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RESUMO

Dado um digrafo D = (V,A), onde todos os arcos (i, j)∈ A possuem um custo associado d(i, j)∈

R+ e uma cor c(i, j), um inteiro positivo k, uma fonte s, e um destino t, o Problema do Caminho

Mínimo k-Rotulado é um problema NP-Difícil que consiste em encontrar um (s, t)-caminho de

custo mínimo em D usando no máximo k cores distintas. Propomos desigualdades válidas que

fortalecem a relaxação linear de uma formulação existente na literatura de Programação Linear

Inteira. Propomos ainda uma nova formulação exponencial, que pode ser resolvida por meio de

um algoritmo de branch-and-cut. Introduzimos instâncias mais desafiadoras para o problema

e apresentamos experimentos numéricos para as benchmark e as novas instâncias. Finalmente,

avaliamos diferentes combinações das desigualdades válidas. Resultados computacionais para as

ideias propostas e para as abordagens existentes para o problema mostram a eficiência das novas

desigualdades em lidar com as novas instâncias ambos em termos de tempo de execução e em

proporcionar melhoria nas soluções relaxadas.

Palavras-chave: otimização combinatória; caminho mínimo k-rotulado; desigualdades válidas.



ABSTRACT

Given a digraph D = (V,A), where all arcs (i, j) ∈ A have an associated cost d(i, j) ∈ R+ and

a color c(i, j), a positive integer k, a source s, and a destination t, the k-Color Shortest Path

Problem is an NP-Hard problem that consists in finding the shortest (s, t)-path in D while using

at most k distinct colors. We propose valid inequalities for the problem that proved to strengthen

the linear relaxation of an existing Integer Linear Programming formulation. An exponential

set of valid inequalities defines a new formulation for the problem and is solved by using a

branch-and-cut algorithm. We introduce more challenging instances of the problem and present

numerical experiments for both benchmark and the new instances. Finally, we evaluate the

individual and the collective use of the valid inequalities. Computational results for the proposed

ideas and for existing solution approaches for the problem showed the effectiveness of the new

inequalities in handling the new instances both in terms of execution times and improving their

linear relaxed solutions.

Keywords: combinatorial optimization; k-color shortest path; valid inequalities.
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1 INTRODUCTION

The shortest path problem (SPP) is one of the most popular problems in combinatorial

optimization, defined in a weighted graph G = (V,E,d), where V is the set of vertices, E is the

set of edges, and d : E→ R is the edge cost function. It consists in finding the path of minimum

cost that connects a source s and a destination t. Numerous efficient algorithms are known for

the SPP. Assuming the graph has positive weight for every edge, the standard implementation of

Dijkstra’s algorithm return the shortest path, if one exists, in time O(|V |2) (DIJKSTRA, 1959).

In contrast, if G has negative weights, the Bellman-Ford algorithm can be used, as long as

there are no negative cycles, returning the solution in time O(|V ||E|) (BELLMAN, 1958). The

Resource Constrained Shortest Path Problem (BEASLEY; CHRISTOFIDES, 1989), the Multiple

k-Multicolor Paths (SANTOS et al., 2017), and the k-Colored Shortest Path (FERONE et al.,

2019) are some extensions, among several others, of the standard SPP that are known to be

NP-Hard.

In this work, we are interested in the k-Color Shortest Path Problem (k-CSPP). To

describe it, let us define an arc-colored weighted digraph D = (V,A,c,d), where every arc

(u,v) ∈ A has a positive cost d(u,v) and a color c(u,v). Given a source s ∈V and a destination

t ∈ V vertices, and a positive integer k, the k-CSPP consists in finding an (s, t)-path in D of

minimum cost while using at most k distinct arc colors. The problem was studied independently

by Ferone et al. (2019) and Dehouche (2020). In addition, Li et al. (2001) showed that finding

an (s, t)-path in an edge-colored graph with at most k colors is NP-Complete, which implies that

there does not exist a polynomial-time algorithm or approximation algorithm that allows finding

a feasible solution for an arbitrary instance of the problem unless P = NP. An illustration of the

problem is depicted in Fig. 1.

Figure 1 – Illustration of an instance of the k-CSPP. For k ≥ 3 the (s, t)-path of minimum cost

is given by s red−−→ 3 blue−−→ 4
orange−−−−→ t with cost 3. When k = 2, the optimal solution is given by

s red−−→ 1 blue−−→ 2 red−−→ t with cost 7.

ss

1 2

3 4

t

2

2

3

1

1

1

Source: The author.
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Among the applications of the k-CSPP, we have finding the shortest route between

two stations in a transportation network (DEHOUCHE, 2020) and finding the shortest route

between a pair of nodes, in a WDM network, using at most k distinct wavelengths, mapping each

wavelength in an optical link to a color in the corresponding edge-colored graph (SANTOS et

al., 2017).

1.1 Related Works

Optimization problems defined on edge-colored graphs can encode qualitative in-

formation using colors (or labels). They can represent different alternatives of transportation in

multi-modal networks or types of connections in computer systems.

Yuan et al. (2005) proposed the Minimum Color Path Problem (MCPP), motivated

by its applications on the design of reliable networks. The problem consist in finding an (s, t)-

path that uses as few colors as possible. Assuming each color has the same failure probability,

minimizing the number of colors in the path also minimizes the failure probability of that path.

On their work, Yuan et al. (2005) introduced two heuristics for the problem, mathematical

formulations, as well as an edge-disjoint paths variation considering two distinct objective

functions. More recently, Kumar (2019) proposed three classes of hard instances for the problem,

these being layered graphs, unit disk intersection graphs, and road networks, as well as an

O(n2/3)-approximation algorithm, and two greedy heuristics.

Regarding the k-CSPP, Ferone et al. (2019) proposed an Integer Linear Program-

ming (ILP) formulation and a specialized branch-and-bound (B&B) algorithm. Following their

work, Ferone et al. (2021) introduced a dynamic programming algorithm that outperformed

previous methods. More recently, Cerrone and Russo (2023) introduced a polynomial-time

Dijkstra-based heuristic and a graph reduction procedure for the problem, being able to signifi-

cantly reduce the size of the benchmark instances.

The Single k-Multicolor Path Problem (SMPP) is closely related to the k-CSPP and

was studied by Santos et al. (2017). It aims at finding a single (s, t)-path of minimum cost using

exactly k colors, for a given k ∈ Z+. For the input graph of the SMPP, an edge is associated with

a subset of colors. As mentioned earlier, the problem has applications in finding the shortest path

between two nodes in a WDM network using exactly k distinct wavelengths.

Similar problems defined over edge-colored graphs were extensively studied in the

literature. The Maximum-Flow Minimum-Label Problem (MF-ML), with applications in the pu-
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rification of water in the distribution process (GRANATA et al., 2013), aims to find the maximum

flow that uses the minimum number of distinct labels. The k-Labeled Spanning Tree Problem

consists of finding a spanning tree of minimum cost with at most k labels. Finally, the Orderly

Colored Longest Path Problem (OCLPP), with applications in the field of genetics (CARRABS

et al., 2019), aims to find the longest path in an arc-colored digraph that follows a given color

ordering.

1.2 Our objectives

There still is much to be explored regarding heuristics, valid inequalities, challenging

instances, and exact method approaches for the k-CSPP. Our main objectives are to propose more

challenging instances, new valid inequalities for the mathematical formulation of Ferone et al.

(2019), and new models for the problem.

Regarding the new instances, we divide them into three groups. For all groups, the

instances have at least 1015 distinct (s, t)-paths. The arc weights are selected uniformly at random

from a given interval, rendering it challenging for the heuristic of Cerrone and Russo (2023) to

identify a feasible solution and for the dynamic programming of Ferone et al. (2021) to execute

effective pruning of unproductive paths. In order to explore the trade-off between the difficulty

of finding a feasible solution and its cost, the second group of new instances was created, while

the third was created to penalize greedy procedures.

For us, a set of instances is said to be challenging if, on average, it takes more time

for the solver to obtain their optimal solutions than for resolving the benchmark ones. With that

in mind, our work will be devoted to analyzing the following hypotheses: our valid inequalities

strengthen the linear relaxation of the model proposed by Ferone et al. (2019); the solution

techniques from the literature are not efficient for our new set of instances; and to check whether

the new instances are more challenging than the ones from the literature.

The remainder of this document is organized as follows. In Chapter 2 we present

exact methods, heuristics, and preprocessing algorithms introduced in the literature for the k-

CSPP. In Chapter 3 we explore the main contributions of this work, that being a new exponential-

size model for the k-CSPP and valid inequalities for the model introduced by Ferone et al. (2019).

In Chapter 4 we present computational results for a set of instances of the literature and for the

new instances. Finally, in Chapter 5 we present the concluding remarks.
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2 SOLUTION APPROACHES FROM THE LITERATURE

In this chapter, we detail the methods proposed in the literature to solve the k-CSPP.

2.1 Exact Methods

In this section, we discuss the exact methods to solve the k-CSPP. In Section 2.1.1 we

detail a polynomial-size integer programming model due to Ferone et al. (2019). In Section 2.1.2,

we detail a branch-and-bound (B&B) algorithm (FERONE et al., 2019). Lastly, in Section 2.1.3,

we discuss a dynamic programming algorithm introduced by Ferone et al. (2021) that uses

pruning strategies based on the concepts of dominating and feasible paths.

2.1.1 Problem formulation

Initially, we introduce some notation. For every vertex v ∈ V , we denote its node

out-neighborhood (resp. in-neighborhood) by δ+(v) (resp. δ−(v)). Let C be the set formed

by the colors of D. The first model (FFP) for the problem is due to Ferone et al. (2019). Let

xuv, for all (u,v) ∈ A, be a decision variable to represent if arc (u,v) belongs to the solution,

xuv = 1, or xuv = 0, otherwise. Let a decision variable yh, for all h ∈C, be equal to 1 if color h

is in the solution path and 0, otherwise. Lastly, we denote by Ah the set of arcs of color h. The

formulation is a follows.

(FFP) min ∑
(u,v)∈A

duvxuv (2.1)

s.t. ∑
v∈δ−(u)

xvu− ∑
v∈δ+(u)

xuv =


−1 if u = s

+1 if u = t

0 otherwise

, ∀ u ∈V, (2.2)

xuv ≤ yh, ∀ (u,v) ∈ Ah, ∀h ∈C (2.3)

∑
h∈C

yh ≤ k, (2.4)

xuv ∈ {0,1}, ∀ (u,v) ∈ A, (2.5)

yh ∈ {0,1}, ∀ h ∈C. (2.6)

The objective function (2.1) minimizes the cost of the (s, t)-path. Flow conservation
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constraints (2.2) guarantee the path connectivity. Constraints (2.3) ensure that if arc (u,v) is

present in the path, then color c(u,v) is also used. Constraint (2.4) imposes that at most k distinct

colors are in the solution. Finally, constraints (2.5) and (2.6) are the domain of the variables.

