
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE CIÊNCIAS

DEPARTAMENTO DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

ALISSON BARBOSA DE SOUZA

A CONTEXT-ORIENTED FRAMEWORK AND DECISION ALGORITHMS FOR

COMPUTATION OFFLOADING IN VEHICULAR EDGE COMPUTING

FORTALEZA

2021

ALISSON BARBOSA DE SOUZA

A CONTEXT-ORIENTED FRAMEWORK AND DECISION ALGORITHMS FOR

COMPUTATION OFFLOADING IN VEHICULAR EDGE COMPUTING

Tese apresentada ao Programa de Pós-
Graduação em Ciência da Computação da
Universidade Federal do Ceará, como requisito
para a obtenção do Título de Doutor em Ciência
da Computação. Área de Concentração: Ciência
da Computação.

Orientador: Prof. Dr. José Neuman de
Souza

Coorientador: Prof. Dr. Paulo Antonio
Leal Rego

FORTALEZA

2021

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

S713c Souza, Alisson Barbosa de.
 A context-oriented framework and decision algorithms for computation offloading in vehicular edge
computing / Alisson Barbosa de Souza. – 2021.
 136 f. : il. color.

 Tese (doutorado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em
Ciência da Computação , Fortaleza, 2021.
 Orientação: Prof. Dr. José Neuman de Souza.
 Coorientação: Prof. Dr. Paulo Antonio Leal Rego.

 1. Computation Offloading. 2. Vehicular Edge Computing. 3. Contextual Information. 4. Artifical Bee
Colony. 5. Vehicular Networks. I. Título.
 CDD 005

ALISSON BARBOSA DE SOUZA

A CONTEXT-ORIENTED FRAMEWORK AND DECISION ALGORITHMS FOR

COMPUTATION OFFLOADING IN VEHICULAR EDGE COMPUTING

Tese apresentada ao Programa de Pós-
Graduação em Ciência da Computação
da Universidade Federal do Ceará, como
requisito para a obtenção do Título de
Doutor em Ciência da Computação. Área de
Concentração: Ciência da Computação.

Aprovada em: 15 de Julho de 2021

BANCA EXAMINADORA

Prof. Dr. José Neuman de Souza (Orientador)
Universidade Federal do Ceará (UFC)

Prof. Dr. Paulo Antonio Leal Rego
Universidade Federal do Ceará (UFC)

Prof. Dr. Emanuel Bezerra Rodrigues
Universidade Federal do Ceará (UFC)

Prof. Dr. Luís Henrique Maciel Kosmalski Costa
Universidade Federal do Rio de Janeiro (UFRJ)

Profa. Dra. Susana Isabel Barreto de Miranda Sargento
Universidade de Aveiro (UA), Portugal

ACKNOWLEDGEMENTS

First, I would like to offer thanks to almighty God, Jehovah, for his loyal love, for

life, for hope, in short, for everything.

I express my deepest gratitude to my parents, Valter and Ana, for the love, advice,

and support at all times. This work would not have been possible without them. I also thank

my brother and my sister-in-law, Gleidson and Carolina, for helping me at various times with

support and incentives.

I am grateful to my advisor, Prof. Dr. José Neuman de Souza, for guidance, help,

advice, and trust. I am also thankful to my co-advisor, Prof. Dr. Paulo Antonio Leal Rego, for

countless conversations, guidance, and support. Their dedication and effort were fundamental to

the accomplishment of this work.

I am thankful to my friend, Prof. Dr. Tiago Carneiro, for the support, incentives, tips,

and conversations. I am also grateful to the colleague of the GREat laboratory at the Federal

University of Ceará, Paulo Henrique Rocha, for having helped me at various times with the

computational execution of the massive amount of experiments.

My thanks also go to everyone who helped me at some point during my PhD with

actions, incentives, or suggestions, such as: Dr. Marcelo Esmeraldo Holanda, Prof. Dr. Alberto

Sampaio Lima, Prof. Dr. Joaquim Celestino Júnior, Profa. Dra. Michele Nogueira Lima, Profa.

Dra. Susana Isabel Barreto de Miranda Sargento, Prof. Dr. Manuel Gonçalves da Silva Neto,

Prof. Dr. Emanuel Bezerra Rodrigues, Prof. Dr. Luís Henrique Maciel Kosmalski Costa, Prof.

Dr. Jeandro de Mesquita Bezerra, and Prof. Dr. André Jalles Monteiro.

I would like to thank the Federal University of Ceará for giving me the opportunity

to grow as a person, student, and professional. I also thank my colleagues from the Quixadá

Campus for their support and for allowing me to obtain the leave to complete my PhD.

Finally, I would like to thank all the people who contributed to the realization of this

work in one way or another.

“A spirit is manifest in the laws of the Universe

— a spirit vastly superior to that of man, and one

in the face of which we with our modest powers

must feel humble.”

(Albert Einstein)

RESUMO

Veículos autônomos e aplicações veiculares complexas têm se tornado cada vez mais populares

e requerem massivos recursos computacionais. Apesar de os veículos estarem se tornando

mais conectados e inteligentes, eles ainda não possuem poder computacional suficiente para

atender a essas demandas de modo satisfatório. Uma opção para lidar com esse desafio é

permitir que recursos computacionais de veículos vizinhos e servidores de borda acoplados às

estações base sejam utilizados através de sistemas de computação de borda veicular. Então, os

veículos podem enviar tarefas, ou partes menores de aplicações, para esses servidores remotos

através da técnica de offloading computacional. Nessa técnica, tais servidores executam as

tarefas e retornam o resultado do processamento para o veículo inicial. Embora essa técnica

vise diminuir o tempo de execução de aplicações, realizá-la em cenários veiculares é desafiador

devido ao rápido movimento dos nós da rede e às frequentes desconexões. Em tais casos,

informações contextuais que caracterizam a situação de dispositivos de redes e veículos ajudam

a lidar com esses desafios por auxiliar processos de decisão de offloading a entregar melhores

resultados. Assim, nós propomos um framework orientado a contexto e algoritmos de atribuição

de tarefas para reduzir o tempo de execução de aplicações veiculares de forma confiável através

de offloading computacional em sistemas de computação de borda veicular. O framework

gerencia todas as etapas do processo de offloading e provê um mecanismo de recuperação de

falhas. O módulo principal desse framework permite que os algoritmos propostos façam a

atribuição das tarefas de aplicações para diferentes servidores, usando parâmetros contextuais e

redes WAVE e 5G. Os resultados dos experimentos mostram que nossas soluções podem reduzir

significativamente o tempo de execução de aplicações veiculares. Baseado na metaheurística

colônia artificial de abelhas, nosso melhor algoritmo consegue que essa redução média atinja até

75,6 % se comparado à execução local e até 57,9 % se comparado a algoritmos da literatura, com

até 0,0 % de falhas. Esses resultados mostram que as soluções propostas são uma alternativa

promissora para viabilizar a execução de complexas aplicações veiculares.

Palavras-chave: Offloading Computacional. Redes Veiculares. Computação de Borda Veicular.

Informação Contextual. WAVE. 5G. Colônia Artifical de Abelhas.

ABSTRACT

Autonomous vehicles and complex vehicular applications have become increasingly popular

and require massive computational resources. Although vehicles are becoming more connected

and intelligent, they still do not have enough computation power to satisfy these demands

satisfactorily. One option to deal with this challenge is to allow computing resources from

neighboring vehicles and edge servers coupled to base stations to be used through vehicular edge

computing systems. Then, vehicles can send tasks, or smaller parts of applications, to these

remote servers through the computation offloading technique. In this technique, such servers

execute the tasks and return the processing result to the initial vehicle. Although this technique

aims to reduce application execution time, performing it in vehicular scenarios is challenging

due to the fast movement of network nodes and the frequent disconnections. In such cases,

contextual information that characterizes the situation of network devices and vehicles helps to

deal with these challenges by assisting offloading decision processes in delivering better results.

Thus, we propose a context-oriented framework and task assignment algorithms to reduce the

execution time of vehicular applications reliably through computation offloading in vehicular

edge computing systems. The framework manages all stages of the offloading process and

provides a failure recovery mechanism. The main module of this framework allows the proposed

algorithms to assign application tasks to different servers, using contextual parameters and

WAVE and 5G networks. Experimental results show that our solutions can significantly reduce

the execution time of vehicular applications. Based on the artificial bee colony metaheuristic,

our best algorithm achieves that this average reduction reaches up to 75.6 % compared to local

execution and up to 57.9 % compared to literature algorithms, with up to 0.0 % of failures. These

results show that the proposed solutions are a promising alternative to enable the execution of

complex vehicular applications.

Keywords: Computation Offloading. Vehicular Networks. Vehicular Edge Computing. Contex-

tual Information. WAVE. 5G. Artifical Bee Colony.

LIST OF FIGURES

Figure 1 – Example of a VANET. 24

Figure 2 – WAVE architecture. 25

Figure 3 – Layers and protocols of the 5G user plane. 27

Figure 4 – VEC paradigm and the integration between a vehicular cloud and the edge. . 29

Figure 5 – Figurative depiction of the computation offloading technique. 31

Figure 6 – Figurative depiction of a artificial bee colony. 34

Figure 7 – Proposed taxonomy of computation offloading in VEC. 37

Figure 8 – Application and Partitioner modules and architecture of the framework. . . 67

Figure 9 – Contextual data of network nodes in a VEC system. 69

Figure 10 – Discovery of computational resources. 71

Figure 11 – Sending of tasks to the chosen servers. 72

Figure 12 – Figurative depiction of bees looking for solutions in the BCV search space. . 81

Figure 13 – A local search using the BCV algorithm. 84

Figure 14 – Highway scenario used in the experiments. 91

Figure 15 – Urban scenario used in the experiments. 92

Figure 16 – Number of replies for different WAVE communication ranges. 95

Figure 17 – Reduction of lost servers for different percentages of known routes of vehicles.100

Figure 18 – Tasks by occurrence type for workloads T1−T5 with Dlow. 104

Figure 19 – Tasks by occurrence type for workloads T1−T5 with Dmedium. 104

Figure 20 – Tasks by occurrence type for workloads T1−T5 with Dhigh. 105

Figure 21 – Tasks by occurrence type for workloads T6−T10 with Dlow. 105

Figure 22 – Tasks by occurrence type for workloads T6−T10 with Dmedium. 106

Figure 23 – Tasks by occurrence type for workloads T6−T10 with Dhigh. 107

Figure 24 – Average reduction in execution time for workloads T1−T5 with Dlow. 109

Figure 25 – Average reduction in execution time for workloads T1−T5 with Dmedium. . . 109

Figure 26 – Average reduction in execution time for workloads T1−T5 with Dhigh. . . . 110

Figure 27 – Average reduction in execution time for workloads T6−T10 with Dlow. . . . 112

Figure 28 – Average reduction in execution time for workloads T6−T10 with Dmedium. . 112

Figure 29 – Average reduction in execution time for workloads T6−T10 with Dhigh. . . . 113

LIST OF TABLES

Table 1 – Summary of communication standard aspects of related works. 41

Table 2 – Summary of problem aspects of related works. 47

Table 3 – Summary of experiment aspects of related works. 50

Table 4 – Most used notations. 53

Table 5 – Network node interfaces. 54

Table 6 – Main simulation parameters. 90

Table 7 – ALPR workloads specifications. 93

Table 8 – Tukey tests p-values for WAVE ranges. 97

Table 9 – Time values by the BCV algorithm cycles and foods in the highway scenario. 98

Table 10 – Time values by the BCV algorithm cycles and foods in the urban scenario. . . 98

Table 11 – Wilcoxon tests p− values≥ 0.05 for "algorithm time" metric. 99

Table 12 – Wilcoxon tests p− values < 0.05 for "reduction in execution time" metric. . 99

Table 13 – Results summary of Section 6.3.1 with workloads T1 to T5. 107

Table 14 – Results summary of Section 6.3.1 with workloads T6 to T10. 108

Table 15 – Wilcoxon tests p-values for workloads T1 to T5 with Dlow. 111

Table 16 – Wilcoxon tests p-values for workloads T1 to T5 with Dmedium. 111

Table 17 – Wilcoxon tests p-values for workloads T1 to T5 with Dhigh. 111

Table 18 – Wilcoxon tests p-values for workloads T6 to T10 with Dlow. 114

Table 19 – Wilcoxon tests p-values for workloads T6 to T10 with Dmedium. 114

Table 20 – Wilcoxon tests p-values for workloads T6 to T10 with Dhigh. 114

Table 21 – Results summary of Section 6.3.2 with workloads T1 to T5. 115

Table 22 – Results summary of Section 6.3.2 with workloads T6 to T10. 115

LIST OF ALGORITHMS

Algorithm 1 – GCF Algorithm . 74

Algorithm 2 – Function AddFeasibleServers . 75

Algorithm 3 – Function AddTasksToClient of the GCF 76

Algorithm 4 – Function AddTasksToServer of the GCF 76

Algorithm 5 – GTT Algorithm . 78

Algorithm 6 – Function AddTasksToClient of the GTT 79

Algorithm 7 – Function AddTasksToServer of the GTT 79

Algorithm 8 – BCV Algorithm . 81

Algorithm 9 – Function InitializeFoodSources of the BCV 83

Algorithm 10 – Function EmployedBees of the BCV 84

Algorithm 11 – Function OnlookerBees of the BCV 85

Algorithm 12 – Function ScoutBees of the BCV . 85

Algorithm 13 – Function Search of the BCV . 86

Algorithm 14 – Function CheckFeasibility of the BCV 87

LIST OF ABBREVIATIONS AND ACRONYMS

4G Fourth-Generation Cellular Mobile Networks

5G Fifth-Generation Cellular Mobile Networks

ABC Artificial Bee Colony

ALPR Automatic License Plate Recognition

BCV ABC for Computation Offloading in VEC

BS Base Station

C-V2X Cellular Vehicle to Everything

CV Combustion-powered Vehicle

CVM Combustion-powered Vehicle in Motion

CVO Combustion-powered Vehicle Off

DN Data Network

DSRC Dedicated Short Range Communications

EV Electric Vehicle

FIFO First In, First Out

GCF Greedy for CPU Free

GTT Greedy Task by Task

HVC Hybrid Vehicular edge Cloud

ITS Intelligent Transportation Systems

MAC Medium Access Control

mmWave Millimeter Wave

NP Non-Deterministic Polynomial-Time

OBU On-Board Unit

PDU Protocol Data Unit

RSU Roadside Unit

UE User Equipment

V2I Vehicle to Infrastructure

V2V Vehicle to Vehicle

VANET Vehicular Ad Hoc Network

VC Vehicular Cloud

VEC Vehicular Edge Computing

WAVE Wireless Access in Vehicular Environments

CONTENTS

1 INTRODUCTION . 16

1.1 Contextualization . 16

1.2 Problem Statement . 18

1.3 Research Questions . 19

1.4 Objectives . 19

1.5 Methodology . 19

1.6 Contributions . 20

1.7 Publications . 21

1.8 Thesis Organization . 22

2 BACKGROUND . 23

2.1 Vehicular Ad Hoc Networks . 23

2.2 Vehicular Communication Technologies 24

2.2.1 WAVE . 25

2.2.2 5G . 26

2.3 Vehicular Edge Computing . 29

2.4 Computation Offloading . 30

2.4.1 Computation Offloading vs. Data Offloading 32

2.5 Context . 32

2.6 Artificial Bee Colony . 33

2.7 Concluding Remarks . 36

3 LITERATURE REVIEW . 37

3.1 Communication Standard . 38

3.1.1 Technology . 38

3.1.2 Server . 39

3.1.3 Discussion . 41

3.2 Problem . 43

3.2.1 Strategy . 44

3.2.2 Discussion . 45

3.3 Experiment . 46

3.3.1 Scenario . 47

3.3.2 Vehicular Density . 48

3.3.3 Discussion . 50

3.4 Concluding Remarks . 51

4 SYSTEM MODEL AND PROBLEM FORMULATION 52

4.1 System Model . 52

4.1.1 Network General Structure . 52

4.1.2 Communication Model . 54

4.1.3 Computation Model . 58

4.1.4 Energy Model . 61

4.2 Problem Formulation . 63

4.3 Concluding Remarks . 64

5 PROPOSED FRAMEWORK AND DECISION ALGORITHMS 65

5.1 Proposed Framework . 66

5.1.1 Framework Architecture . 66

5.1.2 Computation Offloading Process . 70

5.2 Decision Algorithms . 72

5.2.1 Greedy for CPU Free . 73

5.2.2 Greedy Task by Task . 77

5.2.3 ABC for Computation Offloading in VEC 80

5.3 Concluding Remarks . 87

6 EVALUATION . 89

6.1 Experimental Setup . 89

6.2 Preliminary Evaluation of Parameters 94

6.2.1 Communication Range . 95

6.2.2 BCV Algorithm Parameters . 97

6.2.3 Known Routes of Vehicles . 100

6.2.4 Discussion . 101

6.3 Performance Evaluation of Algorithms 102

6.3.1 Tasks by Occurrence Type . 103

6.3.2 Reduction in Execution Time . 108

6.3.3 Discussion . 116

6.4 Concluding Remarks . 119

7 CONCLUSION . 121

7.1 Responses to Research Questions . 121

7.2 General Discussion . 123

7.3 Future Work . 124

BIBLIOGRAPHY . 126

16

1 INTRODUCTION

This chapter presents the contextualization of the problem addressed in this thesis

in Section 1.1 and the statement of this problem in Section 1.2. Then, Sections 1.3 and 1.4

describe the research questions and the objectives. Contributions and publications are presented

in Sections 1.6 and 1.7. Finally, Section 1.8 of this chapter presents the structural organization of

this thesis.

1.1 Contextualization

The automobile industry has been one of the main sectors of the economy for over a

century, and the number of vehicles produced continues to increase (ZHANG; LETAIEF, 2019).

According to the latest report by the World Health Organization (WHO), there are more than two

billion vehicles registered worldwide (WORLD HEALTH ORGANIZATION, 2020). In addition

to quantity, the quality of vehicles has also demanded significant efforts to provide more comfort,

safety, convenience, and efficiency for people (ZHANG; LETAIEF, 2019).

In this sense, different systems and technologies have been incorporated into vehicles.

We can highlight the Wireless Access in Vehicular Environments (WAVE) architecture (JIANG;

DELGROSSI, 2008) and the Fifth-Generation cellular mobile networks (5G) (MEZZAVILLA et

al., 2018; STORCK; DUARTE-FIGUEIREDO, 2019) among these technologies. They enable

the formation of Vehicular Ad Hoc Networks (VANETs) that are used to provide connectivity to

vehicles through Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communications

(WEVERS; LU, 2017; AL-SULTAN et al., 2014). Through these connections, vehicles can

send collision, accident, and overtaking alert messages and improve road safety (ZHANG;

LETAIEF, 2019). These connections can also make in-vehicle travel more enjoyable for drivers

and passengers by allowing Internet access to vehicular applications (AL-SULTAN et al., 2014).

In addition to advances in communications, vehicles have also evolved in intelligence

through computing capabilities, cameras, embedded systems, sensors, and satellite navigation

systems (ZHANG; LETAIEF, 2019). However, the advent of autonomous vehicles and new and

popular applications such as augmented reality, automatic object recognition, and real-time video

surveillance demand massive computing resources to deal with complicated data processing and

critical latency requirements (BOUKERCHE; SOTORO, 2020; LIU et al., 2020). The delay in

executing one of these applications can compromise its usefulness, data validity, and even the

17

safety of people inside the vehicle (SOUZA et al., 2020). Unfortunately, despite technological

advances, vehicles do not yet have sufficient on-board computing resources (mainly proper

CPUs) to handle all the vehicular applications requirements in a feasible time. Even if more

powerful processors were installed in the vehicles, this could compromise their energy and

displacement efficiency (ZHANG; LETAIEF, 2019).

One manner to assist vehicles with latency and processing requirements is the

Vehicular Edge Computing (VEC) system. In this system, computational processing can be done

on Vehicular Clouds (VCs) or edge servers, avoiding the excessive latency of sending data for

processing on traditional cloud servers. VCs are a pool of computational resources of two or

more vehicles, stationary or in motion, which can be dynamically coordinated to offer services

on demand, through V2V connections and on-board units (OBUs), as in the cloud computing

model. Although VCs have less latency in communication and operate in scenarios without

infrastructure, they do not present great computational power. Another option is to use edge

servers coupled with Roadside Units (RSUs) or base stations (BSs) through V2I connections.

These servers are deployed close to streets and roads by service providers. Even though they

have a little more communication latency and can be quite requested by network devices, these

servers generally have greater computational capacity than vehicular clouds (SOUZA et al.,

2020).

One way to take advantage of these available computing resources is to apply the

computation offloading technique, also called task offloading. This technique offloads smaller

parts or tasks of an application to remote devices or servers, which are vehicles or edge servers

in VEC systems. Then, these servers process the tasks and return the result to the client vehicle.

Thus, computation offloading is used to improve applications’ execution time and decrease the

overload of processing (REGO et al., 2017; XU et al., 2018).

Nevertheless, it is a challenge to carry out computation offloading in VEC systems.

Servers chosen to process tasks may already be overloaded. Vehicular networks also lack a central

point to coordinate computing resources and message exchanges. Furthermore, the dynamic

nature and the rapid movement of nodes in these networks lead to frequent disconnections and

offloading failures (AL-SULTAN et al., 2014). These issues can increase latency or interrupt

vehicular applications’ execution, reducing the offloading technique’s effectiveness.

18

1.2 Problem Statement

Thus, the problem addressed in this thesis can be summarized as:

How to minimize the execution time of vehicular applications reliably through

computation offloading in VEC systems?

However, for the computation offloading process to be efficient, some steps need

to be supported and managed. Preliminary steps involve discovering computing resources and

gathering contextual information. Through these steps, the client vehicle becomes aware of which

servers are available and their contextual information. This information consists of descriptive

parameters of location, direction, speed, energy, bandwidth and range of the communication

technology used, and CPU availability and capacity. With this information gathered, the client

vehicle can proceed to the most important step and the main part of the problem: the task

distribution.

Deciding how to distribute the tasks is also the most complex step. In fact, finding

the optimal way to assign computation tasks to different servers for maximum reduction in

execution time of vehicular applications is a Non-Deterministic Polynomial-Time (NP)-hard

problem. As such, there is no exact polynomial-time solution for this problem (ZHU et al.,

2018; FENG et al., 2017). It is necessary to consider several contextual parameters to find an

approximate solution. As each task and server have different requirements and characteristics,

just a small change in the assignment process can significantly impact execution time results.

Thus, this problem is also associated with solving the following questions about computation

tasks: "where to send?", "which tasks to send?", "how to send?" (or what technology to use for

sending), and "when to send?".

In addition, the entire computation offloading process must be reliable, i.e., offloading

failures must be avoided, minimized, or handled. For example, assume two vehicles in opposite

directions. One of them needs to offload computation tasks to reduce the execution time of one of

their applications. However, suppose it offloads a task to the other vehicle. In that case, the latter

can leave the first vehicle’s range without returning the task or its processing result, generating

a failure. Therefore, a reliable computation offloading solution must calculate the risks before

offloading tasks to other devices and provide recovery mechanisms if any failure occurs.

19

1.3 Research Questions

As described in the previous section, the problem addressed in this thesis involves the

reliable use of computation offloading in VEC systems to reduce the execution time of vehicular

applications. Thus, the main Research Questions (RQs) of this thesis are:

• RQ1: How to provide support and management for all stages of computation of-

floading processes?

• RQ2: How to assign computation tasks to different servers to reduce vehicular ap-

plications’ execution time in VEC systems?

• RQ3: How to avoid offloading failures and, ultimately, recover from them?

1.4 Objectives

The main objective of this thesis is to propose solutions to minimize the execution

time of vehicular applications reliably through computation offloading in VEC systems.

This main objective was broken down into specific objectives in order to achieve it. Following,

we list such specific objectives:

• To design and implement a VEC system based on mobility and network simulators.

• To implement the simultaneous use of WAVE and 5G technologies in client vehicles of the

VEC system.

• To design and implement a new context-oriented framework to support and manage all

stages of computation offloading processes.

• To design and implement an offloading failure recovery mechanism.

• To implement fully local execution of applications.

• To investigate and implement literature algorithms to decide task assignments.

• To design and implement new algorithms to decide task assignments.

• To analyze, evaluate, and compare the proposed solutions, the fully local execution of

applications, and literature algorithms through simulations in different vehicular environ-

ments.

1.5 Methodology

In order to answer the research questions and achieve the objectives of this thesis,

the methodological process adopted consisted of the steps described below.

20

• Step 1: Identification of the problem and existing solutions. This step was carried out

through extensive bibliographic research. In addition, the mathematical formulation of the

problem and the VEC system was also carried out.

• Step 2: Preparation of the assessment environment. In this step, we decided to use

two simulators widely used in VANETs works: the ns-3 (RILEY; HENDERSON, 2010)

as network simulator and the Simulation of Urban Mobility (SUMO) (KRAJZEWICZ,

2010) as mobility simulator. After this decision, we integrated the two simulators and

implemented a simulated VEC system using WAVE and 5G technologies.

• Step 3: Elaboration and implementation of solution strategies. Here, we designed and

implemented the context-oriented framework and its failure recovery mechanism. Then, we

designed and implemented three decision and task assignment algorithms for computation

offloading in VEC.

• Step 4: Evaluation of proposed solutions. In this step, we implemented the fully local

execution of applications and literature algorithms for comparison with our solutions.

Then, we performed extensive simulations with different vehicular environments to collect

the results and evaluate the solutions.

1.6 Contributions

The main contributions of this thesis are:

• A context-oriented framework for computation offloading in VEC systems. This

framework is responsible for all the support and management of computation offloading

processes. It performs resource discovery, gathers contextual information, sends and

receives tasks, and provides a failure recovery mechanism. Its main module is the decision

maker that allows the coupling of different decision algorithms.

• Three decision and task assignment algorithms to minimize the execution time of ve-

hicular applications reliably. These algorithms, listed below, consider several contextual

parameters to assess the risks and benefits associated with computation offloading.

– Greedy for CPU Free (GCF), an algorithm that prioritizes sending tasks to servers

with the highest processing availability and the shortest distances to the client vehicle.

– Greedy Task by Task (GTT), an algorithm that assigns each application task to

the best possible server, updating it in real-time after each assignment. To evaluate

the servers, it considers the distance to the client and their CPU capacities and

21

availability.

– Artificial Bee Colony (ABC) for Computation Offloading in VEC (BCV), a task

scheduling and intelligent algorithm based on ABC metaheuristic. This algorithm is

inspired by the behavior of honey bees searching for food sources, which represent

feasible solutions for the minimization problem in question.

• Use of a special contextual information about known routes of vehicles, helping to

predict vehicle positioning more accurately and avoid offloading failures.

• Simultaneous use of WAVE and 5G technologies, combining their advantages, increas-

ing capacities, and decreasing task transmission delays.

1.7 Publications

This section presents the list of publications related to this thesis as follows.

• Title: A Context-Oriented Framework for Computation Offloading in Vehicular Edge

Computing using WAVE and 5G Networks.

Authors: A. B. Souza, P. A. L. Rego, T. Carneiro, P. H. G. Rocha, and J. N. Souza.

Journal: Vehicular Communications, in press.

Classification: 96 % (Scopus highest percentile) and A1 (Qualis).

• Title: Computation Offloading for Vehicular Environments: A Survey.

Authors: A. B. Souza, P. A. L. Rego, T. Carneiro, J. C. Rodrigues, P. P. R. Filho, J. N.

Souza, V. Chamola, V. H. C. Albuquerque, and B. Sikdar.

Journal: IEEE Access, volume 8, 2020.

Classification: 87 % (Scopus highest percentile) and A2 (Qualis).

• Title: A Task Offloading Scheme for WAVE Vehicular Clouds and 5G Mobile Edge

Computing.

Authors: A. B. Souza, P. A. L. Rego, P. H. G. Rocha, T. Carneiro, and J. N. Souza.

Conference: IEEE Global Communications Conference - IEEE GLOBECOM, 2020,

Taipei, Taiwan.

Classification: A1 (Qualis).

• Title: Exploring Computation Offloading in Vehicular Clouds.

Authors: A. B. Souza, P. A. L. Rego, and J. N. Souza.

Conference: IEEE International Conference on Cloud Networking - IEEE CloudNet,

2019, Coimbra, Portugal.

22

Classification: A2 (Qualis).

1.8 Thesis Organization

We describe how the rest of this thesis is organized as follows. Chapter 2 presents the

background of the principal concepts, such as VANETs, WAVE, 5G, vehicular edge computing,

computation offloading, and the artificial bee colony metaheuristic. Chapter 3 provides a

taxonomy of the main related works and descriptions and gaps from those works. In addition,

discussions and comparisons between our proposed solutions and literature works are provided.

Then, Chapter 4 details the system modeling and problem formulation. Chapter 5 presents

the proposed solutions in this thesis: a context-oriented framework to support and manage

computation offloading processes and three decision and task assignment algorithms. Chapter 6

describes the details of the experiments, parameters, and metrics used. Furthermore, discussions

and evaluations of the proposed solutions compared to fully local executions and literature

algorithms are shown. Finally, Chapter 7 presents the main conclusions of this thesis, responses

to research questions, and directions for future works.

23

2 BACKGROUND

This chapter contains the fundamental concepts related to this thesis. First, Section

2.1 briefly describes the vehicular ad hoc networks. Section 2.2 presents two of the main

vehicular communication technologies currently used. Descriptions of the vehicular edge

computing paradigm and its remote execution environments are provided in Section 2.3. In

turn, Section 2.4 details the computation offloading technique. Sections 2.5 and 2.6 explain

the concepts of context and the artificial bee colony algorithm. Finally, Section 2.7 shows the

concluding remarks of this chapter.

2.1 Vehicular Ad Hoc Networks

Communication systems that enable the transmission and reception of data between

different vehicles form the so-called VANETs. In these networks, a vehicle needs an OBU to

process and store information and communicate with other devices. Since vehicles have their

communication capabilities, these networks do not require a fixed structure and are very useful

for Intelligent Transportation Systems (ITS) (SOMMER; DRESSLER, 2014; ALVES et al.,

2009).

VANETs have two main types of communication: V2V and V2I (Figure 1). V2V

communications allow a VANET to be formed anywhere, requiring only that vehicles be equipped

with OBUs and that they are within the communication range of each other. A common

type of message in V2V communications is beacon messages, making vehicles aware of their

environment by containing information about other vehicles’ speed, position, and direction.

V2I communications, in general, are used to provide infrastructure access to the Internet. This

access is made through RSUs and BSs, which are fixed units located on buildings, shoulders, or

sidewalks (SOMMER; DRESSLER, 2014; AL-SULTAN et al., 2014; YOUSEFI et al., 2006).

According to Al-Sultan et al. (2014), VANETs have some peculiar characteristics.

For example, as the network nodes are the vehicles themselves, there is a certain predictability

in their movements. They need to follow the patterns of the traffic lanes, such as speed limits

and width of the lanes. Except in combustion-powered vehicles off, there are no significant

energy restrictions for network nodes. The transmission can be direct between them, reducing

the routing delay and decreasing the overhead at the base stations. Furthermore, as there is no

central coordination point or just a communication technology, the systems must be distributed

24

Figure 1 – Example of a VANET.

V2V

V2I

Source: The Author.

and interoperable (HARTENSTEIN; LABERTEAUX, 2008).

In addition, the network topology is influenced by the behavior of drivers (such as

turning on a street or changing direction) and the wide variation in speed of the network nodes.

Thus, nodes can quickly approach or move away from other nodes in the network, generating

frequent network disconnections, loss of network packets, and connections with a short duration.

Installing more RSUs and BSs can minimize network disconnections and fragmentations. But

installing such infrastructures has a high cost and is not a guarantee of total connectivity, as they

can be overloaded (AL-SULTAN et al., 2014).

