med), so vy(medy) = vx(medx). Then, we have that |u(x,r)−u(y,r)|=

||vx(medx)− vx(r)|− |vy(medy)− vy(r)||= |vx(medx)− vx(r)− vx(medx)|= vx(r).

Now we prove that for every neighboring database y of x, the exists a case where

|u(x,r)−u(y,r)| is smaller or equal than it. The database y can be obtained from x by choosing

a element r′ ∈R and then choosing a new value vy(r′) for it. We divide the set of neighboring

databases in some cases:

(i) The element r′ is such that r′ 6= r. This operation cannot change the value of r,

vy(r) = vx(r). However, this operation can set the value of medy. The element r′ can move freely

along the domain [0,Λ]. However, there are only three possibilities for medy: it can keep the

value of medx, it can change to the value of med+
x or it can change to med−x .

(i.i) if vy(medy) = vx(medx) then |u(x,r)−u(y,r)|= 0;

(i.ii) if vy(medy) = vx(med+
x ) then |u(x,r) − u(y,r)| = ||vx(medx) − vx(r)| −

|vy(medy)− vy(r)||= ||vx(medx)− vx(r)|− |vx(med+
x )− vx(r)|| (case 2); and

(i.iii) if vy(medy) = vx(med−x ) then |u(x,r) − u(y,r)| = ||vx(medx) − vx(r)| −

|vy(medy)− vy(r)||= ||vx(medx)− vx(r)|− |vx(med−x )− vx(r)|| (case 3).

(ii) The element r′ is such that r′ = r. We split this argument in two subcases:

(ii.i) r′ = r = medx. Here we divide again in 3 subcases to set the value of r′ on y:

(ii.i.i) vy(r′)=medx. It means that x= y and |u(x,r)−u(y,r)|= ||vx(medx)−vx(r)|−

|vy(medy)− vy(r)||= ||vx(medx)− vx(r)|− |vx(medx)− vx(r)||= 0.

(ii.i.ii) vy(r′) = vy(r′) ≥ medx. So we have that the median element of y is at

maximum vx(med+
x ) and that vy(r′)≥ vy(medy). Thus |u(x,r)−u(y,r)|= ||vx(medx)− vx(r)|−

|vy(medy)− vy(r)||= |0−|vy(medy)− vy(r)||= vy(r)− vy(medy)≤ Λ− vx(med+
x ) (case 4.1).

(ii.i.iii) vy(r′) = vy(r′) ≤ medx. So we have that the median element of y is at

minimum vx(med−x ) and that vy(r′)≤ vy(medy). Thus |u(x,r)−u(y,r)|= ||vx(medx)− vx(r)|−

|vy(medy)− vy(r)||= |0−|vy(medy)− vy(r)||= vy(medy)− vy(r)≤ vx(med−x ) (case 5.1).

(ii.ii) r′ = r 6= medx. We divide in two subcases:

(ii.ii.i) vx(r)≥ vx(medx). We divide again in three cases:

(ii.ii.i.i) vy(r) = vy(r′) ≥ vx(r) = vx(r′). Thus |u(x,r)− u(y,r)| = ||vx(medx)−
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vx(r)| − |vy(medy)− vy(r)|| = ||vx(medx)− vx(r)| − |vy(medy)− vy(r)|| = vx(medx)− vx(r) +

vy(r)− vy(medy)≤ Λ− vx(r) since vx(medx) = vy(medy) (case 4.2).

(ii.ii.i.ii) vx(medx) ≤ vy(r) = vy(r′) < vx(r) = vx(r′). Thus |u(x,r) −

u(y,r)|= ||vx(medx)− vx(r)|− |vy(medy)− vy(r)||= |vx(r)− vx(medx)−|vx(medx)− vy(r)||=

|vx(medx)− vx(r)+ vy(r)− vx(medx)| = vx(r)− vy(r) ≤ vx(r)− vx(medx) ≤ |vx(medx)− vx(r)|

(case 1).

(ii.ii.i.iii) 0 ≤ vy(r) < vx(medx). So we have that vy(medy) = vx(med−x ). Thus

|u(x,r)−u(y,r)|= ||vx(medx)− vx(r)|− |vy(medy)− vy(r)||= |vx(r)− vx(medx)− vx(med−x )+

vy(r)| ≤ |vx(r)−vx(medx)−vx(med−x )| (case 5.2). The last inequality follows by setting vy(r) =

0.

(ii.ii.ii) vx(r)≤ vx(medx). We divide in three cases:

(ii.ii.ii.i) vy(r) = vy(r′) > vx(medx). So we have that vy(medy) = vx(med+
x ).