Model (FFP) has O(|V |+ |A|+1) constraints and O(|A|+ |C|) decision variables. Observe that

if a given color does not belong to the solution, then all variables w.r.t. the arcs of that color

can be set to zero. Because the integrality constraints (2.5) on the x variables, the integrality

constraints (2.6) on y are irrelevant.

2.1.2 Branch-and-Bound Algorithm

In this section, we discuss the B&B algorithm for the k-CSPP proposed by Ferone et

al. (2019). The idea of the B&B procedure is to solve a SPP for every node in the search tree

by noticing that the relaxation of constraints (2.3) and (2.4) turns model (FFP) into the standard

shortest path problem. Assuming that a node solution uses more than k colors, the procedure

avoids using the arcs of some colors belonging to the solution and compute the shortest path in

the resulting subgraph with the forbidden colors. Let zi denote the solution of the i-th generated

B&B node in the search tree. If |C(zi)| > k, this node is partitioned into |C(zi)| subproblems,

one for each color in zi imposed not to belong to the solution. The order in which the nodes are

generated is based on the absolute frequency of the colors on zi, removing the lesser frequent

colors first. The incumbent solution is then updated every time a feasible path with better solution

value is found.

Figure 2 – Digraph instance for which the B&B procedure from literature (FERONE et al.,
2019) solves the same subproblem (i.e. yred = yblue = 0) twice.
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We observe that the procedure proposed by (FERONE et al., 2019) can occasionally

solve the same subproblem more than once. To illustrate, consider the digraph depicted in Fig. 2
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Figure 3 – A partial B&B search tree for the algorithm proposed in the literature (FERONE et
al., 2019) executed on the digraph depicted in Fig. 2.
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and define k = 1. We show the corresponding partial B&B search tree in Fig. 3, obtained by

using an implementation of the algorithm with a breadth-first search strategy. The cost and

number of colors of the path are shown on the side of its corresponding node. We denote by P∞

the case where no (s, t)-path exists on the subgraph. Initially, we calculate the shortest (s, t)-path

of the instance shown in Fig. 2 in the root node 0 to obtain P1 = s red−−→ 1→ blue−−→ 2 red−−→ t. Since

|C(P1)|> k, we execute the branching procedure on its colors, generating nodes 1 and 2 in the

B&B tree to be solved in the subgraph without arcs of color blue and red, respectively. A feasible

solution is found in node 8, shown in green. Notice that the subproblem where arcs of color blue

and red are removed from the digraph is solved twice.

2.1.3 Dynamic Programming

Ferone et al. (2021) developed a label-setting dynamic programming algorithm to

solve the k-CSPP to optimality. It relies on the concepts of feasible and dominated paths. Let

Ps,u denote an (s,u)-path. Define P(u) as the set of all paths from s to u. A path Ps,u is said

to be feasible if |C(Ps,u)| ≤ k. Given two paths P′s,u and P′′s,u, path P′s,u is said to dominate P′′s,u

if C(P′s,u)⊆C(P′′s,u) and d(P′s,u)≤ d(P′′s,u). At least one of these conditions must be strict. The

dominance condition avoids exploring unfruitful paths.
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Algorithm 1: Dynamic Programming Algorithm
1: Input: An arc-colored digraph D = (V,A,c,d), s, t, k
2: Output: A feasible path for the k-CSPP
3: Initialization: Ps←{s}; P(s)←{Ps}; Q←{Ps}; ∆← ∞

4: for v ∈V \{s} do
5: P(v)← /0
6: end for
7: while Q ̸= /0 do
8: P← EXTRACT(Q);
9: if d(P)< ∆ and last(P) = t then

10: ∆← d(P)
11: best← P
12: else
13: for v ∈ N+(last(P)) do
14: P′← P∪{v}
15: d(P′)← d(P)+d(last(P),v)
16: C(P′)←C(P)∪ c(last(P),v)
17: if CHECKFEASIBILITY(C(P′)) = TRUE and

CHECKDOMINANCE(v,d(P′),C(P′)) = FALSE then
18: Remove from P(v) and Q all partial paths that are dominated by P′

19: Q← Q∪P′

20: end if
21: end for
22: end if
23: end while
24: return best

For the algorithm, Ferone et al. (2021) proposed five extraction rules to choose the

next subpath Ps,u from the queue. For simplicity, let last(P) be the last node in path P, and

characterize a path by the set of nodes belonging to it. The first rule is a Dijkstra-like rule (DR),

where the next path to be explored is the one of minimum cost. The authors also explored the

standard First-In First-Out (FIFO) rule, where the extracted path is the one in the queue for the

longest time, and Last-In First-Out (LIFO) rule, where we extract the last path inserted in the

queue. The last rule is the Small-Label-First (SMF). In this rule, every time a new path P is to

be added to the list of paths to a node, we check if d(P)< d(P′), where P′ is the path currently

at the head of the list. If the condition is satisfied, P is placed at the head of the list, otherwise

it is placed at its tail. Lastly, in the A∗ rule, we extract the path P where d(P)+π(last(P), t) is

minimum, where π(last(P), t) corresponds to the shortest path value between the last visited

node in P, say last(P), and t.

A pseudocode for the dynamic programming algorithm is presented in Algorithm 1.

In lines 3–6, the initial path Ps is initialized, containing only the source s, the list of paths P(u)
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for u ∈V , the path queue Q, and the objective value upper bound ∆. In line 7, we extract a path

from Q using one of the five possible extracting rules explored by Ferone et al. (2021). In line 8,

we extract a path from the queue or list based on one of the extraction rules defined above. In

lines 9–12, we verify if P is an (s, t)-path and if its cost is less than the cost of the current best

solution. If both conditions are true, then we update the upper bound ∆ and the best solution,

otherwise we continue the construction of an (s, t)-path. In lines 13–16, we expand for every

node v in the out-neighborhood of last(P), and update its cost as well as its colors. In line 17,

we check if the current path is feasible and non-dominated by any other path in P(last(P)). To

avoid wasting time, in line 18, we remove all paths dominated by P′ from the queue and from the

list of paths reaching last(P′). Finally, in line 19, we add the path P′ to the queue. By assuming

the A∗ extraction policy, the algorithm runs in time O((|V |−2)N(k)2), where N(k) = ∑
k
l=1

(|C|
l

)
.

2.2 Heuristics

Concerning existing heuristics for the k-CSPP, we have the work due to Cerrone and

Russo (2023). The authors propose a constructive polynomial Dijkstra-based algorithm called

Color Constrained Dijkstra Algorithm (CCDA) and a graph reduction algorithm (GRA). The

latter is detailed in the next section.

The idea behind CCDA is to iteratively construct an (s, t)-path using Dijkstra’s algo-

rithm, while imposing penalties for when new colors are used to reach a vertex. For this, the penal-

ties are chosen from a list of values Λ previously defined (CERRONE; RUSSO, 2023). Let wmin

denote the minimum arc cost in the digraph, wmean the average arc cost and wmax the maximum. In

the literature, Λ is defined by {0, wmin/4, wmin/2, wmin, 2wmin, wmean/4, wmean/2, wmean, wmax}

(CERRONE; RUSSO, 2023).

The penalized Dijkstra’s algorithm works as usual, except the way the arc costs are

defined. The CCDA considers, in increasing order, the values of penalties λ ∈ Λ, one at a time,

starting from the smallest to the largest value. When updating the estimate of the path cost from

s to a vertex v ∈ V \ {s}, if c(u,v) is not present in the partial (s,v)-path, then one considers

the penalized arc cost duv +λ . For λ = 0, the algorithm is equivalent to the standard Dijkstra

algorithm. In addition to the predecessor of each vertex, it is also necessary to keep the list of

colors in the (s,v)-path. The algorithm is intended to stop with a feasible path when it reaches t.

The complexity of CCDA depends on the one of the classic Dijkstra’s algorithm and on the

number of penalty values in Λ, that being O(|Λ|D) where D is the complexity of Dijkstra’s



20

algorithm.

For some instances, the CCDA (CERRONE; RUSSO, 2023) stops without returning

any feasible solution. The effectiveness of the heuristic depends on the interval of the penalty

values defining Λ. Indeed, in Fig. 4, if we define a penalty value λ in the interval [0,3] as

the literature suggests (CERRONE; RUSSO, 2023), then for every penalty λ , CCDA always

proposes as solution the path s red−−→ 3 blue−−→ 4
orange−−−−→ t of three colors. This should be a problem

if k = 2. To overcome this drawback, we allow the maximum value of λ to assume values larger

than the maximum arc cost present in the digraph, e.g., 2×wmax. For the example in Fig. 4, the

value λ = 6 leads CCDA finding the optimal two-colors path s red−−→ 1 blue−−→ 2 red−−→ t.

Figure 4 – Execution of the CCDA heuristic for a digraph instance for which it fails to obtain
a feasible (s, t)-path with at most k = 2, if we adopt penalties from the interval λ ∈ [0,3]. The
notation on each arc (u,v) is duv +λ , except for the arc (2, t) of cost 3 because its color is the
same as the one of the arc (s,1).
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2.3 Pre-processing

Cerrone and Russo (2023) also proposed a graph reduction algorithm for the k-CSPP.

The general idea behind the algorithm is to use an upper bound ub to eliminate unfruitful paths

from the digraph. The algorithm removes a vertex v from the digraph if the shortest path

containing it, i.e. the concatenation of the shortest (s,v)-path and (v, t)-path, is more expensive

than ub. Reducing the size of an instance can be crucial to achieve lower computational times in

large case scenarios. To obtain an upper bound the authors employed the heuristic detailed in the

previous section.

Proposition 2.1. (CERRONE; RUSSO, 2023) Consider a graph G = (V,E), where s, t ∈V are

respectively defined as the source and destination vertices. Let P(u,v) denote a generic path and

consider a vertex v ∈V . If π(s,v)+π(v, t)> d(P(s, t)), then all paths that pass through v have

cost higher than d(P(s, t)).

We show a pseudocode of this procedure in Algorithm 2. Lines 3–4 iterates through

every vertex u in the digraph that does not belong to the feasible solution used for the upper

bound, except for the source and destination nodes. If u is not part of the feasible path P̄ found

by the heuristic of Cerrone and Russo (2023), and the cost of the shortest (s, t)-path containing it

is greater than the current upper bound ub, we proceed with its removal. Lines 5–7 removes u

and all its adjacent arcs from the input digraph D.

Algorithm 2: Graph Reduction Algorithm
1: Input: An arc-colored digraph D = (V,A,c,d), a feasible path P̄, and ub.
2: Output: A reduced arc-colored digraph D.
3: for v ∈V \ s, t do
4: if v /∈ P̄ and π(s,v)+π(v, t)> ub then
5: V ′←V \{v};
6: A′← A\{(v,u) ∈ A : u ∈ δ−(v)}∪{(u,v) ∈ A : u ∈ δ+(v)};
7: D = (V ′,A′,c,d);
8: end if
9: end for

The procedure’s efficiency heavily depends on the quality of the feasible solution

found by a heuristic. It may be beneficial to spend more time in search for a feasible path and

employing strategies to improve upon the solution found. This presents an obstacle for the

effective use of both the heuristic introduced in the previous section and the reduction procedure.