Another consequence of the rapid movement of vehicles is the frequent changes in

network topology and sudden changes in the number of nodes in the network. This way, a network

can be with few nodes and, in a short time, it can become dense with a large number of connected

nodes (AL-SULTAN et al., 2014). This variation in vehicular density can also contribute to

a more significant loss of network packets and constitutes a scalability challenge. In general,

packet losses happen due to low network connectivity (when there are few vehicles) or packet

collisions in the wireless environment (when there are many vehicles) (PANICHPAPIBOON;

PATTARA-ATIKOM, 2008; TONGUZ et al., 2007).

2.2 Vehicular Communication Technologies

Below, we present two of the leading vehicular communication technologies currently

used. Section 2.2.1 gives an overview of the WAVE architecture. Then, Section 2.2.2 presents

the fifth-generation cellular networks (5G).

25

2.2.1 WAVE

WAVE is an architecture standardized by the Institute of Electrical and Electronic

Engineers (IEEE) for vehicular communications (SOMMER; DRESSLER, 2014; IEEE, 2011;

UZCATEGUI; ACOSTA-MARUM, 2009). As shown in Figure 2, the WAVE architecture is a

family of protocols defined for different layers of the Internet protocol stack.

Figure 2 – WAVE architecture.

IEEE 1609.1

IEEE 1609.3

LLC

IE
EE

 1
60

9.
2

MAC - IEEE 1609.4

MAC - IEEE 802.11p

PHY - IEEE 802.11p

IP

UDP/TCP

IPIP

Source: The Author.

Some protocols of the WAVE architecture stand out. For example, IEEE 1609.1

manages the synchronization of OBUs and RSUs and the computational resources of these

devices. IEEE 1609.2 defines secure message processing and formats. IEEE 1609.3 is responsible

for the network, transport, and Logical Link Control (LLC) layers. Thus, IEEE 1609.3 specifies

how to incorporate the Internet Protocol (IP), Transmission Control Protocol (TCP), and User

Datagram Protocol (UDP). Through the LLC, IEEE 1609.3 allows using the TCP/UDP/IP stack

or the WAVE Short Message Protocol (WSMP) as an alternative to providing lower latency.

IEEE 1609.4, which belongs to the upper part of the Medium Access Control (MAC) layer,

enables multi-channel operation and packet prioritization. Finally, IEEE 802.11p defines the

physical layer (PHY) and the lower part of the MAC layer. Some of its features are: random

MAC address, operating ranges up to 1000 meters, and wildcard Service Set Identifications

(SSIDs) (SOMMER; DRESSLER, 2014; UZCATEGUI; ACOSTA-MARUM, 2009; ALVES et

al., 2009).

Regarding the band spectrum of the physical layer of the WAVE architecture, a

well-accepted standard is called Dedicated Short Range Communications (DSRC) (JIANG;

DELGROSSI, 2008). Originally, this standard made exclusive use of frequency bands around 5.9

26

GHz, allocated in 1999 by the Federal Communications Commission of the United States (FCC)

for ITS with V2V or V2I communications. The DSRC spectrum was structured in seven channels

of 10 MHz, with one control channel (for WSMP messages of control and security) and the others

being available as service channels or for other purposes (UZCATEGUI; ACOSTA-MARUM,

2009).

Current Status of the Technology

Standards related to WAVE architecture have been the dominant vehicular technology

and are ready for use after years of testing. This technology is in production in the United States,

Europe, and Japan for commercial use. In 2018, there were more than 100,000 vehicles equipped

with WAVE standards in Japan and more than 15,000 in the United States in 2020 (ANSARI,

2021; NUTS AND VOLTS MAGAZINE, 2018; FIERCEWIRELESS, 2018; ARS TECHNICA,

2020). Furthermore, the technology continues to be improved. For example, the IEEE formed a

working group in January 2019 to develop the IEEE 802.11bd protocol, considered the evolution

of IEEE 802.11p (ANSARI, 2021; NAIK et al., 2019).

However, there has been intense dispute over the exclusive use of the 5.9 GHz spec-

trum for ITS and over the standard technology to be adopted. In the United States, in November

2020, of the original 75 MHz, the FCC reserved only 30 MHz for ITS and designated the transi-

tion from DSRC to Cellular Vehicle to Everything (C-V2X) (FCC, 2020; FIERCEWIRELESS,

2020; BLOOMBERG LAW, 2019). In this sense, there have been studies on interoperability or

dual-use between DSRC and C-V2X (ANSARI, 2021). In Europe, on the other hand, the trend

is the maintenance or expansion of the spectrum for ITS. Regarding the technology adopted,

some European countries remain neutral. Nevertheless, the European Telecommunications

Standards Institute (ETSI) wants to clarify in mid-2022 how the IEEE 802.11p (already adopted

by Volkswagen, for example) and C-V2X can coexist and regulation can occur until September

2023 (HEISE MEDIEN, 2020; INTERNATIONAL RAILWAY JOURNAL, 2020; EUROPEAN

COMMISSION, 2020).

2.2.2 5G

The fifth-generation cellular mobile networks (5G) are wireless communication

networks that have high speed and capacity and radio coverage areas divided into cells. Each

cell is associated with a base station, which provides connectivity between the Data Network

27

(DN) and various devices within the cell, including User Equipments (UEs) (NGO et al., 2013).

5G networks are standardized by the 3rd Generation Partnership Project (3GPP)

organization and by the radiocommunication sector of the International Telecommunication

Union (ITU). These networks were designed to support improved mobile broadband (with

the potential to reach up to 20 Gbps of data rate), greater node mobility, and low latency and

ultra-reliable communications. For this, 5G networks use beamforming, massive Multiple Input

Multiple Output (MIMO) channels, and direct communications Device to Device (D2D) (SHAFI

et al., 2017; STORCK; DUARTE-FIGUEIREDO, 2019).

The architecture of these networks is modularized and based on the separation of

network functions between functions of the control plane (control access to the radio and the

connection of the UE with the DN) and functions of the user plane (transfer user data) (MARSCH

et al., 2018). Thus, after the 5G control plane establishes access, a Protocol Data Unit (PDU)

session provides user plane connectivity between applications (APPs) of a UE and the DN, as

shown in Figure 3.

Figure 3 – Layers and protocols of the 5G user plane.

UE gNB UPF UPF DN

PHY PHY L1L1 L1 L1 L1

MAC MAC

L2

L2 L2 L2 L2

IPRLCRLC IP IP IP

PDCPPDCP UDP UDP UDP UDP

SDAPSDAP GTP-U GTP-U GTP-U GTP-U

PDU L PDU L PDU L

APP APP

Source: The Author.

According to Figure 3, for UE data to arrive at the DN, they must first pass through

Gigabit NodeB (gNB) and the User Plane Function (UPF). The gNB is the base station of the

5G and is the direct contact with the UE. The UPF module is responsible for packet routing,

QoS, application of policies, traffic reports, anchoring radio access mobility. The PDU layer

(PDU L) handles information related to the PDU session between the UE and the DN. The PHY

and L1 layers refer to the 5G physical layer and the MAC and L2 layers refer to the 5G link

layer. The Radio Link Control (RLC) and Packet Data Convergence Protocol (PDCP) layers are

28

responsible for some MAC layer functions: error correction/detection, segmentation/reassembly,

and data integrity protection. The Service Data Adaptation Protocol (SDAP) layer serves as

an interface between the core network and the Radio Access Network (RAN), mainly made

up of the gNB. Finally, the General Packet Radio Service Tunnelling Protocol for User Plane

(GTP-U) layer supports traffic multiplexing from different PDU sessions (PENTTINEN, 2019;

CHANDRAMOULI et al., 2019).

Regarding the band spectrum of the 5G physical layer, two frequency bands are

considered: below 6 GHz and above 24/30 GHz. 5G networks with frequencies below 6 GHz

(called sub-6 GHz) allow long-distance propagation and low penetration loss. However, the

sub-6 GHz spectrum has become heavily congested as many technologies use the same spectrum

(KRATSIOS, 2019; MEZZAVILLA et al., 2018).

Higher frequency 5G networks (between 30 and 300 GHz) are related to wavelengths

between 1 and 10 mm. For this reason, they are called Millimeter Wave (mmWave) networks.

These networks have the potential to achieve massive data throughput. Nevertheless, they have a

high loss of propagation, penetration, and signal attenuation rate. Thus, 5G networks with this

spectrum need visibility close to the line-of-sight. For networks to adapt to these characteristics,

they use more antennas (which are also small) to support cells with lower coverage, Multi-User

MIMO (MU-MIMO), and beamforming, which improve the antenna gain, range, and efficiency

(MEZZAVILLA et al., 2018).

Current Status of the Technology

As mentioned by the last Ericsson Mobility Report (JONSSON et al., 2020), there

are already more than 100 providers offering 5G services and more than 150 5G device models

available, including devices that support frequency ranges of the sub-6 GHz and mmWave

spectrum. It is estimated that around 15 % of the world population already has 5G coverage and

it is expected that this number increases to 60 % by the end of 2026. In this regard, the United

States, China, South Korea, and Switzerland stand out. The latter managed to get 5G technology

to cover more than 90 % of the population in 2019.

Besides, vehicle manufacturers have already launched vehicles with support for

5G technology, allowing V2I or V2V. Globally, the launch of vehicles with 5G capacity faces

challenges such as the still low 5G coverage and the dispute with WAVE/IEEE 802.11p tech-

nology. Therefore, some manufacturers are designing hybrid solutions, such as the BMW iX

29

vehicle, which supports cellular communication and WAVE. However, it is estimated that around

5 million vehicles worldwide will support 5G in 2023 (IHS MARKIT, 2020).

About 5G vehicular in the sub-6 GHz frequencies, in the United States and Europe,

the spectrum can be used for ITS (AUTOMOTIVE ASSOCIATION 5GAA, 2020; FCC, 2020).

Regarding the higher frequency spectrum (mmWave), the United States has made available bands

of 24, 28, 37, 39, and 47 GHz for 5G use. In Europe, the spectrum of 24.25-27.50 GHz and

40.5-43.5 GHz have been considered for the 5G use (ORGANIZATION 5G AMERICAS, 2020).

2.3 Vehicular Edge Computing

In accordance with Souza et al. (2020), VEC refers to the paradigm that allows two

types of remote execution environments to be used in an isolated or integrated way: VC and

Edge, as shown in Figure 4.

Figure 4 – VEC paradigm and the integration between a vehicular cloud and the edge.
 Vehicular
 Cloud Edge

Less More
Computing Power

Latency

Vehicular Edge Computing

Vehicle to Vehicle
Vehicle to Infrastructure

Paradigm

Communications

Source: The Author.

A VC is a set of vehicle computational resources dynamically coordinated to offer

services on-demand through V2V connections. Thus, vehicle owners can rent or lend onboard

computer resources to other vehicles or clients. Based on the computational availability of the

vehicles, these mobile clouds can be integrated with edge devices and remote clouds, or they can

be isolated, autonomous, and ad hoc (ABDELHAMID et al., 2017; BOUKERCHE; ROBSON,

2018; WHAIDUZZAMAN et al., 2014; AHMED et al., 2019)

In the context of vehicular networks, the term Edge is used to refer to a set of edge

30

servers deployed in the vicinity of roads, streets, and avenues by service providers. Edge servers

are computational devices coupled to base stations / RSUs one or a few hops away from vehicles.

They can operate with little or no Internet connectivity, be isolated or belong to small data centers,

and are only available to users within the RAN (SOUZA et al., 2020; ZHOU et al., 2018; RAZA

et al., 2019; YOUSEFPOUR et al., 2019; PHAM et al., 2020).

Thus, in VEC, computational processing can be distributed between VCs and edge

servers. With more processing options, systems can take full advantage of both remote execution

environments (ZHOU et al., 2018; RAZA et al., 2019). For example, using a VC, a VEC system

can achieve low-cost computing, distributed processing in non-infrastructure scenarios, real-time

services, and reduced latency through direct connectivity. Using edge servers, the VEC system

achieves greater processing power and storage capacity, energy savings for vehicles, reduced

packet traffic between the core and the periphery of the network, and improved QoS of vehicular

applications through faster processing and few network hops (SOUZA et al., 2020).

Nonetheless, a VEC system suffers from the dynamism and mobility of the ve-

hicular environment. Also, its computational resources are not as powerful as those of the

traditional cloud. In fact, the central cloud permanently stores massive data, performs com-

plicated computing tasks, and has theoretically unlimited computational resources. Even so,

vehicular applications that are sensitive to delay may not tolerate the highest latency to access

this type of remote cloud and may not always have access to the Internet. Therefore, these

applications are best executed on VEC systems (SOUZA et al., 2020; KANG et al., 2018).

2.4 Computation Offloading

Computation offloading is a technique that consists of sending tasks or parts of an

application to remote servers or devices so that they are executed and the results returned to the

original application. These servers have available and accessible computing resources (REGO

et al., 2017; XU et al., 2018). Figure 5 shows this process. In step 1, the application offloads

computation tasks to two remote servers. In step 2, the servers process the tasks. Ultimately, in

step 3, the client application downloads the processing results.

When migrating parts of an application or the complete application, the main objec-

tive of this technique is to improve the execution time of applications. However, other benefits

can also be obtained. For example, the computational offloading process can save device energy

and decrease processing overheads by transferring the execution of heavy workloads to remote

31

Figure 5 – Figurative depiction of the computation offloading technique.

Application (Client)
Server B

TASK

TASK

TA
SK

TASK

</>TASK

TASK

TA
SK

TASK

Server A 11

33

2 2

1. Uploading tasks 2. Processing tasks 3. Downloading results
Steps

Source: The Author.

servers (SOUZA et al., 2020; HASSIJA et al., 2020; YOUSAFZAI et al., 2019).

Some steps are necessary for the computation offloading to be carried out, such

as resource discovery, application partitioning, and decision making (SHARIFI et al., 2012).

Discovery may be automated, or the computing resources may have been informed in advance

(REGO, 2016). In partitioning, the application is divided into tasks that can be executed on

different devices. This partitioning can be done through different models, techniques, and levels

of granularity. Also, partitioning can be done automatically by the system or manually by the

application developers through annotations or markup in the source code (SOUZA et al., 2020).

The decision-making step must define where, when, and what the application’s tasks

should be sent. This is the most critical and challenging step in the computation offloading

process. If the application developer makes these definitions before the application is run, the

process is classified as static. If the system makes the definitions at run time, the process is

classified as dynamic (KUMAR et al., 2013). Dynamic decisions aiming to distribute tasks

optimally require considerable computational resources and are described as NP-hard problems

(SOUZA et al., 2020). These decisions are usually based on several metrics. Some metrics

about the current condition of the network used are latency, communication range, connection

type, and packet loss. Application metrics used are the size of data to be transferred, execution

time, and component dependency. Finally, metrics about network nodes commonly used are

memory, CPU, battery, distance, and speed. These metrics can be collected at run time or through

historical data.

When deciding where to process tasks remotely, the computation offloading system

can consider the following options: traditional cloud, edge servers, and vehicular cloud (SOUZA

32

et al., 2020). The advantages and disadvantages of these remote execution environments are

discussed in Section 2.3. Though, the computation offloading technique is not always worthwhile.

For example, when the local execution time estimate is less than the time to send tasks, process

remotely, and receive the results, offloading is not advantageous (KUMAR et al., 2013).

2.4.1 Computation Offloading vs. Data Offloading

Although there are similarities between the techniques of computation offloading and

data offloading, they should not be confused. In data offloading, the main objective is to replicate

popular data in locations closer to users, in an approach similar to that of Content Delivery

Networks (CDNs). In this sense, some mobile network nodes download popular content and

transmit the content to other nodes, reducing redundant traffic on congested networks, network

delays, energy consumption, and financial costs (XU et al., 2018).

Notwithstanding, the computation offloading process consists of more steps, which

are: uploading what needs to be processed, processing itself, and downloading the computation

result. On the other hand, the data offloading consists mainly of only one step: downloading

the content without computation and return of results. Besides, in computation offloading, the

content (computation result) popularity is typically zero, serving only for one user/device. In data

offloading, the popularity of content is typically high, with many users requesting downloads.

Finally, while in data offloading, the contents are relatively large (e.g., audios, images, and

videos), the contents are relatively small in computation offloading (CHEN et al., 2016).

2.5 Context

Context refers to information that characterizes entities, including the status of

network devices or vehicles. Contextual information assists decision-making processes and

improves the performance of systems, allowing adaptations to different circumstances and

environments (XU et al., 2018).

According to Perera et al. (2013), this contextual information can be divided into

two types: primary and secondary context. Primary context is any information acquired directly

without any data processing or fusion. This type of contextual information is also called low-

level context and is directly related to raw data. An example of a primary context would be

satellite-based positioning information. The secondary context, or high-level context, is any

33

information derived from the primary context through data processing or fusion. For example,

the distance between two vehicles is considered secondary context information because it is

obtained through calculations that use the location parameters of two vehicles (primary context)

(PERERA et al., 2013; YÜRÜR et al., 2014). Also, context data can be classified as static or

dynamic. Static contextual data does not change over time. Examples of such data are unique

identifiers and the computing capabilities of devices. Dynamic contextual information changes

over time (PERERA et al., 2013). For example, location, speed, and processing queue time are

dynamic contextual data.

Systems that use contextual information to adapt their operations according to

situations or environments are called context-aware or context-oriented. The life cycle of this

type of system generally follows the following steps: context acquisition, processing, and acting.

Context acquisition gathers primary context information and raw data directly from sensors or

remote devices (RAZA et al., 2019). Context acquisition can be pull-based, where the interested

system requests contextual data, or push-based, where sensors automatically send context data

to the interested system. This acquisition can also be made eventually or periodically. In the

eventual form, the acquisition of context is only carried out through a trigger actioned by some

event or change of circumstance. In periodic form, context data is acquired regularly at a specific

frequency (PERERA et al., 2013).

The processing step, in context-oriented systems, consists of applying reasoning

or inferencing techniques to obtain secondary or high-level contextual information. Context

reasoning or inferencing techniques deduce new knowledge and better understanding based on

previous contextual information. In this step, the raw data is improved in the pre-processing

phase. The system then combines or merges diverse context data from multiple devices to

produce more accurate and complete information. In the last phase of this step, context inference

is performed, generating high-level context information from lower-level context. Finally, acting,

the last step of a context-oriented system’s life cycle, involves applying context inference for

adaptations, data distributions, or decision making (PERERA et al., 2013; RAZA et al., 2019).

2.6 Artificial Bee Colony

Artificial Bee Colony (ABC) is a metaheuristic optimization algorithm inspired by

the foraging behavior of swarms of honey bees. ABC was proposed by Karaboga (2005) and is

used to solve multi-objective and multi-variable optimization problems (KARABOGA; AKAY,

34

2009; KHOSRAVANIAN et al., 2018).

The ABC algorithm is modeled according to the behavior of three types of bees in

search of food sources: employed, onlooker, and scout bees, as shown in Figure 6. An employed

bee is a bee that is exploring a food source and its neighborhood. This type of bee shares

information about food sources with other bees. This sharing takes place through a dance (called

waggle dance), which indicates the location and profitability of the food source. The longer the

dance lasts, the greater the amount of nectar of the food source (KARABOGA; AKAY, 2009;

HE et al., 2014; GAO et al., 2016).

Figure 6 – Figurative depiction of a artificial bee colony.

Dance area

Food sourceEmployed bee

Onlooker bee
Scout bee

Source: The Author.

The bees that are in the hive watching the dances of the employed bees are called

onlooker bees. They decide to explore certain food sources based on the observations of these

dances. The better the food source, the more likely an onlooker bee will choose it to exploit it.

When a food source runs out, an employed bee leaves it and becomes a scout bee. So, this scout

bee does a random search for new food sources (KARABOGA; AKAY, 2009; ZHANG et al.,

2014; CHEN; XIAO, 2014).

In the ABC algorithm, the position of a food source represents a possible solution to

a given optimization problem. The amount of nectar from the food source corresponds to the

35

quality or fitness of the solution. Furthermore, the ABC algorithm has four main phases: (1)

initialization, (2) employed bees, (3) onlookers bees, and (4) scout bees (HE et al., 2014). After

the initialization phase, phases 2 to 4 are repeated until a maximum number of cycles is reached,

or a stopping criterion is met (KARABOGA; AKAY, 2009). In the following, we describe the

four phases.

Phase 1: Initialization. Scout bees do a random global search to find an initial set

of solutions. Then, the solutions are evaluated and receive a fitness value (KHOSRAVANIAN et

al., 2018; HE et al., 2014). After finding the initial set of solutions, these scout bees become

employed bees, each one is associated with a solution, and the algorithm starts phase 2.

Phase 2: Employed Bees. Employed bees search for other solutions in the vicinity

of their associated solutions, making variations on them. After finding a new solution, each

employed bee evaluates its quality through a fitness value. Suppose the new solution has better

fitness than the previous one. In that case, the employed bee abandons the previous solution

and memorizes only the new solution. Otherwise, the previous solution remains in memory

(ZHANG et al., 2014). Upon returning to the hive, the employed bees share information about

the solutions and their fitness for the onlooker bees in the dance area (KARABOGA; AKAY,

2009).

Phase 3: Onlooker Bees. The onlooker bees observe the information about solutions

provided by the employed bees. After observation, they decide which solution to explore using

a fitness-based probabilistic selection (e.g., roulette wheel, tournament selection, or ranking

based). Better fitness solutions are more likely to be chosen. After associating themselves with

the chosen solutions, onlooker bees follow the same procedure as employed bees, searching for

new solutions in the vicinity of current solutions (ZHANG et al., 2014; CHEN; XIAO, 2014).

Phase 4: Scout Bees. When an employed bee realizes that its search space is not

generating better fitness solutions for a certain number of cycles, it abandons that solution and

its search space. Then, it becomes a scout bee and starts searching for solutions in new search

spaces randomly (KHOSRAVANIAN et al., 2018).

Therefore, in phases 2 and 3, the ABC algorithm uses local search in a given region

of the set of solutions, thus making exploitation (or intensification of searches in a region). In

phases 1 and 4, it uses global search to find new solution spaces, thus exploring, diversifying,

and helping to avoid suboptimal solutions and premature convergences (KARABOGA; AKAY,

2009; CHEN; XIAO, 2014).

36

The ABC algorithm has advantages in being applied to optimization problems. For

example, compared to other conventional metaheuristic algorithms, ABC employs fewer control

parameters and can quickly return good solutions to problems that need to be solved in real-time

(KARABOGA; AKAY, 2009). It can also solve NP-hard optimization problems, returning

solutions close to the global optimum (KHOSRAVANIAN et al., 2018). Besides, ABC is

simple, easy to implement, and has shown better performance than other intelligent algorithms

concerning the convergence time and the ability to avoid optimal local solutions (CHEN; XIAO,

2014; ZHANG et al., 2014).

2.7 Concluding Remarks

This chapter presented the main concepts related to this thesis. For example, we saw

the definition of VANETs, their types of communications, their peculiar characteristics, and their

challenges. We also examined the architectures, protocols, and frequency spectrum of WAVE

and 5G technologies, as well as their current status. These technologies enable the formation of

VANETs. Then, this chapter described the VEC paradigm, which allows computation tasks to be

distributed to vehicular clouds and edge servers through VANETs. Systems that use VEC have

different computational resources at their disposal and can avoid the excessive latency of access

to traditional cloud servers.

After, the concept and details of the computation offloading technique were presented.

Moreover, the difference between computation offloading and data offloading was explained. As

we will see in the following chapters, the combination of computation offloading and VEC makes

it possible for vehicular applications to reduce their execution times and the processing overhead

of VANET nodes. Subsequently, we saw definitions of context and context-oriented systems,

context types, and context life cycle issues. In our proposal, different context parameters are

used to deliver better results in computation offloading processes. Finally, we described the

ABC metaheuristic, presenting its biological inspiration, details and the different phases of the

algorithm, and the advantages of its application in optimization problems. An adapted version of

this algorithm for computation offloading in VEC is defined in Chapter 5.

37

3 LITERATURE REVIEW

Several works have been developed in the area of offloading in vehicular networks.

For example, in Souza et al. (2020), we have done an extensive review and classification of

several solutions of computation offloading in VANETs. Among these solutions, some consider

that the clients (devices with applications that need computation offloading) are edge servers

(SUN et al., 2018; BOUKERCHE; SOTO, 2020; LI et al., 2020a) or pedestrian smartphones

(WANG et al., 2018; PHAM et al., 2019; ZHOU et al., 2019). Some solutions do not consider

the VEC paradigm (allowing the use of traditional cloud infrastructure) (ZHANG et al., 2019;

WU et al., 2019; DU et al., 2018), and others consider other objectives such as reducing energy

consumption (MIDYA et al., 2018; GU; ZHANG, 2021; GU; ZHOU, 2019) and financial cost

(MISRA; BERA, 2019; TAN et al., 2019; WANG et al., 2020).

Although there are different aspects in this field of research, this chapter specifically

presents the principal works of computation offloading in VEC that have two essential character-

istics. The first is that clients are only vehicles. The second is that the proposed solutions have

a single objective: to reduce vehicular applications’ execution time. The core of this chapter

is based on a taxonomy that we propose to classify different research articles in this area. The

main parts of this taxonomy, shown in Figure 7, are: Communication Standard, Problem, and

Experiment.

Figure 7 – Proposed taxonomy of computation offloading in VEC.
Computation Offloading

in VEC

Technology

WAVE

Cellular

Communication
Standard Experiment

Scenario

Urban

Highway

VC

Edge

Strategy

Metaheuristic

Other

Server Vehicular
Density

High

Medium

Low

Problem

Source: The Author.

The nodes of this taxonomy tree guide the reading of this chapter. They indicate

the sections where each category is discussed. Thus, Section 3.1 presents the research articles

38

from the perspective of communication standards, categorizing the works concerning the types

of communication technologies used and servers where the computational tasks are executed.

Section 3.2 shows the works according to the research problem approached and the main

strategies used to solve it. Descriptions of the experiments carried out to validate the works

are shown in Section 3.3. The experiments, consisting of simulations, are classified under two

aspects: type of scenario and vehicular density. Each of these sections contains a subsection

that discusses the gaps of existing works and compares them with the solutions proposed in this

thesis. Finally, Section 3.4 presents the final considerations of the chapter.

3.1 Communication Standard

In offloading processes, choosing how to communicate is an important decision.

This section analyzes previous work of computation offloading in VEC concerning two aspects

of the communication standards: technology and type of server used. After, we discuss the works

related to our proposal.

3.1.1 Technology

Different technologies have been proposed to enable device communication and

provide reliable and efficient computation offloading in vehicular environments. Below, we

report the leading technologies that the works of the area have used.

WAVE

The most used communication technology for works of computation offloading in

VANETs is the WAVE (SOUZA et al., 2020). In some of these works, WAVE is the exclusive

technology used to transfer computation offloading files. For example, Sun et al. (2019b)

proposes the IEEE 802.11p and IEEE 1609.4 protocols of the WAVE architecture to form the

vehicular clouds. In Feng et al. (2017), the authors also used the WAVE IEEE 802.11p protocol

exclusively for connections between vehicles participating in offloading computation processes.

The authors argue that this communication technology enables fast link configurations without

having to create a basic service set, reducing overhead when sending data to other vehicles. Chen

et al. (2020) used the IEEE 802.11p/WAVE standard to formulate the communication model. In

this model, DSRC channels allow the propagation of advertisement messages, information about

39

tasks that need to be processed remotely, and communication between vehicles in the vehicular

cloud.

Cellular

Cellular networks are the second most used communication technology in compu-

tation offloading in VANETs. Although third-generation cellular mobile networks (3G) have

been used in some works, we focus on the most used networks in the offloading area: the

fourth-generation cellular mobile networks (4G) and fifth-generation cellular mobile networks

(5G) (SOUZA et al., 2020). In this sense, some works use 4G or 5G cellular networks as the

exclusive communication technology for information exchange of computation offloading. For

instance, the proposal of Rahman et al. (2020) uses only mmWave transmissions associated with

high frequency 5G networks to model the communication of offloading processes. In Sun et al.

(2019a), only 4G technology was used to transmit computation offloading data between vehicles.

In this case, the spectrum was divided into resource blocks in the time and frequency domain for

data sharing between VANETs vehicles.

Hybrid

Other papers used more than one technology to perform computation offloading

in VEC systems (NING et al., 2018; QIAO et al., 2018). In Wang et al. (2018), the authors

used the IEEE 802.11p protocol of the WAVE architecture to exchange offloading data in

V2V communications. For offloading processes involving V2I communications, they used 4G

technology. The computation offloading work of Feng et al. (2018) allows the use of multiple

communication technologies. In this case, WAVE and 5G technologies can be used to transfer

offloading data between vehicles and between vehicles and RSUs. Offloading to base stations is

only allowed through 4G networks.

3.1.2 Server

In VEC systems, two types of servers can execute tasks of computation offloading.

The first types are vehicles in the context of VCs. The second types are edge servers coupled to

RSUs or base stations. Following, we describe how offloading articles have used these types of

servers.

40

VC

Servers in VCs are the vehicles themselves. They can request remote processing,

or they can process computational tasks of other devices. Some works have exclusively used

VC vehicles as computation offloading servers (RAHMAN et al., 2020; SUN et al., 2019a;

FENG et al., 2017). For example, Sun et al. (2019b) only consider servers in VCs to execute

computational tasks for other vehicles. These server vehicles are called service vehicles (SeVs)

and have enough computational resources to help process tasks. In Hou et al. (2016), the authors

use vehicles, parked or moving, as infrastructure for communication and computing. In this way,

VCs can be created, and offloading tasks can be cooperatively distributed among participating

vehicles to be processed. Nabi et al. (2017) propose creating VCs with computational resources

of multiple vehicles to process tasks. These tasks can be scheduled to different vehicles in a VC.

Edge

This type of server is located at the edge of the network, directly connected to base

stations and RSUs. The edge can contain one or more servers or even mini data centers to assist

computation offloading clients. Some papers only used edge servers to execute computation

offloading tasks. In Ning et al. (2018), vehicles can send their computation tasks only via

RSU or base station, so that edge servers process them. In the computation model of Liu et al.

(2020), only edge servers coupled to RSUs process offloading tasks from client vehicles. These

computing tasks can be sent to different edge servers. Each RSU is equipped with several edge

servers. Zhang et al. (2020) propose that client vehicles with computing tasks can offload them

to execute only on edge servers embedded in base stations. After processing the tasks, the edge

server sends the result back to the client through its original base station or a base station closer

to the client.

Hybrid

The hybrid approach happens when more than one server type, previously mentioned,

acts as offloading servers for offloading computation processes (WANG et al., 2018; FENG et al.,

2018; LI et al., 2014). Vehicles in VCs and edge servers work collaboratively to share resources

and process computational tasks of client vehicles in Qiao et al. (2018). In this proposal, RSUs

and BSs provide powerful computational resources through their respective edge servers. These

41

servers are abstracted as the pooling resources to improve their utilization. In Lin et al. (2017),

the computational resources of vehicles and edge servers connected to RSUs are combined to

provide a resource pool. Through this resource pool, computational tasks can be executed on

edge servers and vehicles in VCs.

3.1.3 Discussion

Table 1 summarizes the communication standard aspects of the works mentioned in

this chapter to facilitate the discussion.

Table 1 – Summary of communication standard aspects of related works.

Reference Technology Server

WAVE Cellular Simultaneous
Use VC Edge

(LI et al., 2014)
√ √ √

(HOU et al., 2016)
√ √

(FENG et al., 2017)
√ √

(LIN et al., 2017)
√ √ √

(NABI et al., 2017)
√

(QIAO et al., 2018)
√

4G
√ √

(WANG et al., 2018)
√

4G
√ √

(NING et al., 2018)
√

5G
√

(FENG et al., 2018)
√

4G/5G
√ √

(SUN et al., 2019b)
√ √

(SUN et al., 2019a) 4G
√

(RAHMAN et al., 2020) 5G
√

(CHEN et al., 2020)
√ √

(LIU et al., 2020)
√ √

(ZHANG et al., 2020)
√ √

GCF
√

5G
√ √ √

GTT
√

5G
√ √ √

BCV
√

5G
√ √ √

Source: The Author.

As shown in Table 1, computation offloading servers can be located on a VC or

the Edge. These servers can receive tasks by different communication technologies such as

WAVE, 4G, or 5G. In Rahman et al. (2020), authors present solutions to allow vehicles to

execute computation tasks on selected neighboring vehicles over only 5G/V2V connections.