Thus |u(x,r)−u(y,r)|= ||vx(medx)−vx(r)|− |vy(medy)−vy(r)||= |vx(medx)−vx(r)−vy(r)+

vx(med+
x )| ≤ |vx(medx)− vx(r)−Λ+ vx(med+

x ) (case 4.3).

(ii.ii.ii.ii) vx(r) = vx(r′) < vy(r) = vy(r′) ≤ vx(medx). So we have that vy(medy) =

vx(medx) Thus |u(x,r)− u(y,r)| = ||vx(medx)− vx(r)| − |vy(medy)− vy(r)|| = |vx(medx)−

vx(r)− vx(medx)+ vy(r)|= |vy(r)− vx(r)| ≤ |vx(medx)− vx(r)| (case 1).

(ii.ii.ii.i) 0 ≤ vy(r) = vy(r′) ≤ vx(r) = vx(r′). So we have that vy(medy) =

vx(medx). Thus |u(x,r)− u(y,r)| = ||vx(medx)− vx(r)| − |vy(medy)− vy(r)|| = |vx(medx)−

vx(r)− vx(medx)+ vy(r)|= |vy(r)− vx(r)| ≤ vx(r) (case 5.3).

A.3 Proof of Lemma 5.2.3

Lemma 5.2.3. (Element local sensitivity at distance t for median selection)

LSumed(x, t,r) = max
candidates(x,t,r)

LSumed(y,0,r).

A.4 Proof of Lemma 6.3.1

Lemma 6.3.1. Let G and G′ be two neighboring graphs and v a node belonging to V (G) and

V (G′), we have that:

max
G,G′|d(G,G′)≤1

|EBCG(v)−EBCG′(v)|= max
(

dG(v)(dG(v)−1)/4,dG(v)
)
,
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where dG(v) denotes the degree of v in G, i.e., dG(v) = |NG
v |.

Proof. Let ∆(v) be defined as

∆(v) = max
G,G′|d(G,G′)

|EBCG(v)−EBCG′(v)|

= max
G,G′|d(G,G′)

∣∣∣∣∣∣ ∑
x,y∈NG

v |x 6=y

bG
xy(v)− ∑

x,y∈NG′
v |x 6=y

bG′
xy (v)

∣∣∣∣∣∣
where bG′

uy(v) = gG′
uy(c)/gG′

uy . Without loss of generality, let e ∈ V (G) the edge that

belongs to G′ and not to G, i.e., E(G′) = E(G)∪{e}. We analyse two cases for e:

Case (1). One end of e is v, e = (vu), i.e., N(v)G′ = N(v)G∪{u}. Since e does not

belong to G then u is not a neighbor of v in G which means that the terms buy for all y ∈ NG
v

are the only terms that do not exist on the expression for EBCG(v). So we rewrite EBCG′(v) as

∑x,y∈NG′
v |x 6=y bG

xy(v)+∑y∈NG
v

bG′
uy(v) and ∆(v) as

max
G,G′|d(G,G′)

∣∣∣∣∣∣ ∑
x,y∈NG

v |x 6=y

bG
xy(v)− ∑

x,y∈NG
v |x 6=y

bG′
xy (v)− ∑

y∈NG
v

bG′
uy(v)

∣∣∣∣∣∣
= max

G,G′|d(G,G′)

∣∣∣∣∣∣ ∑
x,y∈NG

v |x 6=y

(bG
xy(v)−bG′

xy (v))− ∑
y∈NG

v

bG′
uy(v)

∣∣∣∣∣∣
We find bounds for ∑y∈NG

v
bG′

uy(v). bG′
uy(v) is non-negative as gG′

uy is positive and gG′
uy(c)

is non-negative. bG′
uy(v) ≤ 1 since gG′

uy ≥ gG′
uy(c). Moreover there are |NG

v | = d pairs u,y since

y ∈ N(v)G. Thus

0≤ ∑
y∈NG

v

bG′
uy(v)≤ d

Now we find bounds for ∑x,y∈NG
v |x 6=y(b

G
xy(v)−bG′

xy (v)). If a geodesic path from x to y

(x,y ∈ NG
v ) has size 1 in G′, i.e., the edge (xy) belongs to E(G′), then there is only one geodesic

path and it does not contain the central node v which implies that bG′
xy (v) = 0. That also holds

for G since the edge (xy) also exists in G so bG
xy(v) = 0. Therefore bG

xy(v)−bG′
xy (v) = 0 for a pair

x,y ∈ NG
v at distance 1. Also, there is no pairs of nodes x,y at distance 3 or more since it exist

the path < xvy > in both G and G′.