22

3 VALID INEQUALITIES

In this section, we propose valid inequalities for the k-CSPP. We observe that the

following inequalities are also valid for general single-path problems in arc-colored digraphs.

We cawn also extend the valid inequalities proposed in this chapter to problems in edge-colored

degree-constrained tree problems. For that, let α+ (resp. α−) be the maximum number of arcs

that can leave (resp. enter) a node in the corresponding digraph. It is sufficient to multiply the

right-hand side of the inequalities by the corresponding maximum degree constant. In fact, for

single-path problems, we assume α+ = α− = 1. To begin our discussion, consider the instance

depicted in Fig. 5 and assume a standard SPP integer linear programming formulation.

Figure 5 – An instance of the k-CSPP for k = 2.
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By solving the model for the instance above, we obtain the path P0 = {(s,2),(2,4),

(4, t)} with three colors and cost 3. Because P0 is infeasible, there is at least 1 color belonging

to P0 that is not used in a feasible solution. To remove the extra color, we isolate the arcs of

same color, constructing the inequality xs,2 + x2,4 + x4,t ≤ 2. After its addition into the model,

we solve it to obtain P1 = {(s,3),(3,6),(6,4),(4, t)} with three colors and cost 6, which is also

infeasible, and consequently we construct the valid inequality 1
2(xs,3+x4,t)+x3,6+x6,4 ≤ 2. For

the model with the two newly added inequalities, the solution is P∗ = {(s,3),(3,4),(4, t)} with

two colors and cost 7. From this, observe that we can estimate the value of a variable yh in any

(s, t)-path P according to (1/|AP
h |) ∑

(u,v)∈AP
h

xuv, where AP
h denotes the set of arcs of P of color h.

The set of distinct colors in P, say C(P), must contain at most k elements.

We now present an exponential-size formulation for the k-CSPP. It is based on the

previous inequality to cut off any infeasible path having more than k distinct arc colors.



23

(PCM) min ∑
(u,v)∈A

duvxuv

s.t. (2.2), (2.5), and

∑
h∈C(P)

1
|AP

h |
∑

(u,v)∈AP
h

xuv ≤ k, ∀ P ∈P, (3.1)

where P stands for the set of all (s, t)-paths of D. Model (PCM) has O(|V |!) constraints and

O(|A|) variables. Because of the number of constraints, we explore this formulation as cuts in a

branch-and-cut (B&C) algorithm.

Now, we note that in any (s, t)-path, at most one arc leaves or enters a vertex u ∈V .

Consequently,

∑
v∈δ+(u)

xuv ≤ 1, ∀ u ∈V \{t}, (3.2)

∑
v∈δ−(u)

xvu ≤ 1, ∀ u ∈V \{s}. (3.3)

Although inequalities (3.2) and (3.3) are straightforward, from them, we propose the

next set of valid inequalities regarding arcs of the same color leaving or entering a given vertex

u ∈V .

Proposition 3.1. In any (s, t)-path, the number of arcs of color h leaving (or entering) a vertex u

is limited above by yh.

∑
v∈δ+(u)
c(u,v)=h

xuv ≤ yh, ∀ u ∈V, ∀ h ∈C, (3.4)

∑
v∈δ−(u)
c(v,u)=h

xvu ≤ yh, ∀ u ∈V, ∀ h ∈C. (3.5)

Figure 6 – Instance: arc-colored digraph D1. This instance has Ared = {(s,1),(1,2),(s,3)},
Ablue = {(1,4),(3,4),(2, t)}, and Aorange = {(4, t)}.
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Figure 7 – Optimal linear relaxed solution of cost 3.5 for the instance depicted in Fig. 6 for
k = 2. In this solution, we have yred = yblue = 0.5 and yorange = 1.
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The proof of Proposition 3.1 is straightforward. Note that both (3.4) and (3.5) cut

off fractional solutions where two or more arcs of the same color leave or enter a given node.

For example, consider the instance D1 shown in Fig. 6. Its optimal linear relaxation solution is

depicted in Fig. 7. By adding inequalities x1,2 + x1,4 ≤ yred and x2,5 + x4,5 ≤ yblue we improve

on the value of the linear relaxation objective value, resulting in the support graph depicted

in Fig. 8 with cost equal to 5. We observe that for the resulting relaxed solution, yred = 1.

Constraints (3.4)–(3.5) also strengthen some constraints (2.3).

Figure 8 – Optimal linear relaxed solution for the instance depicted in Fig. 6 for k = 2 of cost
5 and addition of inequalities x1,2 + x1,4 ≤ yred and x2,5 + x4,5 ≤ yblue. In this solution, we have
yred = 1 and yblue = yorange = 0.5.
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We can extend the idea of Proposition 3.1 for pairs of non-reachable vertices. Let

R(u) be the set of vertices reachable by u in D. If for two vertices u and v we have v /∈ R(u) and

u /∈ R(v), i.e., there is neither an (u,v)-path nor a (v,u)-path in the digraph, then the number

of arcs of color h leaving (resp. entering) or leaving one vertex and entering another one is

limited by yh. A pair of vertices satisfying the aforementioned condition can be easily obtained

by running a breadth-first search or depth-first search on the support graph, or by using a naive

O(|V |2 + |V ||A|) algorithm on the original digraph.

Proposition 3.2. Consider vertices u,v ∈ V such that v /∈ R(u) and u /∈ R(v). The number of
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Figure 9 – Optimal relaxed solution of cost 7 for the instance depicted in Fig. 6 for k = 2 with
the addition of inequalities x1,2 + x1,4 ≤ yred, x1,4 + x2,3 ≤ yred, and x2,5 + x4,5 + x3,6 ≤ yblue.
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arcs of color h entering or leaving u and v is limited above by yh.

∑
j∈δ+(v)
c(v, j)=h

xv j + ∑
j∈δ+(u)
c(u, j)=h

xu j ≤ yh, ∀ u,v ∈V, v /∈ R(u), u /∈ R(v), ∀ h ∈C, (3.6)

∑
j∈δ+(v)
c(v, j)=h

xv j + ∑
j∈δ−(u)
c( j,u)=h

x ju ≤ yh, ∀ u,v ∈V, v /∈ R(u), u /∈ R(v), ∀ h ∈C, (3.7)

∑
j∈δ−(v)
c( j,v)=h

x jv + ∑
j∈δ−(u)
c( j,u)=h

x ju ≤ yh, ∀ u,v ∈V, v /∈ R(u), u /∈ R(v), ∀ h ∈C. (3.8)

Proof. As v /∈ R(u) and u /∈ R(v), u and v cannot appear simultaneously in a feasible solution.

Thus, at most one of the arcs of color h can leave or enter both vertices, or leave one and enter

the other vertex if this color belongs to the solution.

To illustrate Proposition 3.2, consider D1 and its optimal linear relaxation shown in

Fig. 8 after the addition of inequalities x1,2 + x1,4 ≤ yred and x2,5 + x4,5 ≤ yblue. In addition to

these inequalities, derived from Proposition 3.1, we also derive the inequalities x1,4 + x2,3 ≤ yred

and x2,5+x4,5+x3,6 ≤ yblue by noticing that vertices 3 and 5 can not belong to the same solution.

The same applies to vertices 2 and 4. Their addition into the model allow us to obtain an integer

solution with cost 7. We note that inequalities (3.6)–(3.8) strengthen inequalities (3.4) and (3.5).

The idea can be further extended for any set N ⊆V containing only non-reachable

vertices. Since u /∈ R(v) and v /∈ R(u) for all pairs u,v ∈ N, then we can limit the total number

of arcs of the same color that can leave (resp. enter) this set. A formal description is given in

Proposition 3.3.

Proposition 3.3. Let N ⊆V be such that for any two vertices u and v of N, v /∈ R(u) and u /∈ R(v).

Let Q⊆ N. The number of arcs of color h leaving Q and entering N \Q is limited above by yh if

color h belongs to the solution.

∑
u∈Q

∑
j∈δ+(u)
c(u, j)=h

xu j + ∑
v∈N\Q

∑
j∈δ−(v)
c( j,v)=h

x jv ≤ yh, ∀ N ⊆V, ∀ Q⊆ N, ∀ h ∈C. (3.9)
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Proof. The result follows from the fact that at most one of the arcs of a given color h incident to

the non-reachable vertices of N can belong to the solution if this color also belongs.

The following proposition explores the fact that if there exists an arc (u,v) such that

u is not reachable by v, and there exists vertices j ∈ N+(u)\{v} that do not reach v, then only

one of the arcs of the same color, say h, leaving u and not reaching v as well as from v to δ+(v)

can belong to the solution.

Figure 10 – Instance: arc-colored digraph D2. For this instance, we have Ared = {(1,4),
(2,5),(2,6)}, Ablue = {(2,7),(3,5),(4,5)}, Aorange = {(5,8),(7,8)}, and Ablack = {(1,2),
(1,3),(3,6),(3,7),(4,7),(6,8)}.
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Proposition 3.4. For every arc (u,v) ∈ A such that u /∈ R(v), the number of color h arcs from

u to vertices in δ+(u)\{v} that does not reach v, and leaving v of that color, is limited above

by yh.

∑
j∈δ+(u)\{v}

v/∈R( j)
c(u, j)=h

xu j + ∑
j∈δ+(v)
c(v, j)=h

xv j ≤ yh, ∀ (u,v) ∈ A,u /∈ R(v),∀ h ∈C. (3.10)

Proof. Consider an arc (u,v) ∈ A. By assumption, u /∈ R(v). For all j ∈ δ+(u) \ {v} with

v /∈ R( j), the arcs (u, j) of any color h cannot be used in the same solution with arcs leaving v of
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Figure 11 – Optimal relaxed solution for the instance depicted in Fig. 10 of cost 18.25 for k = 1.
This solution has yred ≈ 0.167, yblue ≈ 0.083, yorange ≈ 0.333, and yblack ≈ 0.417.
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Figure 12 – Optimal relaxed solution for the instance depicted in Fig. 10 of cost approximately
20.33 for k = 1 with the addition of inequality x3,7+x6,8 ≤ yblack. This solution has yred ≈ 0.333,
yorange ≈ 0.333, and yblack ≈ 0.333.
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this color. Consequently, the sum of the corresponding x variables for these arcs is limited above

by yh.

We give an example of Proposition 3.4 for the digraph D2 shown in Fig. 10. Let us

assume k = 1, the optimal linear relaxation for the instance is depicted in Fig. 11. Consider the

arc (3,6) and the vertices 5 and 7 from the out-neighborhood of 3. Since there is only one color

in the out-neighborhood of the vertex 6, we only consider the arcs (3,7) and (6,8) of color black.