Other works used similar communication standards but with approaches only either WAVE/V2V

(CHEN et al., 2020; SUN et al., 2019b; FENG et al., 2017), or 4G/V2V (SUN et al., 2019a), or

WAVE/V2I (LIU et al., 2020). Nevertheless, using only one communication technology limits

the capabilities to transmit more network packets and prevents connections to other types of

42

networks (CHARITOS; KALIVAS, 2017; DREYER et al., 2016; UCAR et al., 2015). Another

interesting work in Ning et al. (2018) proposes a data and computation offloading scheme

for WAVE and 5G networks. This scheme allows tasks to be executed only on edge servers

coupled to base stations or RSUs. However, these proposed solutions allow third-party tasks

to be executed only by vehicles or only by edge servers. In either case, there is a waste of

computational resources from unutilized servers.

Some works allow third-party tasks to be executed by vehicles and edge servers to

avoid such a waste of resources. Besides, to increase the network’s transmission capacities,

these works use WAVE and 4G technologies. In Qiao et al. (2018) and Wang et al. (2018),

the authors propose schemes and algorithms that enable a vehicle to transfer its computations

tasks to neighboring vehicles (via WAVE/V2V) or nearby edge servers (via 4G/V2I). Then,

the latter can process the tasks and return their results to the requesting vehicle. Nonetheless,

while it is an interesting approach, 4G networks are already starting to become outdated. They

have deficiencies in relation to 5G networks, such as lower data rates, weaker for high mobility,

fewer frequency ranges, and higher latencies. Also, algorithms and techniques used in 4G

networks may not be well adapted to 5G networks because of differences in network architecture,

modulation and multiplexing techniques, wireless signal behavior, coverage area, and need

for a line of sight between devices (BARB; OTESTEANU, 2020; RAPPAPORT et al., 2017;

TEHRANI-MOAYYED et al., 2020; MEZZAVILLA et al., 2018). The solution proposed by

Wang et al. (2018) also does not allow simultaneous WAVE/4G transmissions, wasting time in

the execution of tasks.

Feng et al. (2018) also considers sequential transmissions. The authors propose a

framework to take advantage of several computational resources available locally, in nearby

vehicles (via V2V), and on edge servers (via V2I). WAVE, 4G, and 5G technologies can be

used. Even so, there is a prioritization of sending tasks via 5G, spending more time than if it

were possible to send tasks simultaneously through multiple technologies. Only if 5G fails, the

algorithm in Feng et al. (2018) will need to seek resources via WAVE, which ends up generating

more delays in the offloading process. Moreover, in scenarios where only base stations and

few vehicles use 5G, the sending of tasks will end up being, mostly, only via V2I and to the

edge servers. Thus, this prioritization by 5G can overload the edge servers and underutilize the

vehicles’ computational resources. Besides, sending via 5G can result in failures due to inherent

technology challenges, such as limited range and line-of-sight issues between devices.

43

In a different way, our proposed framework and algorithms aim to fill the gaps left

by the mentioned works. In terms of technology and servers, we allow tasks to be sent to edge

servers and vehicles simultaneously through 5G/V2I and WAVE/V2V connections. With this,

we increase the network’s transmission capacities and take advantage of all available computing

resources.

3.2 Problem

The articles on computation offloading in VEC propose different formulations of

problems. Among these problems, the most studied are those that deal with the objective of

reducing the execution time of vehicular applications (SOUZA et al., 2020). Although some

of these applications have become popular, they are computationally complex, intensive, and

real-time. Taking too long to process an application’s tasks can compromise its performance,

data validity, and even the safety of humans in a vehicle. Thus, reducing the execution time of

applications is the main objective of the computation offloading technique.

Although this technique has several steps, one of the most important and challenging

to reduce the execution time of vehicular applications is the task distribution. This step can

have several parameters and metrics that need to be taken into account to obtain the best

possible performance in offloading. Among these parameters are contextual information about

transmission and processing delays (e.g., mainly in already overloaded devices) and vehicular

mobility. In fact, finding the optimal way to distribute tasks to have the maximum reduction in

application processing time has been described as a NP-hard problem (ZHU et al., 2018; FENG

et al., 2017). Therefore, it might be costly to solve more extensive instances of such problems to

optimality.

Thus, the literature works propose solution strategies to deal with these challenges

that range from simple algorithms to complex mathematical modeling and intricate machine

learning and metaheuristic algorithms. Below we present the main strategies of the algorithms

used in the computation offloading works in VEC. Then, we compare the related works to the

algorithms proposed in this thesis.

44

3.2.1 Strategy

Following the taxonomy, in this section, we deal with the algorithmic strategies used

for solving the problem at hand. Next, we see the most common strategy found in the related

works: metaheuristic algorithms. After, we comment about other used strategies.

Metaheuristic

Metaheuristics are algorithms that do not guarantee to deliver a proved optimal solu-

tion to a given instance of a problem, but usually return a good solution in a feasible time (TALBI,

2009). More specifically, metaheuristics are general and higher-level algorithms that incorpo-

rate operators designed to avoid getting stuck in a local optimum, called intensification and

diversification operators (BLUM; ROLI, 2003).

In Feng et al. (2017), the authors propose a scheduling algorithm based on Ant

Colony Optimization (ACO) to solve the task distribution problem in vehicular environments

without infrastructure. ACO is a metaheuristic inspired by the behavior of ants in search of food.

They argue that their algorithm can find near-optimal solutions in a reasonable amount of time.

The authors of Sun et al. (2019a) modeled the problem as a knapsack problem and designed a

task scheduling algorithm based on the bat metaheuristic. This metaheuristic is inspired by the

behavior of micro-bats that use echolocation to avoid obstacles and hunt prey. Modifications

were proposed to improve the algorithm and get a good solution quickly in vehicular scenarios

without infrastructure. Chen et al. (2020) proposed an algorithm based on the Particle Swarm

Optimization (PSO) metaheuristic to find the best task allocation scheme and minimize the

task execution time. Such an algorithm is mentioned as fast and accurate, contributing to the

reduction in task execution time.

Other

In addition to strategies based on metaheuristic algorithms, other strategies have

also been used to solve the problem of reducing the execution time of vehicular applications

through computation offloading. For example, Qiao et al. (2018) proposes clustering so that

leader vehicles maintain control over a vehicular cloud, managing their computing resources.

When vehicles need to offload tasks, they need to send them to the VC leader first. Thus, the

leader can evaluate proposed task assignments and adjust them for the overall benefit of the

45

network. In Sun et al. (2019b), the authors propose a machine learning-based solution to guide

the task offloading and minimize the average offloading delay. In the proposal, the solution

allows vehicles to learn about the offloading delay performance of their neighboring vehicles

while offloading computation tasks. The solution also allows for a balance between exploring

different actions and exploiting the learned information. In other papers, greedy (WANG et al.,

2018; FENG et al., 2018) or approximation (NABI et al., 2017) algorithms were designed for

different and specific modeling of the problem.

3.2.2 Discussion

Some of the works mentioned in this chapter propose only ideas (HOU et al., 2016)

or exact strategies (ZHANG et al., 2020; WANG et al., 2018; LIN et al., 2017) to solve

the problem of application execution time reduction through computation offloading in VEC.

While guaranteeing the optimal solution of the problem, these exact strategies are impractical

when the problem is NP-Hard or large scale, or there are not enough computational resources

(ZOBOLAS et al., 2008). Sun et al. (2019b) proposes an online learning-based strategy to

reduce the processing time of vehicle applications. However, this strategy has some challenging

characteristics: possible high processing time, large amount of data, high susceptibility to errors,

and possible hard-to-access, distributed, unreliable, or poor quality data. In VANETs, these

characteristics are even more challenging because the computation resources of vehicles are

limited, latency requirements are critical, and the network configuration is highly dynamic

(BARH, 2020; YE et al., 2018; L’HEUREUX et al., 2017).

Nevertheless, most works use heuristic solutions, i.e., algorithms specifically de-

signed to deal with a certain problem and provide approximate near-optimal solutions (GUAN,

2020). Other works use a clustering approach (QIAO et al., 2018; NING et al., 2018). However,

this approach has disadvantages as uneven energy consumption, long delays in cluster head

failure, and bottleneck point in cluster head if the cluster has many members (DUAN et al.,

2016; UCAR et al., 2015; ZHAO et al., 2018). Even though heuristic methods do not use cluster-

ing, they are not always the best strategies available. For example, in general, metaheuristics

(problem-independent techniques) perform better than simple heuristics (problem-dependent

techniques). Furthermore, solutions produced by metaheuristics have better quality and greater

robustness than those obtained by heuristics techniques (BLOCHO, 2020; KUNCHE; REDDY,

2016; ZOBOLAS et al., 2008).

46

Thus, some works propose the use of metaheuristics (FENG et al., 2017; SUN et

al., 2019a; CHEN et al., 2020). However, the proposed metaheuristics have drawbacks. For

example, the ACO metaheuristic changes the probability distribution with the iterations and has

sequences of random decisions, making the analysis of the algorithm’s behavior difficult. The

Bat algorithm cannot efficiently handle discrete optimization problems and requires tuning of

several parameters. The PSO metaheuristic suffers from premature convergence and loss of

population diversity. On the other hand, our BCV algorithm is based on the ABC metaheuristic,

a robust and flexible algorithm that can quickly return near-optimum solutions. Moreover, this

metaheuristic is simple and easy to implement, requires few parameters for its configuration, and

has outperformed other intelligent algorithms (EZUGWU et al., 2020; KHOSRAVANIAN et al.,

2018; CHEN; XIAO, 2014; ZHANG et al., 2014).

Besides, some computation offloading strategies use contextual information that

aids decision-making processes and helps in adapting to different environments and circum-

stances (XU et al., 2018). One such piece of information is the CPU availability that can be

advertised to neighboring devices. This information indicates whether the CPU is idle or busy.

If it is busy, it is usually advertised the waiting time needed to process a new task (RAHMAN

et al., 2020). In this way, a device with good CPU availability is more likely to be chosen as a

server. Although most of the related work in this chapter has not used this information, we used

it in our three proposed algorithms.

Moreover, most of the works in this chapter do not have failure recovery mechanisms,

even knowing that a failure can lead to increased latency, incomplete information, and application

crashes. In our proposal, the support framework provides this functionality for any coupled

decision algorithm. Thus, the GCF, GTT, and BCV work together with the proposed failure

recovery mechanism, providing reliability to computation offloading processes.

Table 2 summarizes the aspects discussed in this section.

3.3 Experiment

It is essential to evaluate new proposals (algorithms, schemes, frameworks, and

systems) of computation offloading in different vehicular environments for reliable validation.

This section reviews the details of the experiments that previous works have used in their

proposals related to two aspects: scenario and vehicular density. Discussions about the gaps of

the works mentioned and comparisons with our proposal are made next.

47

Table 2 – Summary of problem aspects of related works.

Reference Strategy Contextual
Information Support

Metaheuristic CPU Availability Failure Recovery
(LI et al., 2014)
(HOU et al., 2016)
(FENG et al., 2017) ACO

√

(LIN et al., 2017)
√

(NABI et al., 2017)
(QIAO et al., 2018)
(WANG et al., 2018)
(NING et al., 2018)
(FENG et al., 2018)

√

(SUN et al., 2019b)
(SUN et al., 2019a) Bat
(RAHMAN et al., 2020)

√

(CHEN et al., 2020) PSO
(LIU et al., 2020)

√

(ZHANG et al., 2020)
GCF

√ √

GTT
√ √

BCV ABC
√ √

Source: The Author.

3.3.1 Scenario

The scenario impacts the mobility of vehicles, and, in turn, the performance of

applications and offloading systems. Thus, vehicular scenarios are of utmost importance for

providing reliable metrics in experiments. Defining a vehicular scenario is also important to

evaluate models that can be used in specific situations. In this way, computation offloading

algorithms can be designed to adapt more efficiently to different scenarios. The following

paragraphs present the description of the most used vehicular scenarios in computation offloading

works in VEC: urban and highway.

Highway

Highway scenarios are generally characterized by a single road (with one or more

lanes in each direction), one-dimensional vehicular mobility, high-speed vehicles, and few

obstacles. In this scenario, wireless connections between vehicles are relatively stable if they

travel in the same lane or the same direction (e.g., platooning). On the other hand, if vehicles

travel in opposite directions, the wireless connections between them are short-lived and suffer

interruptions and instability (SOMMER; DRESSLER, 2014; LI et al., 2018). Continuous

connectivity or coverage is also a significant challenge in highway scenarios due to the high cost

48

of deployment of RSUs or BSs (ASLAM; ZOU, 2011).

The highway scenario was considered in the experiments of several papers (LIU

et al., 2020; CHEN et al., 2020; SUN et al., 2019a). In Sun et al. (2019b), the scenario used

consists of a 12 km segment of a Beijing highway with two lanes and two ramps. Qiao et al.

(2018) carried out the experiments of its proposal on a four-lane two-way road.

Urban

Urban areas are regions with different street and avenue layouts. Two-dimensional

vehicular mobility and many segments with intersections make this scenario more complex in

terms of communication and routing decisions. Besides that, obstacles such as trees, buildings,

viaducts, and tunnels are also complicating factors in this regard (ZHU et al., 2016). A scenario

widely used as an urban environment is the Manhattan mobility model, which has streets

organized in the form of a grid (VIRIYASITAVAT et al., 2011).

In carrying out the experiments, Rahman et al. (2020) considered an urban scenario

with all bidirectional roads and multiple intersections. An urban region of Luxembourg with

an area of 800 m X 600 m was used in the experiments of Feng et al. (2018). In other works,

the authors used both the urban and the highway scenarios in evaluating the proposed solutions

(ZHANG et al., 2020; FENG et al., 2017).

3.3.2 Vehicular Density

VANETs rely heavily on having vehicles nearby to exchange information and mes-

sages, especially on networks without infrastructure (SANGUESA et al., 2016). Therefore,

density is an important factor that impacts offloading processes in vehicular environments.

Thus, in the following paragraphs, we describe the types of vehicular density considered in the

computation offloading works in VEC.

Low

Low vehicular density scenarios, also called sparse scenarios, have few vehicles to

exchange information with each other and maintain good network connectivity. For example, a

rural road with very little vehicular traffic may not even have adequate connectivity between the

few network devices. Thus, low densities can cause loss of messages and network packets due to

49

reduced communication capabilities (SANGUESA et al., 2016). This type of vehicular density

is the most used in offloading experiments. Its number of vehicles is around 11 vehicles/km on

a highway (density by road length) and 25 vehicles/km2 in an urban region (density by area)

(SOUZA et al., 2020; AKHTAR et al., 2014; SANGUESA et al., 2016).

In Qiao et al. (2018), the authors considered only low vehicular density as the number

of vehicles varies from 1 to 20. The number of service vehicles used in the experiments of

computation offloading of Chen et al. (2020) ranged from 3 to 30.

Medium

Medium vehicular density scenarios are intermediate scenarios between low and

high density scenarios. They have a larger number of network nodes, with better connectivity,

and generally without traffic jams. The number of vehicles at this density varies around 55

vehicles/km on highways and 120 vehicles/km2 in urban regions (SANGUESA et al., 2016;

AKHTAR et al., 2014).

This approximate density has been used in experiments in some offloading computa-

tion works. For example, Feng et al. (2018) considered an approximate rate between 88 to 97

vehicles/km2 in an urban region. Sun et al. (2019a) considered 50 vehicles/km in a highway.

High

High vehicular density scenarios have better connectivity because more vehicles in

the network are more likely to be within the communication range of others. However, these

scenarios suffer from traffic jams, mainly during peak hours. There are many exchanging data

vehicles at these times, generating simultaneous forwarding, broadcast storms, network packet

collisions, and contention at MAC and physical layers. As a result, these problems congest the

network, reduce message delivery, and make offloading processes more difficult. The variation

in the number of vehicles ranges from approximately 120 vehicles/km on highways to 250

vehicles/km2 in urban scenarios (SANGUESA et al., 2016; AKHTAR et al., 2014).

According to Souza et al. (2020), high is the least used vehicular density in the

offloading experiments. None of the studies analyzed on computation offloading in VEC by

other authors used this density. However, other computation offloading works used high density

in other contexts (ZHANG et al., 2019; GUO et al., 2018).

50

3.3.3 Discussion

Even using different technologies and strategies, a computation offloading solution

can work well in one scenario and not work in another. For example, scenarios with many

intersections of streets (urban) or a single road (highway) influence network connectivity and

interfere with the proposed solutions’ performance. This also occurs with different vehicular

densities (SOUZA et al., 2020). Accordingly, it is important to submit the proposed solutions

to different scenarios and densities, providing credibility to them, and evaluating the impact of

specific situations. Despite this, none of these previous works used all three vehicular density

types, and only two of them (ZHANG et al., 2020; FENG et al., 2017) used both the highway and

urban scenarios in the experiments. On the other hand, our proposed framework and algorithms

were submitted to evaluations under all types of scenarios and vehicular densities.

A contextual information that helps deal with different scenarios is the known routes

of vehicles, a set of geographical coordinates that vehicles will travel. This information helps

estimate vehicles’ positions within a given time more accurately, avoiding sending tasks to those

who will lose connectivity (SHIN et al., 2020). Although the works mentioned in this chapter

use various contextual information, none of them use the known routes of vehicles. Only two of

our three proposed algorithms use this information: the GTT and the BCV.

Table 3 shows the main aspects discussed in this section.

Table 3 – Summary of experiment aspects of related works.

Reference Scenario Vehicular Density Contextual
Information

Urban Highway High Medium Low Known Routes
(LI et al., 2014)
(HOU et al., 2016)

√ √

(FENG et al., 2017)
√ √ √ √

(LIN et al., 2017)
(NABI et al., 2017)

√ √ √

(QIAO et al., 2018)
√ √

(WANG et al., 2018)
√

(NING et al., 2018)
√

(FENG et al., 2018)
√ √ √

(SUN et al., 2019b)
√

(SUN et al., 2019a)
√ √ √

(RAHMAN et al., 2020)
√

(CHEN et al., 2020)
√ √

(LIU et al., 2020)
√ √

(ZHANG et al., 2020)
√ √

GCF
√ √ √ √ √

GTT
√ √ √ √ √ √

BCV
√ √ √ √ √ √

Source: The Author.

51

3.4 Concluding Remarks

According to the proposed taxonomy, this chapter presented the main related works

of computation offloading from a vehicle in VEC to reduce application execution time. We

saw that current solutions do not take full advantage of the technological potential in terms of

communications, servers, and failures recovery mechanisms. Furthermore, these solutions do

not consider all available data (such as CPU availability and known routes of vehicles) and do

not use the most appropriate techniques for the problem at hand. Two aspects of communication

standards in VEC were examined: technology and server type. We used these two aspects

to compare and discuss our proposal with literature works. We then described the problem

being treated and discussed the strategies used to solve it. Finally, we showed the scenarios

and vehicular densities used in the experiments. Then, we commented on the importance of

validating computation offloading solutions in different contexts and using other information

available in task distribution processes.

52

4 SYSTEM MODEL AND PROBLEM FORMULATION

This chapter presents the modeling of the considered system. For example, the

chapter explains the functioning of the analyzed network, the calculations of vehicular mobility,

the transmission and processing of data, and the model of energy of the system. Also, we formu-

late the realization of computation offloading in vehicular edge computing as an optimization

problem.

A special contribution of this chapter is the calculation of vehicular position predic-

tion based on known routes of vehicles. This contextual information helps to predict vehicle

positioning more accurately and avoid offloading failures. To the best of our knowledge, it is the

first time that a computation offloading work in vehicular networks uses this information.

This chapter is organized into three sections. Section 4.1 presents the modeling

of the system. Section 4.2 describes the formulation of the problem that we propose to solve.

Finally, Section 4.3 highlights the final considerations of the chapter.

4.1 System Model

This section presents an overview of the system model. First, Section 4.1.1 describes

the network general structure. Then, Sections 4.1.2 and 4.1.3 present the models for communi-

cation and computation, respectively. At last, Section 4.1.4 presents the energy model. In turn,

Table 4 lists the most used notations.

4.1.1 Network General Structure

The network topology considered in this work has different types of nodes. For

example, it has a set of vehicles and a set of edge servers. Since each edge server is connected to a

different 5G base station, the total number of edge servers present on the network also represents

the total number of 5G base stations. The 5G base stations are installed on the shoulders of

streets or roads. The edge servers are connected via optical fiber to the 5G base stations. Vehicles

can simultaneously process, store, transmit data, and use sensors. Besides, vehicles periodically

generate beacon messages and distribute them in a one-hop broadcast to all nodes within their

communication range.

We consider client as a vehicle that offloads tasks to other vehicles (via V2V com-

munication) or to edge servers (via V2I communication). Offloading decisions are made based

53

Table 4 – Most used notations.
Notation Definition
client Client vehicle
server Chosen server for the client
R Communication range
t Time
d Distance
r Transmission rate
B Bandwidth
s Data size
C Computational capacity
nτ Total number of tasks in a workload
τ Task
c CPU cycles required to process a task
W Number of tasks to be executed by client
X Number of tasks to be executed by the server
Ecur Current stored energy level
A Accumulated minimum energy level

Source: The Author.

on information from other devices. However, the decision of whether and how to offload is made

only by the client. This decision can lead client to take the following actions: execute all tasks

locally, execute all tasks remotely (on one or more servers), or execute some tasks locally and

some more remotely.

A server is any vehicle or edge server that can receive and process one or more

tasks sent by the client. All vehicles and edge servers in our topology can act as a server. Such

possible servers continuously run offloading services in background that can 1) advertise the

computational resources available on the server to other devices and 2) enable them to receive

and execute tasks from other devices.

Table 5 presents the interfaces of the network nodes and the types of nodes they

can connect. The client has two network interfaces in our network topology: WAVE/IEEE

802.11p and 5G/mmWave. All other vehicles are servers only and have only WAVE/IEEE

802.11p interfaces. All edge servers have only one connection to base stations (which also have

5G/mmWave interfaces). All vehicles present the same communication range. All base stations

connected to the edge servers also have the same communication range. For simplicity, we only

consider one-hop communications in the WAVE/IEEE 802.11p interface. On the 5G/mmWave

interface, if the client wants to transmit something to the edge server, it must first transmit to the

5G base station. The latter then forwards the data to the edge server via a wired link. If the edge

server wants to transmit something to a vehicle, the reverse path is taken.

54

Table 5 – Network node interfaces.
Node Interface To

Client vehicle WAVE/IEEE 802.11p Other vehicles
5G/mmWave Base station

Server vehicle WAVE/IEEE 802.11p Other vehicles
Base station 5G/mmWave Client vehicle

Wired Edge server
Edge server Wired Base station

Source: The Author.

4.1.2 Communication Model

This section presents the communication models related to the link lifetime, position

prediction based on known routes of vehicles, and data transmission rate.

Link Lifetime

It is possible to estimate how long two neighboring network nodes remain connected

within each other’s communication range. The estimate is made through kinematic calculations

since parameters such as speed, direction, and distance between nodes do not vary significantly

(SOUZA et al., 2013). Härri et al. (2008) proposed a way to calculate this estimate. For this, we

use four parameters: px position of the node on the x-axis, py position of the node on the y-axis,

vx vector velocity of the node on the x-axis, and vy vector velocity of the node on the y-axis. We

assume that the nodes follow a linear path in a short period. Thus, Equation 4.1 describes the

position of the node i as a function of time t:

pi(t) =

pxi
+ vxi

· t

pyi
+ vyi

· t

 , (4.1)

where pi(t) is the position of node i at time t.

We consider that a node j is a neighbor of the node i. Thus, the Equation 4.2 shows

how to estimate the future distance between nodes i and j:

d2
i, j = d2

j,i = ‖p j(t)− pi(t)‖2 =

px j
− pxi

py j
− pyi

+
vx j
− vxi

vy j
− vyi

 · t
2

= αi, jt
2 +βi, jt + γi, j,

(4.2)

55

where αi, j ≥ 0, γi, j ≥ 0. Then, the future relative distance between j and i is

di, j(t) =
√

αi, jt
2 +βi, jt + γi, j.

With this, it is possible to calculate the link lifetime. According to Härri et al. (2008)

and Menouar et al. (2007), the link lifetime of the two nodes (i and j) is the estimated time

tlinki, j
= t1− t0, where t1 is the time when the distance d between the two nodes becomes greater

than their communication range (R) and t0 is the initial time of the nodes. For the two nodes to

be connected, d must be less than or equal to R.

For tlinki, j
to be calculated, it is necessary to make di, j(t) ≤ R. If we square both

sides of the inequality and put R on the other side, we get the Equation 4.3, which gives the value

of tlinki, j
:

d2
i, j(t)−R2 = 0 (4.3)

Since we already have an equation that describes d2
i, j(t), we get the Equation 4.4

below:

αi, jt
2 +βi, jt + γi, j−R2 = 0, (4.4)

where t represents tlinki, j
. Thus, to know the value of tlinki, j

, it is only necessary to

solve the second degree equation presented in Equation 4.4.

However, if two nodes have very similar mobility (for example, if they are close to

each other, with similar velocities and going in the same direction), tlink tends to be infinite. To

adjust this question, Namboodiri and Gao (2007) proposed an upper limit constant for very large

values of tlink. We defined this constant as tmaxli f etime with a value of 100 seconds. That way, if

tlink > 100, tlink becomes 100 seconds.

Position Prediction Based on Known Routes of Vehicles

Public or private vehicles can share information from their on-board navigation

systems, such as their trajectories/routes and the estimated arrival time to the destination. This

sharing is done through the exchange of messages between devices. With this, it is possible to

estimate, with more precision, if two neighboring network nodes will still be connected after a

given time tκ (SHIN et al., 2020).

56

The trajectory or route of a vehicle j is a set of points (geographic coordinates) that

will be traveled by it as follows: [(px j
(t0), py j

(t0)) ; (px j
(t1), py j

(t1)) ; ... ; (px j
(tn), py j

(tn))],

where (px j
(t0), py j

(t0)) represents the latitude and longitude of the vehicle at the initial time t0

and (px j
(tn), py j

(tn)) represents the latitude and longitude of the vehicle at the estimated arrival

time tn.

Thus, the distance to be travelled (dtotal) is calculated as follows:

dtotal =

n

∑
`=1

√
(px j

(t`)− px j
(t`−1))

2 +(py j
(t`)− py j

(t`−1))
2 . (4.5)

Therefore, the average vehicle speed is:

v j =
dtotal

(tn− t0)
. (4.6)

Then, the estimated distance traveled by the vehicle j in a given time tκ is:

dest = v j(tκ− t0) . (4.7)

For simplicity, we call the estimated position p j(tκ) of (px,py). If tκ > tn, then

(px,py) it is the final position of the trajectory, already known. If tκ < tn, to find (px,py), add the

distances between the points of the vehicle’s trajectory, from the initial point as in Equation 4.5,

until the sum of these distances is greater than dest . When this happens, we know that (px,py) is

approximately on the line between the last and the penultimate points added, respectively (ax,ay)

and (bx,by). With these two points, we calculate the general equation of the line as a function of

(px,py) as follows:

(ay−by)px +(ax−bx)py +axby−bx−ay = 0 . (4.8)

In addition, the distance between (px,py) and (bx,by) is dest minus the distance from

the initial point of the vehicle’s trajectory until (bx,by), which we call dρ . Thus, we can obtain

another equation as a function of (px,py):

√
(px−bx)

2 +(py−by)
2 = dest−dρ . (4.9)

57

Combining the Equations 4.8 and 4.9, we were able to obtain the estimated position

of the vehicle j in time κ. The same procedures are used to calculate the position of a vehicle i

in time κ. After this, we calculate the distance between i and j in time κ and check if it is less

than the communication range.

Data Transmission Rate

According to Raza et al. (2020), Wang et al. (2018), Zhang et al. (2019), and Sun et

al. (2018), in WAVE/V2V communications, the data transmission rate between a node i and a

node j at a given time t is given by:

rV 2Vi, j
(t) = BV 2V log2(1+

PtLV 2V |φ
2|

ω
), (4.10)

where BV 2V is the bandwidth between i and j, Pt is the transmission power of the

node, LV 2V is the loss of system propagation, φ is the fading coefficient of the uplink channel,

and ω is the power of the white Gaussian noise.

Thus, the average uplink rate between nodes i and j is given by:

rV 2Vi, j
=

∫ tlinki, j

0
rV 2Vi, j

(t) dt

tlinki, j

. (4.11)

Conforming to Chen et al. (2020), for simplicity, we can neglect the time to access

the control (CCH) and service (SCH) WAVE channels and the time spent on switching channels,

such as the guard interval.

Thus, the time it takes to transmit data of size s from i to j via WAVE/V2V is given

by:

ttransi, j
=

s
rV 2Vi, j

+
di, j

vprop
+ tother, (4.12)

where vprop is the propagation speed over the wireless medium and tother are estimates

of possible network and queue delays.

58

For 5G/V2I communications, Shaham et al. (2019), Giordani et al. (2018), and Cui

et al. (2019) show that the data transmission rate between a node i and a node j in a given time t

is given by:

rV 2Ii, j
(t) = BV 2I log2(1+

Ptd
−ε

i, j |φ
2|

ω
), (4.13)

where BV 2I represents the bandwidth between i and j, di, j is the distance between i

and j and the factor ε is the exponent of propagation loss of the system. The transmission delay

of the wired link is neglected in this work (CUI et al., 2019). This negligence is due to the fast

transmission rates on this type of link. Also, the wired links typically are a few meters long, as

each base station has an edge server coupled.

In this way, the average uplink rate between nodes i and j is given by:

rV 2Ii, j
=

∫ tlinki, j

0
rV 2Ii, j

(t) dt

tlinki, j

. (4.14)

Thus, the time it takes to transmit data of size s from i to j, via 5G/V2I, is given by:

ttransi, j
=

s
rV 2Ii, j

+
di, j

vprop
+ tother . (4.15)

4.1.3 Computation Model

Each node on the network, vehicle or edge server, has different computational

capacities and CPU availability (which varies over time). Each CPU available from any node on

the network can only execute one computation task at a time. Tasks are placed in a queue and

taken out in First In, First Out (FIFO) model to be executed.

We consider a computationally intensive and real-time application that generates a

workload or set T = {τ1,τ2,τ3, ...,τnτ
} of computation tasks. Each task τ ∈ T can be processed

locally by the client or remotely in an independent, asynchronous, and parallel way. Thus, each

workload can have its tasks distributed for local or remote execution (on the edge servers or

in other vehicles) or in both local and remote environments. In addition, each task τ ∈ T is

a tuple composed of the following parameters {cτ ,sτ,up,sτ,down}, where cτ indicates the total

59

number of CPU cycles required to execute the task τ , sτ,up shows the data size for upload of τ

(which includes input parameters, the code to be executed and information about the device that

generated the task) and sτ,down shows the size of the processing results of τ for download (which

includes information on which device the results should be sent to). Each task is executed with

100% of the CPU available for task executions.

Next, we can see the details of the computational modeling of the execution for each

environment (RAZA et al., 2020).

Local Computation

When the client chooses to execute a task locally, the local execution delay of the

client is set to tclient . Cclient is described as the computational capacity of the client node (in

CPU cycles per second). tclient consists of two parts: 1) queue delay (there may be other tasks

waiting to be executed or in execution) and 2) processing delay of the task on the CPU. The

queue delay is given by:

tclient,
queue

=

g

∑
w=1

cw
Cclient

, (4.16)

where w represents each task in the queue of the client node and g represents the

number of tasks that were already waiting in the queue or executing.

The processing delay of a task τ on the client CPU is given by:

tclient,
proc

=
cτ

Cclient
. (4.17)

Thus, the local execution delay in the client node of a task τ ∈ T is given by:

tclient = tclient,
queue

+ tclient,
proc

. (4.18)

Remote Computation

A client vehicle generates a task and send it to execute on a remote server. As part

of vehicular edge computing, the server is a vehicle or edge server. Such a server executes the

task and returns the result of the execution to the client vehicle that generated the task.