Consider a pair of nodes x,y ∈ NG
v where x is at distance 2 from y in G′. If none

of the geodesic paths from x to y contains u in G′, then the number of geodesic paths from x
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to y (containing v or not) does not change from G to G′. So we have that bG
xy(v)−bG′

xy (v) = 0.

Thus we are interested in the case that a given pair x,y ∈ NG
v is at distance 2 where u belongs

to a geodesic path from x to y in G′ ( consequently, also in G′). All geodesic paths from x to y

from G are preserved in G′ as no edges were removed. But there is a new path < xuy > in G′ so

gG′
xy = gG

xy +1 and as there is only one path < xvz > that contains the central node V in G and G′,

gG
xy(c) = gG′

xy (c) = 1. Then

bG
xy(v)−bG′

xy (v) =
1

gG
xy
− 1

gG
xy +1

(A.18)

Note that (1/gG
xy)− (1/(gG

xy +1)) is monotonically decreasing on gG
xy since

d
dgG

xy

[
1

gG
xy
− 1

gG
xy +1

]
=− 1

(gG
xy +1)2 −

1
(gG

xy)
2 < 0

so since bG
xy(v) ≤ 1, we have bG

xy(v)− bG′
xy (v) ≤ 1/2. Besides that, we count how

many possible path of the form < xuy > for x,y ∈ NG
c where x 6= y. Since there are d = |NG

c |

there exists at most
(d

2

)
= d(d−1)/2 of those paths. Thus we have:

0≤ ∑
x,y∈NG

v |x 6=y

(bG
xy(v)−bG′

xy (v))≤
d(d−1)

2
.
1
2
=

d(d−1)
4

Thus

d ≤ ∑
x,y∈NG

v |x 6=y

(bG
xy(v)−bG′

xy (v))− ∑
y∈NG

v

bG′
uy(v)≤

d(d−1)
4

=⇒

∣∣∣∣∣∣ ∑
x,y∈NG

v |x 6=y

(bG
xy(v)−bG′

xy (v))− ∑
y∈NG

v

bG′
uy(v)

∣∣∣∣∣∣
≤max

(
d(d−1)

4
,d
)

=⇒ ∆(x) = max
(

d(d−1)
4

,d
)

Case (2): None of the ends of e is v. We omit this part of the proof since it has

similar reasoning to case 1 and it yields a lower sensitivity than case 1.
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APPENDIX B – PRIVATESQL’S SQL QUERY

The SQL query Q(u,v,c) over the table of nodes node(id), the table of all pairs of

nodes node_pair(id1, id2) and private table edge(a,b) is given as:

1 SELECT COUNT( * )

2 FROM edge e1 , edge e2 ,

3 (SELECT np1 . i d 1 AS idd1 , np1 . i d 2 as idd2 , COALESCE ( CNT_2 , 0 ) AS CNT_1

4 FROM n o d e _ p a i r AS np1 LEFT OUTER JOIN

5 (SELECT np2 . i d 1 AS id1 , np2 . i d 2 as

6 id2 , COUNT ( * ) AS CNT_2

7 FROM n o d e _ p a i r AS np2 , edge e3

8 WHERE e3 . a = np2 . i d 1 AND

9 e3 . b = np2 . i d 2

10 GROUP BY np2 . id1 , np2 . i d 2 ) AS p a i r 2

11 ON np1 . i d 1 = p a i r 2 . i d 1

12 AND np1 . i d 2 = p a i r 2 . i d 2 ) AS magic1 ,

13 (SELECT e4 . a AS m2id ,

14 c o u n t ( * ) AS CNT_4

15 FROM edge e4

16 WHERE e4 . b = c

17 GROUP BY e4 . a ) AS magic2 ,

18 (SELECT e5 . a AS m3id ,

19 c o u n t ( * ) AS CNT_5

20 FROM edge e5

21 WHERE e5 . b = c

22 GROUP BY e5 . a ) AS magic3 ,

23 (SELECT node . i d as m4id ,

24 COALESCE( CNT_7 , 0 ) a s CNT_6

25 FROM node l e f t o u t e r j o i n

26 (SELECT e6 . a AS m5id ,

27 c o u n t ( * ) AS CNT_7

28 FROM edge e6

29 WHERE e6 . b = c

30 GROUP BY e6 . a )

31 AS magic5 on node . i d =magic5 . m5id

32 WHERE magic5 . CNT_7>0 OR

33 node . i d =c ) AS magic4

34 WHERE e1 . b = e2 . a AND
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35 e1 . a = u AND

36 e2 . b = v AND

37 e1 . a = idd1 AND

38 e2 . b = idd2 AND

39 CNT_1 = 0 AND

40 m2id = e1 . a AND

41 m3id = e2 . b AND

42 m4id = e2 . a ;
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