Thus, from inequality (3.10), we derive the valid inequality x3,7 + x6,8 ≤ yblack for this instance.

The addition of this inequality slightly improves the linear relaxation, as shown in Fig. 12.

We now further generalize the idea behind Proposition 3.4. Let us denote by Nv ⊆
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δ−(v) a maximal set of vertices such that for all pairs of vertices u,v ∈ Nv, we have that u /∈ R(v)

and v /∈ R(u).

Proposition 3.5. If Nv ̸= /0, for some vertices v ∈V \{s, t}, then the number of arcs of a color

h ∈C leaving Nv to vertices j ∈ δ+(Nv) \ {v}, such that v /∈ R( j), and those leaving v of this

color is at most yh.

∑
u∈Nv

∑
j∈δ+(u)
v/∈R( j)

c(u, j)=h

xu j + ∑
j∈δ+(v)
c(v, j)=h

xv j ≤ yh, ∀ v ∈V \{s, t}, Nv ⊆ δ
−(v), ∀ h ∈C (3.11)

Proof. Consider a vertex v ∈V \{s, t} and a color h ∈C for which there is at least one arc from

Nv to δ+(Nv)\{v} of this color. By definition of Nv, at most one arc of these arcs can belong to

the solution because their heads do not reach each other. The same is valid for the arcs leaving v.

Moreover, neither these heads reach v nor v reach them. Consequently, at most one of all these

arcs can be in the solution and, in particular, the ones of color h if it is in the solution. Thus, the

result follows.

Figure 13 – Instance: arc-colored digraph D3. For this instance, Ared = {(2,5),(5,9),
(6,8),(7,8),(7,10)}, Ablue = {(1,2)}, Aorange = {(1,4),(4,7),(5,8),(9,11), (10,11)},
Ablack = {(2,6),(2,7),(3,6),(3,7),(5,10),(6,9), (7,9), (8,11)}, and Agreen = {(1,3),
(3,5),(4,5),(4,6),(6,10)}.
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Figure 14 – Optimal relaxed solution for the instance depicted in Fig. 10 for k = 2. The solution
has cost 19.33. This solution has yred ≈ 0.167, yblue ≈ 0.667, yorange ≈ 0.667, yblack ≈ 0.333,
and ygreen ≈ 0.167.
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Figure 15 – Optimal relaxed solution for the instance depicted in Fig. 10 for k = 2 of cost
19.54 with the addition of inequality x2,6 + x8,11 ≤ yblack + x6,8. This solution has yred ≈ 0.182,
yblue ≈ 0.727, yorange ≈ 0.636, yblack ≈ 0.364, and ygreen ≈ 0.091.
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The next valid inequality is based on the fact that, if two arcs (u,w) and (v,r) of the

same color belong to the solution, then there must also be a (w,v)-path or a (r,u)-path.

Proposition 3.6. If two non-consecutive arcs of the same color belong to the solution, then this

color also belongs, and we must have at least an arc between them.

xuw + xvr ≤ yh + ∑
j∈δ+(w)
v∈R( j)

xw j + ∑
j∈δ+(r)
u∈R( j)

xr j, ∀ h ∈C, ∀ (u,w),(v,r) ∈ Ah. (3.12)

Proof. If two non-consecutive arcs of color h, say (u,w),(v,r) ∈ Ah, belong to the solution, then

color h must also belong. Moreover, one arc must leave w and reach v or one arc must leave r

and reach u. This is true by definition of a simple path containing both arcs. Thus, the result

follows.
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Consider the instance D3 depicted on Fig. 13. Its optimal linear relaxed solution is

shown in Fig. 14 for k = 2 and has cost approximately 19.33. Observe that the black arcs (2,6)

and (8,11) can only be part of the same solution if the arc (6,8) is also used. From this, we

derive the valid inequality x2,6 + x8,11 ≤ yblack + x6,8, that slightly improves the linear relaxed

solution value.

The following valid inequality explores the colorful cuts of Silva et al. (2019), where

C[S,T ], with s ∈ S and t ∈ T , stands for the set of colors of an (s, t)-cut of arcs [S,T ] of D. The

idea is that at least one of the colors present in every (s, t)-cut of D must belong to the solution.

∑
h∈C[S,T ]

yh ≥ 1, ∀ [S,T ]o f D. (3.13)

In particular, if we consider an (s, t)-cut [S,V \S] of D such that s ∈ S, t ∈V \S, and

[V \S,S] = /0, then the sum of the arcs of color h in [S,V \S] is limited above by yh according to

∑
(u,v)∈[S,V\S]

c(u,v)=h

xuv ≤ yh, ∀ S⊆V | s ∈ S, t ∈V \S, ∀ h ∈C[S,V \S] (3.14)

We can observe various occurrences of the condition for inequality (3.14) in previous

instances used to exemplify the propositions above. For example, consider the instance depicted

in Fig. 13 and its optimal linear relaxed solution shown in Fig. 14. By choosing the cut

{(4,5),(3,5),(2,5),(7,8),(7,10),(6,10)}we can derive the inequalities x2,5+x7,8+x7,10≤ yred

and x4,5 + x3,5 + x6,10 ≤ ygreen.
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4 COMPUTATIONAL EXPERIMENTS

In this chapter, we present numerical experiments performed on a PC Intel Core

i7-3770, 8 × 3.40 GHz, 16 GB DDR3 RAM with Ubuntu 20.4 LTS 64 bits. We use Julia

1.8.5 with JuMP package to implement the mathematical programming models in CPLEX 22.1

configured with one thread. The time limit for each instance is set to 1800 seconds for all the

procedures described in this document.

For the experiments, we adopt benchmark instances (grid and random digraphs)

from Ferone et al. (2019) and generate new classes (groups) of layered-based digraphs. Similar

instances showed to be hard to handle for the MCPP (KUMAR, 2019). Each layered digraph is

composed of w layers of r vertices per layer, in addition to a source s and a destination t vertices.

The source s connects to every vertex of the first layer, while all the vertices in the last layer

connect to the destination t. In a standard layered digraph, there is an arc from every vertex of

layer i to every vertex of layer i+1, with i := 1, · · · ,w−1.

We generate 60 new instances for the k-CSPP, divided into three groups of 20

instances. All the new test-bed digraphs have 2+15×10 vertices: a source, a destination, as

well as w = 15 columns (layers) with r = 10 vertices each one. The groups are categorized as

follows:

– Group 1 contains standard layered digraphs with wr+2 vertices and 2r+(w−1)r2 = 1420

arcs. We uniformly choose their arc costs from the integer interval [1,1000];

– Group 2 is composed of modified layered digraphs. We first generate a digraph as those

of Group 1. Then, we create an arbitrary number (from the integer interval [10,30]) of

jump-arcs. To obtain a jump-arc (u,v), we randomly choose u and v from non-neighbor

layers Li and Li′ , respectively, with i < i′. We uniformly choose the cost of a jump-arc

from the integer interval [dmax,dmax +30000], where dmax is the highest arc cost among

non-jump-arcs. The idea behind using a few jump-arcs with high costs is to allow the

heuristics to easily find a feasible (possible costly) path;

– Group 3 has digraphs as of Group 1, but initially with an empty set of arcs. For each layer

Li, i := 1, · · · ,w−1, we select at random 3 distinct vertices and form a directed clique Qi

with them. Then, for each pair of vertices (u,v), where u ∈ Qi and v ∈ Li−Qi, we create

an arc (u,v) with probability p = 1/2. Finally, we add an arc from every vertex of layer

Li, excepting from the vertex with smaller label of Qi, to every vertex of layer Li+1. All

arc costs of this group are chosen from the integer interval [1,1000]. The digraph topology
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of this group tends to force CCDA heuristic to obtain non-fruitful paths while executing

its greedy search strategy.

Arc colors of our new instances are chosen based on a uniform distribution over the

integer interval [1, |C|], where we set |C|= ⌊|A|/4⌋. Finally, we define k as the minimum number

of colors allowing an (s, t)-path, obtained after solving the MCPP for each instance individually.

For instances of Group 2, we evaluate the MCPP in the digraph without jump-arcs. Both choices

for |C| and k are based on an extensive set of preliminary tuning experiments.

Given the shortest (s, t)-path having k′ colors, the k-CSPP is easy for values of k≥ k′.

To give an idea of the problem difficulty (in terms of cpu execution time) for values of k < k′ and

distinct values of |C|/|A|, we depict some related experiments in Fig. 16 for four layered digraphs

obtained as those of Group 1 with the same number of vertices and arcs. The axes in Fig. 16

(a) (b)

(c) (d)

Figure 16 – Variation of execution time in function of |C|/|A| and k for 4 layered digraphs.

represent the color density |C|/|A|, the maximum number of colors k in the solution path, and

the execution time in seconds cpu. We observe that the instances require higher computational

time when |C|/|A| ≈ 0.25 and the values of k are equal to the minimum number of colors related

to the MCPP solutions for these digraphs.
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Tables 1 and 2 show the characteristics of the new instances of Groups 1, 2, and 3,

and of the random and grid digraphs (FERONE et al., 2019), respectively. For the legend of

these tables, we identify each instance in column ‘inst’. In such column, each instance receives

a label from 1 to 60 in Table 1. In Table 2, the instance identifier corresponds to the original

instance name as by Ferone et al. (2019). In Table 1, all the instances have |V |= 152 vertices

and the number of arcs |A| varies according to each group. The limit on the number of colors is

k, and the known optimal solution value is opt.

We apply the graph reduction algorithm to eliminate arcs proved not to belong

to the optimal solution of these instances by using the feasible solution found by the CCDA

heuristic (CERRONE; RUSSO, 2023). We use the heuristic solution in the CPLEX solver as

cutoff value. For the instances where we have a reduction on their size, R(V ) and R(A) denote,

respectively, the reduced set of vertices and arcs. We have to mention that the reduction algorithm

was not able to remove any arc or vertex of the instances of Groups 1, 2, and 3. On the other

hand, as observed by Cerrone and Russo (2023), we verify a drastic reduction on the number of

vertices and arcs for the benchmark instances of Ferone et al. (2019).

Table 1 – Details about the instances of Groups 1,
2, and 3.