60

Thus, the delay in executing the task on the server is divided into four parts. The

first part is the upload of sτ,up from the client vehicle to the server, tclient,
up

. If the upload is via

WAVE/V2V, the delay is given by Equation 4.12. If the upload is via 5G/V2I, the delay is given

by Equation 4.15.

The second part is the waiting time for the task in the server queue tserver,
queue

(MIDYA

et al., 2018; RAHMAN et al., 2020). To be processed, the task must wait for all tasks that were

already waiting or executing on the server to finish executing. This time is given by:

tserver,
queue

=

q

∑
x=1

cx
Cserver

, (4.19)

where x represents each task in the queue of the server node and q represents the

number of tasks that were already waiting in the queue or in execution.

The third part consists of the time it takes to process a task τ:

tserver,
proc

=
cτ

Cserver
. (4.20)

The fourth part of the delay is the time it takes to transmit the processing result

(sτ,down) from the server to the client, tclient,
down

. If the transmission is via WAVE/V2V, the time is

given by Equation 4.12. If it is via 5G/V2I, the time is given by Equation 4.15.

Thus, the delay for executing a task τ ∈ T on a remote server is given by:

tserver = tclient,
up

+ tserver,
queue

+ tserver,
proc

+ tclient,
down

. (4.21)

Total Execution Time

As we consider that workload has a total of nτ tasks, they are distributed to be

executed locally and on remote servers (vehicles or edge servers).

So, we assume that tasks are distributed as follows:

• W tasks are distributed to the client;

• X1 tasks are distributed to the server1, X2 to the server2, X3 to the server3 and so on up to

Xk to the serverk, so that X1 +X2 +X3 + ...+Xk = X ;

61

Thus, the total time required to execute tasks locally is given by:

tclient,
total

=
W

∑
w=1

tclient,
w

, (4.22)

where w represents each task distributed to the client node.

In turn, the total time required to execute tasks on remote servers is given by:

tservers,
total

= max
{ X1

∑
x1=1

tserver1,
x1

,

X2

∑
x2=1

tserver2,
x2

, ...,

Xk

∑
xk=1

tserverk,
xk

}
, (4.23)

where x1 represents each task distributed to the server1, x2 each task to the server2,

xk each task to the serverk.

Therefore, the total time to execute the workload is described as:

ttotal = max
{

tclient,
total

, tservers,
total

}
. (4.24)

4.1.4 Energy Model

Regarding energy, the network nodes can be divided into four types: Combustion-

powered Vehicle in Motion (CVM), Combustion-powered Vehicle Off (CVO), Electric Vehicle

(EV), and edge server. Combustion-powered Vehicles (CVs) have internal combustion engines

that generate energy by burning fuel. In CVMs, an alternator supplies power to the vehicle’s

electronic systems and recharges the battery. In CVOs, a battery with limited capacity provides

power for electronic equipment (REIS et al., 2018; REIS et al., 2017; BOUKERCHE; SOTORO,

2020). EVs have engines and electronic equipment that run on the energy of rechargeable

batteries with large but limited storage capacities. We consider that EVs that are turned off are

not being charged. Finally, the edge server is a type of node that is connected to an electric power

operator (HUANG et al., 2020).

Thus, we consider that edge servers and CVMs have unlimited energy. CVOs and

EVs, on the other hand, have a limited amount of stored energy Ecur and need to have an

accumulated minimum energy level A to perform offloading tasks.

62

Besides, each network node, vehicle or edge server, has different energy consumption

levels when processing tasks. According to Cui et al. (2019) and Huang et al. (2020), the energy

consumed to execute a task τ can be formulated as follows:

Eproc =
cτ

C
Pproc , (4.25)

where Pproc represents the circuit power related to a coefficient of the model, archi-

tecture, and capacitance of the CPU chip (this variable has different values for each network

node).

The energy consumed in small packet transmissions and receptions (e.g., the result of

a computation task and request and reply messages), in general, is neglected. However, uploading

a task is taken into account (WANG et al., 2019; LI et al., 2020b; MISRA; BERA, 2019; GU;

ZHANG, 2021; HUANG et al., 2020). Thus, the energy consumed in the transmission of a task

τ is formulated as follows:

Etrans =
sτ,up

ri, j
Ptrans , (4.26)

where Ptrans is the transmission power (considered fixed for WAVE devices and fixed

for 5G devices).

As seen in Section 4.1.3 and Equation 4.25, the energy consumed by the client is

given by:

Eclient,
total

=
W

∑
w=1

cw
Cclient

Pclient,
proc

+

X1

∑
x1=1

sx1,up

ri, j
Pclient,

trans
+ ...+

Xk

∑
xk=1

sxk,up

ri, j
Pclient,

trans
, (4.27)

meaning the energy consumed when executing tasks locally and the energy consumed

when transmitting tasks to be executed on remote servers.

The energy consumed when executing tasks on a certain remote server k is estimated

as follows:

Eserverk,
proc

=

Xk

∑
xk=1

cxk

Cserverk

Pserverk,
proc

. (4.28)

63

Consequently, the energy consumed when executing tasks on remote servers can be

described as:

Eservers,
total

=

X1

∑
x1=1

cx1

Cserver1

Pserver1,
proc

+

X2

∑
x2=1

cx2

Cserver2

Pserver2,
proc

+ ...+

Xk

∑
xk=1

cxk

Cserverk

Pserverk,
proc

. (4.29)

Therefore, the total energy consumed in the offloading process is given by:

Etotal = Eclient,
total

+Eservers,
total

. (4.30)

4.2 Problem Formulation

This section formulates the problem addressed in this thesis. The objective of this

work is to minimize the execution time of a vehicular application through the computation

offloading process in vehicular edge computing systems, satisfying reliability restrictions. In

this process, an application running on the client vehicle distributes its computation tasks so that

other devices execute them, return the results, and the execution time is reduced. So the problem

can be formulated as follows:

P1 : min ttotal

s.t. C1 : W +X = nτ ,

C2 :
Xk

∑
xk=0

tserverk,
xk

< tlink client,
serverk

∨ (d client,
serverk

(tserverk,
xk

)< R) ,

C3 : Eclient,
cur
−Eclient,

total
> Aclient ,

C4 : Eserverk,
cur
−Eserverk,

proc
> Aserverk

.

Thus, problem P1 aims to minimize ttotal (Equation 4.24). The C1 constraint ensures

that the sum of the total tasks executed on the client (W) and the total tasks executed on remote

servers (X) is equal to the number of tasks in the application workload (nτ). The constraint C2

64

means that the time tserverk,
xk

to execute a workload xk on a given serverk needs to be less than

the link lifetime between client and serverk. Or, if the client and serverk routes are known, the

distance between their estimated positions in time tserverk,
xk

must be less than the communication

range R. With the constraint C2, the problem formulation aims to contribute to greater reliability

of the computation offloading process, preventing client and a given serverk from getting out of

each other’s communication range.

The constraint C3 states that the client’s current energy level (Eclient,
cur

) minus its

total energy consumption estimate for offloading (Eclient,
total

) does not reach its minimum energy

level (Aclient). The constraint C4 establishes the same as C3 but is related to any serverk. With

constraints C3 and C4, it is ensured that energy-constrained network nodes do not have their

operations interrupted due to a lack of energy caused by offloading processes.

This optimization problem of task assignment/scheduling with multiple constraints

is considered a NP-hard problem. Thus, there is no polynomial-time algorithm that can find the

optimal solution (ZHU et al., 2018; FENG et al., 2017; SUN et al., 2018).

4.3 Concluding Remarks

In this chapter, the description of the network structure explained that the client

vehicle has interfaces for WAVE and 5G networks. Through them, the client can access com-

putational resources from other vehicles and edge servers. In the communication modeling,

two ways of predicting vehicular mobility were presented: through the calculation of the link

lifetime and prediction based on known routes of vehicles. In addition, it was shown how the

data transmission rates and time estimates are calculated using the WAVE and 5G networks.

Computation modeling explained what a workload and task are and how they are processed

locally or remotely. This chapter also presented how to calculate the total execution time estimate

for a workload. When modeling energy, different types of vehicles were considered. Moreover,

the client and server energy consumption calculations when processing and transmitting tasks

were presented. Finally, the formulation of the problem addressed in this thesis was described.

65

5 PROPOSED FRAMEWORK AND DECISION ALGORITHMS

This chapter presents a new framework and new decision algorithms for computation

offloading in vehicular edge computing systems. The objective of these solutions is to minimize

the execution time of vehicular applications, satisfying mobility and energy constraints. The

framework supports a vehicle to discover computational resources and gather contextual data

from devices within its communication range. Thus, using WAVE and 5G networks, a vehicle

can send computation tasks to edge servers and nearby vehicles. Also, the framework assists the

process of computation offloading to remote devices and provides a failure recovery mechanism.

Decision algorithms are the core of the framework. The function of these algorithms

is to make the best possible distribution of application tasks. In this chapter, we propose three

new algorithms. The first two are greedy task assignment algorithms (upload order does not

matter) that use different strategies. The third and last is an intelligent task scheduling algorithm

(upload order matters) based on the ABC metaheuristic.

The main contributions reported in this chapter are:

• A context-oriented framework for computation offloading in vehicular edge computing

with descriptions of the conceptual architecture and offloading and failure recovery pro-

cesses.

• Simultaneous use of WAVE and 5G technologies, combining their advantages, increasing

capacities, and decreasing task transmission delays.

• Use of a special contextual information about complete routes of vehicles, providing more

reliability and accuracy for the computation offloading processes.

• Greedy for CPU Free (GCF), a task assignment algorithm that prioritizes computing

offloading to servers with the lowest queue times and the shortest distances for the client.

• Greedy Task by Task (GTT), a decision algorithm that seeks to assign each application

task to the best possible server, considering CPU capacity, queue time, distance to the

client, and known routes of vehicles (if available).

• ABC for Computation Offloading in VEC (BCV), an intelligent task scheduling algorithm

inspired by bees searching for food sources or solutions, which are evaluated according to

the estimate of the total execution time of the workload.

The remainder of this chapter is organized as follows. Section 5.1 describes the

proposed framework. The proposed decision algorithms are detailed in Section 5.2. Finally,

Section 5.3 outlines the concluding remarks.

66

5.1 Proposed Framework

This section describes the details of the proposed framework. Section 5.1.1 presents

the conceptual architecture of the computation offloading framework for vehicular systems. In

turn, Section 5.1.2 explains the flow of the computation offloading process managed by the

framework.

5.1.1 Framework Architecture

Figure 8 shows the Application and Partitioner modules and conceptual architecture

of the proposed framework. The box with dotted lines represents an application running on a

vehicle, along with the Partitioner module and the proposed framework. The latter is represented

by the smaller box with a gray background. The arrows indicate the direction of the information

flow between the modules.

The Application module represents the applications running on the vehicle’s oper-

ating system. As seen in Figure 8, it sends data to a Partitioner module in order to analyze

whether the application workload can be partitioned. If it is possible, the Partitioner divides the

application workload into smaller tasks that can be executed on different devices and in a parallel,

asynchronous, and independent way. The application workload then moves to the Decision

Maker module, which decides where each task should execute and reports the decision to the

Task Distributor module. The latter distributes tasks for local or remote execution. After the

workload has been processed, the Application receives the results through the Local Execution

or the Data and Context Gatherer module, when the results come from remote devices. The

Application also receives information from local sensors and other devices. This information is

captured through the Data and Context Gatherer module.

Next, we describe each module of the proposed framework.

Sensors

The Sensors module is responsible for sending to the Data and Context Gatherer

module local information such as location (via Global Positioning System), energy, speed, and

direction.

67

Figure 8 – Application and Partitioner modules and architecture of the framework.

 PROPOSED
FRAMEWORK

Source: The Author.

Task Queue

Tasks from remote devices or the client are placed in the Task Queue by the Task

Distributor module. After a task passes through the queue, it goes to the Local Execution module.

Information about the storage capacity of the queue and the number of tasks in it is periodically

passed on to the Data and Context Gatherer module.

Local Execution

With CPU and other resources, the Local Execution module processes tasks that

come from the Task Queue with the processing delays described in Section 4.1.3. Through

information contained in the task, this module checks whether it is local or came from a remote

device. Then, it can forward the processing result to the local application or to remote devices

(via the WAVE or 5G modules).

WAVE and 5G

The WAVE module is responsible for sending and receiving messages from the

WAVE network via V2V. The 5G module is responsible for sending and receiving messages from

the 5G network via V2I.

These modules can send periodic signaling and safety messages and other data

to remote devices. Upon receiving messages, these modules forward them to the Data and

68

Context Gatherer module. These messages can be: requests to execute a task to a remote device

(offloading request), replies to offloading requests (offloading reply), tasks, data downloaded to a

running application, and context data from other devices.

Task Distributor

This module analyzes the tasks received from the Decision Maker and the location

where they will be executed. If the decision is to execute a task locally, the Distributor forwards

it to the local Task Queue. If the decision is to run a task remotely, the Distributor sends it to the

WAVE or 5G modules (or both), depending on the choice made by the Decision Maker.

This module is also responsible for storing a backup of tasks that have been offloaded

to remote servers. Thus, upon being informed that the remote server has failed to return the

processing result, this module then sends the stored copies of the lost tasks to be executed locally.

Data and Context Gatherer

Through the WAVE and 5G modules, the Data and Context Gatherer can receive

messages involving application data or remote processing results. Then, the Gatherer forwards it

to the local Application module. Upon receiving an offloading request, a reply for an offloading

request, a task to be executed, or remote contextual information, this module forwards them

to the Decision Maker module. If the Gatherer receives periodic local contextual information

through the Sensors, the Task Queue and the Local Execution module (CPU capacity), this

module forwards it to the Application module or to the Decision module.

The Data and Context Gatherer module captures contextual information about other

network nodes via request/reply processes through the WAVE and 5G modules. As shown in

Figure 9, this information can be values of position, bandwidth and range (WAVE and 5G), task

queue time, and CPU capacity. If the node is a vehicle, this module also captures the velocity

vector, the current stored energy, and the complete route to the destination (if available).

This module also monitors possible offloading failures. This is done by analyzing

the signaling messages received from the chosen remote servers and verifying their connectivity

with the client. After failure detection, the Gatherer notifies the Decision Maker that triggers the

Task Distributor. More details of failure handling are described in Section 5.1.2.

69

Figure 9 – Contextual data of network nodes in a VEC system.

Parked
Vehicle

Task Queue
CPU Capacity BS

 Edge
Server

 Context Data

 Context Data

 Context Data

5G WAVE
Range

5G WAVE
Bandwidth

Position
Velocity V ector

WAVE WAVE

5G

5G

Known Route
Energy

Source: The Author.

Decision Maker

Upon receiving tasks from the Partitioner, the Decision Maker module calculates the

estimated energy consumption for the following three hypothetical cases: the client (1) executes

all workload tasks locally, (2) sends all workload tasks via V2I / 5G, and (3) sends all workload

tasks via V2V / WAVE. Suppose the client has enough energy to perform these three cases,

preventing the constraint C3 from being breached. In that case, the Decision Maker module

starts resources discovery. It gathers all contextual information (local and remote) from the Data

and Context Gatherer. Then, the Decision Maker module calculates additional information such

as distances between devices, transmission and processing time, and estimates of link lifetime

and connectivity.

With all this information, this module assigns, through a decision algorithm (see

Section 5.2), tasks for the chosen devices to execute. Subsequently, it informs the task assign-

ment/scheduling (depending on whether the order of sending tasks matters) decision to the Task

Distributor module.

This module also receives other types of messages. For example, when receiving

offloading requests, the Decision Maker analyzes whether the vehicle’s current energy level is

above its minimum level (Ecur > A). If so, it triggers the Distributor to reply to the requesting

device agreeing to process its tasks. Upon receiving a positive reply for an offloading request, it

adds the device to the list of possible servers to make the decision. If the device is chosen as a

70

server, this module sends the tasks to the remote device through the Distributor and WAVE or 5G

module. Upon receiving a task to be executed, it forwards it to the local Task Queue, through the

Distributor module.

5.1.2 Computation Offloading Process

This section presents the computation offloading process managed by the proposed

framework. The process consists of four main parts: (1) Resources discovery, (2) Offloading

decision, (3) Send/receive tasks, and (4) Failure recovery.

Resources Discovery

The computation offloading process starts when the Decision Maker module receives

tasks from the Application/Partitioner. Then, through the Distributor, WAVE and 5G modules, it

triggers the resources discovery.

At this time, as shown in Figure 10, the client (red) sends a one-hop WAVE request

via broadcast to the other vehicles and sends a 5G request via unicast to the edge server. These

requests are used to gather contextual information from possible servers. The WAVE request

is made via V2V connections (blue dotted lines) within the limits of the communication range

of the technology (black dotted line). The 5G request first passes through the 5G base station

via V2I connection (purple dotted line), limited by the 5G communication range (light blue

background). In this case, the client has four tasks to be executed, its computational capacity is

low (pointer almost at least), and its task queue for execution is almost full (bar with small red

blocks).

After the client´s first contact, the possible server analyzes whether it has enough

energy (Ecur > A). If it has, it replies with a tuple containing its location, data rate and com-

munication range (WAVE or 5G), CPU capacity, task queue condition, and information about

energy (current and minimum level and circuit power related to the CPU chip). If this possible

server is a vehicle, it also sends its speed, direction, and, if available, its estimated arrival time

to the destination and its complete route. This reply reaches the client via the WAVE and 5G

modules, which forwards it to the Data and Context Gatherer module, which in turn sends it

to the Decision module. Subsequent to waiting a constant time of ψ milliseconds, the client

discovers possible servers and proceeds to the task assignment/scheduling decision.

71

Figure 10 – Discovery of computational resources.
BS

 Edge
Server

Vehicle
Task Queue

CPU Capacity

Tasks
TASKTASKTASKTASK

Source: The Author.

Decision

After congregating all the necessary information, the Decision Maker module exe-

cutes an algorithm (see Section 5.2) to decide the assignment/scheduling of tasks. In this step, the

decision considers the objective, restrictions, and contextual information to make a good decision,

aiming to solve the problem P1. It must assign each task to a server (local or remote) to execute

and choose the communication technology to be used (WAVE or 5G, or both simultaneously).

Send/Receive Tasks

After the decision, the Decision Maker module transfers the tasks to the Distributor

module that forwards the tasks to the appropriate modules (for local or remote execution). If the

option is to send some tasks to remote devices, they are sent to the WAVE or 5G modules.

In this way, as shown in Figure 11, the client (red) distributes tasks to remote servers

(vehicles and edge server) to start execution. Two tasks are sent to be executed on the edge

server (whose base station is within its 5G communication range - light blue background) via

V2I connection (purple dotted line). In addition, two tasks are sent to be executed by vehicles.

One task goes to the vehicle ahead and another task goes to the vehicle behind (within its WAVE

communication range - black dotted line) through V2V connections (blue dotted lines). Thus,

multiple servers can simultaneously collaborate to provide computing services to the client.

Following processing, each chosen server returns the processing result to the client.

This result comes through the WAVE or 5G modules. Then, the result passes through the Data

and Context Gatherer module and finally reaches the Application to continue its execution.

72

Figure 11 – Sending of tasks to the chosen servers.

BS

 Edge
Server

Vehicle
Task Queue

CPU Capacity

Tasks
TASKTASKTASKTASK

TASK

TASKTASK

TASK

Source: The Author.

Failure recovery

After the client sends the tasks to the remote servers, it triggers a function to monitor

the connectivity between client and servers, through the Data and Context Gatherer module. If

beacon messages from a server continue to be received by the client, connectivity still exists. If

no beacon messages arrive from a server in ξ milliseconds, and if the processing result from

that server has not yet been returned, a failure is detected. In this case, the Data and Context

Gatherer module informs the Decision Maker module. The Decision Maker module activates

the Task Distributor module that has the tasks of the lost server and distributes it to the Task

Queue to be executed locally on the client.

5.2 Decision Algorithms

The decision process is the core of the framework described in the previous section.

This process assigns each application task to execute on a server (local or remote). The Decision

Maker module needs to have enough contextual information at its disposal to make these

assignments. The contextual information considered by the Decision Maker module is: speed,

direction, distances between devices, CPU availability, data rates and communication ranges

WAVE and 5G, transmission and processing times, link lifetimes, and tasks characteristics. In

addition, the last two algorithms presented in this section also consider the CPU capacity (in

GHz) and special contextual information about known routes of vehicles, which helps to predict

vehicle positioning more accurately and avoid offloading failures.

73

After ψ milliseconds of gathering this information, the module executes an algorithm

to decide the assignment/scheduling of tasks1. The objective of the decision is to minimize the

applications’ execution time (problem P1), trying to optimize task distribution and following

constraints C1 to C4 to avoid offloading failures and lack of energy on the network nodes. In

this process, tasks can be sent to edge servers and vehicles simultaneously through 5G/V2I and

WAVE/V2V connections. With this, we increase the network’s transmission capacities and take

advantage of all computing resources available in a VEC system.

In the first two sections that follow, two greedy algorithms that do task assignment

(upload order does not matter) are presented. Section 5.2.1 presents the Greedy for CPU Free

(GCF) algorithm. Then, Section 5.2.2 describes the Greedy Task by Task (GTT) algorithm.

Finally, an intelligent algorithm that performs task scheduling (upload order matters) called ABC

for Computation Offloading in VEC (BCV) is explained in Section 5.2.3.

5.2.1 Greedy for CPU Free

Greedy for CPU Free (GCF) is a decision and task assignment algorithm that pri-

oritizes sending tasks to servers with the highest processing availability (lowest queuing time)

and the shortest distances to the client. This prioritization is done by sorting the set of feasible

servers F . Such sorting is done only once for each workload. In the event of a tie in the server

evaluation, the algorithm breaks the tie by the following order of priority: edge servers, client,

and nearby vehicles. After sorting, the algorithm goes through the set F and allocates as many

tasks as possible to its servers.

Therefore, the GCF’s pseudocode is shown in Algorithm 1 and explained below.

GCF Algorithm

According to Algorithm 1, GCF receives as input a set M of reply messages, a set T

of locally generated tasks to be processed, and a variable a (number of algorithm attempts). In

line 1, GCF initializes the sets S (servers) and Y (backup of T) and variable i (client ID). In line

2, the set F of feasible servers is initialized with a tuple from the client, indicating that it can

also execute tasks. Afterwards, in line 3, F receives more feasible servers on return from the

Function AddFeasibleServers (Algorithm 2).
1 This decision can even assign all tasks for local execution. In this case, offloading is not done because it is not

worth it.

74

Algorithm 1: GCF Algorithm
Input: M,T,a
Output: result

1 S← /0; Y ← T ; i← getClientId();
2 F ←{i;di,i; ti,queue;Ci;0;0; /0};
3 AddFeasibleServers(M,F, i);
4 Sort F by (tqueue ∗δ +d ∗σ +getType());
5 foreach Z in F do
6 z← getServerId(Z);
7 if (z = i) then
8 AddTasksToClient(i,F,T);

9 else
10 AddTasksToServer(z,F,T);

11 if (T = /0) then
12 Process(W); SendWorkloads(S);
13 return true;

14 else
15 if (a< ϕ) then
16 WaitForMoreReplies(

ψ

5
);

17 T ← Y ; a← a+1;
18 GCFAlgorithm(M,T,a);

19 else
20 Process(Y);
21 return f alse;

Then, in line 4, the set F of feasible servers is sorted in increasing order according

to a weighted sum of values. The values considered in this sum are: queue time, distance to

i, server type value (getType()), and the constants δ and σ . Thus, the first elements of F are

the nodes with the smallest values of this weighted sum. Typically, these nodes have the lowest

queuing times or shortest distances to i. As a tiebreaker in sorting, getType() returns 1 (if edge

server - most prioritized node), 2 (if client), or 3 (if nearby vehicle - least prioritized node). Then,

in lines 5-12, the sorted set F is traversed so that its servers execute the tasks of T . In lines 7-10,

if the server z is the client itself, the GCF calls the Function AddTasksToClient (Algorithm 3).

Otherwise, the GCF calls the Function AddTasksToServer (Algorithm 4).

When leaving the loop, in lines 11-13, the algorithm checks if there are still tasks in

T . If T is empty, the client processes locally a set W of tasks that belonged to T and sends the

other tasks that were assigned to servers in S. Lines 14-21 treat the cases where tasks remain

in T . In lines 15-18, if a is less than the maximum number of attempts (ϕ), the GCF waits
ψ

5

75

milliseconds for more replies, resets T , increments a, and calls the GCF to run again. If the

number of attempts reaches the limit (lines 19-21), the client executes the entire initial set of

tasks (Y) locally.

Function AddFeasibleServers

As described in Algorithm 2, this Function checks each reply message m received

from a possible server j. This check is made with estimates based on Section 4.1. The purpose

of the check is to know if j is feasible to perform tasks for the client. In line 3 of the Algorithm

2, t j receives the estimated time to execute a task τ ∈ T on the possible server j. When checking

lines 4-6 (partial constraint C2 of the problem P1), if t j is less than the estimated link lifetime

between i and j, F receives the tuple of the possible server j. This tuple contains, among other

things, how much it will process (h j), how much data it will receive and return (uz), and the set

of tasks that it will process (X j).

Algorithm 2: Function AddFeasibleServers
Input: M,F, i

1 foreach m ∈M do
2 j← getServerId(m);
3 t j← calcServerTime(τ,ri, j,di, j);
4 if (t j < tlinki, j

) then
5 h j← 0; u j← 0; X j← /0;
6 F ← F ∪{ j;di, j; t j,queue;C j;h j;u j;X j};

Function AddTasksToClient

As can be seen in Algorithm 3, in lines 1-7, the workload T is traversed so that its

tasks are assigned to the client. In line 2, how much the client will process (hi) receives an

addition of cτ . In lines 3-7, the algorithm checks whether hi exceeds the maximum processing

limit per workload defined for the client. This limit is the ceiling on the maximum amount

of processing for the original workload (Yprocmax) divided by a constant defined for the client

(ζclient). If hi does not exceed the limit, τ is placed in the set of tasks that will be executed locally

by the client (W) and τ is removed from T . Otherwise, cτ is subtracted from hi.

76

Algorithm 3: Function AddTasksToClient of the GCF
Input: i,F,T

1 foreach τ ∈ T do
2 hi← hi + cτ ;

3 if (hi <

⌈
Yprocmax

ζclient

⌉
) then

4 W ←W ∪ τ;
5 T ← T − τ;

6 else
7 hi← hi− cτ ;

Function AddTasksToServer

As evidenced in Algorithm 4, this function assigns tasks to edge servers or nearby

vehicles. In line 1, the amount of processing allocated to server z (hz) receives the addition of

cτ , the amount of data that server z will receive (uz) receives the addition of the upload (sτ,up)

and download (sτ,down) packet size of the task τ . In line 2, the time estimate for the server z to

execute its tasks is placed in the variable tz.

Algorithm 4: Function AddTasksToServer of the GCF
Input: z,F,T

1 foreach τ ∈ T do
2 hz← hz + cτ ; uz← uz + sτ,up + sτ,down;
3 tz← calcServerTime(hz,uz,ri,z,di,z);

4 Ez,proc←
hz

Cz
Pz,proc;

5 if (getType(z) = 1) then
6 ζserver← ζedge;

7 else
8 ζserver← ζvehicle;

9 if ((tz < tlinki,z
) and (Ez,cur−Ez,proc > Az) and (hz <

⌈
Yprocmax

ζserver

⌉
)) then

10 if (z /∈ S) then
11 S← S∪ z;

12 Xz← Xz∪ τ;
13 T ← T − τ;

14 else
15 hz← hz− cτ ; uz← uz− sτ,up− sτ,down;

Based on Section 4.1.4, in line 4 of the Algorithm 4, the estimate of energy consump-

77

tion when processing hz on server z is placed in Ez,proc. In lines 5-8, if the server z is type 1, then

the constant that defines the processing limit for the server (ζserver) receives the defined value for

the edge server (ζedge). If not, ζserver receives the defined value for a server vehicle (ζvehicle).

In lines 9-15, the algorithm checks whether the server z can execute its tasks (con-

straints C2 and C4 of the problem P1). In line 9, the algorithm first checks whether the link

lifetime between z and i is sufficient to z execute its tasks without losing connectivity with the

client. The second check evaluates whether the energy of the server z is sufficient for it to execute

its tasks. The third check calculates whether hz does not exceed the processing limit set for the

server. If all conditions are met, in lines 10-11, the server z is added to the server set S, if it is not

already in S. Then, in lines 12-13, the set of tasks that the server z will execute (Xz) receives τ

and τ is removed from T . If line 9 conditions are not met, in lines 14-15, cτ is subtracted from

hz and sτ,up and sτ,down are subtracted from uz.

5.2.2 Greedy Task by Task

Greedy Task by Task (GTT) is a decision and task assignment algorithm that seeks

the best possible server to execute each application task. The algorithm classifies a server as

better mainly by the following context parameters: CPU capacity, CPU availability, and distance

to the client. Thus, the best server tends to have high CPU capacity, low queue time, and a short

distance to the client. Moreover, the algorithm updates the best servers list in real-time as it

decides where to send tasks and uses information about known routes of vehicles. Therefore,

the main characteristics of the GTT that differentiate it from the GCF are: use of contextual

information of known routes of vehicles and CPU capacity; case-by-case analysis to allocate

each task (first traversing the set of tasks and not the set of feasible servers); update of the best

server at each allocation with different criteria.

We present the GTT’s pseudocode in Algorithm 5, and we describe it below.

GTT Algorithm

After receiving the inputs, Algorithm 5 makes the initializations in lines 1 and 2.

Next, the Function AddFeasibleServers (Algorithm 2) is called to put the feasible servers in F .

Then, in line 4, the set F of feasible servers is sorted in increasing order according to the distance

to i, computational capacity, queue time, and the constants σ , ρ , and δ .

In loop of lines 5-10, T is traversed task by task so that each task τ is assigned

78

Algorithm 5: GTT Algorithm
Input: M,T
Output: result

1 S← /0; Y ← T ; i← getClientId();
2 F ←{i;di,i; ti,queue;Ci;0;0; /0};
3 AddFeasibleServers(M,F, i);

4 Sort F by (d ∗σ +
1
C
∗ρ + tqueue ∗δ);

5 foreach τ ∈ T do
6 z← getIdO f FirstElement(F);
7 if (z = i) then
8 AddTasksToClient(i,τ,F,T);

9 else
10 AddTasksToServer(z,τ,F,T);

11 if (T = /0) then
12 Process(W); SendWorkloads(S);
13 return true;

14 else
15 Process(Y);
16 return f alse;

to a server (local or remote). The evaluation is always done by the first element of the sorted

set F , that is, the best-evaluated server at the moment. In lines 7-10, if the first element is the

client itself, the Function AddTasksToClient is called (Algorithm 6). Otherwise, the Function

AddTasksToServer is called (Algorithm 7).

Finally, in lines 11-16, if there are no tasks left in T , the client processes tasks in W

locally, and the other tasks are sent to be executed in servers in S. If tasks remain, a problem has

occurred, and the initial set of tasks (Y) is all executed locally.

Function AddTasksToClient

Function AddTasksToClient is responsible for assigning tasks to the client. In

Algorithm 6, W (task set to be executed locally) receives τ , that is removed from T , the queue of

i is increased by the time to process τ (as if τ was already queued in i), and F is sorted again.

Function AddTasksToServer

Function AddTasksToServer manages the task assignment to remote servers. In

Algorithm 7, line 1, as the server z will process the task τ , how much it will process (hz) receives

79

Algorithm 6: Function AddTasksToClient of the GTT
Input: i,τ,F,T

1 W ←W ∪ τ;
2 T ← T − τ;

3 ti,queue← ti,queue +
cτ

Ci
;

4 Sort F by (d ∗σ +
1
C
∗ρ + tqueue ∗δ);

an addition of cτ . How much data on the server z will be received and returned (uz) receives an

addition of sτ,up and sτ,down. In line 2, tz receives the estimated time for server z to execute its

tasks. In line 3, according to Section 4.1.4, Ez,proc receives the estimated energy consumption

when processing hz on the server z. In lines 4-5, if the route of the server is known (Kz), l receives

true if i and z are still within the communication range of each other after tz seconds (verification

by Function withinRange according to position prediction based on known routes of vehicles of

Section 4.1.2).

Algorithm 7: Function AddTasksToServer of the GTT
Input: z,τ,F,T

1 hz← hz + cτ ; uz← uz + sτ,up + sτ,down;
2 tz← calcServerTime(hz,uz,ri,z,di,z);

3 Ez,proc←
hz

Cz
Pz,proc;

4 if (Kz = true) then
5 l← withinRange(i,z, tz);

6 if (((Kz = true and l = true) or (tz < tlinki,z
)) and (Ez,cur−Ez,proc > Az)) then

7 if (z /∈ S) then
8 S← S∪ z;

9 Xz← Xz∪ τ;
10 T ← T − τ;

11 tz,queue← tz,queue +
cτ

Cz
;

12 Sort F by (d ∗σ +
1
C
∗ρ + tqueue ∗δ);

13 else
14 hz← hz− cτ ; uz← uz− sτ,up− sτ,down;
15 tz,queue← tz,queue + ς ;

16 Sort F by (d ∗σ +
1
C
∗ρ + tqueue ∗δ);

In lines 6-16, the algorithm checks whether the server can execute its assigned tasks

(constraints C2 and C4 of the problem P1). With the estimate of the execution time of the

80

assigned tasks, the first verification identifies whether connectivity will exist until the end of

the execution of hz on the server z. This check is done by predicting positioning, if the route is

known, or by the estimated link lifetime. After the second "and" keyword, the second verification

detects if the server z has enough energy to execute hz. Suppose the verifications return true

(lines 6-12). Then, if the server is not in S, it is added. Next, Xz receives τ , τ is removed from T ,

the task queue of the server is increased by the time to process τ (as if the task τ was already

queued at server), and F is sorted again. Suppose the check returns f alse (lines 13-16). In that

case, the procedures for executing τ are undone, the queue of the server receives a high value

constant ς so that the server stays in the last positions of F , and F is sorted again.

5.2.3 ABC for Computation Offloading in VEC

ABC for Computation Offloading in VEC (BCV) is a decision, task scheduling,

and intelligent algorithm based on the ABC metaheuristic. This algorithm is inspired by the

behavior of honey bees when searching for food sources. As shown in Figure 12, the BCV

considers a food source (nectar from a flower) as a feasible solution to problem P1. This solution

is an association between each task in the workload (τ1, τ2, τ3, τ4) and the server where it will

be executed. An infeasible solution is one that can cause offloading failures. These possible

failures are predicted by calculations of the algorithm. They indicate a future lack of connectivity

between client and server or of energy of some node.

Figure 12 uses the scenario in Figure 10, which shows the servers available for the

client (red vehicle). The algorithm evaluates the fitness of each solution based on ttotal (the sum

of the time to execute each workload task on the different chosen servers). The lower ttotal , the

greater the fitness of the solution. In Figure 12, we can see that the search space in the region of

withered flowers is related to more task executions in the client itself. The poor quality of the

flowers (low fitness) is because, according to Figure 10, the client has a low CPU capacity and its

queuing time is high. Thus, the ttotal tends to be higher, decreasing the fitness of the solutions in

this region of the search space. The orange vehicle does not appear in the tables of the solutions

because it would make any solution infeasible. As it is in the opposite direction of the "client", it

will quickly lose connectivity and will not return the result of processing a workload task.

The BCV’s pseudocode is shown in Algorithm 8. We also explain the algorithm in

the following paragraphs.

81

Figure 12 – Figurative depiction of bees looking for solutions in the BCV search space.

Task

Server

Source: The Author.

BCV Algorithm

Algorithm 8: BCV Algorithm
Input: M,T
Output: result

1 S← /0; V ← /0; i← getClientId(); ycycles← 0;
2 F ←{i;di,i; ti,queue;Ci;0;0; /0};
3 AddFeasibleServers(M,F, i);
4 InitializeFoodSources(F,T,V, i);
5 while (ycycles < ηcycles) do
6 EmployedBees(F,T,V, i);
7 OnlookerBees(F,T,V, i);
8 ScoutBees(F,T,V, i);
9 H← BestFoodSource(V);

10 U pdateCyclesO f Foods(V);
11 ycycles← ycycles +1;

12 W ← ExtractTasksToLocal(H); S← ExtractRemoteServersAndT heirTasks(H);
13 Process(W);
14 ScheduleU pload(H); SendWorkloads(S);
15 return true;

82

The BCV algorithm initializes the sets of servers (S) and victuals/foods sources (V)

as empty and initializes the identification of the client i and the cycles counter (ycycles) in line 1.

Subsequently, in lines 2 and 3, BCV initializes the set F of feasible servers with the parameters of

the client itself and calls the Function AddFeasibleServers (Algorithm 2) to put feasible remote

servers in F .

In line 4, BCV calls the Function InitializeFoodSources (Algorithm 9) to do global

searches for food sources, added to the set V . In global searches, all servers are chosen at random

to be associated with a task. In lines 5-11, the loop is executed for a predetermined number

of cycles (ηcycles). In line 6, the algorithm calls the Function EmployedBees (Algorithm 10)

for employed bees to do local searches around existing food sources. The local search tries to

find feasible solutions within the same region of the search space. According to Figure 12, all

solutions in the same region of the search space (heap of nearby flowers) have the same first half

of the task/server table.

In line 7, the onlooker bees also do local searches around the best food sources,

according to the Function OnlookerBees (Algorithm 11). In line 8, the Function ScoutBees

(Algorithm 12) is called so that, if a food source is abandoned, scout bees do global searches

to find and evaluate a new food source. Then, in line 9, the best food source, with the highest

fitness value, is chosen and placed in H. In line 10, the duration counter for each food source

in the set V is incremented. This counter is related to the number of cycles that a food source

remains in V . The cycles counter is also incremented in line 11.

Finally, in line 12, the algorithm already has the food source with the highest fitness

(H) among all those evaluated in V over the cycles. The solution/food source contains the best

way to distribute the tasks to the servers, among all the evaluated solutions. According to it,

W receives the tasks that will be processed locally and S receives the remote servers and the

tasks that they will process. Thus, in line 13, the client processes its workload W . In line 14,

the algorithm organizes the order of uploading tasks to their respective servers, prioritizing

immediate sending to the edge server and then to server vehicles with the lowest link lifetime

with i. Then, the workloads are sent to their servers. In line 15, the algorithm returns true,

indicating that the task distribution decision was successful.

83

Function InitializeFoodSources

The Function InitializeFoodSources (Algorithm 9) is responsible for placing η f oods

food sources in the set V , which is initially empty. Thus, after initializing the food sources

counter (y f oods, line 1), the loop, in lines 2-7, for filling the set V begins. In line 3, the solution

or grub/food source being prepared (G) is initialized. In line 4, the algorithm calls the Function

Search (Algorithm 13). Since G is empty, this call does a global search and finds a feasible food

source, assigning it to G. In line 5, the fitness f of G is calculated. This calculation is based on

context information and estimates the total offloading time (see Section 13). Thus, the lower the

total offloading time estimate for the current solution G, the greater its fitness. Then, in line 6, V

receives a tuple with the current solution G, its fitness (f), and the duration in cycles of G in V

(initially zero).

Algorithm 9: Function InitializeFoodSources of the BCV
Input: F,T,V, i

1 y f oods← 0;
2 while (y f oods < η f oods) do
3 G← /0;
4 Search(F,T, /0,G, i);
5 f ← getFitness(G);
6 V ←V ∪{G, f ,0};
7 y f oods← y f oods +1;

Function EmployedBees

In the loop of lines 1-4, the Function EmployedBees (Algorithm 10) checks for

neighboring solutions of each existing solution in V . In line 2, the current solution G being

prepared receives the first half of an existing solution I. In line 3, as G has only half of the tasks

of T allocated, the set U receives the unallocated tasks from T . In line 4, using the Function

Search (Algorithm 13), the algorithm does a local search to assign the tasks of U to servers,

complete the solution G, and evaluates whether it is worth changing I for G based on their fitness.

Figure 13 shows how the local search for employed and onlooker bees is carried out.

We can see that the first half of the old solution (blue background) remains in the new solution.

The second half of the new solution (green background) receives servers chosen randomly.

84

Algorithm 10: Function EmployedBees of the BCV
Input: F,T,V, i

1 foreach I in V do
2 G← getFirstHal f (I);
3 U ← getUnallocatedTasks(T,G);
4 Search(F,U, I,G, i);

Figure 13 – A local search using the BCV algorithm.

Task

Server

Task

Server

Old Solution

New Solution

Source: The Author.

Function OnlookerBees

This function (Algorithm 11) intensifies the search for food sources in the vicinity of

the best food sources already identified through the loop of lines 2-15 (controlled by the onlooker

bees counter (yonlookers)). In lines 3-11, the algorithm performs a tournament to choose, among

ηtournament food sources randomly selected from V , the best one. In lines 3 and 4, H is assumed

to be the best food source, when it is also randomly selected from V and its fitness f is calculated.

In the loop of lines 6-11, the tournament is held, and H receives the best food source, among

those selected for the tournament. Then, in lines 12-14, using the Function Search (Algorithm

13), the algorithm searches for a food source in the vicinity of H to try to find a better solution,

following the same steps as lines 2-4 of the Algorithm 10.

Function ScoutBees

The Function ScoutBees (Algorithm 12) performs global searches looking for new

food sources after some of them have been abandoned. In line 1, the algorithm sorts V in

decreasing order of fitness of the food sources. Thus, in line 2, Vshal f receives the second half of

V , i.e., it receives the set of food sources with the worst fitness. In the loop of lines 4-6, the set

Vshal f is traversed. In this loop, the function checks whether the duration of each food source

exceeds a threshold (ηabandon), which indicates when a solution should be abandoned. Suppose

85

Algorithm 11: Function OnlookerBees of the BCV
Input: F,T,V, i

1 yonlookers← 0;
2 while (yonlookers <= ηonlookers) do
3 H← getFoodSourceRandomly(V);
4 f ← getFitness(H);
5 ytournament ← 0;
6 while (ytournament < ηtournament) do
7 G← getFoodSourceRandomly(V);
8 if (getFitness(G)> f) then
9 H← G;

10 f ← getFitness(H);

11 ytournament ← ytournament +1;

12 G← getFirstHal f (H);
13 U ← getUnallocatedTasks(T,G);
14 Search(F,U,H,G, i);
15 yonlookers← yonlookers +1;

the threshold is exceeded. In that case, with the Function Search (Algorithm 13), the algorithm

globally searches for a new solution. Then it evaluates whether it is worth replacing the previous

solution with the new one.

Algorithm 12: Function ScoutBees of the BCV
Input: F,T,V, i

1 Sort V by f itness;
2 Vshal f ← getSecondHal f (V);
3 foreach I ∈ Vshal f do
4 if (getDuration(I)>= ηabandon) then
5 G← /0;
6 Search(F,T, I,G, i);

Function Search

This function (Algorithm 13) performs searches in order to find and assemble feasible

solutions. In the loop of lines 1-6, the function seeks to assign each task τ from U to a server

(local or remote). In line 2, the variable indicating whether a task/server assignment is feasible

(o) is initialized with f alse. The algorithm remains in a loop in lines 3-5 until it finds a feasible

task/server assignment. In line 4, a server z is chosen at random from F . In line 5, the Function

CheckFeasibility analyzes whether it is feasible to run τ on the server z. If feasible, the algorithm

86

exits the loop and places the task/server pair ({τ,z}) in the current solution G. Thus, G is being

assembled so that all tasks of U are linked to servers, representing a way of distributing tasks

and doing computation offloading.

Algorithm 13: Function Search of the BCV
Input: F,U, I,G, i

1 foreach τ ∈ U do
2 o← f alse;
3 while (o = f alse) do
4 z← getServerRandomly(F);
5 o←CheckFeasibility(G,τ,z, i);

6 G← G∪{τ,z};
7 if (I 6= /0) then
8 f ←CalculateFitness(G);
9 if (f > getFitness(I)) then

10 I←{G, f ,0};

Then, in lines 7-10, it is checked whether the new solution needs to be compared

with any previous solution. If I is empty, it indicates that there is no previous solution (in case

it happens in Function InitializeFoodSources). If there is a previous solution (in the case of

Functions EmployedBees, OnlookerBees, and ScoutBees), the fitness f of the current solution G

is calculated (line 8). Suppose it is greater than the fitness of the previous solution (lines 9-10).

In that case, the previous solution is replaced by the current solution.

Function CheckFeasibility

The feasibility check for assigning a task τ to a server z is done by the Function

CheckFeasibility (Algorithm 14). In lines 1-3, if the server z is the client i itself, the task τ is

assigned to the set of tasks that will be executed locally by the client (WG) in this solution G

(line 2). Since this assignment is feasible, the function’s return is true. If z is not the client (lines

4-15), it is necessary to make a feasibility assessment. In the solution G, how much z will process

(hGz
) receives the addition of cτ (line 5). Then, how much data z will receive in the solution G

(uGz
) receives the amount of upload and download data for the task τ . In line 6, the estimated

time that z will take to execute the task τ in solution G (tGz
) is calculated. In line 7, the energy

consumption estimate is calculated for z to process its tasks in solution G (Ez,proc).

Later, lines 8-9 check if the route of z is known (Kz). If so, l receives true if i and z

87

Algorithm 14: Function CheckFeasibility of the BCV
Input: G,τ,z, i

1 if (z = i) then
2 WG←WG∪ τ;
3 return true;

4 else
5 hGz

← hGz
+ cτ ; uGz

← uGz
+ sτ,up + sτ,down;

6 tGz
← calcServerTime(hGz

,uGz
,ri,z,di,z);

7 Ez,proc←
hGz

Cz
Pz,proc;

8 if (Kz = true) then
9 l← withinRange(i,z, tGz

);

10 if (((Kz = true and l = true) or (tGz
< tlinki,z

)) and (Ez,cur−Ez,proc > Az)) then
11 XGz

← XGz
∪ τ;

12 return true;

13 else
14 hGz

← hGz
− cτ ; uGz

← uGz
− sτ,up− sτ,down;

15 return f alse;

will be still within the communication range of each other after tGz
seconds (see Section 4.1.2).

In lines 10-15, the algorithm checks whether it is feasible for the server z to execute its tasks,

including the newly added task τ . For this, the constraints C2 and C4 of problem P1 are analyzed.

In line 10, if the route of the server z is known, the connectivity between it and the client is

verified by calculating the position prediction. Suppose the z route is not known. In that case,

the connectivity between z and i is evaluated by the estimated link lifetime tlinki,z
. Still, in line

10, the algorithm checks if z has enough energy to execute hGz
. Suppose the requirements of

line 10 are met. In that case, the set of tasks that z will process according to the solution G (XGz
)

receives τ (line 11). Next, the function returns true, indicating that it is feasible to execute τ on

the server z (line 12). If the requirements of line 10 are not met (lines 13-15), τ is removed from

what z will receive and process, and the function returns f alse, indicating that it is not feasible

to execute τ on server z.

5.3 Concluding Remarks

This chapter introduced the architecture of a new context-oriented framework for

computation offloading in VEC systems. The different modules of the architecture were de-

scribed, as well as the flow of information between them. This framework allows WAVE and

88

5G communication technologies to be used to take advantage of the computing resources of the

edge and vehicular clouds. The framework supports several stages of the computation offloading

process, such as resources discovery, gathering various context parameters, decision and task

distribution, and failure recovery.

This chapter also described the pseudocodes for the three new decision algorithms

proposed. These algorithms aim to solve the problem P1 explained in Section 4.2. They try to

decrease the execution time of vehicular applications by offloading computation tasks in the best

possible way to different servers. In addition, they make link lifetime and energy consumption

estimates and checks to satisfy the mobility and energy constraints of problem P1.

The strategy of the GCF algorithm is to distribute tasks prioritizing servers that have

the lowest queue times and shortest distances to the client. The strategy of the GTT algorithm is

to choose the best possible server to execute each task of the workload. The best server tends to

have high CPU capacity (in GHz), low queue time, and a short distance to the client. Moreover,

with each new task assignment, the algorithm updates the server’s queue time (as if the task was

already queued) and the classification of the best server. Finally, the BCV algorithm finds and

evaluates several feasible solutions in the search space, using the solution with the best fitness

found for the computation offloading process. The fitness of a solution is inversely proportional

to its estimated total execution time. The BCV is inspired by the behavior of honey bees in

search of food sources. Besides, both GTT and BCV use data of complete routes of vehicles (if

available). In this way, the vehicle is aware of the trajectory of other vehicles to their destinations,

helping to make more accurate predictions about connectivity.

89

6 EVALUATION

This chapter presents the detailed configurations of the experiments and preliminary

tests of parameters carried out. In addition, as the main objective of this chapter, we also present

the extensive experiments of the proposed solutions and literature algorithms. Thus, it possible

to evaluate and validate them in different vehicular environments in terms of execution time and

reliability.

The rest of this chapter is organized as follows. Section 6.1 describes the experi-

mental setup of the simulations performed. Section 6.2 details some preliminary assessments of

parameters such as the communication range, the percentage of known routes of vehicles, and

the number of cycles and foods of the BCV algorithm. The most important assessment is made in

Section 6.3. It presents the analyzes and discussions of the experiments of the proposed solutions

and literature algorithms. In Sections 6.2 and 6.3, we show some results with averages and

confidence intervals. In these results, when there are overlaps of these intervals, the performance

evaluation becomes inconclusive (BELIA et al., 2005; AUSTIN; HUX, 2002). Therefore, in

these two sections, we also present additional statistical tests to determine whether there is a

statistically significant difference in the data distributions with overlapping confidence intervals.

Finally, Section 6.4 presents the final considerations of the chapter.

6.1 Experimental Setup

This section presents the details of the experiments performed to evaluate the pro-

posed framework and algorithms. All experiments follow the general network structure, commu-

nication, computation, and energy models described in Section 4.1. Table 6 presents a summary

of the main characteristics of the experiments.

Aspects of network, scenario, mobility, vehicular density, application, computation,

energy, and algorithms are detailed below.

Network

We employ simulation-based experiments to evaluate the proposed framework. For

this, we used the ns-3 simulator (RILEY; HENDERSON, 2010) (version 3.29) with an additional

5G/mmWave module attached (MEZZAVILLA et al., 2018). The simulations were performed

on a computer with an Intel Xeon E5645 processor @ 2.40 GHz and 32 GB RAM.

90

Table 6 – Main simulation parameters.
General
Scenarios Highway and Urban
of vehicles in highway 11, 55, and 120 per km
of vehicles in urban 25, 120, and 250 per km2

of vehicles off in urban ≈ 10 % of total vehicles
of CVs and EVs 50 and 50 %
Simulation time 150 seconds
of simulations carried out 200 times
Mobility model Krauss
Servers offering offloading All (vehicles and edge servers)
Vehicles with known routes 50 %
CPU Capacity of Edge Servers [1.5, 2.5] GHz
CPU Capacity of Vehicles [0.5, 1.0] GHz
CPU Requirement of a Task [3.5, 6.5] Gigacycles
Task size (upload) [350, 650] kB
Result size (download) 1 kB
Workload type ALPR
Number of tasks per workload [4, 12] tasks
Transport protocol UDP (discovery), TCP (offloading)
Others packets traffics Beacon messages
WAVE
Communication range 250 meters
Radio propagation model Two-Ray Ground
Antenna Omnidirectional
Layer 2 protocol IEEE 802.11p
Data rate 27 Mbps
5G
Communication range 220 meters
Radio propagation model 5G mmWave systems
Antenna MIMO beamforming
Layer 2 protocol 5G mmWave systems
Data rate 450 Mbps

Source: The Author.

All scenarios use common packet traffic on vehicular networks, mainly periodic

beacon messages. The client is chosen randomly among all vehicles in the scenario. As

mentioned in Section 4.1.1, it is configured with WAVE and 5G interfaces and the other vehicles

only with WAVE interface. The time that the client starts the computation offloading process is

also chosen at random.

91

Scenario

To build the simulated scenarios, we used Simulation of Urban MObility (SUMO)

(KRAJZEWICZ, 2010). The first scenario, seen in Figure 14, consists of an adapted stretch of a

Brazilian highway with the following characteristics: 5 km long, two lanes in each direction,

returns at the ends, and a maximum speed of 60 km/h (default limit of the chosen stretch). The

black dotted lines highlight a smaller section of the highway.

Figure 14 – Highway scenario used in the experiments.

Source: The Author.

The second scenario, seen in Figure 15, consists of an adapted urban stretch of the

Manhattan region, New York, USA, with 2 km2 area and a maximum speed of 60 km/h. The

black dotted lines highlight an intersection in a smaller section of the urban area. Both areas

highlighted in Figures 14 and 15 show vehicles and 5G base stations with coupled edge servers.

Mobility

We use the SUMO to generate the mobility of the network nodes. These nodes

are of three types with predefined quantity: vehicles, edge servers, and base stations. Base

stations and edge servers have a fixed location and are spatially distributed to provide complete

communication coverage.

Concerning vehicles, their initial positions are spatially and randomly distributed

across different points in the scenario. They follow random paths with different starting and

ending points. These paths are defined by sets of points recorded in a trace file (also used in

92

Figure 15 – Urban scenario used in the experiments.

Source: The Author.

disclosing known routes of vehicles). The vehicles move at different speeds and directions,

according to the microscopic car-following model of Krauss. Thus, the vehicle’s speed depends

on the maximum speed of the road, the speed of the vehicle ahead (if any and not to collide), the

difference in vehicle positions, and static parameters such as the driver’s reaction time (SONG et

al., 2014; KRAJZEWICZ, 2010).

Vehicular Density

For each scenario, we use three types of vehicular density: low, medium, and

high. Vehicular density is considered low (Dlow) if it has approximately 11 vehicles/km in

highway scenario and 25 vehicles/km2 in urban scenario. In medium density (Dmedium) there

are approximately 55 vehicles/km in highway scenario and 120 vehicles/km2 in urban scenario.

Finally, in high density (Dhigh), we have approximately 120 vehicles/km in highway scenario

and 250 vehicles/km2 in urban scenario (SOUZA et al., 2020).

Application

The application used was Automatic License Plate Recognition (ALPR), which

consists of image capture, vehicle detection, plate detection, and optical character recognition.

For each captured image, we used SSD-300 with MobileNet (HOWARD et al., 2017) to detect

vehicles and Tiny YOLOv3 (REDMON; FARHADI, 2018) to identify the license plate. Then,

we used an algorithm of optical character recognition to recognize the characters. As this

application’s tasks are compute-intensive, the vehicles can offload them to be executed on remote

93

servers (edge servers or other vehicles) to reduce the execution time.

Computation

In our experiments, we considered ALPR tasks involving independent images. The

result of processing each of these tasks is a string containing each recognized license plate. The

packet size with the result of the processing (sτ,down) for any task is 1 kB.

Table 7 presents the main specifications for ALPR workloads. 10 workloads were

considered (T1,T2, ...,T10). Each workload has its number of tasks varying between 4 and 12.

The first part of the experiments took into account only the workloads T1 to T5. All tasks in

these workloads have the same data size for upload (sτ,up), in kB, and the same requirement

for CPU cycles (cτ), in Gigacycles (Gc). The second part of the experiments considered only

the workloads T6 to T10, whose tasks have different values for sτ,up and cτ (CHEN et al., 2020;

ZHANG et al., 2019).

Table 7 – ALPR workloads specifications.
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

of tasks 4 6 8 10 12 4 6 8 10 12
sτ,up (kB) 558 558 558 558 558 [350, 650] [350, 650] [350, 650] [350, 650] [350, 650]
cτ (Gc) 3.5 3.5 3.5 3.5 3.5 [3.5, 6.5] [3.5, 6.5] [3.5, 6.5] [3.5, 6.5] [3.5, 6.5]

Source: The Author.

We used real experiments for workload processing, calculating the execution time

and the packet size of ALPR tasks. CPUs with capacities of 1.5, 2.0, and 2.5 GHz were used to

represent edge servers. To represent vehicles, we used CPUs with 0.5 and 1.0 GHz (CHEN et

al., 2020; ZHANG et al., 2019; MIDYA et al., 2018). Using the execution time and packet size

previously calculated, we simulated the computation offloading process in ns-3.

Energy Consumption

Half of the vehicles used in the simulations were EVs, and the other half were

CVs. Among these, in simulations with the urban scenario, about 10 % were parked and turned

off1. EVs require a minimum energy level (A) of 4 KWh to participate in the computation

offloading processes. The stored energy levels (Ecur) of the EVs used in the simulation were

between 5 to 20 KWh (BATTERY UNIVERSITY GROUP, 2020; HOLDING, 2020; GROUPE
1 We did not place vehicles parked and turned off in simulations of the highway scenario.

94

RENAULT, 2020). CVs can be divided into two categories regarding energy: CVOs and CVMs.

As the electronic part of CVOs remains active, to be part of a vehicular cloud, they also need to

guarantee a minimum energy level (A), in the case of 612 Wh. The stored energy levels (Ecur)

of the CVOs in the simulations were in the range between 620 to 720 Wh (REIS et al., 2017;

BATTERY UNIVERSITY GROUP, 2019; LAUKKONEN, 2019). In addition, we consider that

edge servers and CVMs do not need a minimum energy level (see Section 4.1.4). Thus, the

simulations did not take into account their levels of stored energy.

Moreover, according to Section 4.1.4, we consider two types of energy consump-

tion in the computation offloading processes: task transmission (upload) and processing. Task

transmissions using WAVE consume 0.046 Wh (Ptrans,
WAV E

) of energy (NS-3 TEAM, 2021; MA-

LANDRINO et al., 2014; HONG et al., 2009). Task transmissions using 5G consume 1 Wh

(Ptrans,
5G

) of energy (POLESE, 2016). The energy consumption related to task processing depends

on the specifications of the CPU chip (Pproc). In vehicles with CPUs with capacities between

0.5 and 1 GHz, we considered the energy consumption with processing ranging from 20 to 30

Wh. In edge servers, with CPUs from 1.5 to 2.5 GHz, the variation in energy consumption when

processing tasks was 40 to 60 Wh (INTEL, 2021a; INTEL, 2021b).

Algorithms

We compared the performance of five algorithms: the three algorithms in Section 5.2

(GCF, GTT, and BCV) and two other algorithms - FIFO (First In, First Out) and HVC (Hybrid

Vehicular edge Cloud) (FENG et al., 2018). All algorithms use the failure recovery mechanism

described in Section 5.1.2. The FIFO algorithm selects the servers that reply first, sending a

task to each one. If the FIFO does not find enough servers, it executes all tasks locally. The

HVC algorithm prioritizes sending the requests via 5G (in our scenario, to the edge server).

Besides, these last two algorithms do not consider the contextual information of known routes of

vehicles.

6.2 Preliminary Evaluation of Parameters

This section reports the impacts caused by different and important parameters in the

computation offloading processes. Sections 6.2.1, 6.2.2, and 6.2.3 present the analysis of the

results related to the experiments about communication ranges, the number of cycles and foods

95

of the BCV algorithm, and known routes of vehicles. Then, in Section 6.2.4, discussions and

evaluations of the results are made. We call these evaluations preliminary because they helped us

to define the WAVE range, the values of BCV parameters, and the percentage of vehicles with

known routes to be used in the performance evaluation of the proposed algorithms, the main

experiments of this thesis (Section 6.3).

6.2.1 Communication Range

This section analyzes the impact of the WAVE communication range on highway

and urban scenarios with different vehicular densities. For this, we count the number of reply

messages returned to the client vehicle after it sends a request message, according to Section

5.1.2. In this experiment, the client sends a broadcast message of one-hop to request contextual

information from all WAVE devices within its communication range. These devices send a reply

message back to the client. Finally, all reply messages are counted.

In the results presented in Figure 16, 50 simulations were carried out for each

range/density configuration to calculate the average number of reply messages with a 95 %

confidence interval (CI). We can see in these figures that the greater the WAVE communication

range, the greater the number of reply messages received by the client.

Figure 16 – Number of replies for different WAVE communication ranges.
Range

(a) Highway scenario.

Range

(b) Urban scenario.

Source: The Author.

In the case of Figure 16a, which presents data from the highway scenario, the WAVE

range change from 250 to 500 m increased the average number of replies by up to 48.9 %, going

from 5.8 to 8.7 with low vehicular density (Dlow). With the range variation from 500 to 750 m,

96

the average number of replies increased up to 26.0 %, going from 8.7 to 11.0 with Dlow. Figure

16b presents the data related to the urban scenario. We observe that varying the WAVE range

from 250 to 500 m increased the average number of replies by up to 129.1 % (from 5.22 to 11.9

with Dlow). By varying the range from 500 to 750 m, the maximum increase in the average

amount of replies was 63.7 % (from 11.9 to 19.5 with Dlow).

Figures 16a and 16b also show that increasing the vehicular density from Dmedium to

Dhigh does not increase the average number of replies much. This variation in vehicular density

increases the average number of replies by a maximum of 15.5 % in the highway scenario (Figure

16a with 250 and 750 m). In the urban scenario (Figure 16b), the maximum increase in the

average number of replies was only 2.4 % (with 500 m), even decreasing the average number of

replies by 5.8 % (with 750 m).

Statistical Tests

As Figure 16 shows, there is an overlap between confidence intervals. Therefore, we

need to perform further tests to determine if there is a statistically significant difference in the

number of replies using different WAVE ranges. In this assessment, the ranges are tested under

the same conditions. There is no sphericity in the generated data, and it is normally distributed2.

Thus, we performed repeated measures ANOVA (rANOVA) and Tukey tests for the evaluation

(SHESKIN, 2000).

We used urban and highway scenarios with three vehicular density levels, resulting

in six groups of experiments. Each rANOVA test compared the number of replies for the three

ranges in each group of experiments. Then, we used rANOVA to test the null hypothesis (H0:

the average number of replies is the same for all three ranges). In all rANOVA tests, we got a

p− value < 0.05, which rejected the null hypothesis.

Once H0 of the rANOVA test is rejected, we applied the Tukey method to determine

which samples’ pairs have statistically significant differences between their averages. Tukey test

compares two-by-two samples on the left side. The null hypothesis (H0) of this test is that the

corresponding averages are equal. However, as seen in Table 8, in only one of the cases, H0 is

not rejected. This happens when comparing the 500 and 750 m ranges in the highway scenario

with medium density (Dmedium), where the p− value > 0.05. With this scenario, the ranges of

500 and 750 m show statistically the same performance in terms of number of replies.
2 The Shapiro-Wilk test assessed normality. Mauchly’s test assessed sphericity (VERMA, 2015).

97

Table 8 – Tukey tests p-values for WAVE ranges.
Highway Urban

Ranges Dlow Dmedium Dhigh Dlow DMedium Dhigh
250 vs. 500 m 0.000 0.000 0.000 0.000 0.000 0.000
250 vs. 750 m 0.000 0.000 0.000 0.000 0.000 0.000
500 vs. 750 m 0.000 0.088 0.000 0.000 0.000 0.000

Source: The Author.

6.2.2 BCV Algorithm Parameters

As the BCV algorithm is based on the ABC metaheuristic, it has parameters whose

values can be adjusted to a specific problem. Two important BCV parameters that require

adjustments and special attention are the number of cycles (ηcycles) and the number of foods

(η f oods). The number of cycles serves as a stopping criterion for the algorithm. The number

of foods determines the maximum size of the solution set. Thus, this experiment evaluates the

influence of these two parameters of the BCV algorithm on the computation offloading processes.

We use scenarios with high vehicular density because they offer more solution options (more

servers available). The CPU used in the execution of the experiments was 1 GHz and represented

the CPU of a client vehicle of the simulations. We also use workloads with the largest number of

tasks (12), taking more time to allocate them and making it difficult to build feasible solutions.

In this experiment, each combination of ηcycles/η f oods was repeated 50 times to

calculate two metrics with a 95 % CI. The first metric is the average time that the BCV algorithm

takes to find the final solution (algorithm time). The second metric is the average reduction in the

workload execution time. This last metric counts the averages of the total execution times of the

solutions chosen by BCV. Then these last averages are compared with the benchmark. In turn,

the benchmark is composed of the averages of the execution times when the client processes all

tasks locally.