Group 1 Group 2 Group 3
inst |A| k opt inst |A| k opt inst |A| k opt
1 1420 6 9242 21 1430 7 6470 41 1704 7 7909
2 1420 7 6358 22 1447 7 6211 42 1722 7 8503
3 1420 7 5953 23 1439 7 5897 43 1692 7 7400
4 1420 7 5056 24 1435 7 5602 44 1698 7 7838
5 1420 7 6495 25 1444 7 7288 45 1720 7 7736
6 1420 7 5382 26 1431 7 6824 46 1672 8 6293
7 1420 7 6774 27 1434 7 6969 47 1676 8 4963
8 1420 7 6345 28 1434 7 6956 48 1692 8 5458
9 1420 7 4086 29 1430 7 5186 49 1690 8 4447
10 1420 7 7052 30 1445 7 4763 50 1700 8 5095
11 1420 7 6128 31 1445 7 6550 51 1652 7 6737
12 1420 7 6097 32 1435 7 7029 52 1692 8 4636
13 1420 7 5541 33 1438 7 5600 53 1688 8 5596
14 1420 7 4981 34 1442 7 6102 54 1686 8 4632
15 1420 7 6572 35 1440 7 7624 55 1680 8 5335
16 1420 7 5434 36 1441 7 5124 56 1680 8 5222
17 1420 7 7386 37 1449 7 6778 57 1660 8 4852
18 1420 7 5102 38 1438 7 5761 58 1704 8 4785
19 1420 7 5885 39 1435 7 5006 59 1662 8 6132
20 1420 7 5793 40 1440 7 6845 60 1716 8 5974
Source: the author.
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Table 2 – Details about the benchmarks instances for random and grid digraphs (FERONE
et al., 2019).

Random Grid
inst |V | |A| |R(V )| |R(A)| k opt inst |V | |A| |R(V )| |R(A)| k opt

R1-27190 75000 750000 16 16 8 242 G1-27000 10000 39600 627 1648 195 6131
R1-27191 75000 750000 35 39 6 201 G1-27001∗ 10000 39600 209 424 197 6233
R1-27195∗ 75000 750000 13 13 6 152 G1-27002 10000 39600 402 956 191 6336
R1-27197 75000 750000 12 12 6 253 G1-27003 10000 39600 423 922 196 6200
R1-27199 75000 750000 22321 99827 5 333 G1-27004 10000 39600 256 580 195 6375
R1-27200 75000 750000 120 147 6 236 G1-27005 10000 39600 248 578 197 6079
R1-27202 75000 750000 80 92 8 253 G1-27006 10000 39600 281 624 193 6109
R1-27203 75000 750000 17 20 5 255 G1-27007 10000 39600 220 462 198 6197
R1-27204 75000 750000 24808 119208 5 401 G1-27008 10000 39600 214 442 191 6193
R1-27205 75000 750000 33203 190490 6 426 G1-27009 10000 39600 247 540 196 6181
R2-27001 75000 750000 80 93 6 289 G3-27000 20000 79400 380 812 312 9808
R2-27004 75000 750000 27 29 6 246 G3-27001 20000 79400 514 1154 294 9786
R2-27005 75000 750000 23 25 6 198 G3-27002 20000 79400 489 1126 291 9652
R2-27007 75000 750000 33 38 6 231 G3-27003 20000 79400 323 672 305 9448
R2-27008 75000 750000 15 15 7 196 G3-27004 20000 79400 1145 2884 295 10149
R2-27010 75000 750000 148 180 5 246 G3-27005 20000 79400 437 1040 296 9793
R2-27012 75000 750000 26 28 7 245 G3-27006 20000 79400 688 1520 299 9654
R2-27015 75000 750000 56 65 6 238 G3-27007 20000 79400 319 664 298 9535
R2-27018 75000 750000 61 74 6 219 G3-27008 20000 79400 371 818 295 9455

- - - - - - - G3-27009 20000 79400 2013 6654 296 9424
∗ The shortest path solution is feasible for the k-CSPP.

Source: the author.

4.1 Heuristic results

We inform the CCDA results in Table 3 for random and grid digraphs (FERONE

et al., 2019) and the instances of Group 2. The heuristic fails to find feasible solutions for the

instances of Groups 1 and 3. For the legend, in addition to the instance identifier inst, we have the

heuristic solution cost ub, the execution time, in seconds, cpu (with a time limit of 10 seconds),

and the number of colors in the path in the corresponding column.

The CCDA heuristic reaches the optimal solution values, reported in bold, for 29 out

of 39 instances from the literature (FERONE et al., 2019) while, for the instances of Group 2,

CCDA does not reach any optimal solution value. This result shows that the heuristic, receiving

as input the standard penalty list with the addition of the penalty 2×wmax, overall does not

perform well on our new groups of instances. Indeed, we observe that even for the instances

where the heuristic found feasible solutions, the found solutions are far from optimal. In addition,

the solutions for instances from Group 2 are found in less than 0.1 seconds, probably due to the

addition of jump arcs.
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Table 3 – CCDA results for instances of Group 2 and from the litera-
ture (FERONE et al., 2019).

Random Grid Group 2
inst ub cpu colors inst ub cpu colors inst ub cpu colors

R1-27190 242 1.6 6 G1-27000 6150 0.3 194 21 19579 0.4 3
R1-27191 201 2.1 6 G1-27001 6233 0.1 197 22 51145 0 4
R1-27195 152 1.1 6 G1-27002 6336 0.2 189 23 27388 0 5
R1-27197 253 1.2 5 G1-27003 6203 0.2 194 24 23087 0 6
R1-27199 333 5.1 5 G1-27004 6375 0.2 195 25 51876 0 5
R1-27200 236 5.1 6 G1-27005 6079 0.2 197 26 19473 0 4
R1-27202 261 4.4 7 G1-27006 6109 0.2 193 27 20394 0 6
R1-27203 255 4.4 5 G1-27007 6197 0.2 198 28 54286 0 4
R1-27204 401 5.5 5 G1-27008 6193 0.1 191 29 30249 0 6
R1-27205 426 6.1 6 G1-27009 6183 0.1 195 30 21169 0 4
R2-27001 289 5 6 G3-27000 9808 0.3 311 31 35305 0 5
R2-27004 246 2 6 G3-27001 9792 0.5 294 32 30744 0 4
R2-27005 198 2.6 5 G3-27002 9655 0.6 291 33 26077 0 3
R2-27007 231 3.1 6 G3-27003 9448 0.3 303 34 27487 0 3
R2-27008 196 2.6 6 G3-27004 062 0.5 295 35 22731 0 4
R2-27010 246 5 5 G3-27005 9793 0.5 296 36 18497 0 4
R2-27012 245 1.3 6 G3-27006 9661 0.3 293 37 29485 0 3
R2-27015 238 3.3 6 G3-27007 9535 0.2 298 38 27833 0 6
R2-27018 219 3.4 5 G3-27008 9455 0.3 295 39 21346 0 3

- - - - G3-27009 9521 0.5 289 40 27264 0 3
Source: the author.

4.2 Dynamic programming results

In this section, we report computational results for the dynamic programming (DP)

algorithm proposed by Ferone et al. (2021) for reduced random and grid digraphs (FERONE et

al., 2019) and only for the new instances of Groups 1 and 2. This is because the DP algorithm

fails to find the optimal solutions for all instances of Group 3 in the imposed time limit of 1800

seconds.

Our implementation of the DP algorithm uses the A∗ extraction policy because it has

the best results in the literature (FERONE et al., 2021). To obtain the values π(u, t) for all u ∈V

we run Dijkstra’s algorithm in the reverse network, starting from t. The reverse network of D is

a digraph D′ = (V,A′) for A′ = {(v,u) | ∀ (u,v) ∈ A}. The arcs in the reverse network have the

same cost as the original arcs in D. The stopping criterion for the DP algorithm, in addition to

the time limit, is to reach the known optimal solution for the instance.

As observed in (FERONE et al., 2021), we note in Table 4 that, on average, the DP

algorithm runs in negligible time for random and grid digraphs. These benchmark instances

proved to be solved easily with the algorithm. On the other hand, regarding the new instances, we

note that the average computational time is significantly higher than that one for instances of the

literature. The DP algorithm presents an increase of 6.6% of cpu time for Group 2 in comparison
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Table 4 – DP (FERONE et al., 2021) results for reduced
random and grid digraphs (FERONE et al., 2019), and the
instances of Groups 1 and 2.

Random Grid Group 1 Group 2
instance cpu instance cpu instance cpu instance cpu

R1-27190 0.3 G1-27000 2.8 1 85.9 21 856.6
R1-27191 0.0 G1-27001 0.0 2 1010.1 22 810.7
R1-27195 0.0 G1-27002 14.6 3 846.0 23 957.5
R1-27197 0.0 G1-27003 0.4 4 845.0 24 915.6
R1-27199 0.3 G1-27004 0.2 5 774.8 25 814.5
R1-27200 0.0 G1-27005 1.5 6 957.0 26 827.6
R1-27202 0.3 G1-27006 0.4 7 848.5 27 738.7
R1-27203 0.0 G1-27007 0.0 8 727.9 28 802.5
R1-27204 0.3 G1-27008 0.0 9 475.1 29 976.2
R1-27205 1.2 G1-27009 0.0 10 782.0 30 727.2
R2-27001 0.0 G3-27000 0.7 11 854.1 31 834.6
R2-27004 0.3 G3-27001 1.9 12 889.9 32 818.9
R2-27005 0.0 G3-27002 3.2 13 923.6 33 767.3
R2-27007 0.0 G3-27003 0.5 14 664.5 34 849.2
R2-27008 0.0 G3-27004 2.8 15 986.7 35 1118.9
R2-27010 0.0 G3-27005 8.0 16 822.6 36 729.1
R2-27012 0.0 G3-27006 1.2 17 837.3 37 1061.9
R2-27015 0.0 G3-27007 0.2 18 877.5 38 775.5
R2-27018 0.0 G3-27008 0.4 19 984.9 39 765.9

- - G3-27009 13.0 20 775.8 40 875.3
average 0.1 average 2.6 average 798.5 average 851.2
median 0.0 median 0.6 median 845.5 median 823.3
max 1.2 max 14.6 max 1010.1 max 1118.9
min 0.0 min 0.0 min 85.9 min 727.2

Source: the author.

with Group 1. Because the DP algorithm runs out of memory or reaches the time limit for all

instances of Group 3, we do not report results for this group. As we noted for the heuristic, the

results for the dynamic programming algorithm also seems to support our hypotheses. Indeed,

our new groups of instances seems to be significantly more challenging.

4.3 Branch-and-Bound results

In this section, we report the results of the B&B algorithm (FERONE et al., 2019).

We adopt the BFS node evaluation policy in the search tree, since it presents the best numerical

results (FERONE et al., 2019).

We present numerical results for grid and random instances in Table 5. For each

‘instance’, we report the ‘cpu’ time and the number of generated nodes ‘bb’. The algorithm did

not find an optimal solution for 7 out of 19 random instances and for 11 out of 20 grid instances.

We remark that the instance reduction algorithm helps to improve the number of proved optimal

solutions compared to that in Ferone et al. (2019), where the B&B algorithm found the optimal
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solution for 10 (resp. 8) random (resp. grid) instances.

Table 5 – B&B (FERONE et al., 2019) results for re-
duced random and grid instances.