Tables 9 and 10 show the results of this experiment for highway and urban scenarios,

respectively. According to these tables, only three combinations of ηcycles/η f oods have an average

algorithm time below 0.1 s: 20/20, 20/50, and 50/20. In addition, for the different combinations

of ηcycles/η f oods, there are averages with different values for the "reduction in execution time"

metric. However, the confidence intervals of these averages overlapped. Thus, statistical tests

that were carried out to verify that these averages are statistically equal are presented below.

98

Table 9 – Time values by the BCV algorithm cycles and foods in the highway scenario.

ηcycles ηfoods
Algorithm
Time (s) CI Reduction in

Execution Time (%) CI

20 20 0.028 ± 0.007 66.440 ± 4.405
20 50 0.063 ± 0.008 66.918 ± 4.359
20 100 0.143 ± 0.009 64.819 ± 5.239
50 20 0.065 ± 0.008 66.242 ± 4.414
50 50 0.179 ± 0.010 67.074 ± 4.044
50 100 0.364 ± 0.017 64.109 ± 5.886
100 20 0.147 ± 0.010 66.323 ± 4.996
100 50 0.374 ± 0.016 66.903 ± 4.702
100 100 0.739 ± 0.033 65.639 ± 5.273

Source: The Author.

Table 10 – Time values by the BCV algorithm cycles and foods in the urban scenario.

ηcycles ηfoods
Algorithm
Time (s) CI Reduction in

Execution Time (%) CI

20 20 0.029 ± 0.008 61.442 ± 6.252
20 50 0.054 ± 0.009 63.367 ± 4.820
20 100 0.108 ± 0.011 64.945 ± 4.359
50 20 0.052 ± 0.008 64.423 ± 4.861
50 50 0.136 ± 0.013 65.228 ± 4.894
50 100 0.292 ± 0.022 65.156 ± 4.815
100 20 0.119 ± 0.012 64.367 ± 5.154
100 50 0.287 ± 0.023 66.769 ± 4.601
100 100 0.589 ± 0.043 62.300 ± 5.621

Source: The Author.

Statistical Tests

BCV executions under different combinations of ηcycles and η f oods generated values

for two performance metrics: "algorithm time" and "reduction in execution time". The different

combinations have been tested under the same conditions. Nevertheless, it was necessary to

carry out additional statistical tests due to overlapping confidence intervals (as seen in Tables 9

and 10). The Shapiro-Wilk test revealed that the data obtained is not normally distributed. Then,

we performed Friedman and Wilcoxon tests to check if there is a significant difference between

the combinations of cycles and food sources using the two metrics (SHESKIN, 2000).

For the first metric, each Friedman test compared the "algorithm time" for the

different combinations of ηcycles and η f oods in highway and urban scenarios. The null hypothesis

(H0) was that all combinations of ηcycles and η f oods have the same performance for the "algorithm

time" metric. However, in all Friedman tests, we obtained a p− value < 0.05. Thus, H0 was

rejected.

Then, the Wilcoxon test was applied to determine which samples’ pairs have signifi-

99

cant differences in highway and urban scenarios. The test was done by comparing two-by-two

samples. The null hypothesis (H0) of this test is that the corresponding sets of combinations

ηcycles and η f oods are the same. This hypothesis (H0) was rejected in most cases (66/72) with a

p− value < 0.05, meaning that most combinations are statistically different. The cases that H0

was not rejected with p− value≥ 0.05 are presented in Table 11. These cases have statistically

the same performance.

Table 11 – Wilcoxon tests p− values≥ 0.05 for "algorithm time" metric.
Combination 1 Combination 2 p-values
ηcycles ηfoods ηcycles ηfoods Highway Urban

20 50 vs. 50 20 1.000 1.000
20 100 vs. 100 20 1.000 0.331
50 100 vs. 100 50 0.105 1.000

Source: The Author.

For the second metric, we performed Friedman tests that compared the metric

"reduction in execution time" for the different combinations of ηcycles and η f oods in highway and

urban scenarios. The null hypothesis of the tests (H0) states that the performance of reduction in

execution time is the same for all combinations of ηcycles and η f oods. In the highway scenario,

the p-value was 0.543. Thus H0 was not rejected, and the different combinations of ηcycles and

η f oods, statistically, had the same performance concerning the "reduction in execution time"

metric. In the urban scenario, H0 was rejected (p− value < 0.05).

Next, we applied the Wilcoxon test, making pairwise comparisons for the urban

scenarios. The H0 of the test states that the different combinations ηcycles and η f oods have the

same performance in the "reduction in execution time" metric. This hypothesis was not rejected

in most cases (32/36). The cases that H0 was rejected are shown in Table 12. These cases show

combinations of ηcycles and η f oods that have statically different performances concerning the

"reduction in execution time" metric.

Table 12 – Wilcoxon tests p− values < 0.05 for "reduction in execution time" metric.
Combination 1 Combination 2 p-values
ηcycles ηfoods ηcycles ηfoods Urban

20 20 vs. 50 50 0.016
20 20 vs. 100 50 0.007
20 50 vs. 100 50 0.015
50 20 vs. 100 50 0.017

Source: The Author.

100

6.2.3 Known Routes of Vehicles

As mentioned earlier, some vehicles can share their routes with other nodes in the

network. To analyze the impact of this information shared in computation offloading, we used

the urban scenario for having more different route options. Besides, we used the workload with

12 tasks and the algorithms which use information about known routes (i.e., GTT and BCV).

Such a number of tasks was chosen because distributing more tasks increases the chance of

failure.

We tested 250 times each combination of density/algorithm/percentage of known

routes of vehicles to account for the number of lost servers. A server is considered lost when it

does not return all the results it owed to the client, causing failures in the computation offloading

process. The experiment’s benchmark is the number of lost servers when the percentage of

vehicles with known routes is zero. Thus, we can see in Figure 17 that the more vehicles with

known routes (x-axis), the greater the reduction of lost servers (and consequently the number of

computation offloading failures).

Figure 17 – Reduction of lost servers for different percentages of known routes of vehicles.

Re
du

ct
io

n
of

 L
os

t S
er

ve
rs

Source: The Author.

For example, with 50 % of vehicles with known routes, GTT and BCV reduced by

25.0 % and 52.9 % (with Dhigh), respectively, the number of lost servers. The case of having 100

% of vehicles with known routes helped the GTT and BCV algorithms to reduce the number of

lost servers by 64.8 % and 87.2 % (with Dlow), respectively.

101

6.2.4 Discussion

Section 6.2.1 presented an analysis of results regarding the impact of the WAVE

communication range on the request/reply process of the proposed framework. More specifically,

the analysis was made by the average number of replies received by the client after it requested

information from all vehicles within its range. We observe that, in general, the average number

of replies received by the client is greater when the WAVE range is also greater. This is because

the client’s request message can reach more vehicles, including the most distant ones. In turn,

more consulted vehicles can send replies to the client. The only exception, in which there was

no significant difference in the average number of replies, was when increasing the WAVE

range from 500 to 750 m in the highway scenario with Dmedium. In this case, due to the spatial

distribution of vehicles in the scenario, the areas covered by the 500 and 750 m range of clients

had practically the same number of vehicles.

In Section 6.2.1, another important analysis is that the increase in the density of

vehicles from Dmedium to Dhigh, mainly in the urban scenario, did not result in a significant

difference in the average number of replies received by the client. This happened because, with

high vehicular density (Dhigh), more vehicles of similar distances tried to send replies at the same

time to the client. This simultaneous sending generated problems of contention and collision in

the wireless medium. Thus, even though more vehicles sent replies, some of these replies failed

to reach the client.

In Section 6.2.2, it is possible to analyze how the metrics "algorithm time" and

"reduction in execution time" are impacted according to the two most important parameters of

the BCV algorithm. These parameters are the number of cycles (ηcycles) and the number of foods

(η f oods) (KARABOGA; AKAY, 2009; KHOSRAVANIAN et al., 2018). They can be configured

and combined in different ways. In general, we could observe that the higher the values of ηcycles

and η f oods, the greater the averages of the "algorithm time" metric, i.e., the time for the BCV to

choose the final solution. However, the different combinations used of ηcycles and η f oods resulted

in the same performance concerning the "reduction in execution time" in the highway scenario

and most cases in the urban scenario. This means that, statistically, the fitness of the solutions

chosen by the BCV was the same, regardless of the combinations used of ηcycles and η f oods. In

this way, for most cases, we can choose any combinations of the two parameters because the

reduction in execution time of the workloads will not be altered.

We can analyze the impact of known routes of vehicles on computation offloading

102

processes in Section 6.2.3. Even with different vehicular densities, the known routes of vehicles

reduced the number of lost servers, reducing offloading failures. This reduction occurs because

this contextual information helps the GTT and BCV to better predict the network nodes’ position

at a given time. Consequently, these algorithms are able to calculate more precisely on which

server each task can be executed so that failures/recoveries do not happen. In the assessed

scenario, the BCV task allocation calculations generally result in greater reductions in lost

servers than the GTT calculations. The explanation for this is that, unlike the GTT, the BCV

also has evaluations of different task allocation solutions and opts for the most appropriate and

reliable.

Values of the Parameters Used in the Performance Evaluation of Algorithms

For the performance evaluation of algorithms (Section 6.3), it was necessary to

choose the official values of the parameters: WAVE communication range, number of cycles and

food sources of the BCV algorithm, and percentage of vehicles with known routes. Although

having a greater WAVE range generates a greater number of replies, offering more server options

for clients, we defined the value of the range according to the literature. In this way, we use a

WAVE range of 250 m. This value is often used in experiments and allows the IEEE 802.11p

protocol to have a good performance (ARENA et al., 2020; EICHLER, 2007). In addition, it is a

range commonly used for file sharing (SOMMER; DRESSLER, 2014). About the number of

cycles and food sources of the BCV algorithm, we use the following configuration. If the client

had 1 GHz CPU, we made ηcycles = 50 and η f oods = 50. If the client had 0.5 GHz CPU, we

made ηcycles = 20 and η f oods = 50. Regarding information on known routes, we have defined

that 50 % of all vehicles in any scenario have complete routes to their respective destinations and

can share information about those routes.

6.3 Performance Evaluation of Algorithms

This section contains the most important results and evaluations of this thesis. Section

6.3.1 presents data and discussions of an algorithm reliability metric called "Tasks by Occurrence

Type". Through this metric, we detect how many failures and successes have occurred in

the computation offloading processes. Section 6.3.2 describes results and evaluations of the

"Reduction in Execution Time" metric. This metric is the main metric for evaluating the

103

performance of the algorithms. The data in Sections 6.3.1 and 6.3.2 were obtained through 200

simulations for each workload/density/scenario/algorithm configuration. In these sections, the

experiments were presented in two parts. The first part deals with the execution of workloads T1

to T5 and the second part deals with the execution of workloads T6 to T10. Finally, the discussions

regarding the analysis of results are presented in Section 6.3.3.

6.3.1 Tasks by Occurrence Type

This section presents the performance of the proposed algorithms and others from the

literature concerning what happens with each task of the different workloads. In this experiment,

as shown in Figures 18 to 23, a task can have three occurrence types: TL, TS, or TR. TL (parts of

the bars with checkered lines) represents tasks executed locally from the beginning by the client.

TS (part of the bars without lines) represents tasks that were successfully offloaded, executed

remotely, and the results were returned to the client. TR (parts of the bars with simple diagonal

lines) represents tasks that were offloaded, and there was some failure in the process, causing them

to need recovery on the client, as seen in Section 5.1.2. The percentages were calculated based on

the sum of all occurrences for the 200 simulations for each workload/density/scenario/algorithm

configuration. Next, we can analyze the results of these experiments.

Workloads T1 to T5 - Equal Tasks

In Figures 18 to 20, we have the percentage of tasks by occurrence type of the FIFO,

HVC, GCF, GTT, and BCV algorithms with workloads T1 to T5. The data relating to the low

vehicular density scenarios (Dlow) are presented in Figures 18a and 18b. In the highway scenario

(Figure 18a), BCV had the highest average percentage of TS (76.0 % - average between the five

workloads analyzed), even offloading up to 81.7 % of tasks successfully with T1. GTT had the

lowest average percentage of TR (1.6 %). In the urban scenario (Figure 18b), the highest average

percentage of TS was of the HVC (69.1 %). The lowest average percentage from TR was of the

GTT (2.1 %), presenting only 1.0 % failed tasks with T2.

Figures 19a and 19b show the data related to the medium density scenarios (Dmedium).

In the highway scenario (Figure 19a), the highest average percentage of TS was of the GTT (88.5

%), reaching an offloading success percentage of 90.0 % with T2. The lowest average percentage

of TR was of the BCV (0.6 %), presenting even a scenario without failures with T1. In the urban

scenario (Figure 19b), the GTT had the highest average percentage of TS (84.3 %) and the lowest

104

Figure 18 – Tasks by occurrence type for workloads T1−T5 with Dlow.

(a) Highway scenario. (b) Urban scenario.

Source: The Author.

percentage of TR (1.1 %).

Figure 19 – Tasks by occurrence type for workloads T1−T5 with Dmedium.

(a) Highway scenario. (b) Urban scenario.

Source: The Author.

The data for the high vehicular density scenarios (Dhigh) are presented in Figures 20a

and 20b. In the highway scenario (Figure 20a), the GTT and BCV tied with the highest average

percentage of TS (89.5 %). However, the BCV had the highest success rate (91.4 % with T1).

The lowest average percentage of TR was of the GTT (1.3 %), registering 0.4 % of failures with

T2. In the urban scenario (Figure 20b), the BCV had the highest average percentage of TS (85.1

%). The GCF had the highest success rate (87.7 % with T1). In the lowest average percentage of

tasks with failures, there was a tie between the GTT and BCV. Both had 0.8 %, with the BCV

having the lowest rate of TR (0.5 % with T2).

105

Figure 20 – Tasks by occurrence type for workloads T1−T5 with Dhigh.

(a) Highway scenario. (b) Urban scenario.

Source: The Author.

Workloads T6 to T10 - Different Tasks

Figures 21 to 23 show the percentages of tasks by occurrence type of the FIFO, HVC,

GCF, GTT, and BCV algorithms with the workloads T6 to T10. The data relating to low vehicular

density scenarios (Dlow) are shown in Figures 21a and 21b. In the highway scenario (Figure

21a), the algorithm that achieved the best average percentage of TS was the BCV (73.8 %). The

GTT had the best average percentage of TR (1.5 %), even having a case that only 1.1 % of the

tasks failed (with T6). In the urban scenario (Figure 21b), the HVC achieved the highest average

percentage of TS (68.8 %), and the GTT had the lowest percentage of TR (2.4 %).

Figure 21 – Tasks by occurrence type for workloads T6−T10 with Dlow.

(a) Highway scenario. (b) Urban scenario.

Source: The Author.

106

The data for the scenarios with Dmedium are shown in Figures 22a and 22b. In the

highway scenario (Figure 22a), the BCV achieved the highest average TS rate (89.3 %), even

managing to offload 90.6 % of tasks successfully (with T6). In terms of recovered tasks, the BCV

also achieved the best performance. It achieved an average TR percentage of 0.8 %, having the

lowest failure rate in a specific case (0.2 % with T6). In the urban setting (Figure 22b), the BCV

achieved the highest average percentage of TS (83.7 %). The lowest average percentage of TR

was of the GTT (1.4 %), with the BCV and GTT tying at the lowest failure rate for a specific

case (0.5 % with T6).

Figure 22 – Tasks by occurrence type for workloads T6−T10 with Dmedium.

(a) Highway scenario. (b) Urban scenario.

Source: The Author.

Finally, the data for Dhigh are detailed in Figures 23a and 23b. In the highway

scenario (Figure 23a), the algorithm with the best performance in the average success rate was

the BCV (89.5 %), reaching 91.3 % of TS. The algorithm with the lowest average percentage of

TR was the GTT, achieving that only 0.6 % of the tasks failed with T6. In the urban scenario

(Figure 23b), the BCV achieved the highest average percentage of TS (85.1 %) and the lowest

average percentage of TR (0.8 %), with failures in only 0.5 % of tasks (T6 case).

Results Summary

Based on Figures 18 to 23, Tables 13 and 14 present a summary of the "tasks by

occurrence type" metric results. The "TS > FIFO & TS > HVC" and "TR < FIFO & TR <

HVC" columns contain, respectively, the number of times that the percentage of TS and TR of a

proposed algorithm was better than that of the algorithms FIFO and HVC. This comparison is

107

Figure 23 – Tasks by occurrence type for workloads T6−T10 with Dhigh.

(a) Highway scenario. (b) Urban scenario.

Source: The Author.

made with a group of 30 experiments (scenario/density/workload). The "Record TS" and "Record

TR" columns contain the highest TS and the lowest TR values of the algorithms proposed for the

group of 30 experiments. The "Best TS Average" and "Best TR Average" columns use a group of

experiments of six combinations since the averages of the five workloads of each scenario/density

are used. The "Best TS Average" and "Best TR Average" contain, respectively, the number of

times that a proposed algorithm had the best average of TS and TR among all the algorithms of

each scenario/density.

According to Table 13, with the workloads T1 to T5, the BCV more often outper-

formed the FIFO and HVC algorithms in percentages of TS (22/30) and TR (28/30, tied with the

GTT). It also registered the record of TS (91.4 %) and TR (0.0 %) and presented the best TS

averages (3/6, tied with the GTT) more often. In turn, the GTT registered best TR averages more

frequently (5/6).

Table 13 – Results summary of Section 6.3.1 with workloads T1 to T5.

Algorithm TS > FIFO
& TS > HVC

Record
TS

Best TS
Average

TR < FIFO
& TR < HVC

Record
TR

Best TR
Average

BCV 22/30 91.4 % 3/6 28/30 0.0 % 2/6
GTT 20/30 90.8 % 3/6 28/30 0.1 % 5/6
GCF 21/30 89.4 % 0/6 23/30 1.1 % 0/6

Source: The Author.

With the T6 to T10 workloads, as shown in Table 14, the BCV had the TS record (91.3

%), the TR record (0.2 %), and the highest number of times with the best TS average (5/6). The

GTT was the one that more frequently outperformed the FIFO and HVC with the best percentage

108

of TS (20/30) and TR (28/30). In addition, GTT had the highest number of times with the best

TR average (4/6).

Table 14 – Results summary of Section 6.3.1 with workloads T6 to T10.

Algorithm TS > FIFO
& TS > HVC

Record
TS

Best TS
Average

TR < FIFO
& TR < HVC

Record
TR

Best TR
Average

BCV 19/30 91.3 % 5/6 27/30 0.2 % 2/6
GTT 20/30 90.1 % 0/6 28/30 0.3 % 4/6
GCF 18/30 88.3 % 0/6 15/30 1.6 % 0/6

Source: The Author.

6.3.2 Reduction in Execution Time

This section analyzes the algorithms’ impact in reducing the execution time of differ-

ent workloads compared to executing all tasks locally on the client (benchmark). The averages

were calculated based on the values obtained in the simulations for each workload/density/sce-

nario/algorithm configuration. The Figures’ error bars show the 95% confidence interval of the

corresponding data. The absolute values of the execution times can be obtained according to the

calculations of local computation time (benchmark) presented in Section 4.1.3 for the different

workloads. The following paragraphs show the results of this experiment.

Workloads T1 to T5 - Equal Tasks

Figures 24 to 26 show the average percentages of reductions in the execution time

of the workloads T1 to T5 for the different algorithms. Experiments of scenarios with Dlow

are shown in Figures 24a and 24b. In the highway scenario (Figure 24a), the greatest average

reductions in execution time were of the BCV and GTT. The BCV had the highest average

reduction (61.4 % with T4). In the urban scenario (Figure 24b), the GTT and BCV also had the

best performances. The highest average reduction was of the GTT (55.4 % with T2).

The medium density scenarios are shown in Figures 25a and 25b. In the highway

scenario (Figure 25a), the BCV and GTT achieved the highest averages of reductions. The GTT

achieved the largest average reduction (72.8 % with T5). In the urban scenario (Figure 25b), the

best averages of reductions were also of the BCV and GTT. GTT guaranteed the most significant

average reduction (67.5 % with T5).

Figures 26a and 26b show the data related to the scenarios with Dhigh. In the highway

scenario (Figure 26a), the largest averages of reductions were of the BCV and GTT. The GTT

109

Figure 24 – Average reduction in execution time for workloads T1−T5 with Dlow.

(a) Highway scenario. (b) Urban scenario.

Source: The Author.

Figure 25 – Average reduction in execution time for workloads T1−T5 with Dmedium.

(a) Highway scenario. (b) Urban scenario.

Source: The Author.

presented the most considerable average reduction (71.9 % with T4 and T5). In the urban scenario

(Figure 26b), the BCV and GTT also obtained the best averages of reductions. GTT presented

the highest average reduction for a specific workload (70.2 % with T5).

Statistical Tests

We perform additional statistical tests to evaluate the algorithms’ performance better

when overlapping confidence intervals exist between them. When performing the Shapiro-Wilk

tests, we realized that the data from these experiments are not normally distributed. Such data

were obtained through repeated experiments under the same conditions. Thus, we used the

110

Figure 26 – Average reduction in execution time for workloads T1−T5 with Dhigh.

(a) Highway scenario. (b) Urban scenario.

Source: The Author.

Friedman test to assess statistical differences in the 30 groups of experiments (scenario/density/-

workload) (SHESKIN, 2000). The null hypothesis (H0) is that the performance of reductions

in the execution time is the same for all algorithms. We obtained p− values < 0.05 in all 30

groups, rejecting the null hypothesis.

Then we made pairwise comparisons between the algorithms using the Wilcoxon

test3. In this test, the null hypothesis (H0) states that the compared algorithms have the same

performance. If p− value < 0.05, we reject H0 and consider that the compared algorithms have

statistically different performances. The p-values of these tests for workloads T1 to T5 are shown

in Tables 15 to 17.

Table 15 presents the p-values of the Wilcoxon tests for pairwise comparisons

between algorithms with low vehicular density in highway and urban scenarios. We can observe

that the BCV and GTT have the same performance (p− value > 0.05) in 4/5 cases with the

highway scenario and in 2/5 cases with the urban scenario.

The p-values of the Wilcoxon tests for the paired comparisons of algorithms for

medium density scenarios are shown in Table 16. Counting the highway and urban scenarios, the

GTT and BCV have the same performance (p− value > 0.05) in 6/10 cases.

Finally, Table 17 shows the p-values of the Wilcoxon tests for high vehicular density

scenarios. In the highway scenario, the BCV and GTT have the same performance of reduction

in execution time in just one case (with T2). In the urban scenario, the BCV and GTT have the
3 We have not made pairwise comparisons with the FIFO algorithm because it does not have overlapping CIs with

the proposed algorithms GCF, GTT and BCV.

111

Table 15 – Wilcoxon tests p-values for workloads T1 to T5 with Dlow.
Highway Urban

Algorithms T1 T2 T3 T4 T5 T1 T2 T3 T4 T5
BCV vs. GTT 1.000 1.000 1.000 0.101 0.039 0.000 0.000 0.006 1.000 0.705
BCV vs. GCF 0.058 0.140 0.000 0.000 0.000 1.000 0.000 0.047 0.000 0.000
BCV vs. HVC 0.000 0.000 0.000 0.000 0.000 0.014 0.000 0.000 0.000 0.000
GTT vs. GCF 0.873 0.397 0.000 0.000 0.000 0.034 0.000 0.000 0.000 0.000
GTT vs. HVC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GCF vs. HVC 0.129 0.000 0.000 0.000 0.000 0.859 0.259 0.000 0.000 0.000

Source: The Author.

Table 16 – Wilcoxon tests p-values for workloads T1 to T5 with Dmedium.
Highway Urban

Algorithms T1 T2 T3 T4 T5 T1 T2 T3 T4 T5
BCV vs. GTT 0.808 0.348 1.000 0.035 0.000 1.000 0.694 0.036 0.102 0.000
BCV vs. GCF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BCV vs. HVC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GTT vs. GCF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GTT vs. HVC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GCF vs. HVC 0.000 0.000 0.000 0.000 0.000 1.000 0.053 0.011 0.000 0.000

Source: The Author.

same performance in 3/5 cases (T1 to T3).

Table 17 – Wilcoxon tests p-values for workloads T1 to T5 with Dhigh.
Highway Urban

Algorithms T1 T2 T3 T4 T5 T1 T2 T3 T4 T5
BCV vs. GTT 0.007 1.000 0.025 0.007 0.001 0.090 0.890 0.231 0.000 0.002
BCV vs. GCF 0.000 0.000 0.028 0.036 0.039 0.000 0.000 0.000 0.000 0.000
BCV vs. HVC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GTT vs. GCF 0.000 0.000 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000
GTT vs. HVC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GCF vs. HVC 0.003 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

Source: The Author.

Workloads T6 to T10 - Different Tasks

According to Figures 27 to 29, we present the data of the reductions in the execution

time of the workloads T6 to T10 for the FIFO, HVC, GCF, GTT, and BCV algorithms. Figures

27a and 27b show the data related to scenarios with Dlow. In the highway scenario (Figure 27a),

the BCV algorithm obtained the highest averages of reductions. It also recorded the highest

average reduction in execution time (64 % with T8). In the urban scenario (Figure 27b), the BCV

also presented the best averages of reductions in execution time and marked the most significant

reduction in execution time (55.5 % with T8).

112

Figure 27 – Average reduction in execution time for workloads T6−T10 with Dlow.

(a) Highway scenario. (b) Urban scenario.

Source: The Author.

Figures 28a and 28b present the data related to the scenarios with Dmedium. In the

highway scenario (Figure 28a), the best average reductions in execution time were of the BCV. It

also recorded the largest average reduction (75.6 % with T9). In the urban scenario (Figure 28b),

the BCV presented the best performance and obtained the best average reduction for a workload

(71.0 % with T9).

Figure 28 – Average reduction in execution time for workloads T6−T10 with Dmedium.

(a) Highway scenario. (b) Urban scenario.

Source: The Author.

The data relating to the scenario with Dhigh are shown in Figures 29a and 29b. In the

highway scenario (Figure 29a), the BCV algorithm showed the best averages of execution time

reductions. In addition, it recorded the greatest average reduction for a workload (75.4 % for

T10). In the urban scenario (Figure 29b), the BCV also achieved the best performance and the

113

most significant average reduction (73.1 % for T9).

Figure 29 – Average reduction in execution time for workloads T6−T10 with Dhigh.

(a) Highway scenario. (b) Urban scenario.

Source: The Author.

Statistical Tests

The data observed in Figures 27 to 29 have overlapping CIs and were generated

through experiments under the same conditions. According to the Shapiro-Wilk tests we have

made, they are not normally distributed. Then, we used the Friedman test to detect statistical

differences between the performance of the algorithms (SHESKIN, 2000). The null hypothesis

(H0) tested states that the performance of all algorithms is the same for the metric "reduction in

execution time". In all tests, the p-value was less than 0.05, rejecting H0.

Then, we perform Wilcoxon tests to determine which pairs of algorithms have

different performances from each other4. The null hypothesis (H0) for each test is that the pair

of algorithms have the same performance in the analyzed metric. If p− value < 0.05, we reject

H0 and consider the performance of the algorithms to be statically different. The p-values of

these tests for the workloads T6 to T10 are presented in Tables 18 to 20.

In Table 18, we can see the p-values of the Wilcoxon tests to compare pairs of

algorithms with the low vehicular density scenarios. It is also possible to observe that the BCV

and GTT do not have the same performance in either case.

Table 19 presents the p-values of the Wilcoxon tests for pairwise comparisons of the
4 The FIFO was not compared because there is little or no overlap of confidence interval with the proposed

algorithms.

114

Table 18 – Wilcoxon tests p-values for workloads T6 to T10 with Dlow.
Highway Urban

Algorithms T6 T7 T8 T9 T10 T6 T7 T8 T9 T10
BCV vs. GTT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BCV vs. GCF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BCV vs. HVC 0.195 0.000 0.000 0.000 0.000 0.021 0.000 0.000 0.000 0.000
GTT vs. GCF 1.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
GTT vs. HVC 0.007 0.008 0.000 0.000 0.000 1.000 0.202 0.023 0.000 0.000
GCF vs. HVC 0.000 0.887 0.004 0.000 0.000 0.015 0.052 0.119 1.000 0.002

Source: The Author.

HVC, GCF, GTT, and HVC algorithms with medium vehicular density. Again, the BCV and

GTT do not have the same performance in either case (p− value = 0.000 in all cases).

Table 19 – Wilcoxon tests p-values for workloads T6 to T10 with Dmedium.
Highway Urban

Algorithms T6 T7 T8 T9 T10 T6 T7 T8 T9 T10
BCV vs. GTT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BCV vs. GCF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BCV vs. HVC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GTT vs. GCF 0.036 0.111 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000
GTT vs. HVC 0.873 0.000 0.000 0.000 0.000 0.608 1.000 0.037 0.000 0.000
GCF vs. HVC 1.000 0.027 0.001 0.000 0.000 0.000 0.000 0.000 1.000 0.189

Source: The Author.

Finally, Table 20 shows the p-values of the comparisons between the algorithms

using the Wilcoxon test with scenarios of high vehicular density. Again, the two best algorithms

(BCV and GTT) showed a statistically significant difference in all cases.

Table 20 – Wilcoxon tests p-values for workloads T6 to T10 with Dhigh.
Highway Urban

Algorithms T6 T7 T8 T9 T10 T6 T7 T8 T9 T10
BCV vs. GTT 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000
BCV vs. GCF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BCV vs. HVC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GTT vs. GCF 0.000 0.001 0.003 0.000 0.000 0.013 0.003 0.000 0.000 0.000
GTT vs. HVC 1.000 0.000 0.000 0.000 0.000 1.000 0.094 0.002 0.000 0.000
GCF vs. HVC 0.007 1.000 0.000 0.000 0.000 0.050 1.000 0.486 0.153 0.000

Source: The Author.

Results Summary

According to Figures 24 to 29 and Tables 15 to 20, Tables 21 and 22 summarize the

"reduction in execution time" metric results. The column "RD > FIFO & RD > HVC" contains

115

the number of times that the average Reduction in the execution time (RD) of a proposed

algorithm was greater than that of the FIFO and HVC algorithms. The columns "Record to

FIFO" and "Record to HVC" indicate, respectively, the most significant difference in percentage

points between a proposed algorithm and the FIFO and HVC algorithms. The "Record RD"

column shows the highest average reduction in execution time for a proposed algorithm. Finally,

the "Best Performance" column contains the number of times that one algorithm achieved the

best performance among all other algorithms in the "reduction in execution time" metric.

According to Table 21, with the equal task workloads (T1 to T5), the BCV and GTT

outperformed the FIFO and HVC by 30/30 times. Compared to the FIFO, the highest average

reduction in execution time was of the BCV (57.9 % percentage points of difference). Compared

to HVC, the record difference in the reduction in execution time was up to 35.7 % percentage

points, achieved by the BCV and GTT. The GTT also recorded the most considerable average

reduction (72.8 %). It was also the algorithm that had the best performance most times (28/30),

but with a performance very similar to that of the BCV in most cases.

Table 21 – Results summary of Section 6.3.2 with workloads T1 to T5.
T1 to T5

Algorithms RD > FIFO
& RD > HVC

Record
to FIFO

Record
to HVC

Record
RD

Best
Performance

BCV 30/30 57.9 % 35.7 % 72.0 % 18/30
GTT 30/30 56.5 % 35.7 % 72.8 % 28/30
GCF 24/30 46.0 % 27.6 % 66.5 % 1/30

Source: The Author.

With different task workloads (T6 to T10), as shown in Table 22, BCV proved to be

the best algorithm. It was the one that most often outperformed the FIFO and the HVC (29/30),

registering the records of percentage differences for them in the metric reduction in the execution

time (55.6 % and 33.6 %, respectively). The BCV also recorded the highest average reduction

(75.6 %) and was the algorithm that obtained the best performance more times (30/30).