Random Grid
instance cpu bb instance cpu bb

R1-27190 2.4 10 G1-27000 1860.4 68235745
R1-27191 1.3 19707 G1-27001 0.2 398
R1-27195 0.0 0 G1-27002 1803.2 66533932
R1-27197 0.0 8 G1-27003 23.3 122584
R1-27199 1800.0 69366 G1-27004 1375.2 11514256
R1-27200 1800.0 40298437 G1-27005 1800.0 60402669
R1-27202 105.8 1150279 G1-27006 1800.0 34953907
R1-27203 0.0 37 G1-27007 1.2 12000
R1-27204 1800.3 43324 G1-27008 0.0 193
R1-27205 1800.2 37596 G1-27009 1.5 13242
R2-27001 1812.9 34296891 G3-27000 1800.0 60344520
R2-27004 2.4 291 G3-27001 1800.0 58638557
R2-27005 0.0 408 G3-27002 1826.0 69363205
R2-27007 2.0 27827 G3-27003 0.5 2763
R2-27008 0.0 9 G3-27004 2029.3 65656475
R2-27010 1800.2 36995004 G3-27005 1804.2 70851721
R2-27012 0.3 81 G3-27006 13.4 47859
R2-27015 231.9 2347792 G3-27007 0.5 4200
R2-27018 1849.2 5402209 G3-27008 1800.0 37792525

- - - G3-27009 1800.0 3658583
average 684.7 6352067.2 average 1076.9 30407466.7
median 2.4 27827.0 median 1800.0 23234081.5
max 1849.2 40298437.0 max 2029.3 70851721.0
min 0.0 0.0 min 0.0 193.0

Source: the author.

The numerical results in Table 5 indicate that the branch-and-bound algorithm, with

a breadth-first search node evaluation policy, is not as efficient for our instances in comparison to

the results reported for the instances of the literature. Indeed, the B&B algorithm was not able to

find an optimal solution in the time limit of 1800 seconds for all the instances of Groups 1, 2,

and 3.

4.4 Branch-and-Cut results for model (PCM)

In this section, we discuss results of a branch-and-cut (B&C) algorithm for model

(PCM). Initially, we solve the (s, t)-shortest path problem for the instance. If the solution does

not violate the limit k on the number of colors, then the path is optimal to the k-CSPP. Otherwise,

we add the corresponding violated cut (3.1) to model (PCM) and solve it with the B&C module

of the IBM CPLEX solver. We use lazy callbacks to cut paths violating inequalities (3.1). The

stopping criterion is either to reach a time limit of 1800 seconds, or to obtain the optimal k-CSPP
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solution.

Table 6 reports B&C results with model (PCM) for random and grid digraphs (FER-

ONE et al., 2019). The additional legend is the ‘cpu’ time (in seconds), the number of generated

‘cuts’ (3.1), and the number of CPLEX B&C nodes ‘bc’.

Excepting for three instances, the remaining ones were solved to optimality. Three

random instances (R1-27199, R1-27204, and R1-27205) reach the time limit of 1800 seconds

(they do not benefit much of the reduction algorithm) with a CPLEX lower-bound far from their

optimal solution values of 39.62%, 34.08%, and 40.97%, respectively. For the remaining 16

random instances, the model runs with an average cpu time of 1.4 seconds with an average

number of cuts (3.1) of 9.4 cuts. For grid digraphs, the B&C approach solved all of them to

optimality. They present average values of cpu time, cuts (3.1), and CPLEX B&C nodes, of 4.8

seconds, 369.6 cuts, and 885.5 B&C nodes, respectively. We remark that 9 instances (8 random

and 1 grid) were solved at the root node of the B&C tree with no generation of cuts (3.1). The

last two lines in this table refer to the average and median values for the corresponding columns,

respectively.

Table 6 – B&C results with model (PCM) for random and grid
benchmark instances (FERONE et al., 2019).

Random Grid
inst cpu cuts bc inst cpu cuts bc

R1-27190 1.0 1 0 G1-27000 26.5 2296 2803
R1-27191 1.5 10 4 G1-27001 0.4 10 3
R1-27195 0.1 0 0 G1-27002 7.3 674 2170
R1-27197 0.1 1 0 G1-27003 0.6 120 262
R1-27199 1800.0 2439 6508 G1-27004 1.3 150 297
R1-27200 3.7 30 39 G1-27005 2.3 401 665
R1-27202 1.9 12 12 G1-27006 0.8 174 327
R1-27203 0.2 2 0 G1-27007 0.1 9 8
R1-27204 1800.0 1759 4737 G1-27008 0.0 4 0
R1-27205 1800.0 2008 3730 G1-27009 0.1 15 35
R2-27001 3.7 13 6 G3-27000 0.7 121 166
R2-27004 0.3 2 0 G3-27001 12.5 633 1684
R2-27005 1.1 8 0 G3-27002 12.7 1211 3401
R2-27007 0.7 6 8 G3-27003 0.3 21 23
R2-27008 0.2 1 0 G3-27004 2.2 61 182
R2-27010 3.2 32 48 G3-27005 21.0 1282 5138
R2-27012 0.3 2 0 G3-27006 0.2 11 21
R2-27015 2.2 13 11 G3-27007 1.4 8 10
R2-27018 2.4 17 22 G3-27008 2.0 92 183

G3-27009 4.0 98 332
Average 285.4 334.5 796.1 Average 4.8 369.6 885.5
Median 1.5 10 6 Median 1.3 109.0 222.5

Source: the author.

Concerning the new instances of Groups 1, 2, and 3, solving them with the B&C
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approach for model (PCM) was not possible. The Ubuntu operating system aborted all executions

of the CPLEX solver for these groups of instances due to memory overflow.

4.5 Results for model (FFP) with valid inequalities

In this section, we discuss the impact of the valid inequalities from Chapter 3 for

model (FFP) and the validity of our hypothesis. As a reminder, we want to observe if the valid

inequalities strengthen the model proposed by Ferone et al. (2019) and if the new instances are

more challenging w.r.t the ones proposed in the literature. In the following, to verify whether

u ∈ R̄(v) for a given pair of vertices u and v, we construct a |V |× |V | binary matrix T , where

Tu,v = 1 if u is reached by v, by running a breadth-first search (BFS) starting from every vertex

of the digraph. We generate inequalities (3.9) by starting with a unitary set S = {v} of pairwise

non-reachable vertices, one for every v ∈V \{s, t}. For all u ∈V \{s, t,v} having a label larger

than v, we add u to S if u is not reached by as well as does not reach any vertex already in S.

Then, we obtain one inequality (3.9) for every subset Q⊆ S with |Q| ∈ {0,1, |S|−1, |S|}.

We generate inequalities (3.12) with the use of a CPLEX user cut callback, based

on the support graph associated with the non-null arc variables x w.r.t. a CPLEX B&B node

solution. We obtain an inequality (3.12) for every pair of arcs (u,w) and (v,r), of the same

color h, of any B&B node solution violating the corresponding inequality w.r.t. this pair of arcs.

In particular, for such a pair of arcs, if for all i ∈ N+(w) we observe that v /∈ R̄(i), we discard

the corresponding inequality (3.12) because we can show that it is weaker than a ‘modified

combination’ of constraints (2.2) for node w.

To obtain inequalities (3.14), we first describe Karger’s randomized algorithm for

computing the minimum cut (MOTWANI; RAGHAVAN, 1996). The idea behind the algorithm

is to contract arcs randomly chosen until a unique arc remains. The label of the resulting vertex

of an arc contraction is the union of the set of labels of the arc extremities. Duplicated arcs or in

both directions between a given pair of nodes are considered only one arc independently of its

direction. The algorithm returns the partition of the vertices V1 and V2 given by the extremities

of the unique remaining arc. Given such partition, we check whether the cut of arcs [V2,V1]

is empty. If so, we add the corresponding inequality (3.14) to model (FFP). Otherwise, while

[V2,V1] ̸= /0, for every arc (u,v) in this cut, we move u from V2 to V1. The resulting partition

is then used to generate that inequality. We generate an arbitrary number of 60 inequalities of

this type for every instance by running the algorithm this number of times. Finally, we add the
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polynomial sets of inequalities from Chapter 3 and constraint (3.14) directly to model (FFP).

In Tables 7 and 8, we report the results of the valid inequalities for model (FFP) on

random and grid digraphs, respectively. The additional legend shows the ‘inequalities’ being

evaluated, the optimal linear relaxation ‘r’, the computational time to solve the linear relaxation

‘cpur’, and the ‘cpu’ time to solve the ILP model. For models that implements user cut callbacks,

we also report the number of ‘cuts’.

Except for a single instance, the use of inequalities did not improve on the linear

relaxation or computational time. In fact, we observe that instance R1-27205 is the hardest, being

solved to optimality in 47 seconds by model (FFP)+(3.6)–(3.8), an increase of 11.9 seconds in

comparison to model (FFP)+(3.11)(3.12)(3.14). The cpu time to solve the instances is negligible

for any other random instance. The same is true for grid digraphs, except for G1-27000, which is

the only instance taking more than a second to be solved by any model. This shows how much

easier they get after running the graph reduction algorithm.

Tables 9, 10, and 11 show the numerical results for Groups 1, 2, and 3, respectively.

Observe that the new instances requires more time to obtain the optimal integer solution in

comparison to the benchmark instances. Furthermore, the linear relaxation is still far from

optimal, even with the addition of the valid inequalities. We also note that the addition of

inequalities (3.4) and (3.5) can sometimes increase the required cpu time to solve an instance.
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In Table 12, we report the summary of the impact of the proposed inequalities for

model (FFP) to solve random and grid instances (FERONE et al., 2019), and the new ones of

Groups 1, 2, and 3. The first column ‘Ineq’ indicates the set of inequalities we add to model

(FFP). In the first group of rows, we present, in the second column, for each set of test-bed

instances, features details concerning average values of the optimal solutions in row ‘opt’ and

the average number of ‘colors’ in these solutions; the average cost of the shortest paths ‘sp’ w.r.t.

these instances and the average number of colors ‘spc’ in these shortest paths.

For each combination of valid inequalities we add to model (FFP), from the second

to the last group of rows, we inform their impact on the average linear relaxed value zr and

the corresponding average cpur time; the average ‘cpu’ time to solve these instances and the

average number of CPLEX B&B nodes ‘bb’; and finally, when inequalities (3.12) are present, we

also inform the average number of ‘cuts’ added to model (FFP) by a CPLEX user-cut callback.

Average execution times equal to zero means values less than 0.05 second.

We separate results for distinct groups of inequalities by a horizontal line. For

example, we report results for the set of constraints defining model (FFP) in the second group of

rows. The second set of experiments is for model (FFP) with the addition of inequalities (3.14).

We show in bold the best results for zr, cpu, and bb for the new instances.

With regard to the benchmark instances (FERONE et al., 2019) in Table 12, we

observe that all valid inequalities cannot improve their average linear relaxed values and present

small differences in both cpur and cpu times w.r.t. model (FFP). All these instances were solved

at the root node of the B&B search tree, with their average shortest path cost being very close to

the optimal linear relaxed and integer values (for random instances, opt=255.8 and sp=201.8,

while for grid ones, opt=7936.9 and sp=7929.1). This also occurs for the average number of

distinct colors in the shortest path solutions (for random instances, colors=5.7 and spc=8.1, while

for grid ones, colors=246.3 and spc=248.5). On the other hand, for the new instances, on average,

the shortest path sp is far from the optimal solution values opt (this is also true when comparing

colors with spc of these instances). The differences between sp and opt is of 83.45%, 82.19%,

and 81.93% for Groups 1, 2, and 3, respectively. Their average linear relaxed solution values

(zr) are also far from their average optimal values (opt). These instances require more average

cpu times than the benchmark ones (FERONE et al., 2019) despite their original dimensions.

Whether we consider the individual use of a unique set of inequalities, the one (3.12) obtained

the best results for these three groups for the linear relaxation and number of B&B nodes, while
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Table 12 – The impact of the valid inequalities for model
(FFP) for benchmark (FERONE et al., 2019) and the in-
stances of Groups 1, 2, and 3.

Ineq Random Grid Group 1 Group 2 Group 3

Average features

opt 255.8 7936.9 6083.1 6229.3 5977.2
sp 201.8 7929.1 1007.0 1109.4 1080.3
colors 5.7 246.3 7.0 6.7 7.7
spc 8.1 248.5 15.7 16.1 17.0

(FFP)

zr 253.5 7934.9 2767.9 2938.4 2988.4
cpur 2.9 0.1 0.1 0.1 0.1
cpu 2.9 0.1 600.0 491.3 864.2
bb 0.0 0.0 29577.4 18095.1 42479.2

+(3.14)

zr 253.5 7934.9 3098.9 3261.2 3115.1
cpur 2.9 0.1 0.0 0.0 0.0
cpu 2.9 0.1 110.6 110.4 413.9
bb 0.0 0.0 4308.3 4363.6 12027.2

+(3.12)

zr 253.5 7934.9 3219.3 3365.5 3251.0
cpur 2.5 0.0 0.2 0.2 0.2
cpu 2.9 0.2 115.1 182.1 435.4
bb 0.0 0.0 1853.6 2804.8 8430.6
cuts 0.0 0.0 20436.5 36680.0 35234.7

+(3.11)

zr 253.5 7934.9 2991.3 3155.8 3023.0
cpur 2.9 0.1 0.1 0.1 0.1
cpu 2.9 0.1 246.8 200.2 677.6
bb 0.0 0.0 10797.7 7766.3 30258.5

+(3.10)

zr 253.5 7934.9 2955.6 3122.0 3018.8
cpur 2.9 0.1 0.1 0.1 0.1
cpu 2.9 0.1 295.1 222.9 742.2
bb 0.0 0.0 12224.1 8686.2 33156.6

+(3.9)

zr 253.5 7934.9 3106.9 3264.8 3057.7
cpur 2.8 0.1 0.1 0.1 0.1
cpu 2.8 0.1 113.8 114.6 634.7
bb 0.0 0.0 4257.9 4657.5 28757.6

+(3.6)–(3.8)

zr 253.5 7934.9 3098.6 3255.6 3052.0
cpur 3.3 0.1 0.1 0.1 0.1
cpu 3.3 0.1 154.4 132.9 580.2
bb 0.0 0.0 5214.5 5221.5 27917.5

+(3.4)–(3.5)

zr 253.5 7934.9 2790.6 2958.1 3016.5
cpur 3.0 0.1 0.1 0.1 0.1
cpu 3.0 0.1 541.9 432.0 732.0
bb 0.0 0.0 24581.0 15902.6 35159.2

+(3.9),(3.11)–(3.12)

zr 253.5 7934.9 3297.6 3440.4 3284.6
cpur 2.5 0.0 0.2 0.2 0.1
cpu 3.0 0.1 72.2 83.3 303.7
bb 0.0 0.0 1641.5 1698.3 5088.6
cuts 0.0 0.0 13707.0 15739.4 18663.2

+(3.11)–(3.12),(3.14)

zr 253.5 7934.9 3288.3 3435.6 3286.5
cpur 0.0 0.0 0.0 0.0 0.0
cpu 2.7 0.2 45.8 76.4 334.8
bb 0.0 0.0 1117.2 1630.5 7185.3
cuts 0.0 0.0 9288.3 14656.4 30521.2

+(3.9),(3.11)–(3.12),(3.14)

zr 253.5 7934.9 3297.6 3440.4 3288.8
cpur 2.5 0.0 0.4 0.5 0.4
cpu 2.9 0.2 87.4 116.6 467.1
bb 0.0 0.0 1261.8 1682.6 5378.1
cuts 0.0 0.0 17448.7 24721.3 48055.2

Source: the author.

the best cpu times are provided by the set of inequalities (3.14).

Indeed, for Groups 1, 2 and 3, we observe an improvement on cpu times w.r.t. the one

of model (FFP) of up to 81.57%, 77.52% and 52.10%, respectively. Concerning the combined

use of valid inequalities, the models (FFP)+(3.9)(3.11)(3.12) and (FFP)+(3.9)(3.11)(3.12)(3.14)

both obtain, on average, the strongest linear relaxed values for Groups 1 and 2. For the number
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of B&B nodes, the best result is achieved by model (FFP)+(3.11)(3.12)(3.14) for Groups 1 and 2,

while model (FFP)+(3.9)(3.11)(3.12) reached the smallest number of B&B nodes and cpu times

for Group 3.

We remark that all proposed inequalities for model (FFP) improve its linear relaxation

when handling the new instances. Since inequalities (3.9) dominate the ones (3.6)–(3.8), which

in turn dominate inequalities (3.4)–(3.5), as well as inequalities (3.11) dominate the ones (3.10),

we do not report results for models combining these dominated inequalities. With respect to

execution times for instances of Groups 1 and 2, compared to those obtained by the DP algorithm,

model (FFP)+(3.11)(3.12)(3.14) provides an improvement of 94.26% and 91.02%, respectively.

We emphasize that the DP algorithm is unable to find optimal solutions for instances of Group 3

within the time limit, while model (FFP)+(3.11)(3.12)(3.14) obtained the optimal solution for all

these instances. For grid and random instances, the DP procedure presents an increase of 96.15%

and an improvement of 96.29% of execution times, respectively, in comparison to this model.

Table 13 – Statistics of the relative integrality gap (ratio) between optimal and linear relaxed
solutions of variations of model (FPP) for Groups 1, 2, and 3.

Ratios
Group 1 Group 2 Group 3

Ineq Mean Median Max Min Mean Median Max Min Mean Median Max Min
(FFP) 119.8 118.3 190.5 51.1 112.6 106.5 172.1 66.7 98.9 89.0 173.0 62.1
+(3.14) 96.2 96.3 153.0 37.8 91.5 84.1 149.3 53.8 90.3 83.4 164.6 55.9
+(3.12) 88.6 90.0 137.1 36.7 85.5 79.5 135.3 46.3 82.8 78.3 147.8 50.6
+(3.11) 103.4 100.8 163.2 41.1 98.1 90.6 159.7 56.7 93.0 85.8 163.0 61.1
+(3.10) 105.9 103.7 165.6 43.3 100.2 91.8 163.3 58.5 93.4 87.3 161.7 60.8
+(3.9) 95.7 96.1 152.4 37.4 91.3 84.0 149.3 53.8 94.9 84.7 170.4 58.3
+(3.6)–(3.8) 96.2 96.5 153.0 37.9 91.8 84.3 150.4 54.3 95.3 86.2 170.4 55.8
+(3.4)–(3.5) 118.1 116.3 189.8 50.9 111.3 104.9 172.1 66.0 97.6 89.7 172.7 61.9
+(3.9),(3.11)–(3.12) 84.1 83.9 133.1 33.1 81.6 76.1 132.4 43.9 81.0 75.1 147.8 50.4
+(3.11)–(3.12),(3.14) 84.6 84.3 133.5 33.1 81.8 76.1 132.4 43.9 80.8 75.1 147.8 50.4
+(3.9),(3.11)–(3.12),(3.14) 84.1 83.9 133.1 33.1 81.6 76.1 132.4 43.9 79.8 74.1 147.8 50.4
Source: the author.

Table 13 reports statistics results for Groups 1,2, and 3, as ‘Mean’, ‘Median’, max-

imum ‘Max’, and minimum ‘Min’ ratio values w.r.t. the relative difference, in percentage,

between the optimal and the linear relaxed solution value (100(opt− zr)/zr) of the instances

when solved with the use of valid inequalities for model (FPP). We highlight, in bold, the smallest

mean and median values for each group.

We observe, considering the models from (FFP)+(3.14) to (FFP)+(3.4)–(3.5), that

inequalities (3.12) provide the smallest mean and median ratios for all the three groups. Con-

cerning the joint use of valid inequalities in the last three lines of this table, we note a
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slight difference between the mean and median ratios of the three groups. Globally, model

(FFP)+(3.9)(3.11)(3.12)(3.14) obtained the smallest mean and median ratios.

Table 14 – Statistics of results for the instances of Group 1.

Ineq.
linear relaxation cpu bb

Average Median Max Min Average Median Max Min Average Median Max Min
(FFP) 2767.9 2756.9 3181.8 2314.4 600.0 507.6 1719.6 9.3 29577.4 18407.5 83716.0 363.0
+(3.14) 3098.9 3119.8 3652.8 2590.5 110.6 124.9 391.6 12.3 4308.3 4350.0 17390.0 363.0
+(3.12) 3219.3 3200.6 3897.6 2642.9 115.1 80.4 635.3 6.1 1853.6 1174.5 11730.0 53.0
+(3.11) 2991.3 3019.8 3510.8 2449.6 223.2 185.3 786.4 3.8 10797.7 7442.0 37225.0 130.0
+(3.10) 2955.6 2989.0 3479.7 2444.7 295.1 271.5 887.3 5.2 12224.1 9921.5 36441.0 144.0
+(3.9) 3106.9 3123.8 3661.8 2596.5 113.8 80.0 434.5 13.6 4257.9 3030.5 18477.0 306.0
+(3.6)–(3.8) 3098.6 3115.1 3652.7 2593.2 154.4 165.6 619.3 10.9 5214.5 4940.5 19951.0 268.0
+(3.4)–(3.5) 2790.6 2795.4 3188.7 2340.0 541.9 366.0 1738.5 24.1 24581.0 14189.0 70962.0 941.0
+(3.9),(3.11)–(3.12) 3297.6 3293.3 3965.2 2693.0 72.2 57.6 411.7 3.6 1641.5 1231.0 10203.0 68.0
+(3.11)–(3.12),(3.14) 3288.3 3286.2 3957.2 2686.9 45.8 43.0 137.5 2.7 1117.2 1067.0 2825.0 43.0
+(3.9),(3.11)–(3.12),(3.14) 3297.6 3293.3 3965.2 2693.0 87.4 51.5 422.4 2.9 1261.8 900.5 5329.0 45.0

Source: the author.