Table 22 – Results summary of Section 6.3.2 with workloads T6 to T10.
T6 to T10

Algorithms RD > FIFO
& RD > HVC

Record
to FIFO

Record
to HVC

Record
RD

Best
Performance

BCV 29/30 55.6 % 33.6 % 75.6 % 30/30
GTT 21/30 49.1 % 32.1 % 73.9 % 0/30
GCF 12/30 40.5 % 20.4 % 64.2 % 0/30

Source: The Author.

116

6.3.3 Discussion

According to the following paragraphs, this section reports on discussions about the

implications of the "Tasks by Occurrence Type" and "Reduction in Execution Time" metrics.

After, we present the main discussions about the results.

Implications of the "Tasks by Occurrence Type" Metric

Section 6.3.1 presents the analysis of the results of the "Tasks by Occurrence Type"

metric. Three types of occurrences are possible to happen with a task: TL, TS, or TR. They

represent, respectively, local execution, successful remote execution, and failure in the remote

execution of tasks (with recovery and local execution of the lost task). The ideal result is that

a computation offloading algorithm has a high TS rate and a low TR rate. This result would

indicate that the algorithm is choosing to execute most tasks on reliable remote servers. In this

way, the computation would be more distributed and the chosen servers would be less likely to

lose connectivity with the client.

Moreover, having a high TS percentage is a good indicator because it relieves the

client’s processing overload and tasks can be executed more quickly on remote servers with

better computing resources. A low TR percentage is also an important indicator. Sending tasks

to be performed remotely involves using bandwidth and processing on the remote server. It also

involves time to transmit, process, and wait for their results. When a failure occurs, these times

and computational resources are wasted. Also, as the result of task processing does not arrive, it

is necessary to recover the lost task. So, time is still needed to detect the failure and re-execute

the task locally. Thus, a low TR percentage indicates a low percentage of failures, saving time

and computational resources.

Implications of the "Reduction in Execution Time" Metric

Section 6.3.2 reports the analysis of the results of the "Reduction in Execution Time"

metric. This metric compares the execution times of the workloads resulting from the allocation

of the algorithms with the benchmark, i.e., the time it takes for the client vehicle to execute all

tasks locally. The main objective of the algorithms is to reduce the execution time of vehicular

applications as much as possible. The computation offloading processes of the algorithms

distribute the computational tasks to other vehicles and edge servers so that this time is reduced.

117

In this respect, the most critical step is the task assignment, which involves deciding on which

server each task will be executed. A bad decision can send tasks to servers that are already

overloaded, have low processing capacity, are distant from the client, or quickly lose connectivity.

This decision will not only not be able to reduce the execution time of vehicular applications,

but it can even increase that time. On the other hand, a good decision allows to send tasks to

nearby servers, not overloaded, with greater processing capacity, and that will remain connected

with the client for a long period. This decision results in fewer failures and faster execution of

computational tasks.

Impacts of the Scenario and Density on Results

In general terms, our urban scenarios, which have more sparsely located vehicles,

have lower TS and RD rates and higher TL rates than our highway scenarios, whose vehicles

are spatially more concentrated. Low vehicular density scenarios also have lower TS and RD

rates and higher TL than medium or high vehicular density scenarios. This behavior in urban

and low density scenarios is because fewer servers are available within the client’s WAVE range.

Thus, the client needs to execute more tasks locally, becoming overloaded and delaying their

execution. However, there are more server options for the client in higher vehicular density

scenarios, especially in highway scenarios. So, the algorithms tend to choose more remote

executions for the computational tasks, decreasing the TL rates and increasing the TS and RD

rates.

Proposed Algorithms vs. Other Algorithms

Regarding the performance of the algorithms, we can see two main results about

the proposed algorithms, GCF, GTT, and BCV, if compared to the FIFO and HVC in most

cases. First, they showed higher TS rates and lower TR rates. Second, they have shown greater

reductions in execution times, our main performance metric. In this way, the proposed algorithms

help vehicular applications to execute their tasks more quickly and reliably, i.e., with a low TR

rate.

One of the factors that explains the better performance of the proposed algorithms is

the simultaneous use of the WAVE and 5G networks. This use allows the GCF, GTT, and BCV to

take advantage of both the vehicular clouds (with V2V) and the edge servers (with V2I). It also

allows to increase the transmission capacity of tasks and reduce latencies. Besides, it combines

118

the independence of infrastructure and direct communications from WAVE networks and the

large data rates and increased band spectrum availability of 5G networks.

In addition, the strategy used by the proposed algorithms results in their better

performance compared to the totally local execution and the FIFO and HVC algorithms. In this

way, GCF, GTT, and BCV make better server choices for executing tasks. The choice prioritizes

the servers closest to the client, with acceptable link lifetimes, and the lowest processing queue

times.

GTT and BCV vs. Other Algorithms

However, among the three proposed algorithms, the best performances were of the

GTT and BCV. One reason is that these two algorithms are the only ones to use the contextual

information of CPU capacity of servers (in GHz) and known routes of vehicles. Thus, with more

contextual information, the task assignments of these two algorithms become more accurate.

The GTT’s strategy of verifying the best possible server after each task allocation and the BCV’s

intelligent strategy based on ABC metaheuristics also improve task assignments. Consequently,

GTT and BCV can make better and more reliable offloading decisions, choosing the best servers

for each task. With this, servers can execute tasks faster and the results can be returned to the

client before they lose connectivity, avoiding failures.

Information about known routes of vehicles also makes a special contribution to

reducing the offloading processes’ failures and task recoveries of the GTT and BCV algorithms.

With fewer recoveries, the reduction in the total execution time of the workload is greater. The

other algorithms, with more recoveries, end up delaying more their total execution time.

GTT vs. BCV

When comparing the BCV and GTT, it is also possible to see that they have a very

similar performance in TS and TR rates. In terms of reduction in execution time, we split the

evaluation depending on the workloads. With the equal task workloads (T1 to T5), although the

two algorithms have very similar performances, the GTT stands out. As a greedy algorithm,

it periodically updates the best possible server (including the client itself) to execute each

task, taking advantage of the computational resources available from all nodes in the network.

Furthermore, since the tasks are the same, the GTT makes the best allocations, just as the BCV

does. However, the GTT task assignment requires a time of approximately 0 ms. On the other

119

hand, the BCV task assignment/schedule can take up to hundreds of milliseconds. The time it

takes the BCV to choose the final solution impairs its performance in reducing execution time

compared to the GTT.

With the different task workloads (T6 to T10), the BCV outperforms the GTT in

reducing execution times in all scenarios. In such cases, the GTT continues to make reliable

server choices, causing few offloading failures. However, these choices are less effective because

the GTT greedily seeks the best servers for the tasks without considering their requirements.

In this way, the GTT can send multiple tasks with low requirements of CPU cycles to the best

server available. In the end, tasks with high CPU cycle requirements may be leftover. In that

case, the best available server may already be overloaded with other tasks. So, the GTT may end

up sending these more complex tasks to servers with lower computational capacities and longer

processing queue times.

For workloads T6 to T10, although the BCV takes some time to choose the final

solution, this choice is more intelligent and more effective. It analyzes the fitness of different

solutions and chooses the most appropriate one, taking into account the best available servers

and the characteristics of each task in the workload. Thus, the BCV has a similar performance to

the GTT with the same tasks and outperforms it when the tasks are different.

Therefore, the GTT and BCV make more accurate contextual evaluations, better

server choices, better task assignment, and takes advantage of the simultaneous use of WAVE,

5G, and the vehicular edge computing system. Through extensive simulations and diverse

vehicular environments, we show that the GTT and BCV achieve the greatest reductions in the

total execution times of tasks and the lowest rates of offloading failures, solving the Problem P1.

6.4 Concluding Remarks

This chapter described the configuration of several aspects, parameters, and scenarios

used in the experiments. Then, the analysis and evaluation of results about important parameters

of network, mobility, and the BCV algorithm were presented. For example, we saw that the

greater the WAVE range, the greater the number of reply messages received by the client. The

two most important parameters of the BCV algorithm were also evaluated: number of cycles and

number of food sources. We saw that the greater they are, the longer it takes the algorithm to

find the final solution. However, changing these two parameters is not so important for reducing

workload execution times. We were also able to see that the higher the percentage of vehicles

120

with known and propagated routes, the greater the reduction in lost servers, resulting in fewer

failures in the computation offloading processes.

Then, the performances of the different algorithms were evaluated according to the

two main metrics of this thesis: "tasks by occurrence type" and "reduction in execution time".

The first metric evaluates the percentage of successes and failures in the offloading processes.

The second metric evaluates how much each algorithm has reduced in terms of the workload

execution times when compared to the totally local execution by the client. We saw that the

proposed algorithms outperform the totally local execution and the FIFO and HVC algorithms

in the two metrics. In discussing the results, we evaluated the impact of scenarios and vehicle

densities on the results. Finally, we present the reasons why the proposed algorithms have the

best performances in the scenarios. From this evaluation, we were able to conclude that the GTT

and BCV algorithms have the best performance for equal task workloads, and BCV has the best

performance for different task workloads. Therefore, the GTT and BCV solved the Problem P1,

presenting the best ways to reduce the execution time of vehicular applications reliably.

121

7 CONCLUSION

This chapter presents the latest discussions and insights from this work. Section 7.1

provides responses to the research questions listed in Chapter 1. Next, Section 7.2 discusses

the objectives, contributions, importance, and implications of this thesis. Finally, Section 7.3

highlights research directions for future work.

7.1 Responses to Research Questions

This section presents the responses to the three research questions listed in Chapter 1

of this thesis. In the following paragraphs, the questions are re-presented, and the responses are

explained.

RQ1: How to provide support and management for all stages of computation offloading

processes?

We propose that the context-oriented framework designed and developed during the

research of this thesis supports and manages all stages of computation offloading processes both

on clients and servers. In the case of the client vehicle, when receiving tasks from an application,

the framework starts discovering computational resources available. Through a request/reply

process, the client vehicle becomes aware of several contextual parameters from possible servers.

Then all task and server information is gathered in the decision module. After the decision, made

by a task assignment algorithm, the framework supports and manages to send tasks to remote

servers and receive the processing results. After receiving the results, the framework sends them

to the application to continue its execution.

In the case of a server, the framework replies to client requests. Then it receives

computation tasks to be processed if there is enough energy. After processing, the framework

manages the step of sending processing results back to clients.

RQ2: How to assign computation tasks to different servers to reduce vehicular applica-

tions’ execution time in VEC systems?

We propose that this assignment be done through one of the three decision and task

assignment algorithms that we designed and developed throughout the research of this thesis.

122

The first proposed algorithm, the GCF, is greedy and prioritizes sending tasks to servers close

to the client and with the lowest processing queue times. According to Section 6.3.2, the GCF

reduced the workload execution time by up to 66.5 % compared to the fully local execution and

up to 46.0 % compared to literature algorithms.

The other two algorithms use two more contextual parameters than the GCF: CPU

capacity and known routes of vehicles. Also, they use different strategies. For example, the

second algorithm, GTT, sequentially analyzes each task and assigns them to the best available

server, local or remote. The update of the best server is done after each new task assignment. It

is based mainly on three criteria: distance to the client and CPU capacity and availability. The

GTT reduced the workload execution time by up to 73.9 % compared to fully local execution

and up to 56.5 % compared to literature algorithms.

The third and last algorithm designed and developed in this research, BCV, is an

intelligent algorithm based on the ABC metaheuristic. It scours the search space to find solutions

with the best fitness scores. The BCV was the algorithm that presented the best performance

in reducing execution time, being the best in 48 of 60 cases. It managed to reduce execution

time by up to 75.6 % compared to fully local execution and up to 57.9 % compared to literature

algorithms.

RQ3: How to avoid offloading failures and, ultimately, recover from them?

We propose that it be through the joint action of the framework and the proposed

algorithms. In this case, any of the three proposed algorithms make task assignments with

well-calculated risks of failure. These calculations are part of the restrictions described in

the formulation of the problem and involve several contextual parameters, mainly energy and

connectivity constraints. The first ensures that devices have enough energy to participate

in computation offloading processes. In connectivity, client vehicles do mobility prediction

calculations. After, they analyze whether they can send tasks, wait for their remote processing,

and receive the results without losing connections with servers.

The experiments presented in Section 6.3.1 show that the GCF was able to offload

up to 89.4 % of tasks successfully and only have 1.1 % failures. The GCF offloaded more tasks

than other literature algorithms in 39 of 60 cases and have fewer failures in 38 of 60 cases. This

performance was even better with the GTT and BCV. These two algorithms use special contextual

information from known routes of vehicles that makes the mobility prediction calculation even

123

more accurate. Thus, the GTT successfully offloaded up to 90.8 % of the tasks and had only 0.1

% failures, outperforming the other algorithms in 56 of 60 cases. The BCV offloaded up to 91.4

% of tasks successfully and reached 0.0 % failures, outperforming the other algorithms in 55 of

60 cases.

Although the proposed algorithms have minimal failure rates, it is also necessary to

have a failure recovery mechanism as a last resort. In this case, we designed and developed this

mechanism in the proposed framework. Section 5.1 shows that the framework stores a backup of

offloaded tasks and monitors for possible failures. When a failure is detected, the framework

sends the copy of the lost task to local execution, preventing the application from being harmed.

7.2 General Discussion

This work achieved its main objective by presenting solutions that minimize the

execution time of vehicular applications reliably through computation offloading in VEC systems.

To do this, we followed each step listed in the specific objectives shown in Chapter 1. For example,

we designed and implemented a VEC system with WAVE and 5G technologies simulating a

real vehicular environment with vehicles, base stations, and edge servers. We designed and

implemented a context-oriented framework to support and manage all stages of computation

offloading processes, including a failure recovery mechanism. We also enabled the simulation of

fully local executions of a vehicular application with different workloads.

Next, we investigated several state-of-the-art works in the area. We found that current

solutions do not realize their full potential in terms of technology. Most works use only one

communication technology, WAVE or cellular. When some work uses more than one technology,

the authors consider only their sequential use. Also, most works use only one type of server,

vehicle or edge server. Thus, there is underutilization of available computational resources and

wasted opportunities for performance gains in computation offloading processes. In addition,

such state-of-the-art works in the area do not use important contextual information or failure

recovery mechanisms that would help make computation offloading more reliable. Finally, the

algorithmic strategies used in these works have some disadvantages presented by other literature

works and were not submitted to different vehicular environments for validation.

Unlike these works, our thesis explored all the available technological potential. For

this, we used WAVE and 5G technologies simultaneously when sending or receiving tasks. We

also used all available computing resources, both in VCs and Edge. In addition, we utilized a

124

failure recovery mechanism and additional contextual information to make offloading computa-

tion more efficient and reliable. Among this information, we highlight known routes of vehicles,

which made mobility predictions more accurate and was used for the first time in computation

offloading, to the best of our knowledge. In addition, we used different algorithmic strategies,

including one based on the ABC metaheuristic.

Then, we evaluated and compared the proposed solutions and some literature so-

lutions in different vehicular scenarios. We could see that our proposed solutions had the best

performance. Thus, we presented three ways to solve the problem addressed in this thesis by

minimizing the execution time of vehicular applications reliably in VEC systems. In particular,

our best algorithm, BCV, showed up to a 75.6 % of reduction in execution time and 0.0 %

failures.

These results are significant because they show that the computation offloading

technique, when well managed, can reliably improve the performance of vehicular applications

through other cooperating devices in the vehicular environment. This performance is even more

essential for some applications that have critical latency requirements. A slight delay in the

execution of computation tasks can compromise the usefulness of these applications and their

data and even people’s lives, as is the case with some applications of autonomous vehicles. Such

vehicles and their complex applications are increasingly close to becoming part of our daily lives

and are hungry for computational resources. Therefore, we believe that the work developed in

this thesis can offer a promising alternative to enable the execution of these applications.

7.3 Future Work

The computation offloading in VEC systems has several aspects that can be re-

searched and improved. Therefore, we have listed below some research directions that can

extend and improve our work.

• Computation offloading through new technologies. New communication technologies

have emerged and presented new opportunities, such as higher data rates, but they also

present new challenges. In this sense, research can be done to adapt computation offloading

processes to these new technologies.

• Multi-objective optimization. In our work, we consider only a single-objective problem to

minimize the execution time of vehicular applications. However, the problem can be ex-

tended to, in addition to minimizing the execution time, also considering the minimization

125

of energy consumption and financial costs (including cellular charges).

• Inclusion of traditional cloud servers. We have not considered these servers in our work

due to critical latency constraints. However, they can be considered in future work to

handle more complex and non-delay-sensitive applications.

• Real-time adaptation of parameters. Some parameters can impact computation offloading

processes and the performance of vehicular applications. We can mention parameters as

transmission power, data rate, number of hops, channels and frequency bands, and antenna

configuration.

• Improvement of vehicular mobility prediction. This prediction influences the reliability of

computation offloading processes and involves complex calculations, including probabili-

ties of direction changes. Bad predictions can result in failures, and good predictions help

improve the performance of offloading processes.

• Adaptation of algorithms concerning 5G signal blocking. The 5G wireless signal is very

susceptible to propagation blocks due to obstacles. Thus, we must consider mechanisms

to deal with this problem.

• New experiments with new setups and scenarios. For example, can be used: scenarios

with other radio propagation models, without full coverage of base stations and mmWave

on highways, that not all vehicles have the necessary technologies or application codes,

and even some real experiments. In addition, hybrid (electric and combustion) vehicles,

buildings, and multiple clients can integrate the scenarios.

• Different system models and applications. Such models should consider real bandwidth

(which varies), other radio propagation models and antennas, and server evaluations based

on signal-to-noise ratio and reception power. Moreover, different vehicular applications

have different requirements for latency, processing, and task priority levels.

• Privacy, security, and incentive issues. Risks such as exposing vehicular data to untrusted

servers or tasks containing viruses in the offloading process must be addressed. Further-

more, motivating network nodes to share their computing resources is another challenge

that needs further study.

• Experimental evaluation issues. New graphics can be considered, such as the number of

failures by type (e.g., 5G, WAVE, and connectivity), energy consumption, transmission

and execution delay, distance, link lifetime (real and estimated), and packet delivery ratio.

Additionally, other solution strategies and benchmarks can be used for comparison.

126

BIBLIOGRAPHY

ABDELHAMID, S.; BENKOCZI, R.; HASSANEIN, H. S. Vehicular clouds: ubiquitous
computing on wheels. In: Emergent Computation. [S. l.]: Springer, 2017. p. 435–452.

AHMED, B.; MALIK, A. W.; HAFEEZ, T.; AHMED, N. Services and simulation frameworks
for vehicular cloud computing: A contemporary survey. EURASIP Journal on Wireless
Communications and Networking, Springer, v. 2019, n. 1, p. 4, 2019.

AKHTAR, N.; ERGEN, S. C.; OZKASAP, O. Vehicle mobility and communication channel
models for realistic and efficient highway vanet simulation. IEEE Transactions on Vehicular
Technology, IEEE, v. 64, n. 1, p. 248–262, 2014.

AL-SULTAN, S.; AL-DOORI, M. M.; AL-BAYATTI, A. H.; ZEDAN, H. A comprehensive
survey on vehicular ad hoc network. Journal of network and computer applications, Elsevier,
v. 37, p. 380–392, 2014.

ALVES, R.; CAMPBELL, I.; COUTO, R.; CAMPISTA, M.; MORAES, I.; RUBINSTEIN, M.;
COSTA, L.; DUARTE, O.; ABDALLA, M. Redes veiculares: Princípios, aplicações e desafios.
Minicursos do Simpósio Brasileiro de Redes de Computadores, SBRC, p. 1–56, 2009.

ANSARI, K. Joint use of dsrc and c-v2x for v2x communications in the 5.9 ghz its band. IET
Intelligent Transport Systems, Wiley Online Library, v. 15, n. 2, p. 213–224, 2021.

ARENA, F.; PAU, G.; SEVERINO, A. A review on ieee 802.11 p for intelligent transportation
systems. Journal of Sensor and Actuator Networks, Multidisciplinary Digital Publishing
Institute, v. 9, n. 2, p. 22, 2020.

ARS TECHNICA. FCC takes spectrum from auto industry in plan to “supersize” Wi-Fi.
2020. Last accessed March 2021. Available at: https://arstechnica.com/tech-policy/2020/11/fcc-
adds-45mhz-to-wi-fi-promising-supersize-networks-on-5ghz-band/.

ASLAM, B.; ZOU, C. C. Optimal roadside units placement along highways. In: 2011 IEEE
Consumer Communications and Networking Conference (CCNC). [S. l.]: IEEE, 2011. p.
814–815.

AUSTIN, P. C.; HUX, J. E. A brief note on overlapping confidence intervals. Journal of
vascular surgery, Elsevier, v. 36, n. 1, p. 194–195, 2002.

AUTOMOTIVE ASSOCIATION 5GAA. A Visionary Roadmap for Advanced Driving Use
Cases Connectivity Technologies and Radio Spectrum Needs. 2020. Last accessed April
2021. Available at: https://5gaa.org/wp-content/uploads/2020/09/A-Visionary-Roadmap-for-
Advanced-Driving-Use-Cases-Connectivity-Technologies-and-Radio-Spectrum-Needs.pdf.

BARB, G.; OTESTEANU, M. 4g/5g: A comparative study and overview on what to expect
from 5g. In: IEEE. 2020 43rd International Conference on Telecommunications and Signal
Processing (TSP). [S. l.], 2020. p. 37–40.

BARH, D. Artificial Intelligence in Precision Health: From Concept to Applications.
London: Academic Press, 2020.

BATTERY UNIVERSITY GROUP. BU-804: How to Prolong Lead-acid Batteries. 2019.
Last accessed February 2021. Available at: https://batteryuniversity.com/learn/article/
how_to_restore_and_prolong_lead_acid_batteries.

https://arstechnica.com/tech-policy/2020/11/fcc-adds-45mhz-to-wi-fi-promising-supersize-networks-on-5ghz-band/
https://arstechnica.com/tech-policy/2020/11/fcc-adds-45mhz-to-wi-fi-promising-supersize-networks-on-5ghz-band/
https://5gaa.org/wp-content/uploads/2020/09/A-Visionary-Roadmap-for-Advanced-Driving-Use-Cases-Connectivity-Technologies-and-Radio-Spectrum-Needs.pdf
https://5gaa.org/wp-content/uploads/2020/09/A-Visionary-Roadmap-for-Advanced-Driving-Use-Cases-Connectivity-Technologies-and-Radio-Spectrum-Needs.pdf
https://batteryuniversity.com/learn/article/how_to_restore_and_prolong_lead_acid_batteries
https://batteryuniversity.com/learn/article/how_to_restore_and_prolong_lead_acid_batteries

127

BATTERY UNIVERSITY GROUP. BU-1003: Electric Vehicle (EV). 2020. Last accessed
February 2021. Available at: https://batteryuniversity.com/learn/article/electric_vehicle_ev.

BELIA, S.; FIDLER, F.; WILLIAMS, J.; CUMMING, G. Researchers misunderstand confidence
intervals and standard error bars. Psychological methods, American Psychological Association,
v. 10, n. 4, p. 389, 2005.

BLOCHO, M. Heuristics, metaheuristics, and hyperheuristics for rich vehicle routing problems.
In: Smart Delivery Systems. [S. l.]: Elsevier, 2020. p. 101–156.

BLOOMBERG LAW. INSIGHT: Elaine Chao Needs to Better Prioritize DOT’s Spectrum
Fights. 2019. Last accessed March 2021. Available at: https://news.bloomberglaw.com/tech-
and-telecom-law/insight-elaine-chao-needs-to-better-prioritize-dots-spectrum-fights.

BLUM, C.; ROLI, A. Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM computing surveys (CSUR), Acm New York, NY, USA, v. 35, n. 3, p.
268–308, 2003.

BOUKERCHE, A.; ROBSON, E. Vehicular cloud computing: Architectures, applications, and
mobility. Computer networks, Elsevier, v. 135, p. 171–189, 2018.

BOUKERCHE, A.; SOTO, V. An efficient mobility-oriented retrieval protocol for computation
offloading in vehicular edge multi-access network. IEEE Transactions on Intelligent
Transportation Systems, IEEE, v. 21, n. 6, p. 2675–2688, 2020.

BOUKERCHE, A.; SOTORO, V. Computation offloading and retrieval for vehicular edge
computing: Algorithms, model and classification. ACM Computing Surveys (CSUR), ACM
New York, NY, USA, v. 53, n. 4, p. 1–35, 2020.

CHANDRAMOULI, D.; LIEBHART, R.; PIRSKANEN, J. 5G for the Connected World.
Hoboken: John Wiley & Sons, 2019.

CHARITOS, M.; KALIVAS, G. Mimo hetnet ieee 802.11p-lte deployment in a vehicular urban
environment. Vehicular Communications, Elsevier, v. 9, p. 222–232, 2017.

CHEN, C.; CHEN, L.; LIU, L.; HE, S.; YUAN, X.; LAN, D.; CHEN, Z. Delay-optimized
v2v-based computation offloading in urban vehicular edge computing and networks. IEEE
Access, IEEE, v. 8, p. 18863–18873, 2020.

CHEN, M.; HAO, Y.; QIU, M.; SONG, J.; WU, D.; HUMAR, I. Mobility-aware caching and
computation offloading in 5g ultra-dense cellular networks. Sensors, Multidisciplinary Digital
Publishing Institute, v. 16, n. 7, p. 974, 2016.

CHEN, T.; XIAO, R. Enhancing artificial bee colony algorithm with self-adaptive searching
strategy and artificial immune network operators for global optimization. The Scientific World
Journal, Hindawi, v. 2014, p. 1–12, 2014.

CUI, T.; HU, Y.; SHEN, B.; CHEN, Q. Task offloading based on lyapunov optimization for
mec-assisted vehicular platooning networks. Sensors, Multidisciplinary Digital Publishing
Institute, v. 19, n. 22, p. 4974, 2019.

DREYER, N.; MOLLER, A.; MIR, Z. H.; FILALI, F.; KURNER, T. A data traffic steering
algorithm for ieee 802.11 p/lte hybrid vehicular networks. In: IEEE. 2016 IEEE 84th Vehicular
Technology Conference (VTC-Fall). [S. l.], 2016. p. 1–6.

https://batteryuniversity.com/learn/article/electric_vehicle_ev
https://news.bloomberglaw.com/tech-and-telecom-law/insight-elaine-chao-needs-to-better-prioritize-dots-spectrum-fights
https://news.bloomberglaw.com/tech-and-telecom-law/insight-elaine-chao-needs-to-better-prioritize-dots-spectrum-fights

128

DU, J.; YU, F. R.; CHU, X.; FENG, J.; LU, G. Computation offloading and resource allocation
in vehicular networks based on dual-side cost minimization. IEEE Transactions on Vehicular
Technology, IEEE, v. 68, n. 2, p. 1079–1092, 2018.

DUAN, X.; WANG, X.; LIU, Y.; ZHENG, K. Sdn enabled dual cluster head selection and
adaptive clustering in 5g-vanet. In: IEEE. 2016 IEEE 84th Vehicular Technology Conference
(VTC-Fall). [S. l.], 2016. p. 1–5.

EICHLER, S. Performance evaluation of the ieee 802.11 p wave communication standard. In:
IEEE. 2007 IEEE 66th Vehicular Technology Conference. [S. l.], 2007. p. 2199–2203.

EUROPEAN COMMISSION. Harmonisation of the 5.9 GHz spectrum band for real-time
information exchange will improve road and urban rail transport safety. 2020. Last
accessed March 2021. Available at: https://ec.europa.eu/digital-single-market/en/news/
harmonisation-59-ghz-spectrum-band-real-time-information-exchange-will-improve-road-
and-urban.

EZUGWU, A. E.; ADELEKE, O. J.; AKINYELU, A. A.; VIRIRI, S. A conceptual comparison
of several metaheuristic algorithms on continuous optimisation problems. Neural Computing
and Applications, Springer, v. 32, n. 10, p. 6207–6251, 2020.

FCC. FCC Modernizes 5.9 GHz Band to Improve Wi-Fi and Automotive Safety. 2020.
Last accessed March 2021. Available at: https://docs.fcc.gov/public/attachments/DOC-
368228A1.pdf.

FENG, J.; LIU, Z.; WU, C.; JI, Y. Ave: Autonomous vehicular edge computing framework with
aco-based scheduling. IEEE Transactions on Vehicular Technology, IEEE, v. 66, n. 12, p.
10660–10675, 2017.

FENG, J.; LIU, Z.; WU, C.; JI, Y. Mobile edge computing for the internet of vehicles: Offloading
framework and job scheduling. IEEE Vehicular Technology Magazine, IEEE, v. 14, n. 1, p.
28–36, 2018.

FIERCEWIRELESS. FCC’s O’Rielly: 5.9 GHz band is ‘a mess’. 2018. Last accessed March
2021. Available at: https://www.fiercewireless.com/wireless/fcc-s-o-rielly-5-9-ghz-band-a-
mess.

FIERCEWIRELESS. FCC moves to authorize C-V2X in 5.9 GHz band. 2020. Last accessed
March 2021. Available at: https://www.fiercewireless.com/regulatory/fcc-moves-to-authorize-c-
v2x-5-9-ghz-band.

GAO, K. Z.; SUGANTHAN, P. N.; PAN, Q. K.; TASGETIREN, M. F.; SADOLLAH, A.
Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem
with new job insertion. Knowledge-based systems, Elsevier, v. 109, p. 1–16, 2016.

GIORDANI, M.; ZANELLA, A.; HIGUCHI, T.; ALTINTAS, O.; ZORZI, M. Performance
study of lte and mmwave in vehicle-to-network communications. In: IEEE. 2018 17th Annual
Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net). [S. l.], 2018. p. 1–7.

GROUPE RENAULT. How to prepare your electric car to be parked for an
extended period of time. 2020. Last accessed February 2021. Available at: https:
//easyelectriclife.groupe.renault.com/en/day-to-day/charging/how-to-prepare-your-electric-
car-to-be-parked-for-an-extended-period-of-time/.

https://ec.europa.eu/digital-single-market/en/news/harmonisation-59-ghz-spectrum-band-real-time-information-exchange-will-improve-road-and-urban
https://ec.europa.eu/digital-single-market/en/news/harmonisation-59-ghz-spectrum-band-real-time-information-exchange-will-improve-road-and-urban
https://ec.europa.eu/digital-single-market/en/news/harmonisation-59-ghz-spectrum-band-real-time-information-exchange-will-improve-road-and-urban
https://docs.fcc.gov/public/attachments/DOC-368228A1.pdf
https://docs.fcc.gov/public/attachments/DOC-368228A1.pdf
https://www.fiercewireless.com/wireless/fcc-s-o-rielly-5-9-ghz-band-a-mess
https://www.fiercewireless.com/wireless/fcc-s-o-rielly-5-9-ghz-band-a-mess
https://www.fiercewireless.com/regulatory/fcc-moves-to-authorize-c-v2x-5-9-ghz-band
https://www.fiercewireless.com/regulatory/fcc-moves-to-authorize-c-v2x-5-9-ghz-band
https://easyelectriclife.groupe.renault.com/en/day-to-day/charging/how-to-prepare-your-electric-car-to-be-parked-for-an-extended-period-of-time/
https://easyelectriclife.groupe.renault.com/en/day-to-day/charging/how-to-prepare-your-electric-car-to-be-parked-for-an-extended-period-of-time/
https://easyelectriclife.groupe.renault.com/en/day-to-day/charging/how-to-prepare-your-electric-car-to-be-parked-for-an-extended-period-of-time/

129

GU, B.; ZHOU, Z. Task offloading in vehicular mobile edge computing: A matching-theoretic
framework. IEEE Vehicular Technology Magazine, IEEE, v. 14, n. 3, p. 100–106, 2019.

GU, X.; ZHANG, G. Energy-efficient computation offloading for vehicular edge computing
networks. Computer Communications, Elsevier, v. 166, p. 244–253, 2021.

GUAN, S. Efficient and Proactive Offloading Techniques for Sustainable and Mobility-
aware Resource Management in Heterogeneous Mobile Cloud Environments. Thesis
(PhD) – Université d’Ottawa/University of Ottawa, 2020.