Tables 14–16 summarize the impact of the valid inequalities for model (FFP) with

the instances of Groups 1, 2, and 3, respectively. For the legend, we inform the valid inequality

Ineq strengthening model (FFP). We also show average (Average), Median, maximum (Max)

and minimum (Min) values for the ‘linear relaxation’, the ‘cpu’ time to solve the instance, and

the number of CPLEX B&B nodes ‘bb’.

The first set of rows reports results for model (FFP) without the use of the valid

inequalities. For the remaining groups of rows, we add to model (FFP) the inequalities informed

in column Ineq. The best results among all employed inequalities are displayed in bold. Consid-

ering the inequalities individually, we observe that inequality (3.12) has the best overall impact,

obtaining both the smallest average number of B&B nodes and the largest linear relaxed values,

while inequalities (3.14) show the smallest average computational times. For Groups 1, 2 and 3,

these inequalities allowed to improve the average cpu times w.r.t. model (FFP) in up to 81.57%,

77.52% and 52.10%, respectively.

Table 14 summarizes numerical results for instances of Group 1. The Max column

for the cpu time shows that model (FFP)+(3.4)(3.5) can sometimes increase the computational

time needed to solve the model in comparison to the standard (FFP).

As for the linear relaxation, the addition of inequalities (3.14) and (3.6)–(3.8) show

very similar results, although inequality (3.14) requires less cpu time. Model (FFP)+(3.9)(3.11)

(3.12) shows only a slight improvement of 2.43% on the linear relaxation, 59.41% on computa-

tional time and an increase of 22.05% in the number of nodes generated in the B&B search tree

in comparison to the results obtained by inequality (3.12), obtaining both the strongest linear
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relaxation and best computational time. In addition, model FFP+(3.11)(3.12)(3.14) obtained the

smallest number of nodes in the B&B search tree.

Table 15 – Statistics of results for the instances of Group 2.

Ineq.
linear relaxation cpu bb

Average Median Max Min Average Median Max Min Average Median Max Min
(FFP) 2938.4 2826.8 3450.0 2656.1 491.3 416.6 1614.7 126.3 18095.1 18069.5 44310.0 4469.0
+(3.14) 3261.2 3206.7 3802.7 2880.4 110.4 104.8 351.1 11.8 4363.6 3342.0 13303.0 660.0
+(3.12) 3365.5 3329.1 3823.2 3011.4 182.1 97.0 580.4 19.8 2804.8 1867.5 8797.0 345.0
+(3.11) 3155.8 3070.6 3703.4 2765.8 200.2 195.8 462.3 26.2 7766.3 7319.0 16921.0 1611.0
+(3.10) 3122.0 3043.3 3664.0 2764.9 222.9 206.3 559.8 17.9 8686.2 8224.0 20859.0 1043.0
+(3.9) 3264.8 3221.5 3803.1 2880.4 114.6 110.8 318.5 11.2 4657.5 4023.0 11072.0 598.0
+(3.6)–(3.8) 3255.6 3204.6 3800.1 2880.4 132.9 118.7 283.5 21.0 5221.5 4197.5 11790.0 1351.0
+(3.4)–(3.5) 2958.1 2851.8 3470.9 2663.5 432.0 342.2 1038.5 90.5 15902.6 14342.5 34393.0 2725.0
+(3.9),(3.11)–(3.12) 3440.4 3424.9 3934.8 3055.9 83.3 68.8 306.1 10.6 1698.3 1427.0 5089.0 190.0
+(3.11)–(3.12),(3.14) 3435.6 3406.8 3934.8 3054.1 76.4 59.5 283.5 13.4 1630.5 1273.0 5353.0 418.0
+(3.9),(3.11)–(3.12),(3.14) 3440.4 3424.9 3934.8 3055.9 116.6 88.1 399.9 26.3 1682.6 1386.5 5295.0 371.0

Source: the author.

Table 15 presents a summary of numerical results for instances of Group 2. On

average, models (FFP)+(3.9)(3.11)(3.12)(3.14) and (FFP)+(3.9)(3.11)(3.12) show the strongest

linear relaxation, a slight improvement of 2.23% in comparison to (FFP)+(3.12). In addition,

model (FFP)+(3.11)(3.12)(3.14) shows the best cpu time, a decrease of 30.8% in comparison

to (FFP)+(3.14), and smallest number of generated nodes in the B&B search tree, with an

improvement of 41.87% in comparison to (FFP)+(3.12).

Table 16 – Statistics of results for the instances of Group 3.

Ineq.
linear relaxation cpu bb

Average Median Max Min Average Median Max Min Average Median Max Min
(FFP) 2988.4 3026.6 3611.3 2423.5 864.2 714.2 1800.0 191.3 42479.2 39387.0 143871.0 5414.0
+(3.14) 3115.1 3073.3 3720.1 2485.8 413.9 235.1 1800.0 29.8 12027.2 8342.5 32957.0 1114.0
+(3.12) 3251.0 3167.1 3850.2 2741.3 435.4 418.6 1193.0 31.9 8430.6 6721.0 24230.0 602.0
+(3.11) 3023.0 3034.1 3614.0 2462.8 677.6 434.3 1800.0 130.1 30258.5 15243.5 119345.0 4888.0
+(3.10) 3018.8 3035.5 3611.5 2451.6 742.2 501.3 1800.0 43.0 33156.6 19594.5 101368.0 1870.0
+(3.9) 3057.7 3059.1 3614.0 2466.4 634.7 509.1 1800.0 25.4 28757.6 17909.5 123236.0 1118.0
+(3.6)–(3.8) 3052.0 3058.9 3690.7 2456.3 580.2 430.1 1463.4 38.3 27917.5 15128.5 111814.0 2031.0
+(3.4)–(3.5) 3016.5 3028.5 3614.0 2430.2 732.0 394.8 1800.0 49.5 35159.2 13177.0 115724.0 2215.0
+(3.9),(3.11)–(3.12) 3284.6 3181.5 3857.8 2745.7 303.7 252.6 1061.4 33.8 5088.6 3950.0 15973.0 882.0
+(3.11)–(3.12), (3.14) 3286.5 3178.5 3857.8 2745.7 334.8 317.1 774.5 19.8 7185.3 6152.0 19518.0 616.0
+(3.9),(3.11)–(3.12),(3.14) 3288.8 3181.5 3857.8 2745.7 467.1 424.9 1800.0 27.9 5378.1 4986.0 11947.0 718.0

Source: the author.

Table 16 shows a summary of the computational experiments for instances of Group 3.

On average, model (FFP)+(3.9)(3.11)(3.12)(3.14) obtained the strongest linear relaxation, an

increase of 1.16% over model (FFP)+(3.12). Furthermore, model (FFP)+(3.9)(3.11)(3.12) shows

the best computational time, a decrease of 26.62% over (FFP)+(3.14), and lowest number of

generated B&B nodes, an improvement of 39.64% over (FFP)+(3.12). For this group, some

models failed to obtain the integer optimal solution (see column Max for the cpu times).
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5 CONCLUSIONS

In this work, we proposed valid inequalities for the k-Color Shortest Path Problem

and showed that they strengthen the existing formulation (FFP) introduced by Ferone et al. (2019),

validating our hypothesis that our novel valid inequalities do improve the linear relaxation of the

existing model.

One of the exponential-size set of valid inequalities was explored as a B&C algorithm

for the k-CSPP, referred to as model (PCM). We also reproduced the instance reduction procedure

of Cerrone and Russo (2023) and pointed that the Dijkstra-based heuristic CCDA can fail finding

a feasible solution for the k-CSPP depending on the penalties adopted by this heuristic.

We observed that CPLEX found no obstacle in solving the reduced benchmark

instances (FERONE et al., 2019) at the root node of its B&B search tree with model (FFP).

This is because the reduction procedure of Cerrone and Russo (2023) drastically reduces the

large dimensions of almost all instances (excepting for three of them). Their linear relaxed, and

optimal solution values are very close to the solution of their shortest paths. This motivated

us to propose three groups of more difficult instances for the problem. The CCDA heuristic

fails to find a feasible solution for Groups 1 and 3 of the new instances, and the quality of the

solutions obtained for the instances of Group 2 is far from optimal. Moreover, the reduction

procedure (CERRONE; RUSSO, 2023) was not able to reduce the number of arcs and vertices of

these new instances. The values of the linear relaxed and optimal solution values are not close to

the solution of the shortest paths for these instances.

Concerning the numerical results, for the new instances, inequalities (3.12) individu-

ally obtain the best improvement on the linear relaxation of the model (FFP) as well as on the

reduction of the number of evaluated CPLEX B&B nodes. On the other hand, inequalities (3.14)

obtain the smallest cpu times to solve these instances. Considering the combined use of the pro-

posed inequalities, models (FFP)+(3.9)(3.11)(3.12) and (FFP)+(3.9)(3.11)(3.12)(3.14) obtained

the best results for Groups 1 and 2, while the latter model attained slightly better results for

Group 3. We emphasize that the B&B procedure (FERONE et al., 2019) fails to find the optimal

solution for all the new instances, while the DP algorithm (FERONE et al., 2021) fails to find the

optimal solutions for the instances of Group 3. Although DP algorithm finds optimal solutions

for Groups 1 and 2, it requires more computational time compared to the mathematical models.

We remark that despite the improvement in the linear relaxed solutions, they are still far from

their optimal solutions, thus indicating that further research can be done in this direction.
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The numerical results indicate that our new set of instances are indeed more chal-

lenging, i.e., requires more computational time to solve, than the ones introduced by Ferone et

al. (2019). In addition, these results support our hypothesis that the methods proposed in the

literature (FERONE et al., 2019; FERONE et al., 2021; CERRONE; RUSSO, 2023) are not

efficient in our novel set of instances in comparison to the benchmark instances.

As future research, we intend to handle problems like the MCPP with the proposed

inequalities, and investigate whether they can be further strengthened. It seems that maximal

cliques of non-reachable arcs (or colors) can be used to obtain facets of the polyhedron associated

with the model (FFP). We also plan on investigating the parameterized complexity of the k-CSPP.

Furthermore, in order to avoid solving the same subproblem multiple times, it is feasible to

store the subproblems that have already been solved, making a trade-off between memory and

computational time. In addition, in order to assure the validity of our hypotheses under different

scenarios, more numerical results analyzing different extraction policies for the DP algorithm

and node evaluation policies for the B&B algorithm are necessary.

Lastly, we reinforce that preliminary results of this study were reported in Castelo et

al. (2022) and in the XXI Latin Ibero-American Conference on Operations Research (ANDRADE

et al., 2022). The complete paper with all our findings was submitted for publication (ANDRADE

et al., 2023).
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