GUO, H.; ZHANG, J.; LIU, J. Fiwi-enhanced vehicular edge computing networks: Collaborative
task offloading. IEEE Vehicular Technology Magazine, IEEE, v. 14, n. 1, p. 45–53, 2018.

HÄRRI, J.; BONNET, C.; FILALI, F. Kinetic mobility management applied to vehicular ad hoc
network protocols. Computer Communications, Elsevier, v. 31, n. 12, p. 2907–2924, 2008.

HARTENSTEIN, H.; LABERTEAUX, K. A tutorial survey on vehicular ad hoc networks.
Communications Magazine, IEEE, IEEE, v. 46, n. 6, p. 164–171, 2008.

HASSIJA, V.; SAXENA, V.; CHAMOLA, V. A mobile data offloading framework based on
a combination of blockchain and virtual voting. Software: Practice and Experience, Wiley
Online Library, p. 1–18, 2020.

HE, Z.-a.; MA, C.; WANG, X.; LI, L.; WANG, Y.; ZHAO, Y.; GUO, H. A modified artificial bee
colony algorithm based on search space division and disruptive selection strategy. Mathematical
problems in engineering, Hindawi, v. 2014, p. 1–14, 2014.

HEISE MEDIEN. Autovernetzung: FCC stoppt WLANp und schiebt C-V2X an. 2020. Last
accessed March 2021. Available at: https://www.heise.de/news/Autovernetzung-FCC-stoppt-
WLANp-und-schiebt-C-V2X-an-4976068.html.

HOLDING, J. What happens when an electric car runs out? 2020. Last accessed February
2021. Available at: https://www.drivingelectric.com/your-questions-answered/320/what-
happens-when-electric-car-runs-out.

HONG, K.; XING, D.; RAI, V.; KENNEY, J. Characterization of dsrc performance as a function
of transmit power. In: Proceedings of the sixth ACM international workshop on VehiculAr
InterNETworking. [S. l.: s. n.], 2009. p. 63–68.

HOU, X.; LI, Y.; CHEN, M.; WU, D.; JIN, D.; CHEN, S. Vehicular fog computing: A viewpoint
of vehicles as the infrastructures. IEEE Transactions on Vehicular Technology, IEEE, v. 65,
n. 6, p. 3860–3873, 2016.

HOWARD, A. G.; ZHU, M.; CHEN, B.; KALENICHENKO, D.; WANG, W.; WEYAND, T.;
ANDREETTO, M.; ADAM, H. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861, p. eprint, 2017.

HUANG, X.; XU, K.; LAI, C.; CHEN, Q.; ZHANG, J. Energy-efficient offloading
decision-making for mobile edge computing in vehicular networks. EURASIP Journal on
Wireless Communications and Networking, Springer, v. 2020, n. 1, p. 35, 2020.

IEEE. Ieee family of standards for wireless access in vehicular environments. In: IEEE 1609
series. New York: IEEE, 2011.

https://www.heise.de/news/Autovernetzung-FCC-stoppt-WLANp-und-schiebt-C-V2X-an-4976068.html
https://www.heise.de/news/Autovernetzung-FCC-stoppt-WLANp-und-schiebt-C-V2X-an-4976068.html
https://www.drivingelectric.com/your-questions-answered/320/what-happens-when-electric-car-runs-out
https://www.drivingelectric.com/your-questions-answered/320/what-happens-when-electric-car-runs-out

130

IHS MARKIT. These OEMs are launching 5G-enabled cars years before the tech goes
mainstream. 2020. Last accessed April 2021. Available at: https://ihsmarkit.com/research-
analysis/these-oems-are-launching-5genabled-cars-years-before-the-tech-.html.

INTEL. Intel® Celeron® Processor 1.30 GHz, 256K Cache, 100 MHz FSB. 2021. Last
accessed February 2021. Available at: https://ark.intel.com/content/www/us/en/ark/products/
27169/intel-celeron-processor-1-30-ghz-256k-cache-100-mhz-fsb.html.

INTEL. Intel® Xeon® Processor 2.60 GHz, 512K Cache, 400 MHz FSB. 2021. Last
accessed February 2021. Available at: https://ark.intel.com/content/www/us/en/ark/products/
27271/intel-xeon-processor-2-60-ghz-512k-cache-400-mhz-fsb.html.

INTERNATIONAL RAILWAY JOURNAL. Europe boosts spectrum allocation
for Intelligent Transport Systems. 2020. Last accessed March 2021. Available at:
https://www.railjournal.com/telecoms/europe-boosts-spectrum-allocation-for-intelligent-
transport-systems/.

JIANG, D.; DELGROSSI, L. Ieee 802.11 p: Towards an international standard for wireless
access in vehicular environments. In: IEEE. Vehicular Technology Conference, 2008. VTC
Spring 2008. IEEE. [S. l.], 2008. p. 2036–2040.

JONSSON, P.; DAVIS, S.; LINDER, P.; GOMROKI, A.; ZAIDI, A. et al. Ericsson mobility
report. Ericsson Mobility Report, p. 1–36, November 2020.

KANG, J.; YU, R.; HUANG, X.; WU, M.; MAHARJAN, S.; XIE, S.; ZHANG, Y. Blockchain
for secure and efficient data sharing in vehicular edge computing and networks. IEEE Internet
of Things Journal, IEEE, v. 6, n. 3, p. 4660–4670, 2018.

KARABOGA, D. An idea based on honey bee swarm for numerical optimization.
Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering
Department, Kayseri, p. 1–10, 2005.

KARABOGA, D.; AKAY, B. A comparative study of artificial bee colony algorithm. Applied
mathematics and computation, Elsevier, v. 214, n. 1, p. 108–132, 2009.

KHOSRAVANIAN, R.; MANSOURI, V.; WOOD, D. A.; ALIPOUR, M. R. A comparative study
of several metaheuristic algorithms for optimizing complex 3-d well-path designs. Journal of
Petroleum Exploration and Production Technology, Springer, v. 8, n. 4, p. 1487–1503, 2018.

KRAJZEWICZ, D. Traffic simulation with sumo – simulation of urban mobility. In:
Fundamentals of traffic simulation. New York: Springer, 2010. p. 269–293.

KRATSIOS, M. Emerging Technologies and their Expected Impact on Non-
Federal Spectrum Demand. 2019. Last accessed April 2021. Available at: https:
//trumpwhitehouse.archives.gov/wp-content/uploads/2019/05/Emerging-Technologies-and-
Impact-on-Non-Federal-Spectrum-Demand-Report-May-2019.pdf.

KUMAR, K.; LIU, J.; LU, Y.-H.; BHARGAVA, B. A survey of computation offloading for
mobile systems. Mobile Networks and Applications, Springer, v. 18, n. 1, p. 129–140, 2013.

KUNCHE, P.; REDDY, K. Metaheuristic Applications to Speech Enhancement. Cham:
Springer, 2016.

https://ihsmarkit.com/research-analysis/these-oems-are-launching-5genabled-cars-years-before-the-tech-.html
https://ihsmarkit.com/research-analysis/these-oems-are-launching-5genabled-cars-years-before-the-tech-.html
https://ark.intel.com/content/www/us/en/ark/products/27169/intel-celeron-processor-1-30-ghz-256k-cache-100-mhz-fsb.html
https://ark.intel.com/content/www/us/en/ark/products/27169/intel-celeron-processor-1-30-ghz-256k-cache-100-mhz-fsb.html
https://ark.intel.com/content/www/us/en/ark/products/27271/intel-xeon-processor-2-60-ghz-512k-cache-400-mhz-fsb.html
https://ark.intel.com/content/www/us/en/ark/products/27271/intel-xeon-processor-2-60-ghz-512k-cache-400-mhz-fsb.html
https://www.railjournal.com/telecoms/europe-boosts-spectrum-allocation-for-intelligent-transport-systems/
https://www.railjournal.com/telecoms/europe-boosts-spectrum-allocation-for-intelligent-transport-systems/
https://trumpwhitehouse.archives.gov/wp-content/uploads/2019/05/Emerging-Technologies-and-Impact-on-Non-Federal-Spectrum-Demand-Report-May-2019.pdf
https://trumpwhitehouse.archives.gov/wp-content/uploads/2019/05/Emerging-Technologies-and-Impact-on-Non-Federal-Spectrum-Demand-Report-May-2019.pdf
https://trumpwhitehouse.archives.gov/wp-content/uploads/2019/05/Emerging-Technologies-and-Impact-on-Non-Federal-Spectrum-Demand-Report-May-2019.pdf

131

LAUKKONEN, J. Car Batteries Are Made to Die. 2019. Last accessed February 2021.
Available at: https://www.lifewire.com/car-batteries-are-made-to-die-534765.

LI, B.; PEI, Y.; WU, H.; LIU, Z.; LIU, H. Computation offloading management for vehicular ad
hoc cloud. In: SPRINGER. International Conference on Algorithms and Architectures for
Parallel Processing. [S. l.], 2014. p. 728–739.

LI, C.; ZHANG, Y.; LUAN, T. H.; FU, Y. Building transmission backbone for highway vehicular
networks: Framework and analysis. IEEE Transactions on Vehicular Technology, IEEE,
v. 67, n. 9, p. 8709–8722, 2018.

LI, H.; LI, X.; WANG, W. Joint optimization of computation cost and delay for task offloading
in vehicular fog networks. Transactions on Emerging Telecommunications Technologies,
Wiley Online Library, v. 31, n. 2, p. e3818, 2020.

LI, X.; DANG, Y.; AAZAM, M.; PENG, X.; CHEN, T.; CHEN, C. Energy-efficient computation
offloading in vehicular edge cloud computing. IEEE Access, IEEE, v. 8, p. 37632–37644, 2020.

LIN, C.-C.; DENG, D.-J.; YAO, C.-C. Resource allocation in vehicular cloud computing systems
with heterogeneous vehicles and roadside units. IEEE Internet of Things Journal, IEEE, v. 5,
n. 5, p. 3692–3700, 2017.

LIU, Y.; WANG, S.; ZHAO, Q.; DU, S.; ZHOU, A.; MA, X.; YANG, F. Dependency-aware task
scheduling in vehicular edge computing. IEEE Internet of Things Journal, IEEE, v. 7, n. 6, p.
4961–4971, 2020.

L’HEUREUX, A.; GROLINGER, K.; ELYAMANY, H. F.; CAPRETZ, M. A. Machine learning
with big data: Challenges and approaches. Ieee Access, IEEE, v. 5, p. 7776–7797, 2017.

MALANDRINO, F.; CASETTI, C.; CHIASSERINI, C.-F.; SOMMER, C.; DRESSLER, F. The
role of parked cars in content downloading for vehicular networks. IEEE Transactions on
Vehicular Technology, IEEE, v. 63, n. 9, p. 4606–4617, 2014.

MARSCH, P.; BULAKCI, Ö.; QUESETH, O.; BOLDI, M. 5G system design: architectural
and functional considerations and long term research. Hoboken: John Wiley & Sons, 2018.

MENOUAR, H.; LENARDI, M.; FILALI, F. Movement prediction-based routing (mopr)
concept for position-based routing in vehicular networks. In: IEEE. Vehicular Technology
Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th. [S. l.], 2007. p. 2101–2105.

MEZZAVILLA, M.; ZHANG, M.; POLESE, M.; FORD, R.; DUTTA, S.; RANGAN, S.;
ZORZI, M. End-to-end simulation of 5g mmwave networks. IEEE Communications Surveys
& Tutorials, IEEE, v. 20, n. 3, p. 2237–2263, 2018.

MIDYA, S.; ROY, A.; MAJUMDER, K.; PHADIKAR, S. Multi-objective optimization
technique for resource allocation and task scheduling in vehicular cloud architecture: A hybrid
adaptive nature inspired approach. Journal of Network and Computer Applications, Elsevier,
v. 103, p. 58–84, 2018.

MISRA, S.; BERA, S. Soft-van: Mobility-aware task offloading in software-defined vehicular
network. IEEE Transactions on Vehicular Technology, IEEE, v. 69, n. 2, p. 2071–2078, 2019.

https://www.lifewire.com/car-batteries-are-made-to-die-534765

132

NABI, M.; BENKOCZI, R.; ABDELHAMID, S.; HASSANEIN, H. S. Resource assignment
in vehicular clouds. In: IEEE. 2017 IEEE International Conference on Communications
(ICC). [S. l.], 2017. p. 1–6.

NAIK, G.; CHOUDHURY, B.; PARK, J.-M. Ieee 802.11bd & 5g nr v2x: Evolution of radio
access technologies for v2x communications. IEEE Access, IEEE, v. 7, p. 70169–70184, 2019.

NAMBOODIRI, V.; GAO, L. Prediction-based routing for vehicular ad hoc networks. IEEE
Transactions on Vehicular Technology, IEEE, v. 56, n. 4, p. 2332–2345, 2007.

NGO, D. T.; NGUYEN, D. H. N.; LE-NGOC, T. Intercell interference coordination: Towards a
greener cellular network. Handbook of Green Information and Communication Systems, p.
147–182, 2013.

NING, Z.; WANG, X.; HUANG, J. Mobile edge computing-enabled 5g vehicular networks:
Toward the integration of communication and computing. IEEE Vehicular Technology
Magazine, IEEE, v. 14, n. 1, p. 54–61, 2018.

NS-3 TEAM. YansWifiPhy Class Reference. 2021. Last accessed February 2021. Available at:
https://www.nsnam.org/doxygen/classns3_1_1_yans_wifi_phy.html.

NUTS AND VOLTS MAGAZINE. Connected cars are coming. 2018. Last accessed March
2021. Available at: https://www.nutsvolts.com/magazine/article/connected-cars-are-coming.

ORGANIZATION 5G AMERICAS. Understanding mmWave Spectrum for 5G Networks.
2020. Last accessed April 2021. Available at: https://www.5gamericas.org/wp-content/uploads/
2020/12/InDesign-Understanding-mmWave-for-5G-Networks.pdf.

PANICHPAPIBOON, S.; PATTARA-ATIKOM, W. Connectivity Requirements for
Self-Organizing Traffic Information Systems. IEEE Transactions on Vehicular Technology,
v. 57, n. 6, p. 3333–3340, 2008.

PENTTINEN, J. 5G Explained - Security and Deployment of Advanced Mobile
Communications. Hoboken: Wiley Online Library, 2019.

PERERA, C.; ZASLAVSKY, A.; CHRISTEN, P.; GEORGAKOPOULOS, D. Context aware
computing for the internet of things: A survey. IEEE communications surveys & tutorials,
IEEE, v. 16, n. 1, p. 414–454, 2013.

PHAM, Q.-V.; FANG, F.; HA, V. N.; PIRAN, M. J.; LE, M.; LE, L. B.; HWANG, W.-J.; DING,
Z. A survey of multi-access edge computing in 5g and beyond: Fundamentals, technology
integration, and state-of-the-art. IEEE Access, IEEE, v. 8, p. 116974–117017, 2020.

PHAM, X.-Q.; NGUYEN, T.-D.; NGUYEN, V.; HUH, E.-N. Joint node selection and resource
allocation for task offloading in scalable vehicle-assisted multi-access edge computing.
Symmetry, Multidisciplinary Digital Publishing Institute, v. 11, n. 1, p. 58, 2019.

POLESE, M. Performance comparison of dual connectivity and hard handover for lte-5g tight
integration in mmwave cellular networks. arXiv preprint arXiv:1607.04330, 2016.

QIAO, G.; LENG, S.; ZHANG, K.; HE, Y. Collaborative task offloading in vehicular edge
multi-access networks. IEEE Communications Magazine, IEEE, v. 56, n. 8, p. 48–54, 2018.

https://www.nsnam.org/doxygen/classns3_1_1_yans_wifi_phy.html
https://www.nutsvolts.com/magazine/article/connected-cars-are-coming
https://www.5gamericas.org/wp-content/uploads/2020/12/InDesign-Understanding-mmWave-for-5G-Networks.pdf
https://www.5gamericas.org/wp-content/uploads/2020/12/InDesign-Understanding-mmWave-for-5G-Networks.pdf

133

RAHMAN, A. U.; MALIK, A. W.; SATI, V.; CHOPRA, A.; RAVANA, S. D. Context-aware
opportunistic computing in vehicle-to-vehicle networks. Vehicular Communications, Elsevier,
v. 24, p. 100236, 2020.

RAPPAPORT, T. S.; XING, Y.; MACCARTNEY, G. R.; MOLISCH, A. F.; MELLIOS, E.;
ZHANG, J. Overview of millimeter wave communications for fifth-generation (5g) wireless
networks—with a focus on propagation models. IEEE Transactions on Antennas and
Propagation, v. 65, n. 12, p. 6213–6230, 2017.

RAZA, S.; LIU, W.; AHMED, M.; ANWAR, M. R.; MIRZA, M. A.; SUN, Q.; WANG, S. An
efficient task offloading scheme in vehicular edge computing. Journal of Cloud Computing,
Springer, v. 9, p. 1–14, 2020.

RAZA, S.; WANG, S.; AHMED, M.; ANWAR, M. R. A survey on vehicular edge computing:
Architecture, applications, technical issues, and future directions. Wireless Communications
and Mobile Computing, Hindawi, v. 2019, p. 1–19, 2019.

REDMON, J.; FARHADI, A. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, p. eprint, 2018.

REGO, P. Applying Smart Decisions, Adaptive Monitoring and Mobility Support for
Enhancing Offloading Systems. Thesis (PhD) – Universidade Federal do Ceará, 2016.

REGO, P. A.; COSTA, P. B.; COUTINHO, E. F.; ROCHA, L. S.; TRINTA, F. A.; SOUZA, J. N.
de. Performing computation offloading on multiple platforms. Computer Communications,
Elsevier, v. 105, p. 1–13, 2017.

REIS, A. B.; SARGENTO, S.; TONGUZ, O. K. Parked cars are excellent roadside units. IEEE
Transactions on Intelligent Transportation Systems, IEEE, v. 18, n. 9, p. 2490–2502, 2017.

REIS, A. B.; SARGENTO, S.; TONGUZ, O. K. Smarter cities with parked cars as roadside units.
IEEE Transactions on Intelligent Transportation Systems, IEEE, v. 19, n. 7, p. 2338–2352,
2018.

RILEY, G. F.; HENDERSON, T. R. The ns-3 network simulator. In: Modeling and tools for
network simulation. [S. l.]: Springer, 2010. p. 15–34.

SANGUESA, J. A.; NARANJO, F.; TORRES-SANZ, V.; FOGUE, M.; GARRIDO, P.;
MARTINEZ, F. J. On the study of vehicle density in intelligent transportation systems. Mobile
Information Systems, Hindawi, v. 2016, p. 1–13, 2016.

SHAFI, M.; MOLISCH, A. F.; SMITH, P. J.; HAUSTEIN, T.; ZHU, P.; SILVA, P.
D.; TUFVESSON, F.; BENJEBBOUR, A.; WUNDER, G. 5g: A tutorial overview of
standards, trials, challenges, deployment, and practice. IEEE journal on selected areas in
communications, IEEE, v. 35, n. 6, p. 1201–1221, 2017.

SHAHAM, S.; DING, M.; KOKSHOORN, M.; LIN, Z.; DANG, S.; ABBAS, R. Fast channel
estimation and beam tracking for millimeter wave vehicular communications. IEEE Access,
IEEE, v. 7, p. 141104–141118, 2019.

SHARIFI, M.; KAFAIE, S.; KASHEFI, O. A Survey and Taxonomy of Cyber Foraging of
Mobile Devices. IEEE Communications Surveys & Tutorials, v. 14, n. 4, p. 1232–1243,
2012.

134

SHESKIN, D. J. Handbook of parametric and nonparametric statistical procedures. Boca
Raton: Chapman and Hall/CRC, 2000.

SHIN, Y.; CHOI, H.; NAM, Y.; LEE, E. Data delivery protocol using the trajectory information
on a road map in vanets. Ad Hoc Networks, Elsevier, v. 107, p. 102260, 2020.

SOMMER, C.; DRESSLER, F. Vehicular networking. Cambridge: Cambridge University
Press, 2014.

SONG, J.; WU, Y.; XU, Z.; LIN, X. Research on car-following model based on sumo. In: IEEE.
The 7th IEEE/International Conference on Advanced Infocomm Technology. [S. l.], 2014.
p. 47–55.

SOUZA, A. B.; CELESTINO, J.; XAVIER, F. A.; OLIVEIRA, F. D.; PATEL, A.; LATIFI, M.
Stable multicast trees based on ant colony optimization for vehicular ad hoc networks. In: IEEE.
The International Conference on Information Networking 2013 (ICOIN). [S. l.], 2013. p.
101–106.

SOUZA, A. B. D.; REGO, P. A.; CARNEIRO, T.; RODRIGUES, J. D. C.; FILHO, P. P. R.;
SOUZA, J. N. D.; CHAMOLA, V.; ALBUQUERQUE, V. H. C. D.; SIKDAR, B. Computation
offloading for vehicular environments: A survey. IEEE Access, IEEE, v. 8, p. 198214–198243,
2020.

STORCK, C. R.; DUARTE-FIGUEIREDO, F. A 5g v2x ecosystem providing internet of
vehicles. Sensors, Multidisciplinary Digital Publishing Institute, v. 19, n. 3, p. 550, 2019.

SUN, F.; HOU, F.; CHENG, N.; WANG, M.; ZHOU, H.; GUI, L.; SHEN, X. Cooperative task
scheduling for computation offloading in vehicular cloud. IEEE Transactions on Vehicular
Technology, IEEE, v. 67, n. 11, p. 11049–11061, 2018.

SUN, J.; GU, Q.; ZHENG, T.; DONG, P.; QIN, Y. Joint communication and computing
resource allocation in vehicular edge computing. International Journal of Distributed Sensor
Networks, SAGE Publications Sage UK: London, England, v. 15, n. 3, p. 1550147719837859,
2019.

SUN, Y.; GUO, X.; SONG, J.; ZHOU, S.; JIANG, Z.; LIU, X.; NIU, Z. Adaptive learning-based
task offloading for vehicular edge computing systems. IEEE Transactions on Vehicular
Technology, IEEE, v. 68, n. 4, p. 3061–3074, 2019.

SUN, Y.; SONG, J.; ZHOU, S.; GUO, X.; NIU, Z. Task replication for vehicular edge
computing: A combinatorial multi-armed bandit based approach. In: IEEE. 2018 IEEE Global
Communications Conference (GLOBECOM). [S. l.], 2018. p. 1–7.

TALBI, E.-G. Metaheuristics: from design to implementation. Hoboken: John Wiley &
Sons, 2009. v. 74.

TAN, L. T.; HU, R. Q.; HANZO, L. Twin-timescale artificial intelligence aided mobility-aware
edge caching and computing in vehicular networks. IEEE Transactions on Vehicular
Technology, IEEE, v. 68, n. 4, p. 3086–3099, 2019.

TEHRANI-MOAYYED, M.; RESTUCCIA, F.; BASAGNI, S. Comparative performance
evaluation of mmwave 5g nr and lte in a campus scenario. Proceedings of IEEE VTC 2020
Fall, 2020.

135

TONGUZ, O.; WISITPONGPHAN, N.; BAI, F.; MUDALIGE, P.; SADEKAR, V. Broadcasting
in VANET. 2007 Mobile Networking for Vehicular Environments, p. 7–12, 2007.

UCAR, S.; ERGEN, S. C.; OZKASAP, O. Multihop-cluster-based ieee 802.11 p and lte
hybrid architecture for vanet safety message dissemination. IEEE Transactions on Vehicular
Technology, IEEE, v. 65, n. 4, p. 2621–2636, 2015.

UZCATEGUI, R.; ACOSTA-MARUM, G. Wave: a tutorial. Communications Magazine,
IEEE, IEEE, v. 47, n. 5, p. 126–133, 2009.

VERMA, J. Repeated measures design for empirical researchers. Hoboken: John Wiley &
Sons, 2015.

VIRIYASITAVAT, W.; TONGUZ, O. K.; BAI, F. Uv-cast: an urban vehicular broadcast protocol.
IEEE Communications Magazine, IEEE, v. 49, n. 11, p. 116–124, 2011.

WANG, H.; LI, X.; JI, H.; ZHANG, H. Federated offloading scheme to minimize latency in
mec-enabled vehicular networks. In: IEEE. 2018 IEEE Globecom Workshops (GC Wkshps).
[S. l.], 2018. p. 1–6.

WANG, J.; FENG, D.; ZHANG, S.; TANG, J.; QUEK, T. Q. Computation offloading for mobile
edge computing enabled vehicular networks. IEEE Access, IEEE, v. 7, p. 62624–62632, 2019.

WANG, Y.; LANG, P.; TIAN, D.; ZHOU, J.; DUAN, X.; CAO, Y.; ZHAO, D. A game-based
computation offloading method in vehicular multi-access edge computing networks. IEEE
Internet of Things Journal, IEEE, 2020.

WANG, Z.; ZHONG, Z.; ZHAO, D.; NI, M. Vehicle-based cloudlet relaying for mobile
computation offloading. IEEE Transactions on Vehicular Technology, IEEE, v. 67, n. 11, p.
11181–11191, 2018.

WEVERS, K.; LU, M. V2x communication for its-from ieee 802.11 p towards 5g. IEEE 5G
Tech Focus, v. 1, n. 2, p. 5–10, 2017.

WHAIDUZZAMAN, M.; SOOKHAK, M.; GANI, A.; BUYYA, R. A survey on vehicular cloud
computing. Journal of Network and Computer Applications, Elsevier, v. 40, p. 325–344,
2014.

WORLD HEALTH ORGANIZATION. Number of registered vehicles. 2020. Last accessed
June 2021. Available at: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/
number-of-registered-vehicles.

WU, Q.; GE, H.; LIU, H.; FAN, Q.; LI, Z.; WANG, Z. A task offloading scheme in vehicular fog
and cloud computing system. IEEE Access, IEEE, v. 8, p. 1173–1184, 2019.

XU, D.; LI, Y.; CHEN, X.; LI, J.; HUI, P.; CHEN, S.; CROWCROFT, J. A survey of
opportunistic offloading. IEEE Communications Surveys & Tutorials, IEEE, v. 20, n. 3, p.
2198–2236, 2018.

YE, H.; LIANG, L.; LI, G. Y.; KIM, J.; LU, L.; WU, M. Machine learning for vehicular
networks: Recent advances and application examples. IEEE Vehicular Technology Magazine,
IEEE, v. 13, n. 2, p. 94–101, 2018.

https://www.who.int/data/gho/data/indicators/indicator-details/GHO/number-of-registered-vehicles
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/number-of-registered-vehicles

136

YOUSAFZAI, A.; YAQOOB, I.; IMRAN, M.; GANI, A.; NOOR, R. M. Process migration-based
computational offloading framework for iot-supported mobile edge/cloud computing. IEEE
Internet of Things Journal, IEEE, v. 7, n. 5, p. 4171–4182, 2019.

YOUSEFI, S.; MOUSAVI, M.; FATHY, M. Vehicular ad hoc networks (VANETs): challenges
and perspectives. In: ITS Telecommunications Proceedings, 2006 6th International
Conference on. [S. l.: s. n.], 2006. p. 761–766.

YOUSEFPOUR, A.; FUNG, C.; NGUYEN, T.; KADIYALA, K.; JALALI, F.; NIAKANLAHIJI,
A.; KONG, J.; JUE, J. P. All one needs to know about fog computing and related edge computing
paradigms: A complete survey. Journal of Systems Architecture, Elsevier, v. 98, p. 289–330,
2019.

YÜRÜR, Ö.; LIU, C. H.; SHENG, Z.; LEUNG, V. C.; MORENO, W.; LEUNG, K. K.
Context-awareness for mobile sensing: A survey and future directions. IEEE Communications
Surveys & Tutorials, IEEE, v. 18, n. 1, p. 68–93, 2014.

ZHANG, J.; GUO, H.; LIU, J.; ZHANG, Y. Task offloading in vehicular edge computing
networks: A load-balancing solution. IEEE Transactions on Vehicular Technology, IEEE,
v. 69, n. 2, p. 2092–2104, 2019.

ZHANG, J.; LETAIEF, K. B. Mobile edge intelligence and computing for the internet of
vehicles. Proceedings of the IEEE, IEEE, v. 108, n. 2, p. 246–261, 2019.

ZHANG, M.-D.; ZHAN, Z.-H.; LI, J.-J.; ZHANG, J. Tournament selection based artificial
bee colony algorithm with elitist strategy. In: SPRINGER. International Conference on
Technologies and Applications of Artificial Intelligence. [S. l.], 2014. p. 387–396.

ZHANG, X.; ZHANG, J.; LIU, Z.; CUI, Q.; TAO, X.; WANG, S. Mdp-based task offloading
for vehicular edge computing under certain and uncertain transition probabilities. IEEE
Transactions on Vehicular Technology, IEEE, v. 69, n. 3, p. 3296–3309, 2020.

ZHAO, L.; QU, S.; YI, Y. A modified cluster-head selection algorithm in wireless sensor
networks based on leach. EURASIP Journal on Wireless Communications and Networking,
SpringerOpen, v. 2018, n. 1, p. 1–8, 2018.

ZHOU, S.; SUN, Y.; JIANG, Z.; NIU, Z. Exploiting moving intelligence: Delay-optimized
computation offloading in vehicular fog networks. IEEE Communications Magazine, IEEE,
v. 57, n. 5, p. 49–55, 2019.

ZHOU, Z.; LIU, P.; CHANG, Z.; XU, C.; ZHANG, Y. Energy-efficient workload offloading and
power control in vehicular edge computing. In: IEEE. 2018 IEEE Wireless Communications
and Networking Conference Workshops (WCNCW). [S. l.], 2018. p. 191–196.

ZHU, C.; TAO, J.; PASTOR, G.; XIAO, Y.; JI, Y.; ZHOU, Q.; LI, Y.; YLÄ-JÄÄSKI, A. Folo:
Latency and quality optimized task allocation in vehicular fog computing. IEEE Internet of
Things Journal, IEEE, v. 6, n. 3, p. 4150–4161, 2018.

ZHU, L.; LI, C.; LI, B.; WANG, X.; MAO, G. Geographic routing in multilevel scenarios of
vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, IEEE, v. 65, n. 9, p.
7740–7753, 2016.

137

ZOBOLAS, G.; TARANTILIS, C. D.; IOANNOU, G. Exact, heuristic and meta-heuristic
algorithms for solving shop scheduling problems. In: Metaheuristics for scheduling in
industrial and manufacturing applications. [S. l.]: Springer, 2008. p. 1–40.

	Title page
	Acknowledgements
	Resumo
	Abstract
	List of abbreviations and acronyms
	Contents
	Introduction
	Contextualization
	Problem Statement
	Research Questions
	Objectives
	Methodology
	Contributions
	Publications
	Thesis Organization

	Background
	Vehicular Ad Hoc Networks
	Vehicular Communication Technologies
	WAVE
	5G

	Vehicular Edge Computing
	Computation Offloading
	Computation Offloading vs. Data Offloading

	Context
	Artificial Bee Colony
	Concluding Remarks

	Literature Review
	Communication Standard
	Technology
	Server
	Discussion

	Problem
	Strategy
	Discussion

	Experiment
	Scenario
	Vehicular Density
	Discussion

	Concluding Remarks

	System Model and Problem Formulation
	System Model
	Network General Structure
	Communication Model
	Computation Model
	Energy Model

	Problem Formulation
	Concluding Remarks

	Proposed Framework and Decision Algorithms
	Proposed Framework
	Framework Architecture
	Computation Offloading Process

	Decision Algorithms
	Greedy for CPU Free
	Greedy Task by Task
	ABC for Computation Offloading in VEC

	Concluding Remarks

	Evaluation
	Experimental Setup
	Preliminary Evaluation of Parameters
	Communication Range
	BCV Algorithm Parameters
	Known Routes of Vehicles
	Discussion

	Performance Evaluation of Algorithms
	Tasks by Occurrence Type
	Reduction in Execution Time
	Discussion

	Concluding Remarks

	Conclusion
	Responses to Research Questions
	General Discussion
	Future Work

	Bibliography

